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Abstract

We consider a model of random walk in Z2 with (fixed or random) orientation of
the horizontal lines (layers) and with non constant iid probability to stay on these
lines. We prove the transience of the walk for any fixed orientations under general
hypotheses. This contrasts with the model of Campanino and Petritis [3], in which
probabilities to stay on these lines are all equal. We also establish a result of conver-
gence in distribution for this walk with suitable normalizations under more precise
assumptions. In particular, our model proves to be, in many cases, even more su-
perdiffusive than the random walks introduced by Campanino and Petritis.
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1 Introduction

We consider a random walk (Mn)n starting from 0 on an oriented version of Z2. Let
ε = (εk)k∈Z be a sequence of random variables with values in {−1, 1} and joint distribu-
tion µ. We assume that the kth horizontal line is entirely oriented to the right if εk = 1,
and to the left if εk = −1. We suppose that the probabilities pk to stay on the kth horizon-
tal line are given by a sequence of independent identically distributed random variables
ω = (pk)k∈Z (with values in (0, 1) and joint distribution κ) and that the probabilities to go

up or down are equal. More precisely, given ε and ω, the process (Mn = (M
(1)
n ,M

(2)
n ))n

is a Markov chain satisfying M0 = (0, 0) with transition probabilities given by

Pε,ω(Mn+1 −Mn = (ε
M

(2)
n
, 0) |M0, ...,Mn ) = p

M
(2)
n

and ∀y ∈ {−1, 1}, Pε,ω(Mn+1 −Mn = (0, y) |M0, ...,Mn ) =
1− p

M
(2)
n

2
.
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We also define the annealed probability P as follows:

P(.) :=

∫
Pε,ω(.)dκ(ω) dµ(ε).

We denote by E and Eε,ω the expectations with regard to P and Pε,ω respectively.
Our model corresponds to a random walk in a two dimensional stratified medium

with oriented horizontal layers and with random probability to stay on each layer.
The model with pk = 1/2 and with the ε′ks iid and centered can be seen as a discrete

version of a model introduced by G. Matheron and G. de Marsily in [17] to modelize
transport in a stratified porus medium. This discrete model appears in [2] to simulate
the Matheron and de Marsily model. It has also been introduced, separately, by math-
ematicians with motivations linked to quantum field theory or propagation on large
networks (see respectively [3] and [4] and references therein).

In [3], M. Campanino and D. Petritis proved that, when the pk’s are all equal, the
behavior of the walk (Mn)n depends on the choice of the orientations (εk)k. First, they
prove that the walk is recurrent when εk = (−1)k (i.e. when the horizontal even lines
are oriented to the right and the uneven to the left). Second, they prove that the walk
is almost surely transient when the ε′ks are iid and centered. These results have been
recently improved in [4]. Let us mention that extensions of this second model can be
found in [8, 19], and that its Martin boundary is computed in [15].

In order to take into account the different nature of the successive layers of a strat-
ified porus medium, it is natural to study the case where the pk’s are random instead
of being all equal. In this paper, we prove that taking the pk’s random and i.i.d. can
induce very different behaviors for the random walk.

First, we prove that under general hypotheses, the random walk is transient for
every deterministic or random orientations, contrarily to the results obtained by Cam-
panino and Petritis in [3] and [4] for their model. Hence, even very small random per-
turbations of their (constant) pk’s transform their recurrent walks into transient ones.

Second, it was proved in [9] that when the pk’s are all equal, the random walk is
superdiffusive, and that the horizontal position at time n is, asymptotically, of order
n3/4. This was conjectured in [17] and was one main motivation for the introduction of
this model. We prove that, depending on the law of p0, our model can be even more
superdiffusive, with horizontal position at time n of order nδ, where δ can take all the
values in [3/4, 1).

More precisely, our results are the following. We start by stating our theorem about
transience.

Theorem 1.1 (Transience). Let (pk)k be a sequence of independent identically dis-
tributed random variables. Suppose here that p0 is non-constant and that E[(1−p0)−α] <

∞ (for some α > 1). Then, for every deterministic or random sequence (εk)k, the ran-
dom walk (Mn)n is transient for almost every ω.
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We now give a functional theorem under more precise hypotheses. In particular, we

will assume that p0
1−p0 is integrable and that the distribution of p0

1−p0 − E
[

p0
1−p0

]
belongs

to the normal domain of attraction of a strictly stable distribution Gβ of index β ∈ (1, 2],
which means that

P

(
n−1/β

n∑
k=1

(
pk

1− pk
− E

[
p0

1− p0

])
≤ x

)
→n→+∞ Gβ(x), x ∈ R, (1.1)

the characteristic function ζβ of Gβ being of the form

ζβ(θ) := exp[−|θ|β(A1 + iA2sgn(θ))], θ ∈ R, (1.2)

with A1 > 0 and |A−11 A2| ≤ | tan(πβ/2)|. Notice that this is possible iff A2 = A1 tan(πβ/2)

(since p0
1−p0 ≥ 0 a.s., see e.g. [12, thm 2.6.7]).

If β ∈ (1, 2), we consider two independent right continuous stable processes (Zx, x ≥
0) and (Z−x, x ≥ 0), with characteristic functions

E(eiθZt) = exp[−A1|t||θ|β ], t ∈ R, θ ∈ R.

If β = 2, we denote by Z a two-sided standard Brownian motion. We also introduce
a standard Brownian motion (Bt, t ≥ 0), and denote by (Lt(x), x ∈ R, t ≥ 0) the
jointly continuous version of its local time. We assume that Z and B are defined in the
same probability space and are independent processes. We now define, as in [14], the
continuous process

∆t :=

∫
R

Lt(x) dZx, t ≥ 0.

We prove the following result.

Theorem 1.2 (Functional limit theorem). Let (pk)k be a sequence of independent iden-

tically distributed random variables with values in (0, 1). Suppose here that E
[

p0
1−p0

]
<

∞ and that the distribution of p0
1−p0−E

[
p0

1−p0

]
belongs to the normal domain of attraction

of a strictly stable distribution of index β ∈ (1, 2] (i.e. that we have (1.1) and (1.2)).
We also assume that (εk)k satisfies one of the following hypotheses :

(a) for every k, εk = (−1)k,

(b) (εk)k is a sequence of independent identically distributed centered random vari-
ables with values in {±1}; (εk)k is independent of (pk)k.

Then, setting δ := 1
2 + 1

2β , the sequence of processes((
n−δM

(1)
bntc, n

−1/2M
(2)
bntc

)
t≥0

)
n

converges in distribution under the annealed probability P (in the space of Skorokhod

D([0; +∞),R2)) to (γ−δσ∆t, γ
−1/2Bt)t≥0 with γ := 1 + E

[
p0

1−p0

]
and with :

* σ =
(
V ar

(
p0

1−p0

))1/2
in case (a) with β = 2,

* σ =

(
E

[(
p0

1−p0

)2])1/2

in case (b) with β = 2,

* σ = 1 in cases (a) or (b) with β ∈ (1, 2).
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We remind that p0
1−p0 has a finite variance if β = 2 (see e.g. [12, Thm 2.6.6.]), hence

σ is finite in all cases.
The proof of this second result is based on the proof of the functional limit theorem

established by N. Guillotin and A. Le Ny [9] for the walk of M. Campanino and D. Petritis
(with (pk)k constant and (εk)k centered, independent and identically distributed).

It may be possible that the transience remains true for every non degenerate dis-
tribution of the pk’s on (0, 1). Indeed, roughly speaking, taking the pk’s closer to one
should make the random walk even more transient; however this is just an intuition
and not a mathematical evidence. We prove our Theorem 1.1 under a very general mo-
ment condition, which covers all the cases of our Theorem 1.2. In particular, the most
superdiffusive cases, with δ > 3/4, are obtained when the support of 1/(1 − p0) is not
compact.

The proof of our first result is built from the proof of [3, Thm 1.8] with many adap-
tations. The idea is to prove that, when (εk)k∈Z is a fixed sequence of orientations, that
is when µ is a Dirac measure, ∑

k≥1

P(Mk = (0, 0)) < +∞. (1.3)

In the model we consider here, contrarily to the models envisaged in [3], the second
coordinate of (Mn)n is not a random walk but it is a random walk in a random envi-
ronment, since the probability to stay on a horizontal line depends on the line, which
complicates the model. Even if a central limit theorem and a functional limit theorem
have been established in [11] and in [10] for M (2)

n , the local limit theorem for M (2)
n has

not already been proved, to the extent of our knowledge. Moreover, in Theorem 1.1
we do not assume that the distribution of p0

1−p0 belongs to the domain of attraction of a
stable distribution. For these reasons, it does not seem simple to make a precise esti-
mation of P(Mn = (0, 0)) as it has been done in [5]. We also mention that the random
walk (Mn)n is not reversible.

It will be useful to observe that under Pε,ω and P, (M
(2)
Tn

)n is a simple random walk
(Sn)n on Z, where the Tn’s are the times of vertical displacement :

T0 := 0; ∀n ≥ 1, Tn := inf{k > Tn−1 : M
(2)
k 6= M

(2)
k−1}.

We will use several times the fact that there exists M > 0 such that, for every n ≥ 1, we
have P(Sn = 0) ≤Mn−

1
2 . Now, let us write Xn the first coordinate of MTn . We observe

that
Xn+1 −Xn = εSnξn,

where ξn := Tn+1−Tn−1 corresponds to the duration of the stay on the horizontal line Sn
after the n-th change of line. Moreover, given ω = (pk)k∈Z, ε = (εk)k∈Z and S = (Sk)k,
the ξk’s are independent and with distribution given by Pε,ω(ξk = m|S) = (1 − pSk)pmSk
for every k ≥ 0 and m ≥ 0. With these notations, we have

Xn =

n−1∑
k=0

εSkξk.

This representation of (MTn)n will be very useful in the proof of both the results.

2 Estimate of the variance

To point out the difference between our model and the model with (pk)k constant
considered by M. Campanino and D. Petritis in [3], we start by estimating the variance of
X2n under the probability P for these two models in the particular case when εk = (−1)k

for every k ∈ Z and when (1− p0)−1 is square integrable.
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Proposition 2.1. Let εk = (−1)k for every k ∈ Z.

1. If the pk’s do not depend on k, then V ar(X2n) = E
[

2p0
(1−p0)2

]
n.

2. If the (1 − pk)−1’s are iid, square integrable with positive variance, then there
exists C > 0 such that V ar(X2n) ∼n→+∞ Cn3/2.

Proof of Proposition 2.1. We observe that

Eε,ω[ξk|S] =
pSk

1− pSk
and V arε,ω(ξk|S) =

pSk
(1− pSk)2

.

Moreover, S is independent of ω under P, hence E(X2n) = 0. We have

V ar(X2n) =

n−1∑
k,`=0

E [(ξ2k − ξ2k+1) (ξ2` − ξ2`+1)]

=

n−1∑
k=0

E
[
(ξ2k − ξ2k+1)

2
]

+ 2
∑

0≤k<`≤n−1

E [(ξ2k − ξ2k+1) (ξ2` − ξ2`+1)]

=

n−1∑
k=0

E

[
p0

(1− p0)2
+

p1
(1− p1)2

+

(
p0

1− p0
− p1

1− p1

)2
]

+ 2

n−1∑
k=1

(n− k)E [(ξ0 − ξ1) (ξ2k − ξ2k+1)]

= Cn+ 2

n−1∑
k=1

(n− k)E

[(
pS0

1− pS0

− pS1

1− pS1

)(
pS2k

1− pS2k

−
pS2k+1

1− pS2k+1

)]
.

This gives the result in case (1). Now, to prove the result in case (2), we notice that,
since py and py′ are independent as soon as y 6= y′, we have

E

[(
p0

1− p0
− pS1

1− pS1

)(
pS2k

1− pS2k

−
pS2k+1

1− pS2k+1

)]

= E

[
p0

1− p0
pS2k

1− pS2k

+
pS1

1− pS1

pS2k+1

1− pS2k+1

]
− 2E

[
p0

1− p0

]2
= 2

(
E

[
p0

1− p0
pS2k

1− pS2k

]
− E

[
p0

1− p0

]2)

= 2

(
E

[
p20

(1− p0)2

]
− E

[
p0

1− p0

]2)
P(S2k = 0)

= 2V ar

(
p0

1− p0

)
P(S2k = 0).

We conclude as H. Kesten and F. Spitzer did in [14, p. 6], using the fact that P(S2k =

0) ∼ ck−1/2 (as k goes to infinity) for some c > 0.

3 Proof of Theorem 1.1 (transience)

We come back to the general case. It is enough to prove the result for any fixed
(εk)k. Let (εk)k∈Z be some fixed sequence of orientations. Hence µ is a Dirac measure
on {−1, 1}Z. Without any loss of generality, we assume throughout the proof of Theorem
1.1 that ε0 = 1 and α ≤ 2. We have∑

k≥1

P(Mk = (0, 0)) =
∑
n≥1

P(S2n = 0 and X2n ≤ 0 ≤ X2n+1).

EJP 18 (2013), paper 18.
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Hence, to prove the transience, it is enough to prove that∑
n≥1

P(S2n = 0 and X2n ≤ 0 ≤ X2n+1) < +∞. (3.1)

This sum is divided into 8 terms which are separately estimated in Lemmas 3.1, 3.2,
3.3, 3.4, 3.5, 3.8, 3.9 and 3.10 provided δ0, δ1, δ2, δ3 are well chosen. One way to choose
these δi so that they satisfy simultaneously the hypotheses of all these lemmas is given
at the end of this section.

For every y ∈ Z and m ∈ N, we define Nm(y) := #{k = 0, ...,m − 1 : Sk = y}. We
will use the fact that X2n = S2n +D2n with

D2n :=
∑
y∈Z

εypy
1− py

N2n(y) and S2n :=

2n−1∑
k=0

εSk

(
ξk −

pSk
1− pSk

)
.

Roughly speaking, the idea of the proof is that X2n ≤ 0 ≤ X2n+1 implies that X2n cannot
be very far away from 0, which means that D2n and S2n should be of the same order,
but this is false with a large probability. More precisely, we will prove that, with a large
probability, we have |D2n| > n

3
4−δ3 and |S2n| < n

1
4+

1
2α+υ for small δ3 > 0 and υ > 0

(see the definition of Bn and the end of the proof of Lemma 3.3). Now let us carry out
carefully this idea.

Let n ≥ 1. Following [3], we consider δ1 > 0 and δ2 > 0 and we define :

An :=

{
max

0≤k≤2n
|Sk| ≤ n

1
2+δ1 and max

y∈Z
N2n(y) < n

1
2+δ2

}
.

Our first lemma is standard, we give a proof for the sake of completeness.

Lemma 3.1. ∑
n≥0

P(Acn) < +∞. (3.2)

Proof. Let p > 1. Thanks to Doob’s maximal inequality and since E(|Sn|p) = O(np/2),
we have E[max0≤k≤2n |Sk|p] = O(n

p
2 ) and so, by the Chebychev inequality,

P

(
max

0≤k≤2n
|Sk| > n

1
2+δ1

)
≤ E[max0≤k≤2n |Sk|p]

np(
1
2+δ1)

= O(n−pδ1).

According to [14, Lem. 1], we also have maxy E[N2n(y)p] = O(n
p
2 ) and hence

P

(
max
y

N2n(y) > n
1
2+δ2

)
≤

2n∑
y=−2n

P(N2n(y) > n
1
2+δ2) = O(n1−pδ2).

The result follows by taking p large enough.

Let δ0 > 0 and set

E0(n) := {p0 ≤ 1− 1/n
1
2α+δ0} .

We have

Lemma 3.2. ∑
n≥0

P(S2n = 0, E0(n)c) < +∞. (3.3)
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Proof. Indeed, since S is independent of (pk)k∈Z, we have

P(S2n = 0, E0(n)c) ≤ M√
n
P

(
1

1− p0
> n

1
2α+δ0

)
≤ M

n1+δ0α
E

[(
1

1− p0

)α]
whose sum is finite.

We also consider the conditional expectation of X2n with respect to (ω, (Sp)p) which
is equal to D2n =

∑
y∈Z

εypy
1−pyN2n(y). We introduce δ3 > 0 and

Bn :=
{
|D2n| > n

3
4−δ3

}
.

Let cn := n
1
α ( 1

2+δ1)+δ0 and

E1(n) :=

{
∀y ∈ {−n1/2+δ1 , n1/2+δ1}, 1

1− py
≤ cn

}
.

Since p0 ∈ (0, 1) a.s., there exist 0 < a < b < 1 such that P(a < p0 < b) =: γ0 > 0. Let

Λn := {k ∈ {0, . . . , 2n− 1}, a < pSk < b},

P := {y ∈ Z, a < py < b}, and ζy := 1{a<py<b}, y ∈ Z. We have #Λn =
∑
y∈Z ζyN2n(y) =∑

y∈P N2n(y). Let

E2(n) := {#Λn ≥ γ0n} .

Define V 2n :=

(∑2n−1
k=0

(
ξk −

pSk
1−pSk

)2)1/2

and

E3(n) :=
{
V

2

2n ≤ nd+δ0
}
,

with d := 1
2 + 1

α + 3δ0 + 2δ1
α + δ2 and

E4(n) :=

{
2n−1∑
k=0

1

(1− pSk)2
≤ nd

}
.

Lemma 3.3. If δ3 + δ1
α + δ2

2 + 3δ0 <
1
2 −

1
2α , then we have∑

n∈N
P
(
S2n = 0; X2n ≤ 0 ≤ X2n+1, An, Bn,∩3i=0Ei(n)

)
<∞. (3.4)

Proof. Uniformly on E0(n) ∩ E1(n), we have

Pε,ω(S2n = 0 and X2n ≤ 0 ≤ X2n+1, An, Bn, E2(n), E3(n))

≤
∑
k≥0

Pε,ω(S2n = 0 and X2n = −k,An, Bn, E2(n), E3(n))(1− n−1/(2α)−δ0)k

≤
n1/(2α)+2δ0∑

k=0

Pε,ω(S2n = 0 and X2n = −k,An, Bn, E2(n), E3(n)) +O(n−2)

≤ Pε,ω(S2n = 0 and − n1/(2α)+2δ0 ≤ X2n ≤ 0, An, Bn, E2(n), E3(n)) +O(n−2).(3.5)

EJP 18 (2013), paper 18.
Page 7/23

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v18-2459
http://ejp.ejpecp.org/


RWRE in a stratified oriented medium

In order to apply an inequality proved by Nagaev ([18], Thm 1), we define Xk :=

εSk

(
ξk −

pSk
1−pSk

)
, recall that S2n =

∑2n−1
k=0 Xk, and introduce

B2n :=
(
Eε,ω

[
S
2

2n|S
])1/2

=

2n−1∑
j=0

pSj
(1− pSj )2

1/2

.

We have

B
2

2n ≥ a
∑

y : py≥a

N2n(y)

(1− py)2
.

Let C(2n) :=
∑2n−1
k=0 Eε,ω

[∣∣Xk

∣∣3 |S]. On An ∩ E1(n) ∩ E2(n), we have

∑
y : py<a

N2n(y)

(1− py)2
≤ 2n−#Λn

(1− a)2
≤ 2− γ0

γ0

#Λn
(1− a)2

≤ 2− γ0
γ0

∑
y : py≥a

N2n(y)

(1− py)2
(3.6)

and so

C(2n) ≤
∑
y

16N2n(y)

(1− py)3
≤
∑
y

16N2n(y)

(1− py)2
cn ≤

32

γ0

∑
y : py≥a

N2n(y)

(1− py)2
cn.

Let L2n := C(2n)/B
3

2n. On An ∩ E1(n) ∩ E2(n), we have

L2n ≤ 32

γ0a3/2

 ∑
y : py≥a

N2n(y)

(1− py)2

−1/2 cn ≤ 32

γ0a3/2
1− a
√
γ0n

cn

≤ 32(1− a)

(γ0a)3/2
n−

1
2+

1
2α+

δ1
α +δ0 ≤ n−2δ0 , (3.7)

if n is large enough, since δ1
α + 3δ0 <

1
2 −

1
2α .

Let us recall that V 2n =
(∑2n−1

k=0 X
2

k

)1/2
. We can now apply Nagaev ([18], Thm 1),

which gives uniformly on An ∩ E1(n) ∩ E2(n),

Pε,ω(|S2n| ≥ nδ0V 2n|S)

≤ 2

(
n2δ0

4 log 2
+ 1

)
exp

(
−n

2δ0

4
(1− c′L2nn

δ0)

)
+ 2 exp

(
− c′′

L
2

2n

)
= O(exp(−nδ0)) (3.8)

where c′ > 0 and c′′ > 0 are universal constants. We recall that X2n =
∑2n−1
k=0 εSkξk =

S2n +D2n. We have, for large n, on An ∩Bn ∩ E1(n) ∩ E2(n),

Pε,ω(−n 1
2α+2δ0 ≤ X2n ≤ 0, E3(n)|S)

≤ Pε,ω
(
|X2n −D2n| ≥ n

3
4−δ3 − n 1

2α+2δ0 , E3(n)|S
)

≤ Pε,ω(|S2n| ≥ nδ0n(d+δ0)/2, E3(n)|S)

≤ Pε,ω(|S2n| ≥ nδ0V 2n|S),

since 1
2α + 2δ0 <

3
4 − δ3 and since δ3 + δ1

α + δ2
2 + 3δ0 <

1
2 −

1
2α . Integrating this proves the

lemma, by (3.5) and (3.8).

Lemma 3.4. ∑
n≥0

P(E2(n)c) < +∞. (3.9)
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Proof. According to [7, Thm 1.3] applied twice with u = γ0/2 : first with the scenery
(γ0 − 1{a<p2y<b})y∈Z and with the strongly aperiodic Markov chain (S2n/2)n≥0, and sec-
ond with the scenery (γ0 − 1{a<p2y+S1<b})y∈Z and with the strongly aperiodic Markov
chain ((S2n+1 − S1)/2)n≥0 conditionally on S1, we get the existence of c1 > 0 such that,
for every n ≥ 1, we have

P(E2(n)c) ≤ exp
(
−c1n

1
3

)
.

Lemma 3.5. We have ∑
n∈N

P(E4(n) \ E3(n)) <∞. (3.10)

Proof. We recall that, taken ω and S,
(
ξk −

pSk
1−pSk

)
y,k

is a sequence of independent,

centered random variables. For every integer ν ≥ 2, there exists a constant C̃ν > 0

such that
∣∣∣Eε,ω [(ξk − pSk

1−pSk
)ν |S

]∣∣∣ ≤ C̃ν

(
1

1−pSk

)ν
P-almost surely. Consequently, for

every N ≥ 1, there exists a constant CN > 0 such that

∀ν ∈ {2, . . . , 2N},
∣∣∣∣Eε,ω [(ξk − pSk

1− pSk
)ν |S

]∣∣∣∣ ≤ ( CN
1− pSk

)ν
.

Hence, for every n ≥ 1 and N ≥ 1, we have on E4(n) :

Eε,ω[(V
2

2n)N |S] =

2n−1∑
k1=0

2n−1∑
k2=0

· · ·
2n−1∑
kN=0

Eε,ω

[
N∏
i=1

X
2

ki |S

]

=

2n−1∑
k1=0

2n−1∑
k2=0

· · ·
2n−1∑
kN=0

Eε,ω

2n−1∏
j=0

X
2θj(k1,...kN )

j |S


≤

2n−1∑
k1=0

2n−1∑
k2=0

· · ·
2n−1∑
kN=0

2n−1∏
j=0

(
CN

1− pSj

)2θj(k1,...,kN )

= (CN )2N

(
2n−1∑
k=0

1

(1− pSk)2

)N
≤ (CN )2NndN

where θj(k1, k2, . . . , kN ) := #{1 ≤ i ≤ N, ki = j}. Consequently, on E4(n),

Pε,ω(V
2

2n > nd+δ0 |S) ≤ n−(d+δ0)NEε,ω
[
(V

2

2n)N |S
]
≤ (CN )2Nn−δ0N = O(n−2)

by taking N large enough. Integrating this on E4(n) yields the result.

Lemma 3.6. We have on E2(n), uniformly on ω, S and on k ∈ Z:

Pε,ω (X2n = −k |S ) = O
(√

ln(n)n−1
)
. (3.11)

Proof. On E2(n), we have :

Pε,ω (X2n = −k|S) =
1

2π

∫ π

−π
Eε,ω

[
eitX2n |S

]
eikt dt

≤ 1

2π

∫ π

−π

∣∣Eε,ω [eitX2n |S
]∣∣ dt

≤ 1

π

∫ π

0

∏
y∈P

(χpy (εyt))
N2n(y)
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with

χp(t) :=
∣∣Eε,ω[eitξ0 |p0 = p]

∣∣ =

∣∣∣∣ 1− p
1− peit

∣∣∣∣ =
1− p

(1 + p2 − 2p cos(t))
1
2

.

Since χp(t) is decreasing in p and since 0 < a < py < b < 1 for y ∈ P , there exist
0 < β < π/2 and c > 0 such that

for a.e. ω, ∀y ∈ P, ∀t ∈ [0, β], χpy (t) ≤ 1− a
(1 + a2 − 2a cos(t))

1
2

≤ exp(−ct2).

Let us define an :=
√

2 ln(n)/(cγ0n). Since #Λn =
∑
y∈P N2n(y) ≥ γ0n on E2(n), we

have ∫ β

an

∏
y∈P

(χpy (t))N2n(y) dt ≤
∫ β

an

exp(−ct2#Λn) dt ≤
∫ β

an

exp(−ct2γ0n) dt ≤ n−1

on E2(n). Moreover, ∫ an

0

∏
y∈P

(χpy (t))N2n(y) dt ≤ an

and∫ π

β

∏
y∈P

(χpy (t))N2n(y) dt ≤
∫ π

β

∏
y∈P

(
1− py

1− py cos(β)

)N2n(y)

dt ≤ π
(

1− a
1− a cos(β)

)γ0n/2
,

since p > a > 0 for p ∈ P .

Lemma 3.7. Suppose that δ′ := δ3 − δ2
2 − δ1 > 0 and δ3 + δ2 <

1
4 . Then, uniformly on p0

and (Sk)k,

P(An \Bn|S, p0) = O
(
n−δ

′
)
.

Proof. Up to an enlargement of the probability space, we consider a centered gaussian
random variable G with variance n

3
2−2δ3 independent of (ω, S). We have

P(|D2n| ≤ n
3
4−δ3 |S, p0)P(|G| ≤ n 3

4−δ3) ≤ P
(
|D2n +G| ≤ 2n

3
4−δ3 |S, p0

)
and so

P(|D2n| ≤ n
3
4−δ3 |S, p0) ≤ P

(
|D2n +G| ≤ 2n

3
4−δ3 |S, p0

)
/0, 6.

Let χ̃ be the characteristic function of p0
1−p0 . Since p0 is non-constant, there exist β̃ > 0

and c̃ > 0 such that 1

∀u ∈ [−β̃; β̃], |χ̃(u)| ≤ e−c̃u
2

.

Consequently,

P
(
|D2n +G| ≤ 2n

3
4−δ3 |S, p0

)
=

2n
3
4−δ3

π

∫
R

sin(2tn
3
4−δ3)

2tn
3
4−δ3

E[eitD2n |S, p0]E[eitG] dt

=
2n

3
4−δ3

π

∫
R

sin(2tn
3
4−δ3)

2tn
3
4−δ3

eit
p0

1−p0
N2n(0)

∏
y 6=0

χ̃ (εyN2n(y)t) e−
t2

2 n
3
2
−2δ3

dt

≤ 2n
3
4−δ3

π

∫
R

∏
y 6=0

|χ̃ (εyN2n(y)t)| e− t
2

2 n
3
2
−2δ3

dt.

1Applying [16, Lemma 3.7.5, p. 58] to the random variable Y := p0
1−p0

− p1
1−p1

which is not identically

equal to 0 and whose characteristic function is |χ̃|2, we get that for every r > 0 and every t ∈
[
− 1
r
; 1
r

]
,

|1 − |χ̃(t)|2| ≥ t2

3
E[Y 21{|Y |≤r}]. We take β̃ such that c̃ := 1

6
E[Y 21{|Y |≤β̃−1}] > 0. For every u ∈ [−β̃; β̃],

we have |1− |χ̃(u)|| ≥ 1
2
|1− |χ̃(u)|2| ≥ c̃u2 and so |χ̃(u)| ≤ 1− c̃u2.
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Let δ4 > 0 be such that δ5 := 1
4 − δ3 − δ2 − δ4 > 0 and let bn := nδ4+δ3−

3
4 . On the one

hand, we have

I1 :=

∫
{|t|>β̃bn}

∏
y 6=0

|χ̃ (εyN2n(y)t)| e− t
2

2 n
3
2
−2δ3

dt ≤
∫
{|t|>β̃bn}

e−
t2

2 n
3
2
−2δ3

dt

≤ nδ3−
3
4

∫
{|s|>β̃nδ4}

e−s
2/2 ds

≤ 2nδ3−
3
4 e−β̃

2n2δ4/2.

On the other hand, we will estimate the following quantity on An :

I2 :=

∫
{|t|≤β̃bn}

∏
y 6=0

|χ̃ (εyN2n(y)t)| e− t
2

2 n
3
2
−2δ3

dt.

Let us define Fn := {y 6= 0 : N2n(y) ≥ n1/2−δ1/2} and ρn := #Fn. On An, we have

2n−n1/2+δ2 ≤
∑
y 6=0N2n(y) ≤ ρnn1/2+δ2+(2n1/2+δ1−ρn)n

1/2−δ1

2 and hence ρn ≥ n1/2−δ2/2
(if n is large enough). Therefore, on An, we have αn :=

∑
y∈Fn N2n(y) ≥ n1−δ2−δ1/4.

Now, using the Hölder inequality, we have

I2 ≤
∏
y∈Fn

(∫
{|t|≤β̃bn}

|χ̃ (εyN2n(y)t)|
αn

N2n(y) dt

)N2n(y)
αn

≤ sup
y∈Fn

(∫
{|t|≤β̃bn}

|χ̃ (εyN2n(y)t)|
αn

N2n(y) dt

)

≤ bn sup
y∈Fn

(∫
|v|≤β̃

|χ̃ (εyN2n(y)vbn)|
αn

N2n(y) dv

)
.

Let us notice that, if |v| ≤ β̃, we have on An,

|εyN2n(y)vbn| ≤ β̃n1/2+δ2nδ4+δ3−
3
4 = β̃n−δ5 ≤ β̃,

since δ5 > 0. Hence, on An, we have

I2 ≤ bn sup
y∈Fn

(∫
{|v|≤β̃}

e
−c̃(N2n(y))

2v2n2δ4+2δ3−
3
2

αn
N2n(y) dv

)

≤ bn sup
y∈Fn

(∫
{|v|≤β̃}

e−c̃N2n(y)v
2n2δ4+2δ3−

1
2
−δ2−δ1/4 dv

)

≤ sup
y∈Fn

bnn
−δ3−δ4+ δ2+δ1

2 + 1
4√

N2n(y)

(∫
R

e−c̃s
2/4 ds

)
≤
√

2n−
3
4+δ1+

δ2
2

∫
R

e−c̃s
2/4 ds.

Hence, uniformly on An and on p0, we have

P(An \Bn|(Sk)k, p0) = O(nδ1+
δ2
2 −δ3).

Lemma 3.8. Under the same hypotheses, we have∑
n

P(S2n = 0, X2n ≤ 0 ≤ X2n+1;An ∩ E2(n) \Bn) <∞.
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Proof. According to Lemma 3.6, Lemma 3.7 and since P(S2n = 0) = O(n−1/2) and
E[1/(1− p0)] <∞, we have

E

[ ∞∑
k=0

Pε,ω(S2n = 0, X2n = −k,An ∩ E2(n) \Bn)pk0

]

= E

[ ∞∑
k=0

pk01{S2n=0}1(An\Bn)∩E2(n)P
ε,ω(X2n = −k|S)

]

≤ C
√

(lnn)n−1E

[
1

1− p0
1{S2n=0}P(An \Bn|S, p0)

]
= O(n−1−δ

′√
lnn). (3.12)

Lemma 3.9. If δ0α < δ1, we have∑
n

P (S2n = 0, X2n ≤ 0 ≤ X2n+1, E4(n)c, An, E2(n), E0(n)) < +∞. (3.13)

Proof. We notice that on E0(n) ∩An,

P(E4(n)c|S, p0) (3.14)

≤ n−dα/2E


 n1/2+δ1∑
y=−n1/2+δ1

1

(1− py)2
N2n(y)

α/2 ∣∣∣S, p0


≤ n−dα/2E

 ∑
|y|≤n1/2+δ1 ,y 6=0

1

(1− py)α
N
α/2
2n (y) +

1

(1− p0)α
N
α/2
2n (0)

∣∣∣S, p0
 (3.15)

≤ n−dα/2
(

2n1/2+δ1E

[
1

(1− p0)α

]
+ n

1
2+δ0α

)
n(1/2+δ2)α/2 = O(n−3δ0α/2), (3.16)

since α ≤ 2, δ0α < δ1 and d = 1
2 + 1

α + 2δ1
α + 3δ0 + δ2. Similarly as in (3.12), this yields

E

[ ∞∑
k=0

Pε,ω(S2n = 0, X2n = −k,E4(n)c ∩An ∩ E2(n) ∩ E0(n))pk0

]
= O(n−1−3δ0α/2

√
lnn).

Hence we have

P (S2n = 0, X2n ≤ 0 ≤ X2n+1, E4(n)c, An, E2(n), E0(n)) = O(n−1−δ0α/2
√

lnn).

Lemma 3.10. If δ0 <
1
2 (1− 1

α ), we have∑
n

P (S2n = 0, X2n ≤ 0 ≤ X2n+1, E2(n) \ E1(n)) <∞.

Proof. Notice that on { 1
1−p0 ≤ cn}, we have

P(E1(n)c|p0) ≤ 2n1/2+δ1P

(
1

1− p0
> cn

)
≤ 2n1/2+δ1

cαn
E

[(
1

1− p0

)α]
= O(n−δ0α).

Similarly as in (3.12), since E[1/(1− p0)] <∞, for δ0 small enough, we have
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E

[ ∞∑
k=0

Pε,ω(S2n = 0, X2n = −k,E2(n) \ E1(n))pk0

]

= E

[ ∞∑
k=0

pk01{S2n=0}1E2(n)\E1(n)P
ε,ω(X2n = −k|S)

]

≤ C
√

(lnn)n−1n−1/2

(
E

[ ∞∑
k=0

P(E1(n)c|p0)1{(1−p0)−1≤cn}p
k
0

]

+ E

[
1

1− p0
1{(1−p0)−1>cn}

])
= O(n−1−cδ0

√
lnn),

where we can use Hölder’s inequality, to deal with the second term of the third line,
since α > 1 and δ0 <

1
2 (1− 1

α ).

We take δ3 ∈
(
0, 12 −

1
2α

)
(since α > 1) and then δ1 > 0 and δ2 > 0 such that

δ1 <
1

6
, δ2 <

1

6
, δ2 <

1

4
− δ3,

δ1
α

+
δ2
2
<

1

2
− 1

2α
− δ3, δ1 +

δ2
2
< δ3

and finally δ0 such that

δ0 <
1

8
, δ0α < δ1 and

δ1
α

+
δ2
2

+ 3δ0 <
1

2
− 1

2α
− δ3.

Combining all the previous lemmas with these choices for δ0, δ1, δ2, δ3, we get (3.1),
which proves Theorem 1.1.

4 Proof of Theorem 1.2 (functional limit theorem)

We assume that (pk)k satisfies the conditions of Theorem 1.2.

Lemma 4.1. Let (εk)k be a (fixed or random) sequence with values in {−1; 1}. Let (pk)k
be as in Theorem 1.2. Then, under P, the sequence of random variablesn−δ bntc−1∑

k=0

εSk

(
ξk −

pSk
1− pSk

)
, 0


t≥0


n

converges in distribution (in the space of Skorokhod D([0; +∞),R2)) to (0, 0)t≥0.

Proof. We first notice that it is enough to prove that

N−δ sup
0≤n≤N

∣∣∣∣∣
n−1∑
k=0

εSk

(
ξk −

pSk
1− pSk

)∣∣∣∣∣→N→+∞ 0

in probability.
Let us define

Ẽ4(N, v) :=

{
N−1∑
k=0

1

(1− pSk)2
≤ N

1
2+

1
β+v

}
.

We proceed as in formula (3.15) (with a conditioning with respect to S only, and
α < β but close enough to β) to prove that P[(Ẽ4(N, v))c|S] ≤ N−cv on AN for c > 0 and
N large enough. Moreover, P(AcN )→N→+∞ 0 by Lemma 3.1, which gives

lim
N→+∞

P
(
Ẽ4(N, v)

)
= 1.
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Now, taken (ε, S, ω),
(∑n−1

k=0 εSk

(
ξk −

pSk
1−pSk

))
n

is a martingale. Hence, according to the

maximal inequality for martingales we have, for every θ > 0,

Pε,ω

 sup
n≤N

∣∣∣∣∣∣
(
n−1∑
k=0

εSk

(
ξk −

pSk
1− pSk

))2
∣∣∣∣∣∣ ≥ θ2N2δ

∣∣∣∣∣∣S


≤
2 sup
n≤N

Eε,ω
[∑n−1

k=0

(
ξk −

pSk
1−pSk

)2
|S
]

θ2N2δ

≤
2
∑N−1
k=0

1
(1−pSk )2

θ2N2δ

≤ 2N
1
2+

1
β+v

θ2N2δ
= 2N−

1
2+vθ−2,

on Ẽ4(n, v), since δ = 1
2 + 1

2β . Hence, we get

P

(
sup
n≤N

∣∣∣∣∣
n−1∑
k=0

εSk

(
ξk −

pSk
1− pSk

)∣∣∣∣∣ ≥ θNδ

)
≤ 1− P(Ẽ4(N, v)) + 2N−

1
2+vθ−2.

From this we conclude that limn→+∞P
(

supn≤N

∣∣∣∑n−1
k=0 εSk

(
ξk −

pSk
1−pSk

)∣∣∣ ≥ θNδ
)

= 0.

The next lemma follows from the proof of [9, Thm 4] when β = 2. The proof of the
general case β ∈ (1, 2] is postponed to Section 5.

Lemma 4.2. Let β ∈ (1, 2]. Let S = (Sn)n≥0 be a random walk on Z starting from
S0 = 0, with iid centered square integrable and non-constant increments and such
that gcd{k : P(S1 = k) > 0} = 1. Let (ε̃y)y∈Z be a sequence of iid random variables

independent of S with symmetric distribution and such that (n−
1
β
∑n
k=1 ε̃k)n converges

in distribution to a random variable Y with stable distribution of index β. Then, the
following convergence holds in distribution in D([0,+∞),R2)n−δ bntc−1∑

k=0

ε̃Sk , n
− 1

2Sbntc


t≥0

−→n→+∞ (∆̃t, B̃t)t≥0,

with δ = 1
2 + 1

2β , where (B̃t)t is a Brownian motion such that V ar(B̃1) = V ar(S1) and

with (L̃t(x))t,x the jointly continuous version of its local time and where

∆̃t :=

∫
R

L̃t(x) dZ̃x,

with Z̃ independent of B̃ given by two independent right continuous stable processes
(Z̃x)x≥0 and (Z̃−x)x≥0 with stationary independent increments such that Z̃1, Z̃−1 have
the same distribution as Y .

Now, we prove a functional limit theorem for (Xbntc, Sbntc) from which we will deduce
our theorem 1.2.

Proposition 4.3. Under the assumptions and with the notations of Theorem 1.2, the
sequence of processes ((

n−δXbntc, n
−1/2Sbntc

)
t≥0

)
n
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converges in distribution under P (in the space of Skorokhod D([0; +∞),R2)) to the
process (σ∆t, Bt)t≥0.

Proof of Proposition 4.3. We observe that Xn can be rewritten

Xn =

n−1∑
k=0

εSk

(
ξk −

pSk
1− pSk

)
+

n−1∑
k=0

εSk
pSk

1− pSk
.

According to Lemma 4.1, it is enough to prove, under P, the convergencen−δ bntc−1∑
k=0

εSk
pSk

1− pSk
, n−1/2Sbntc


t≥0


n

→n→+∞ (σ∆t, Bt)t≥0 (4.1)

in distribution in D([0; +∞),R2).

In case (b),
(
ε̃y := εy

py
1−py

)
y

is a sequence of independent identically distributed

random variables with symmetric distribution such that (n−1/β
∑n
y=1 ε̃y)n converges in

distribution to a random variable with characteristic function θ 7→ exp(−A1|θ|β), where
A1 := E(p20/(1− p0)2)/2 if β = 2. Hence the result follows from Lemma 4.2.

In case (a) with β = 2, we observe that
∑n−1
k=0 εSk is equal to 0 if n is even and is

equal to 1 if n is odd. Hence, ((n−3/4
∑bntc−1
k=0 εSk)t≥0)n converges to 0 in D([0; +∞),R)

and it remains to prove the convergence ofn−3/4 bntc−1∑
k=0

εSk

(
pSk

1− pSk
− E

[
p0

1− p0

])
, n−1/2Sbntc


t≥0


n

.

Let us write λ for the characteristic function of p0
1−p0 −E

[
p0

1−p0

]
. Since p0

1−p0 has a finite

variance and λ(εy·) behaves as λ at 0, we can follow the proof of the convergence of
the finite distributions of [9, prop 1], which gives the convergence in distribution in
D([0; +∞),R2) thanks to the tightness that can be proved for the first coordinate as in
[14].

Now, let us explain how case (a) with β ∈ (1, 2) will also be deduced from Lemma
4.2. This comes from the following lemma.

Lemma 4.4. Let β ∈ (1, 2). Let S = (Sn)n be a simple symmetric random walk on
Z starting from S0 = 0. Let (ãy)y∈Z be a sequence of iid random variables such that
E(|ã0|) <∞, independent of S. We haven−δ

bntc−1∑
k=0

(−1)kãSk −
∑
y

(ã2y − ã2y−1)Nbntc(2y)

 , 0


t≥0

−→ (0, 0)

in distribution as n goes to infinity (in D([0; +∞),R2)), with δ := 1
2 + 1

2δ .

Proof of Lemma 4.4. Let us write

en :=

n−1∑
k=0

(−1)kãSk −
∑
y

(ã2y − ã2y−1)Nn(2y).

We notice that it is enough to prove that

n−δ sup
0≤k≤n

|ek|
P−→n→+∞ 0.
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Let η > 0 be such that 2η < 1
2β −

1
4 (such a η exists since β < 2). For every n ≥ 1, we

consider the set Ω′n defined by

Ω′n :=

sup
k≤n
|Sk| ≤ n

1
2+η, sup

0≤k≤n
sup

|y|≤n
1
2
+η+1

|Nk(y)−Nk(y − 1)| ≤ n 1
4+η

 .

Let us show that limn→+∞P(Ω′n) = 1. As in Lemma 3.1, we have,

lim
n→+∞

P

(
sup
k≤n
|Sk| ≤ n

1
2+η

)
= 1.

Now we recall that for any even integer m,

sup
y
E[|Nn(y)−Nn(y − 1)|m] = O(n

m
4 ),

as n goes to infinity (see [14, lem 3] and [13, p. 77]). Hence, using again the Markov
inequality and taking m large enough, we get

P(Ω′n) ≥ 1− o(1)− 3n
3
2+η sup

n,y

E[|Nn(y)−Nn(y − 1)|m]

n
m
4 +ηm

= 1− o(1).

On Ω′n, using the fact that

k−1∑
`=0

(−1)`ãS` =
∑
y

(ã2yNk(2y)− ã2y−1Nk(2y − 1)) ,

for every k = 0, ..., n, we have

|ek| =

∣∣∣∣∣∑
y

ã2y−1(Nk(2y)−Nk(2y − 1))

∣∣∣∣∣ ≤ ∑
|y|≤n

1
2
+η+1

|ãy|n
1
4+η.

Hence, thanks to the Markov inequality, we get for θ > 0.

P

(
n−δ sup

0≤k≤n
|ek| > θ

)
≤ (1− P(Ω′n)) + P

 ∑
|y|≤n

1
2
+η+1

|ãy| > θn
1
2+

1
2β−

1
4−η


≤ (1− P(Ω′n)) +

3E (|ã0|)
θ

n−
1
2β+

1
4+2η.

Hence, for every θ > 0, we have limn→+∞P(n−δ sup0≤k≤n |ek| > θ) = 0.

Now we observe that the characteristic function of ε̃y :=
p2y

1−p2y −
p2y−1

1−p2y−1
is t 7→

|χ̃ (t)|2 (where χ̃ stands for the characteristic function of p0
1−p0 ). The distribution of ε̃0

is symmetric and (n−
1
β
∑n
k=1 ε̃k)n converges in distribution to a random variable with

characteristic function θ 7→ exp(−2A1|θ|β). According to Lemma 4.2 applied with the

random walk
(
S̃k := S2k

2

)
k
, we have

n−δ bntc−1∑
k=0

ε̃S̃k , n
− 1

2
Sb2ntc

2


t≥0

−→n→+∞ (∆̃t, B̃t)t≥0,
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in distribution in D([0; +∞),R2), where (B̃t)t is a Brownian motion such that V ar(B̃1) =
1
2 and with (L̃t(x))t,x the jointly continuous version of its local time and where

∆̃t :=

∫
R

L̃t(x) dZ̃x,

with Z̃ independent of B̃ given by two independent right continuous stable processes
(Z̃x)x≥0 and (Z̃−x)x≥0 such that the characteristic functions of Z̃1 and of Z̃−1 are θ 7→
exp(−2A1|θ|β). Hence, we haven−δ bnt/2c−1∑

k=0

ε̃S̃k , n
− 1

2
Sbntc

2


t≥0

−→n→+∞ (∆̃t/2, B̃t/2)t≥0,

and so (
n−δ

∑
y

ε̃yNbntc(2y), n−
1
2Sbntc

)
t≥0

−→n→+∞ (∆̃t/2, Bt)t≥0,

with Bt := 2B̃t/2. Now we observe that

∆̃t/2 =

∫
R

L̃t/2(x) dZ̃x =

∫
R

Lt(2x) dZ̃x =

∫
R

Lt(x) dZx,

where L denotes the local time of B and with Zx := Z̃x/2. Now Lemma 4.4 applied to(
py

1−py

)
y∈Z

gives (4.1), which proves Proposition 4.3 in the case (a) with β ∈ (1, 2).

Proof of Theorem 1.2. We recall that for every n, we have

Xn = M
(1)
Tn

and Sn = M
(2)
Tn
.

Moreover we observe that we have

Tn =

n−1∑
k=0

(ξk + 1) ,

that can be rewritten

Tn =

n−1∑
k=0

(
ξk −

pSk
1− pSk

)
+

n−1∑
k=0

(
pSk

1− pSk
− E

[
p0

1− p0

])
+ n

(
1 + E

[
p0

1− p0

])
.

We recall that γ = 1 + E
[

p0
1−p0

]
and we define (Un)n such that

Un := max{k ≥ 0 : Tk ≤ n}.

We notice that the sequences of processes 1

n

bntc−1∑
k=0

(
ξk −

pSk
1− pSk

)
, t ≥ 0


n

and

 1

n

bntc−1∑
k=0

(
pSk

1− pSk
− E

[
p0

1− p0

])
, t ≥ 0


n

converge in distribution in D([0,+∞),R) to 0. The first convergence follows from
Lemma 4.1 where we take εk = 1 for every k ∈ Z. The second convergence is a conse-
quence of [14, Thm 1.1] since nδ/n→ 0 as n→ +∞. Hence

(
n−1Tbntc, t ≥ 0

)
n

converges

in distribution to (γt)t, We conclude that
((
n−1Ubntc

)
t≥0

)
n

converges in distribution (in
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D([0; +∞),R)) to (t/γ)t. Therefore, according to Proposition 4.3 and to [1, Lem p. 151,
Thm 3.9], the sequence of processes((

n−δXUbntc , n
−1/2SUbntc

)
t≥0

)
n

converges in distribution (in D([0; +∞),R2)) to (σ∆ t
γ
, B t

γ
)t≥0. This means that((

n−δM
(1)
TUbntc

, n−1/2M
(2)
TUbntc

)
t≥0

)
n

converges in distribution (in D([0; +∞),R2)) to (σ∆ t
γ
, B t

γ
)t≥0.

Moreover, we have B t
γ

= γ−1/2B′t and Z x√
γ

= γ−1/(2β)Z ′x, where (B′t)t≥0 is a standard

Brownian motion, and (Z ′x)x∈R has the same distribution as (Zx)x∈R and is independent
of (B′t)t≥0. Furthermore we have

L t
γ

(x) = γ−1/2L′t(γ
1/2x), t ≥ 0, x ∈ R,

where (L′t)t≥0 is the local time of (B′t)t and so

∆ t
γ

= γ−
1
2

∫
R

L′t(γ
1
2x) dZx = γ−δ

∫
R

L′t(y) dZ ′y.

Hence (σ∆ t
γ
, B t

γ
)t≥0 has the same distribution as (σγ−δ∆t, γ

− 1
2Bt)t≥0.

Now we observe that we have

M
(2)
bntc = M

(2)
TUbntc

and
∣∣∣M (1)
bntc −M

(1)
TUbntc

∣∣∣ ≤ ξUbntc
and that for every θ > 0 and T > 0,

P

(
sup
t∈[0;T ]

n−δξUbntc ≥ θ

)
≤

nT∑
k=0

P
(
ξk ≥ θnδ

)
≤

nT∑
k=0

E[(ξ0)β−η]

(θnδ)β−η
= o(1) (4.2)

for η > 0 small enough, since δβ > 1 and since 2 (if η < β−1) E[(ξ0)β−η|p0] ≤ C 1
(1−p0)β−η

a.s. and E
[

1
(1−p0)β−η

]
<∞. This completes the proof of Theorem 1.2.

5 Proof of Lemma 4.2

The proof is very similar to those in [14] and [9], with some adaptations.
We define D̃n :=

∑
y∈Z ε̃yNn(y), n ∈ N.

Lemma 5.1. If β ∈ (1, 2], the finite dimensional distributions of (D̃bntc/n
δ, Sbntc/

√
n)t≥0

converge to those of (∆̃t, B̃t)t≥0.

Before proving Lemma 5.1, we first introduce some preliminary results.
We observe that n−1/β

∑n
y=1 ε̃y converges in distribution to a stable random variable

of parameter β, with characteristic function ζ̃β(θ) := exp(−A0|θ|β) (for some A0 > 0).
We can now compute the characteristic function of the finite dimensional distributions
of (∆̃t, B̃t)t≥0.

2This comes from the Hölder inequality since E
[
(ξ0)2|p0

]
≤ 2

(1−p0)2
.
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Lemma 5.2. Let k ∈ N∗, (t1, t2, . . . , tk) ∈ Rk+ and (θ
(i)
1 , θ

(i)
2 , . . . , θ

(i)
k )i=1,2 ∈ R2k. We have,

E

exp

i k∑
j=1

(
θ
(1)
j ∆̃tj + θ

(2)
j B̃tj

)

= E

exp

−A0

∫ +∞

−∞

∣∣∣∣∣∣
k∑
j=1

θ
(1)
j L̃tj (x)

∣∣∣∣∣∣
β

dx

 exp

i k∑
j=1

θ
(2)
j B̃tj


 . (5.1)

Proof. We condition by B̃ and we proceed as in [14, Lem 5]. We get

E

exp

i k∑
j=1

θ
(1)
j ∆̃tj

∣∣∣∣∣∣ B̃
 = exp

−A0

∫ +∞

−∞

∣∣∣∣∣∣
k∑
j=1

θ
(1)
j L̃tj (x)

∣∣∣∣∣∣
β

dx

 ,

which gives the result.

For fixed k ∈ N∗ and (t1, t2, . . . , tk) ∈ Rk+, we define for every (θ1, θ2, . . . , θk) ∈ (R2)k,

ψn(θ1, θ2, . . . , θk) := E

exp

−A0

∑
y∈Z

∣∣∣∣∣∣
k∑
j=1

θ
(1)
j Nbntjc(y)n−δ

∣∣∣∣∣∣
β
 exp

i k∑
j=1

θ
(2)
j

Sbntjc√
n




and

φn(θ1, θ2, . . . , θk) := E

exp

i k∑
j=1

(
θ
(1)
j n−δD̃bntjc + θ

(2)
j

Sbntjc√
n

)
= E

∏
y∈Z

λ̃

 k∑
j=1

θ
(1)
j Nbntjc(y)n−δ

 exp

i k∑
j=1

θ
(2)
j

Sbntjc√
n


where λ̃(θ) := E[exp(iθε̃0)] for every θ ∈ R and θj = (θ

(1)
j , θ

(2)
j ) for every j ∈ {1, . . . , n}.

Lemma 5.3. For every k ∈ N∗, (t1, t2, . . . , tk) ∈ Rk+ and (θ1, θ2, . . . , θk) ∈ (R2)k,

lim
n→+∞

|ψn(θ1, θ2, . . . , θk)− φn(θ1, θ2, . . . , θk)| = 0.

Proof. As in [14, p. 7], we have 1− λ̃(θ) ∼θ→0 A0|θ|β since the distribution of ε̃0 belongs
to the normal domain of attraction of the stable distribution with characteristic function
ζ̃β . The remainder of the proof is the same as in [9, Lem 5] with δ instead of 3/4 and

β instead of 2, since P(n−δ supy∈Z |
∑k
j=1 θ

(1)
j Nbntjc(y)| > ε) →n→+∞ 0 for ε > 0 by

[14, Lem 4] and since we have E(
∑
y∈Z |n−δ

∑k
j=1 θ

(1)
j Nbntjc(y)|β) ≤ C < ∞ by [6, Lem

3.3].

We now prove

Lemma 5.4. For every k ∈ N∗, (t1, t2, . . . , tk) ∈ Rk+ and (θ1, θ2, . . . , θk) ∈ (R2)k,n−δβ∑
y∈Z

∣∣∣∣∣∣
k∑
j=1

θ
(1)
j Nbntjc(y)

∣∣∣∣∣∣
β

,

k∑
j=1

θ
(2)
j Sbntjc/

√
n


n
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converges in distribution as n→ +∞ to∫ +∞

−∞

∣∣∣∣∣∣
k∑
j=1

θ
(1)
j L̃tj (x)

∣∣∣∣∣∣
β

dx,

k∑
j=1

θ
(2)
j B̃tj

 .

Proof. The proof is very similar to the one of [9, Lem 6], and to the proof of [14, Lem
6] which deals with the first coordinate. Throughout the proof, C denotes a positive
constant, which can vary from line to line, and can depend on (θ

(i)
j , i = 1, 2; j = 1, . . . , k).

For n ∈ N and real numbers a < b and t > 0, we introduce the notation

Tnt (a, b) :=

∫ bntc/n
0

1{a≤Sbnsc/
√
n<b}ds,

which is the occupation time of [a, b) by Sbn.c/
√
n up to time bntc/n. We consider τ > 0

and two real numbers µ1 and µ2. We define for M > 0, ` ∈ Z and n ∈ N,

U(τ,M, n) := µ1n
−δβ

∑
y<−Mτ

√
n

or y≥Mτ
√
n

∣∣∣∣∣∣
k∑
j=1

θ
(1)
j Nbntjc(y)

∣∣∣∣∣∣
β

,

T (`, n) :=

k∑
j=1

θ
(1)
j Tntj (`τ, (`+ 1)τ) =

1

n

k∑
j=1

θ
(1)
j

∑
`τ
√
n≤y<(`+1)τ

√
n

Nbntjc(y),

V (τ,M, n) := µ1τ
1−β

∑
−M≤`<M

|T (`, n)|β + µ2n
−1/2

k∑
j=1

θ
(2)
j Sbntjc.

We are interested in

A(τ,M, n) :=
µ1

nδβ

∑
y∈Z

∣∣∣∣∣∣
k∑
j=1

θ
(1)
j Nbntjc(y)

∣∣∣∣∣∣
β

+ µ2

k∑
j=1

θ
(2)
j

Sbntjc√
n
− U(τ,M, n)− V (τ,M, n)

=
µ1

nδβ

∑
−M≤`<M

∑
`τ
√
n≤y<(`+1)τ

√
n

∣∣∣∣∣∣
k∑
j=1

θ
(1)
j Nbntjc(y)

∣∣∣∣∣∣
β

−µ1

∑
−M≤`<M

τ1−β |T (`, n)|β .

First step: We define c(`, n) := #{y ∈ Z, `τ
√
n ≤ y < (` + 1)τ

√
n}. As in [14], we have

for µ1 6= 0,

µ−11 A(τ,M, n)

=
∑

−M≤`<M

∑
`τ
√
n≤y<(`+1)τ

√
n

n−δβ


∣∣∣∣∣∣
k∑
j=1

θ
(1)
j Nbntjc(y)

∣∣∣∣∣∣
β

− nβ(τ
√
n)−β |T (`, n)|β

(5.2)

+
∑

−M≤`<M

[
nβ−δβ(τ

√
n)−βc(`, n)− τ1−β

]
|T (`, n)|β . (5.3)

As in [14, p. 19], the right hand side of (5.3) tends to 0 in probability as n→ +∞. Then
we just have to study (5.2). To this aim, we use the inequality suggested by [14], that is

∀(a, b) ∈ R2
+, |aβ − bβ | ≤ β|a− b|(aβ−1 + bβ−1) ≤ 2β|a− b|(a+ b)β−1
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since β > 1. We define T ′(`, n) by the same formula as T (`, n) where we replace each

θ
(1)
j by |θ(1)j |. We consider, for `τ

√
n ≤ y < (`+ 1)τ

√
n,

E


∣∣∣∣∣∣∣
∣∣∣∣∣∣
k∑
j=1

θ
(1)
j Nbntjc(y)

∣∣∣∣∣∣
β

− nβ(τ
√
n)−β |T (`, n)|β

∣∣∣∣∣∣∣
 (5.4)

≤ 2βE


∣∣∣∣∣∣
∣∣∣∣∣∣
k∑
j=1

θ
(1)
j Nbntjc(y)

∣∣∣∣∣∣−
√
n

τ
|T (`, n)|

∣∣∣∣∣∣ .
∣∣∣∣∣∣
k∑
j=1

|θ(1)j |Nbntjc(y) +

√
n

τ
T ′(`, n)

∣∣∣∣∣∣
β−1


≤ 2βE


∣∣∣∣∣∣
k∑
j=1

θ
(1)
j Nbntjc(y)−

√
n

τ
T (`, n)

∣∣∣∣∣∣
2


1/2

(5.5)

×E


∣∣∣∣∣∣
k∑
j=1

|θ(1)j |Nbntjc(y) +

√
n

τ
T ′(`, n)

∣∣∣∣∣∣
2(β−1)


1/2

(5.6)

by the Cauchy-Schwarz inequality and by the second triangular inequality in (5.5). In
the following RHS will stand for right hand side. We have by [14] equations (3.9) and
(2.26),

RHS of (5.5) ≤ (C1τn)1/2, (5.7)

where C1 is a constant, which is finite since gcd{k : P(S1 = k) > 0} = 1. Moreover,
setting a(`, n) := τ`

√
n, by the Hölder inequality and [9, p. 346], we have

[RHS of (5.6)]
2

β−1 ≤ E


∣∣∣∣∣∣
k∑
j=1

|θ(1)j |Nbntjc(y) +

√
n

τ
T ′(`, n)

∣∣∣∣∣∣
2
 (5.8)

≤ C

k∑
j=1

max
a(`,n)≤x<a(`+1,n)

(E(Nbntjc(x)3)2/3 + E(Nbntjc(y)3)2/3)

≤ CE(Nbnmax(t1,...,tk)c(0)3)2/3 ≤ Cn (5.9)

by [14, Lem 1]. Combining (5.7) and (5.9), we get

RHS of (5.4) ≤ Cτ 1
2n

β
2 .

Hence,
E(|RHS of (5.2)|) ≤ C(2M + 1)τ

3
2 .

As in [14, p. 20], for each η > 0 we can take Mτ so large that

P(U(M,n, τ) 6= 0) ≤ η (5.10)

and then τ so small that
E(|RHS of (5.2)|) ≤ η2/|µ1|. (5.11)

Hence, by (5.10) and (5.11), and since the right hand side of (5.3) tends to 0 in proba-
bility as n→ +∞, we get for n large enough (even when µ1 = 0),

P(|A(τ,M, n) + U(τ,M, n)| > 3η) ≤ P(|A(τ,M, n)| > 3η) + P(U(M,n, τ) 6= 0) ≤ 3η.

Second step: As in [9, Lem 2], we have

(T
(n)
tj (`τ, (`+ 1)τ), Sbntjc/

√
n)j=1,...,k,`=−M,...,M → (Λtj (`τ, (`+ 1)τ), B̃tj )j=1,...,k,`=−M,...,M
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in distribution, as n → +∞, where Λt(a, b) :=
∫ b
a
L̃t(x)dx for t > 0 and a < b. Conse-

quently, (V (τ,M, n))n converges in distribution as n→ +∞ to

V (τ,M) := µ1τ
1−β

∑
−M≤`<M

∣∣∣∣∣∣
k∑
j=1

θ
(1)
j Λtj (`τ, (`+ 1)τ)

∣∣∣∣∣∣
β

+ µ2

k∑
j=1

θ
(2)
j B̃tj .

Since L̃t(.) is continuous with a compact support, we get almost surely

V (τ,M)→Mτ→+∞,τ→0 µ1

∫ +∞

−∞

∣∣∣∣∣∣
k∑
j=1

θ
(1)
j L̃tj (x)

∣∣∣∣∣∣
β

dx+ µ2

k∑
j=1

θ
(2)
j B̃tj =: V̂ .

Hence by choosing adequate M and τ we get for n large enough∣∣∣∣∣∣∣E
exp

i µ1

nδβ

∑
y∈Z

∣∣∣∣∣∣
k∑
j=1

θ
(1)
j Nbntjc(y)

∣∣∣∣∣∣
β

+ iµ2

k∑
j=1

θ
(2)
j

Sbntjc√
n


− E exp(iV̂ )

∣∣∣∣∣∣∣ ≤ 11η.

Since this is true for every µ1 ∈ R, µ2 ∈ R and η > 0, this proves Lemma 5.4.

Proof of Lemma 5.1. Applying Lemma 5.4, we get the convergence of ψn(θ1, . . . , θk) to
the right hand side of (5.1) as n→ +∞. This combined with Lemma 5.2 and Lemma 5.3
proves Lemma 5.1.

Proof of Lemma 4.2. We now turn to the tightness. We know that (D̃bntc/n
δ, t ≥ 0)n

and (Sbntc/
√
n, t ≥ 0)n both converge in distribution in D([0,+∞),R) to continuous pro-

cesses (respectively by [14] and by the theorem of Donsker), and the finite dimensional
distributions of (D̃bntc/n

δ, Sbntc/
√
n)t≥0 converge to those of (∆̃t, B̃t)t≥0 by Lemma 5.1,

hence the distributions of (D̃bntc/n
δ, Sbntc/

√
n)t≥0 are tight in D([0,+∞),R2) (this is a

consequence of [1] Theorems 13.2 and 13.4, Corollary p.142 and inequalities (12.7) and
(12.9)). This proves Lemma 4.2.
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