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Spectral gap for Glauber type dynamics
for a special class of potentials
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Abstract

We consider an equilibrium birth and death type process for a particle system in
infinite volume, the latter is described by the space of all locally finite point con-
figurations on Rd. These Glauber type dynamics are Markov processes constructed
for pre-given reversible measures. A representation for the “carré du champ” and
“second carré du champ” for the associate infinitesimal generators L are calculated
in infinite volume and for a large class of functions in a generalized sense. The
corresponding coercivity identity is derived and explicit sufficient conditions for the
appearance and bounds for the size of the spectral gap of L are given. These tech-
niques are applied to Glauber dynamics associated to Gibbs measures and conditions
are derived extending all previous known results and, in particular, potentials with
negative parts can now be treated. The high temperature regime is extended essen-
tially and potentials with non-trivial negative part can be included. Furthermore, a
special class of potentials is defined for which the size of the spectral gap is as least
as large as for the free system and, surprisingly, the spectral gap is independent of
the activity. This type of potentials should not show any phase transition for a given
temperature at any activity.
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1 Introduction

The process studied in this paper is an analogue for continuous systems of the well-
known Glauber dynamics for lattice systems. The main focus of the paper is on the
spectral properties of the associated infinitesimal generator L. Such kind of dynamics
were introduced for the first time by C. Preston in [21, 10] for systems in finite volume,
such that for each finite time interval at most a finite number of particles appear in
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Spectral gap for Glauber type dynamics

the system. By construction, equilibrium states of classical statistical mechanics, Gibbs
measures, are formally reversible measures for such processes. Gibbs measures are
perturbations of Poisson point processes, though they are in general inequivalent to all
Poisson point processes, highly correlated and do not have necessarily nice decay of
correlation properties. Gibbs measures are constructed using a pair potential φ and an
activity z. In [16], Yu. Kondratiev and E. Lytvynov constructed the Glauber dynamics in
infinite volume using Dirichlet-form techniques. In any finite time interval, an infinite
number of birth and death events happen, therefore this process cannot be considered
as a birth and death process in the classical sense. In infinite volume, the processes
exist only in an L2-sense with respect to a chosen invariant measure µ. For more specific
constructions in the non-reversible case, see [7, 18, 14, 15].

The infinitesimal generator L associated to these dynamics have a spectral gap for
small positive potentials and small activity (high temperature regime). In [4], L. Bertini,
N. Cancrini and F. Cesi derived a Poincaré inequality in finite volume and a bound on
the spectral gap uniform in the volume. They pointed out that typically a log-Sobolev
type inequality will not hold, cf. [19] for Poisson processes. In [16] the technique
of coercivity identity was used to improve the result and to give a clear estimate for
the spectral gap. In [5], A.-S. Boudou, P. Caputo, P. dai Pra and G. Posta derived a
general framework for this technique for general jump-type processes and rederived
the result for the Glauber dynamics in finite volume. In [17], Yu. Kondratiev, R. Minlos
and E. Zhizhina show that one can split the L2-space and the spectrum accordingly into
three parts: one part associated to the eigenvalue zero describing the ground state; a
second part, restricted to which the generator is unitary equivalent to a multiplication
operator by a simple functions describing a quasi-one-particle system. The spectrum
for this part is concentrated near −1. It has also been shown that the upper bound of
the remaining part of the spectrum is almost −2.

In [2], D. Bakry and M. Emery calculated the “second carré du champ” generalizing
the Bochner-Lichérowicz-Weitzenböck formula and in this way related the spectral gap
of the Laplacian on a manifold with the underlying curvature. Therefore, it seems quite
natural to apply these techniques also in the case of Glauber dynamics in the continuum.

In Section 3, we consider, slightly more general, all measure which have an inte-
gration by parts formula with respect to the considered difference operator, in other
words measures which have a Papangelou kernel. We calculate the “second carré du
champ” in infinite volume under very mild assumptions on the Papangelou kernel. In
Appendix A.1, we introduce the “second carré du champ” in a generalized weak sense
which is sufficient to derive the explicit expression of the “second carré du champ” for
any function from any domain of any self-adjoint extension of L exploiting fundamentally
the pointwise nature of the “second carré du champ”.

Integrating this expression of the “second carré du champ” with respect to a mea-
sure which is invariant for L gives a coercivity identity, which in such a generality
cannot be derived directly. We recover in an equivalent form the coercivity identity
given in [16] and exactly the one given in [5], however in infinite volume. Proceeding,
as in this paper, via a generalization of the Bochner-Lichérowicz-Weitzenböck formula,
has the additional advantage to provide a mechanism to select particular one among
the different forms of the coercivity identity to use. Although a geometrical justification
could not be given, the results presented in this paper may motivate further studies to
introduce an adequate geometrical structure on configuration spaces. Sufficient crite-
ria for the presence of a spectral gap are derived from the coercivity identity. Readers
interested in the spectral gap result for Gibbs measure may skip the first two subsection
and start with Corollary 3.2.

In Section 4, we study the case of operators L associated to Gibbs measures in
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more details. Sufficient conditions for the presence of a spectral gap are derived and
bounds on the size of the gap in terms of the potential and the activity are given. We
introduce a class of non-trivial potentials for which the spectral gap has at least the
same size as in the free case and, even more surprisingly, the derived bound on the
size of the spectral gap is independent of the activity. The definition of this class is
based upon Fourier transform and hence the continuous space structure of the system
is essential. Even more surprisingly, there are potentials with non-trivial negative part
in this class. Furthermore, do we show that an increase in the temperature will not
alter these estimates as well. This is the first result of a spectral gap in infinite volume
which is not restricted to a kind of high temperature regime.

Finally, we derive a bound for potentials which are the sum of a potential from the
aforementioned special class and a usual regular and stable potential in an extended
high temperature regime. This result gives an improvment even if one just considers
generic stable and regular potentials alone. Till now only non-negative potentials could
be treated and it seems to be impossible to cover potentials even with the smallest
non-negative part with the techniques used previously. Even just for general positive
potentials the previous results are improved, see e.g. [16].

Precisely speaking we do not derive a spectral gap but a coercivity inequality on
cylinder functions. If L is essentially self-adjoint on this domain, as proven for positive
potentials in [16], then the coercivity identity is equivalent to spectral gap. In the
Appendix A.1, we derive the expression for the “second carré du champ” in such a
general sense that all self-adjoint extensions are covered. However, this is not sufficient
to establish the coercitivity identity for general self-adjoint extensions of L. Essential
self-adjointness for non-positive potentials is a non-trivial problem and will be subject of
future investigations, see [8] and [6] for the analogous problem in the case of gradient
diffusion.

Assuming essential self-adjointness, we found a class of potentials with a very inter-
esting thermodynamical property. These potentials have a non-trivial attractive part,
nevertheless there will be no phase transition of any kind for all values of the activity z.

2 States and dynamics

2.1 Configuration space

The configuration space Γ := ΓRd over Rd is defined as the set of all Radon measures
with values in N ∪ {0,∞}, i.e. for any γ ∈ Γ there exists a sequence (xi)i∈I of vectors
from Rd and an index set I ⊂ N such that γ =

∑
i∈I δxi

, where δx denotes the Dirac
measure concentrated at x. Conversely, any sequence without accumulation points can
be associated to a configuration by the above formula. Modulo renumeration there is
only one sequence representing γ. The space Γ is Polish in the relative topology as a
subset of the space off all Radon measures M(Rd) endowed with the vague topology,
i.e. the topology generated by the mappings

γ 7→ 〈f, γ〉 :=

∫
Rd

f(x)γ(dx) C0(Rd),

where C0(Rd) denotes the set of all continuous functions on Rd with compact support.
The corresponding Borel σ-algebra on Γ is denoted by B(Γ). A probability measure on
(Γ,B(Γ)) is called a point process (random field). A measurable function r : Rd × Γ −→
[0,∞] is the Papangelou intensity of a point process µ if∫

Γ

µ(dγ)

∫
Rd

γ(dx)F (x, γ) =

∫
Γ

µ(dγ)

∫
Rd

dx · r(x, γ)F (x, γ + δx) (2.1)
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for any measurable function F : Rd × Γ → [0,+∞[. Let us fix a point process µ which
has Papangelou intensity r and for which the first correlation function exists. The first n
correlation functions exist exactly iff µ has all local moments up to degree n, that is, for
all bounded measurable subsets Λ ⊂ Rd the following integral

∫
Γ
γ(Λ)nµ(dγ) is finite.

Gibbs measures are a particular class of point processes for which an explicit formula
for the Papangelou intensity exist, cf. Subsection 4.1.

2.2 Glauber dynamics

In this subsection we introduce the Glauber dynamics, a birth and death type dy-
namics in the continuum via Dirichlet form techniques, for details cf. [16]. For this
purpose we first introduce the set FCb(C0(Rd),Γ) of all functions of the form

Γ 3 γ 7→ F (γ) = gF (〈ϕ1, γ〉, . . . , 〈ϕN , γ〉),

where N ∈ N, ϕ1, . . . , ϕN ∈ C0(Rd) and gF ∈ Cb(RN ). Here Cb(RN ) denotes the set of
all continuous bounded functions on RN . The dynamics is constructed using two types
of difference operators which are in some sense adjoint to each other: for F : Γ → R,
γ ∈ Γ, and x, y ∈ Rd

(D−x F )(γ) := F (γ − δx)− F (γ), (D+
x F )(γ) := F (γ)− F (γ + δx). (2.2)

As we want to consider the dynamics only in an L2-framework, we use the following
bilinear form, cf. [16]

E(F,G) :=

∫
Γ

µ(dγ)

∫
Rd

γ(dx)(D−x F )(γ)(D−x G)(γ), F,G ∈ FCb(C0(Rd),Γ). (2.3)

The following properties of the E , which are useful for our considerations, where proved
in [16]. Using the associated integration by parts formula for a measure µ with a
Papangelou intensity r and first local moments, in [16], it was proven that the bi-
linear form (E ,FCb(C0(Rd),Γ)) is closable on L2(Γ, µ) and its closure is a Dirichlet
form also denoted by (E , D(E)). The generator (L,D(L)) associated to(E , D(E)), i.e.
E(F,G) = (−LF,G)L2(Γ,µ) is for functions F ∈ FCb(C0(Rd),Γ) ⊂ D(L) given by

(LF )(γ) =

∫
Rd

γ(dx) (D−x F )(γ)−
∫
Rd

r(x, γ)(D+
x F )(γ)dx µ-a.e.. (2.4)

Following the usual techniques for Dirichlet forms, in [16], for the case, that µ is a Gibbs
measure, for definition cf. Subsection 4.1, the associated conservative Hunt process
was constructed, that is,

M = (ΩΩΩ,F, (Ft)t≥0, (ΘΘΘt)t≥0, (X(t))t≥0, (Pγ)γ∈Γ)

on Γ (see e.g. [20, p. 92]) which is properly associated with (E , D(E)), i.e., for all (µ-
versions of) F ∈ L2(Γ, µ) and all t > 0 the function

Γ 3 γ 7→ ptF (γ):=

∫
ΩΩΩ

F (X(t)) dPγ

is an E-quasi-continuous version of exp(tL)F . ΩΩΩ is the set of all cadlag functions [0,∞[→
Γ. The processes M is up to µ-equivalence unique (cf. [20, Chap. IV, Sect. 6]). In
particular, M is µ-symmetric (i.e.,

∫
GptF dµ =

∫
F ptGdµ for all F,G : Γ → R+, B(Γ)-

measurable) and thus has µ as an invariant measure.
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3 Coercivity identity for Glauber dynamics

In the Subsection 3.1 and 3.2, we compute two quadratic forms associated to L,
the generator of Glauber dynamics given by (2.4), the so-called “carré du champ”, the
“second carré du champ” and furthermore an analogue of the Bochner-Lichnérowicz-
Weitzenböck formula in this context, cf. e.g. [1]. In Subsection 3.2, we derive the
associated coercivity identity. As this is essentially an algebraic calculation, details are
omitted. Readers interested in the spectral gap result for Gibbs measure may jump di-
rectly to Corollary 3.2. The aim of the two subsections is to motivate why the particular
form of the coercivity identity given in Corollary 3.2 is natural among different possible
variants. In Appendix A.1, we introduce the “second carré du champ” in a generalized
sense which covers, in particular, the results in this section. We give there just the main
steps of the computation and we describe the way how to order the terms appropriately,
which should allow the interested reader to easily reconstruct the missing details.

3.1 Carré du champ

In this subsection we essentially need only the following assumption on r : Rd×Γ→
[0,∞]: There exists a subset Γtemp ⊂ Γ such that

1. r(x, γ) <∞ for all (x, γ) ∈ Rd × Γtemp

2. for all γ ∈ Γtemp, the function x 7→ r(x, γ) is locally integrable
3. for all γ ∈ Γtemp and all x ∈ γ and y ∈ Rd also γ − δx and γ + δy are in Γtemp.

For F,G ∈ FCb(C0(Rd),Γ) we define the “carré du champ” corresponding to L as

�(F,G) :=
1

2
(L(FG)− FLG−GLF ). (3.1)

Due to linearity, one can split � into a birth and a death “part”

�−(F,G) :=
1

2

∫
Rd

γ(dx)D−x F (γ)D−x G(γ), �+(F,G) :=
1

2

∫
Rd

r(x, γ)D+
x F (γ)D+

x G(γ)dx,

where then �(F,G) = �−(F,G) + �+(F,G).

Iterating in some sense the definition of “carré du champ” one may introduce the
so-called “second carré du champ” �2, cf. [1], as follows

2�2(F, F ) := L�(F, F )− 2�(F,LF ). (3.2)

Using the explicit formula for Lwe obtain the following Bochner-Lichnérowicz-Weitzenböck
formula

Theorem 3.1. For all F,G ∈ FCb(C0(Rd),Γ) it holds that

�2(F, F )(γ) (3.3)

=
1

4

∑
x∈γΛ2

y∈γΛ1 :x 6=y

(
D−x D

−
y F
)2

(γ) +
1

2
�+(F, F )(γ)− 1

2
�−(F, F )(γ) + �(F, F )(γ)(γ)

+
1

4

∫
Rd

∫
Rd

r(x, γ)r(y, γ + δx)(D+
xD

+
y F )2(γ)dxdy

+
1

4

∫
Rd

∫
Rd

r(y, γ)D+
y r(x, ·)(γ)

[
−(D+

x F )2(γ) + 2D+
x F (γ)D+

y F (γ)
]
dxdy

+
1

2

∑
x∈γ

∫
Rd

r(y, γ)(D−x D
+
y F )2(γ)dy

+
1

4

∑
x∈γ

∫
Rd

D−x r(y, ·)(γ)
[
(D+

y F )2(γ − δx) + 2D+
y F (γ − δx)D−x F (γ)

]
dy
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This representation is not canonical. For Gaussian type measures there is a Bochner-
Lichnérowicz-Weitzenböck kind formula and an associated Bakry-Emery criterium for
�2 in terms of geometrical quantities like the underlying curvature and the Hessian.
Unfortunately, in our case we lack this understanding of the associated geometrical
structure. However, we observe that we have four terms of fourth order in the differ-
ential operator. Note that the first summand in the last line can actually be rewritten
as the sum of a fourth order term and second and third order terms. One may expect
that, in a natural representation, all fourth order terms would have the same integral
w.r.t. the reversible measure µ. For the three first of them this is the case in our repre-
sentation. The exception is the fourth order term in the last line which will be used for
further cancelations in the next subsection, cf. 3.4. We have no geometrical explanation
for this choice.

3.2 Coercivity identity

In order to study spectral properties of L we consider integrals of � and �2 with
respect to an associated probability µ, that is a probability measure with a Papangelou
intensities r, cf. (2.1). The representation given in Theorem 3.1 is a particularly useful
for this purpose.

In this subsection we need to assume that µ has local moments up to second order.
In particular, then for all compact Λ ⊂ Rd holds that γ 7→

∫
Λ

∫
Λ
r(y, γ)r(y, γ + δx) is

integrable w.r.t µ. In order that FCb(C0(Rd),Γ) ⊂ D(L2), we have additionally to assume
that γ 7→

∫
Λ
r(x, γ)dx is in L2(Γ, µ). Then one can choose a pointwise version of r which

fulfills all assumptions required in Subsection 3.1 for a set Γtemp of full measure. (The
generalized sense in which the formula is derived in Appendix A.1 allows to extend the
identity to a much wider class of function than FCb(C0(Rd),Γ), but the used sense is too
weak to guarantee the identity on a domain of self-adjointness directly without further
consideration)

Recall that L is symmetric with respect to µ and L applied to constant functions is
zero. Using that we get the following relations for � and �2:

E(F, F ) = −
∫

Γ

F (γ)LF (γ)µ(dγ) =

∫
Γ

�(F, F )(γ)µ(dγ).∫
Γ

(LF )2(γ)µ(dγ) =

∫
Γ

�2(F, F )(γ)µ(dγ),

for all F ∈ FCb(C0(Rd),Γ).

The following identities are derived using repeatedly the identity D+
x F (γ − δx) =

D−x F (γ) and the definition of the Papangelou intensities, cf. (2.1). For all F ∈ FCb(C0(Rd),Γ)

holds

∫
Γ

�(F, F )(γ)µ(dγ) = 2

∫
Γ

�±(F, F )(γ)µ(dγ) = 2

∫
Γ

∫
Rd

r(x, γ)(D+
x F )2(γ)dxµ(dγ),

where the last equality corresponds to the case �+. The case �− is to the representa-
tion (2.3) of the Dirichlet form E . The main estimate in the derivation of the sufficient
condition for spectral gap is to bound below the first three fourth order terms in Theo-
rem 3.1 by zero. One can find a cancelation between the µ-integral of the fourth line in
the expression in Theorem 3.1 and the integral of the sixth line. The integral in the last
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line in Theorem 3.1, using (2.1) and D−x F (γ + δx) = D+
x F (γ), can be rewritten as∫

Γ

∫
Rd

∑
x∈γ

D−x r(y, ·)(γ)
[
(D+

y F )2(γ − δx) + 2D+
y F (γ − δx)D−x F (γ)

]
dyµ(dγ) (3.4)

=

∫
Γ

∫
Rd

r(x, γ)

∫
Rd

D−x r(y, ·)(γ + δx)
[
(D+

y F )2(γ) + 2D+
y F (γ)D−x F (γ + δx)

]
dydxµ(dγ)

=

∫
Γ

∫
Rd

r(x, γ)

∫
Rd

D+
x r(y, ·)(γ)

[
(D+

y F )2(γ) + 2D+
y F (γ)D+

x F (γ)
]
dydxµ(dγ).

Note that the first summand in the last term has the opposite sign as the first summand
in the third line of the representation given in Theorem 3.1.

Finally, let us give an elegant expression for the coercivity identity. This representa-
tion will not be used in the following, but it will allow a comparison with other versions
of the identity. Note that the first three of the fourth order terms were rearanged in
Theorem 3.1 in such a way that their expectations coincide, cf. Subsection A.2 for more
details. Here we choose to represent these fourth order terms by the double sum to
rewrite the coercivity identity as follows:

Corollary 3.2. For all F ∈ FCb(C0(Rd),Γ) holds that∫
Γ

(LF )2(γ)µ(dγ) =

∫
Γ

�2(F, F )(γ)µ(dγ)

=

∫
Γ

�(F, F )(γ)µ(dγ) +

∫
Γ

∑
x∈γ

∑
y∈γ−δx

(
D−x D

−
y F
)2

(γ)µ(dγ)

+

∫
Γ

∫
Rd

r(x, γ)

∫
Rd

D+
x r(y, ·)(γ)D+

y F (γ)D+
x F (γ)dydxµ(dγ).

3.3 Sufficient condition for spectral gap

Instead of proving spectral gap directly using the Poincaré inequality, we consider
the following approach, see [12] and [3, Chapter. 6, Section 4].

Let L be a nonnegative self-adjoint operator which maps the constant functions to
zero. Let D(L) be a core of L and c > 0. Then L has a spectral gap of at least c if and
only if the following so-called coercivity inequality holds∫

Γ

(LF )2(γ)µ(dγ) ≥ cE(F, F ), ∀F ∈ D(L). (3.5)

The latter inequality can be expressed in terms of the “carré du champ” � and �2∫
Γ

�2(F, F )(γ)µ(dγ) ≥ c
∫

Γ

�(F, F )(γ)µ(dγ). (3.6)

For diffusions D. Bakry and M. Emery could derive directly an inequality for � and �2,
cf. [2], which we are not able to do.

By inserting in (3.6) the representations of the previous sections and using that the
first three terms are non-negative, in particular using Corollary 3.2 with∑

x∈γ

∑
y∈γ−δx

(
D−x D

−
y F
)2

(γ) ≥ 0,

one obtains the following sufficient condition for the coercivity inequality with constant
c

(1− c)
∫

Γ

∫
Rd

r(x, γ)(D+
x F )2(γ)dxµ(dγ) (3.7)

+

∫
Γ

∫
Rd

∫
Rd

r(x, γ)D+
x r(y, ·)(γ)D+

y F (γ)D+
x F (γ)dydxµ(dγ) ≥ 0.
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Considering the integrand (3.7) for fixed γ and denoting by

Kγ(x, y) = r(x, γ)(r(y, γ)− r(y, γ + δx)), ψγ(x) = D+
x F (γ).

we can give a sufficient condition for the inequality (3.7) to hold for all F ∈ FCb(C0(Rd),Γ),
namely for all ψ ∈ C0(Rd) holds∫

Rd

∫
Rd

(Kγ(x, y) + (1− c)
√
r(x, γ)

√
r(y, γ)δ(x− y))ψ(y)ψ(x)dxdy ≥ 0. (3.8)

This can be formulate more elegantly using the following definition

Definition 3.3. A Radon measure K on Rd × Rd is called a positive definite kernel if
for all ψ ∈ C∞0 (Rd) holds ∫

Rd

∫
Rd

ψ(x)ψ(y)K(dx, dy) ≥ 0. (3.9)

Theorem 3.4. If there is a c > 0 such that for µ-a.a. γ the kernel

r(x, γ)(r(y, γ)− r(y, γ + δx)) + (1− c)
√
r(x, γ)

√
r(y, γ)δ(x− y) (3.10)

is positive definite then the coercivity inequality (3.5) for L with constant c holds for all
F ∈ FCb(C0(Rd),Γ).

4 Coercivity identity for Gibbs measures

In this section we demonstrate that the sufficient condition for the coercivity in-
equality developed in Theorem 3.4 gives surprising results for the Glauber dynamics
associated to Gibbs measures.

4.1 Gibbs measures

Gibbs measures are just the measures with Papangelou intensities of the form r(x, γ) =

z exp[−E(x, γ)], where z > 0 and

E(x, γ) :=

{ ∑
y∈γ

φ(x− y), if
∑
y∈γ
|φ(x− y)| <∞,

+∞, otherwise,

for a measurable symmetric function φ : Rd → (−∞,∞]. One calls such a measure a
Gibbs measure to the activity z and pair potential φ. Sometimes it is useful to introduce
an extra parameter, the inverse temperature β, and consider Gibbs measures for βφ.

To guarantee existence of a measure with such Papangelou intensities, we need to
require further conditions on the pair potential φ. For every r ∈ Zd, define a cube
∆r =

{
x ∈ Rd : ri − 1

2 ≤ xi < ri + 1
2

}
. These cubes form a partition of Rd. Denote by

Nr(γ) = γ(∆r). One says that φ is superstable (SS) if there exist A > 0, B ≥ 0 such that,
for all γ ∈ Γ such that γ(Rd) <∞ holds∑

{x,y}⊂γ

φ(x− y) ≥
∑
r∈Zd

AN2
r (γ)−BNr(γ).

φ is called stable (S) if the above condition holds just for A = 0. One says that φ is
regular (R) if φ is bounded below and there exists an R > 0 and a positive decreasing
function ϕ on [0,+∞) such that |φ(x)| ≤ ϕ(|x|) for all x ∈ Rd with |x| ≥ R and∫ ∞

R

td−1ϕ(t)dt <∞. (4.1)

For the notion of tempered Gibbs measure and the following theorem, see [23].
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Theorem 4.1. Let φ be (SS) and (R), then the set Gtemp(z, E) of all tempered Gibbs
measures is non-empty and for each measure from Gtemp(z, E) all correlation functions
exist and satisfy the so-called Ruelle bound, that is, there exists a constant CR > 0 such
that for all non-negative measurable functions ϕ holds that∫

Γ

e
∫
Rd ln(1+ϕ(x))γ(dx)µ(dγ) ≤ eCR

∫
Rd ϕ(x)dx.

For a Gibbs measure that fulfills the Ruelle bound all (local) moments are finite and
one can see quite easily that also γ 7→

∫
Rd r(x, γ)dx is in L2(Γ, µ), cf. e.g. [16]. Hence

all assumptions of Subsection 3.1 and 3.2 are fulfilled. Hence, in the sequel, we will
restrict ourself to Gibbs measures which fulfill a Ruelle bound.

4.2 Coercivity inequality

For Gibbs measures condition (3.10) takes the following form

Theorem 4.2. Let µ be a Gibbs measure for a pair potential φ and activity z which
fulfills a Ruelle bound. If for a.a. γ the kernel

e−E(x,γ)e−E(y,γ)z(1− e−φ(x−y)) + (1− c)e− 1
2E(x,γ)e−

1
2E(y,γ)δ(x− y) (4.2)

is positive definite then the coercivity inequality (3.5) for L with constant c holds for all
F ∈ FCb(C0(Rd),Γ).

The following easy reformulation will become very fruitful later on. Using in (3.8)
the function e−

1
2E(x,γ)ψ(x) instead of ψ gives

Corollary 4.3. Let µ be a Gibbs measure for a pair potential φ and activity z which
fulfills a Ruelle bound. If for a.a. γ the kernel

e−
1
2E(x,γ)e−

1
2E(y,γ)z(1− e−φ(x−y)) + (1− c)δ(x− y) (4.3)

is positive definite then the coercivity inequality (3.5) for L with constant c holds for all
F ∈ FCb(C0(Rd),Γ).

4.3 Potentials increasing the spectral gap

For the Poisson point process, i.e. the Gibbs measure for the potential φ = 0, one
has the spectral gap c = 1, which follows also directly from condition (4.2). In order to
prove condition (4.3) for c = 1 it is obviously sufficient to prove non-negativity (for a.a.
γ) of the expression for all ψ ∈ C∞0 (Rd)∫

Rd

∫
Rd

e−
1
2E(x,γ)e−

1
2E(y,γ)(1− e−φ(x−y))ψ(y)ψ(x)dxdy. (4.4)

Considering this a bilinear form in e−
1
2E(x,γ)ψ(x) and recalling that due to Ruelle bound

and regularity the latter function is integrable, one is lead to the following sufficient
condition ∫

Rd

(1− e−φ(x))ψ ∗ ψ(x)dx ≥ 0, (4.5)

where ψ ∗ ψ denotes the convolution of ψ with ψ. Recalling the following definition

Definition 4.4. A locally bounded measurable function u : Rd 7→ C is called positive
definite if for all ψ ∈ C∞0 (Rd) holds∫

Rd

∫
Rd

u(x)ψ ∗ ψ(x)dx ≥ 0

and u(0) ≤ 1.
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As 1−e−φ is bounded, condition (4.5) means that f : x 7→ 1−e−φ is a positive definite
function.

Remark 4.5. Note that the condition (4.5) does not depend on z.

To show that this condition is not void, we now investigate if there exists any po-
tential φ such that f is positive definite and φ fulfills the conditions guaranteeing the
existence of a Gibbs measure, namely (SS) and (R).

Theorem 4.6. Let f be a continuous positive definite function which is (R). Define

φ := − ln(1− f). (4.6)

Then φ fulfills (4.5) and is (SS) and (R). For every Gibbs measure µ for the potential φ
and for any activity z which fulfills a Ruelle bound the associated generator L of the
Glauber dynamics fulfills a coercivity inequality for c = 1 and all F ∈ FCb(C0(Rd),Γ).

Proof. Due to positive definiteness |f(x)| ≤ f(0) ≤ 1. Defining for x ∈ [−1, 1] the function
h(x) = − ln(1−x) one can write φ = h◦f . First, we show that φ is regular. Asf is regular
there exists an R̃ > 0 and a positive decreasing function ϕ on [0,+∞) which fulfills (4.1)
and such that |f(x)| ≤ ϕ(|x|) for all x ∈ Rd with |x| ≥ R̃. Note that for x ∈ [−1, 1/2] it
holds that |h(x)| ≤ 2x. Choose an R ≥ R̃ such that ϕ(R) ≤ 1/2. Then for all x ∈ Rd with
|x| ≥ R it holds |f(x)| ≤ 1/2 and hence

|φ(x)| ≤ 2f(x) ≤ 2ϕ(|x|),

which implies that φ is regular.
Second, we show that φ is superstable. One easily sees that h(x) ≥ x+11[f(0)/2,1](x)(− ln(1−

x)−x). Shorthanding g(x) = − ln(1−x)−x one obtains φ(x) ≥ f(x)+11[f(0)/2,1](f(x))g(f(x)).

Hence, φ ≥ φ′ + φ′′ where φ′ = f is a positive definite continuous function and φ′′ is a
continuous non-negative function positive in 0 with φ′′ ≤ 11[f(0)/2,1](f(x))g(f(x)). Hence
φ fulfills the assertions of Proposition 1.2 in [23] and thus the potential φ is a super-
stable. �

We now try to understand the structure of potentials fulfilling condition (4.5). For
that let us recall the following definition

Definition 4.7. A generalized function (distribution) u ∈ D(Rd) is called positive defi-
nite if for all ϕ ∈ C∞0 (Rd)

〈u, ϕ̃ ? ϕ〉 ≥ 0 (4.7)

holds, where ϕ̃(x) := ϕ(−x).

Proposition 4.8. Let φ be a potential fulfilling condition (4.5) which is (S), (R), and
lower semi-continuous at zero. Then it is of the from (4.6) and hence also (SS). Fur-
thermore, φ is integrable, itself positive definite in the sense of generalized functions,
and

lim sup
x↓0

(φ(x) + 2 ln(x)) <∞ (4.8)

Proof. Let us define f := 1 − e−φ and show that the function f fulfills the conditions of
Theorem 4.6. As φ is stable it is non-negative in 0 and hence |f(0)| ≤ 1. Furthermore,
f is lower semi-continuous at zero. Due to the positive definiteness of f one has that f
is continuous and |f(x)| ≤ f(0) ≤ 1. One obtains the representation (4.6) by inverting
the definition of f . As in the proof of Theorem 4.6 one can check that f also fulfills (R).
Then Theorem 4.6 implies that φ is also (SS).
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Using that 1−cos(x) ≥ x2

2 for small enough x, f is non-negative, the positive definite-
ness and f(0) ≤ 1, we obtain that there exists a constant c > 0 such that 1− f(x) ≥ c|x|2
for small enough x. Hence φ(x) ≤ −2 ln(|x|)− ln(c). As φ is bounded below and regular,
it is integrable.

Writing again φ = h ◦ f, we note that h(x) = − ln(1 − x) =
∞∑
n=1

xn

n with radius of

convergence 1. Approximate φ by the functions φδ(x) := h ◦ ((1− δ)f(x)) for 0 < δ < 1.
Since |(1 − δ)f(x)| < 1 and h has a Taylor series with non-negative coefficients, for all
0 < δ < 1 the function φδ is positive definite, cf. e.g. [11, Proposition 3.5.17]. As h is
monotone increasing |φδ| ≤ |φ| and the latter function is integrable. Hence φδ is also
positive definite in the sense of generalized functions. Since φδ converge pointwise to
φ for δ → 0 uniformly bounded by φ, by Lebesgue’s dominated convergence φ is also
positive definite in the sense of generalized functions. �

4.4 Parameter dependence

A typical question in statistical mechanics is to study the behavior of the system un-
der change of a parameters. In the previous subsection, we identify potentials which
fulfill (4.5) for all z and hence will show no phase transition even for large z. To inves-
tigate the temperature dependence we reintroduce the inverse temperature β > 0 into
our consideration, that is we consider instead of φ the potential βφ. We consider φ as
fix and vary β and z. The corresponding Papangelou intensity is r(x, γ) = ze−βE(x) and
hence condition 4.5 takes the form

∫
Rd

(1− e−βφ(x))ψ ∗ ψ(x)dx ≥ 0. (4.9)

If (4.9) is positive for all ψ ∈ C∞0 (Rd) then we say that φ fulfills condition (4.9) for β.
Note, that the condition is independent of the activity z.

Proposition 4.9. Let φ be a potential which fulfills condition (4.5) for a β̄ > 0 and is (S),
(R), and lower semi-continuous at zero. Then φ fulfills condition (4.5) for all 0 < β ≤ β̄.

Proof. Denote by f := 1 − e−β̄φ the function considered in condition (4.5), which is
positive definite by assumption. One the one hand, it is easy to see that fβ(x) := 1 −
e−βφ(x) are also continuous and (R). One the other hand, fβ(x) = 1− (1− f(x))β/β̄ has a

power series expansion fβ(x) =
∑∞
n=1

(−1)n+1

n! β/β̄(β/β̄ − 1) . . . (β/β̄ − n+ 1)(f(x))n with
radius of convergence 1. All the coefficients of the series are nonnegative, if β/β̄ ≤ 1.

Proceeding as in Proposition 4.8, one proves that fβ is the pointwise limit of positive
definite functions. As fβ is itself bounded and a limit of positive definite functions, it is
positive definite in the sense of functions. �

4.5 Examples

For concreteness we give a small collection of potentials which fulfills the condition
of Theorem 4.6 to get a better feeling how such potentials may look like. Especially
interesting is that among them are potentials, which have a non-trivial negative part.

EJP 18 (2013), paper 42.
Page 11/18

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v18-2260
http://ejp.ejpecp.org/


Spectral gap for Glauber type dynamics

φ(x) f(x) Parameters

− ln(1− e−tx2

cos(ax)), e−tx
2

cos(ax), t > 0, a ∈ R

− ln(1− e−t|x| cos(ax)), e−t|x| cos(ax), t > 0, a ∈ R

− ln

(
1− cos(ax)

1 + σ2x2

)
,

1

1 + σ2x2
cos(ax), σ > 0, a ∈ R

− ln(1− (1− |x|a )11[−a,a](x) cos(bx)), (1− |x|a )11[−a,a](x) cos(bx), a > 0, b ∈ R,

In all examples above one can exchange cos(ax) by
sin(ax)

ax
.

In the d-dimensional case we can give following examples:

φ(x) f(x) Parameters

− ln(1− e−t|x|2 cos(a · x)) e−t|x|
2

cos(a · x) x ∈ Rd, t > 0, a ∈ Rd

− ln

1− e−t|x|
2

d∏
j=1

sin(ajxj)

ajxj

 e−t|x|
2

d∏
j=1

sin(ajxj)

ajxj
x ∈ Rd, t > 0

− ln
(

1− ( r
|x| )

n/2Jn/2(r|x|)
)

( r
|x| )

n/2Jn/2(r|x|) r ≥ 0, n > 2d− 1

− ln

(
1− 2n/2Γ( n+1

2 )√
π

· t

(|x|2+t2)
n+1

2

)
2n/2Γ( n+1

2 )√
π

· t

(|x|2+t2)
n+1

2

t > 0, n > d− 1

where Jn/2 is the Bessel function of the first kind of order n/2. One can multiply f in

any of the examples with factors of the form cos(a · x) and
d∏
j=1

sin(ajxj)
ajxj

.

All these examples are constructed by choosing a positive definite function f and
express φ(x) = − ln(1− f(x)).

4.6 High temperature and low densities

In the previous subsections, we considered potentials which give rise to a spectral
gap at least as large as in the free case, that is the coercivity identity holds for c = 1.
Such potentials admit at most a logarithmic singularity at zero. In this subsection,
we will derive a coercivity inequality for the sum of a potential from this special class
and a general non-negative or hard-core potential. However, in this case our estimate
works only for constants c in the coercivity inequality smaller than one and not longer
independent of the activity z of the Gibbs measure. The bound of the constant c in (4.10)
is similar to the formulas which define the usual high temperature low intensity regime
and similar to the results obtained in [16] for measures with positive potentials.

Theorem 4.10. Let φ1 be (R) and assume that there exists a D ≥ 0 such that for µ-
a.a. γ holds that E(x, γ) ≥ −D and let φ2 be a potential fulfilling the conditions of
Theorem 4.6. Then for every Gibbs measure µ for the potential φ1 + φ2 and the activity
z, the associated generator L of the Glauber dynamics fulfills a coercivity inequality for
the constant

c = 1− zeD
∫
Rd

dxe−φ2(x)|1− e−φ1(x)|. (4.10)

Let us state two classes of potentials φ1 which fulfill the condition in the previous
theorem. If φ1 is non-negative then the condition holds for D = 0. If φ1 has a hard
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core then φ1 also fulfills the condition. There exist further potentials which fulfill this
condition.
Proof. The main idea is to apply condition 4.3 directly. In order to prove positive defi-
niteness of the kernel (4.3) one has to prove non-negativity of the following expression
for all ψ ∈ C∞0 (Rd)∫

Rd

dx

∫
Rd

dyψ(x)ψ(y)
[
e−

1
2E(x,γ)e−

1
2E(y,γ)z(1− e−φ(x−y)) + (1− c)δ(x− y)

]
(4.11)

Rewriting
1− e−φ = 1− e−φ2 + e−φ2(1− e−φ1).

the first part of (4.3) takes the form

e−
1
2E(x,γ)e−

1
2E(y,γ)z(1− e−φ2(x−y)) + e−

1
2E(x,γ)e−

1
2E(y,γ)ze−φ2(x−y)(1− e−φ1(x−y))

As in the beginning of Subsection 4.3 the first summand is a positive definite due to the
assumptions on φ2. The second summand can be bounded as follows∫

Rd

dx

∫
Rd

dyψ(x)e−
1
2E(x,γ)ψ(y)e−

1
2E(y,γ)ze−φ2(x−y)(1− e−φ1(x−y))

≥ −z
∫
Rd

dxe−φ2(x)|1− e−φ1(x)|
∫
Rd

dy|ψ(x+ y)|e− 1
2E(x+y,γ)|ψ(y)|e− 1

2E(y,γ)

Applying Cauchy-Schwarz inequality to the last factor one obtains∫
Rd

dy|ψ(x+ y)|e− 1
2E(x+y,γ)|ψ(y)|e− 1

2E(y,γ)

≤
∫
Rd

dy eDψ2(y).

Summarizing (4.11) can be bounded below by∫
Rd

dy

[
−zeD

∫
Rd

dxe−φ2(x)|1− e−φ1(x)|+ (1− c)
]
ψ2(y) (4.12)

which is non-negative if and only if the bracket is non-negative. �
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A Appendix

We will give more details for the calculations mentioned in Subsection 3.1 and 3.2.
The dual operator to (L,FCb(C0(Rd),Γ)) is difficult to describe. To our knowledge

neither an explicit formula for the domain nor for the dual operator is known. Define
for each bounded measurable subset Λ of Rd the following localized version of the
generator L

(LΛF )(γ) :=

∫
Λ

γ(dx) (D−x F )(γ)−
∫

Λ

r(x, γ)(D+
x F )(γ)dx µ-a.e.

If G ∈ FCb(C0(Rd),Γ) with cylinder-support in Λ, that is, γ 7→ G(γ) only depends on γΛ,
then LG = LΛG. We can extend the action of L in the following generalized sense: Let
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F be a bounded measurable function, then we consider as the action of L the collection
of the functions (LΛF )Λ. Then for all G ∈ FCb(C0(Rd),Γ), it holds

∫
Γ
LΛG(γ)F (γ)µ(dγ) =∫

Γ
G(γ)LΛF (γ)µ(dγ) for each Λ such that the cylinder support of G is inside of Λ. This

generalized sense of the action of L is so weak that it generalizes the action of any self-
adjoint extension of L. The derivation of the expression fo the “carré du champ” and
“second carré du champ” holds already in this generalized sense. Hence the derived
formulas should hold for any F from any self-adjoint extension. However, this is not
sufficient to prove spectral gap.

A.1 Carré du champ

For F,G ∈ FCb(C0(Rd),Γ) the “carré du champ” corresponding to L in the general-
ized sense is defined as the collection of

�Λ(F,G) :=
1

2
(LΛ(FG)− FLΛG−GLΛF ). (1.1)

Let us split the generator LΛ into its death and birth part

L−ΛF (γ) :=
∑
x∈γΛ

D−x F (γ), L+
ΛF (γ) :=

∫
Λ

r(x, γ)D+
x F (γ)dx, (1.2)

such that LΛ = L−Λ − L+
Λ . Due to linearity one obtains that �Λ(F,G) = �−Λ (F,G) +

�+
Λ (F,G), where �−Λ and −�+

Λ are the “carré du champ” corresponding to the death
and birth parts

�−Λ (F,G) :=
1

2

∫
Λ

γ(dx)D−x F (γ)D−x G(γ), �+
Λ(F,G) :=

1

2

∫
Λ

r(x, γ)D+
x F (γ)D+

x G(γ)dx.

The generalized version of the “second carré du champ”of �2,Λ1,Λ2
is given by

2�2,Λ1,Λ2
(F, F ) := LΛ2

�Λ1
(F, F )− 2�Λ1

(F,LΛ2
F ). (1.3)

The splitting in birth and death part allows us to split �2,Λ1,Λ2
correspondingly in the

following way:

2�2,Λ1,Λ2
(F, F ) =

(
L−Λ2

�−Λ1
(F, F )− 2�−Λ1

(F,L−Λ2
F )
)

(1.4)

−
(
L+

Λ2
�+

Λ1
(F, F )− 2�+

Λ1
(F,L+

Λ2
F )
)

+
(
L−Λ2

�+
Λ1

(F, F )− 2�+
Λ1

(F,L−Λ2
F )
)

−
(
L+

Λ2
�−Λ1

(F, F )− 2�−Λ2
(F,L+

Λ1
F )
)
.

All brackets will be calculated separately using the following product rules type formu-
las

Lemma A.1. If H : Rd × Γtemp → R is locally bounded and for fixed γ ∈ Γtemp the
function x 7→ Hx(γ) has compact support, then

D+
x

∑
y∈γ

Hy(γ) =
∑
y∈γ

D+
xHy(γ)−Hx(γ + δx) (1.5)

D−x
∑
y∈γ

Hy(γ) =
∑

y∈γ−δx

D−xHy(γ)−Hx(γ) (1.6)

D+
x

(∫
Λ

r(y, γ)Hy(γ)dy

)
=

∫
Λ

r(y, γ)D+
xHy(γ)dy +

∫
Λ

D+
x r(y, γ)Hy(γ + δx)dy, (1.7)

D−x

(∫
Λ

r(y, γ)Hy(γ)dy

)
=

∫
Λ

r(y, γ)D−xHy(γ)dy +

∫
Λ

D−x r(y, γ)Hy(γ − δx)dy. (1.8)
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Computing the first summand of (1.4) we obtain

L−Λ2
�−Λ1

(F, F )(γ)−2�−Λ1
(L−Λ2

F, F )(γ) =
1

2

∑
x∈γΛ2

y∈γΛ1 :x6=y

(
D−x D

−
y F
)2

(γ)−�−Λ2
(F, F )(γ)+2�−Λ1

(F, F )(γ),

whereas for the second summand we may derive the following expression

L+
Λ2
�+

Λ1
(F )(γ)− 2�+

Λ1
(F,L+

Λ2
F )(γ) = −1

2

∫
Λ1

∫
Λ2

r(x, γ)r(y, γ + δx)(D+
xD

+
y F )2(γ)dxdy

+

∫
Λ1

∫
Λ2

(
r(y, γ)D+

y r(x, ·)(γ)− r(x, γ)D+
x r(y, ·)(γ)

)
(D+

xD
+
y F )(γ)D+

y F (γ)dxdy

+
1

2

∫
Λ1

∫
Λ2

r(x, γ)D+
x r(y, ·)(γ)(D+

y F )2(γ)dxdy

−
∫

Λ1

∫
Λ2

r(y, γ)D+
y r(x, ·)(γ)D+

x F (γ)D+
y F (γ)dxdy.

Finally, calculating the mixed terms in (1.4), we obtain

(L−Λ2
�+

Λ1
(F )− 2�+

Λ1
(F,L−Λ2

F ) =
1

2

∑
x∈γΛ2

∫
Λ1

r(y, γ)(D−x D
+
y F )2(γ)dy (1.9)

+
1

2

∑
x∈γΛ2

∫
Λ1

D−x r(y, ·)(γ)
[
D−x (D+

y F )2(γ) + (D+
y F )2(γ)

]
dy

+

∫
Λ1

r(y, γ)(D+
y F )2(γ)dy

−L+
Λ2
�−Λ1

(F ) + 2�−Λ1
(F,L+

Λ2
F ))(γ) =

1

2

∑
y∈γΛ1

∫
Λ2

r(x, γ)(D−y D
+
x F )2(γ)dx (1.10)

+
1

2

∫
Λ2

r(y, γ)(D+
x F )2(γ)dx

+
∑
y∈γΛ1

∫
Λ2

D−y r(x, ·)D−y F (γ)
[
D−y D

+
x F (γ) +D+

x F (γ)
]
dx
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Summarizing, adding all four parts we gain the following expression for �2

�2(F, F )(γ) (1.11)

=
1

4

∑
x∈γΛ2

y∈γΛ1 :x6=y

(
D−x D

−
y F
)2

(γ)− 1

2
�−Λ2

(F, F )(γ) + �−Λ1
(F, F )(γ)

+
1

4

∫
Λ1

∫
Λ2

r(x, γ)r(y, γ + δx)(D+
xD

+
y F )2(γ)dxdy

−1

2

∫
Λ1

∫
Λ2

(
r(y, γ)D+

y r(x, ·)(γ)− r(x, γ)D+
x r(y, ·)(γ)

)
(D+

xD
+
y F )(γ)D+

y F (γ)dxdy

−1

4

∫
Λ1

∫
Λ2

r(x, γ)D+
x r(y, ·)(γ)(D+

y F )2(γ)dxdy

+
1

2

∫
Λ1

∫
Λ2

r(y, γ)D+
y r(x, ·)(γ)D+

x F (γ)D+
y F (γ)dxdy

+
1

4

∑
x∈γΛ2

∫
Λ1

r(y, γ)(D−x D
+
y F )2(γ)dy + �+

Λ1
(F, F )(γ)

+
1

4

∑
x∈γΛ2

∫
Λ1

D−x r(y, ·)(γ)
[
D−x (D+

y F )2(γ) + (D+
y F )2(γ)

]
dy

+
1

4

∑
y∈γΛ1

∫
Λ2

r(x, γ)(D−y D
+
x F )2(γ)dx+

1

2
�+

Λ2
(F, F )(γ)

+
1

2

∑
y∈γΛ1

∫
Λ1

D−y r(x, ·)D−y F (γ)
[
D−y D

+
x F (γ) +D+

x F (γ)
]
dx

To prove Theorem 3.1, it remains to recognize that the third line in (1.11) is zero
because of the following general property of Papangelou intensities

Lemma A.2. For µ⊗ dx-a.a. (γ, x) holds that

r(x, γ)D+
x r(y, ·)(γ)dxdy = r(y, γ)D+

y r(x, ·)(γ)dydx

Proof. As the above equality has to be interpreted a.s. it is sufficient to show that
the following expression is invariant under the interchange of x and y for any cylinder
function H. This is obvious after the following rewriting∫

Γ

∫
Rd

r(x, γ)

∫
Rd

D+
x r(y, ·)(γ)H(γ + δx + δy, x, y)dydxµ(dγ)

=

∫
Γ

∫
Rd

r(x, γ)

∫
Rd

r(y, γ)H(γ + δx + δy, x, y)dydxµ(dγ)

−
∫

Γ

∑
x,y∈γ
x 6=y

H(γ, x, y)µ(dγ)

A.2 Expectation of fourth order terms

As mentioned before the representation given in Theorem 3.1 was chosen such that
the expectations of the first three of the fourth order terms coincides. One easily com-
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putes using the Papangelou density, cf. (2.1) that for all F ∈ FCb(C0(Rd),Γ) holds∫
Γ

∑
y∈γ

∫
Rd

r(x, γ)
(
D+
xD
−
y F
)2

(γ)dxµ(dγ)

=

∫
Γ

∑
x∈γ

∑
y∈γ−δx

(
D+
xD
−
y F
)2

(γ − δx)µ(dγ)

=

∫
Γ

∑
x∈γ

∑
y∈γ−δx

(
D−x D

−
y F
)2

(γ)µ(dγ).

and indeed in Subsection 3.1 the second fourth order term in the fourth line of (3.3)
was arranged in such a form that holds∫

Γ

∫
Rd

r(x, γ)

∫
Rd

r(y, γ+ δx)(D+
xD

+
y F )2(γ)dydxµ(dγ) =

∫
Γ

∑
y∈γ

∑
x∈γ−δy

(D−x D
−
y F )2(γ)µ(dγ)

(1.12)
Note that the second line in (A.1.9) actually contains an additional fourth order term.
Though both fourth order terms in (A.1.9) could be estimate jointly by zero, this is not
what has been done here because the second fourth order term is used to cancel some
terms in Subsection 3.2. We have no explanation why this is advantageous to do.
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