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Abstract

In this paper we examine the problem of existence and construction of multivari-
ate Markov chains such that their components are Markov chains with given laws.
Specifically, we provide sufficient and necessary conditions, in terms of semimartin-
gale characteristics, for a component of a multivariate Markov chain to be a Markov
chain in its own filtration - a property called weak Markov consistency. Accordingly,
we introduce and discuss the concept of weak Markov copulae. Finally, we examine
relationship between the concepts of weak Markov consistency and weak Markov
copulae, and the corresponding strong versions of these concepts.
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Introduction

Modeling of dependence between stochastic processes is a very important issue
arising from many different applications, among others in financial mathematics. By
modeling dependence we mean construction of a multivariate stochastic process with
prescribed marginal laws. In this paper we focus on Markov chains, and deal with the
problem of constructing a multivariate Markov chain such that its components are given
Markov chains in their own filtrations. It is well known that components of multivariate
Markov process are in general not Markovian (in any filtration), so the problem that we
study here is by no means a trivial one. We give sufficient and necessary conditions, in
terms of the semimartingale characteristics, for a component of a multivariate Markov
chain to be a Markov chain in its own filtration.

Our paper continues the study of Markovian consistency and Markov copulae for
multivariate Markov processes, initiated in [3], [5], [6] and [7].
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Markov consistency and Markov copulae

Here, we introduce and study the concept of weak Markovian consistency, and
we relate it to the concept of strong Markovian consistency that was explored in the
aforementioned papers under the name of Markovian consistency. We also continue
the study of dependence between Markov processes. Thus, we continue the study of
Markov copulae, the concept originally introduced in [3]. Specifically, we introduce
and examine Markov copulae with regard to weak Markovian consistency. It turns out
that certain unwanted features of Markov copulae, inherent to the framework of strong
Markovian consistency, are no longer present in the framework of weak Markovian con-
sistency. This is particularly pleasing in view of applications of Markov copulae in credit
risk management or in reliability management; in fact, this aspect of weak Markov cop-
ulae makes them exceptionally important tool in modeling dynamic dependence. We
provide more insight into this important issue in Remark 2.3.

As already said, we confine our discussion, for the most part, to the case of finite
Markov chains. One might object the choice of finite Markov chains as the of object
of interest in this paper, as one might think that this choice is very restrictive. In
[7] we studied strong Markovian dependence in the context of (nice) Feller processes.
What we learned while working on paper [7] and while working on the present paper,
is that from the point of view of intricacies of dependence between components of a
multivariate Markov process, the finite state space set-up is actually not restrictive at
all! The dependence here is equally intricate as dependence in the case of general Feller
process, which is much harder to present, due to various technicalities that obscure the
dependence picture. That is why, with the benefit for the reader, we are presenting here
a study of the intricate dependence between components of finite Markov chains, which
does not require any use of sophisticated technical machinery, but at the same allows
for pointing to the essence of the of intricacies of dependence between components of
a multivariate Markov process.

It needs to be noted that problems that we study in the present paper are also
connected with lumpability problem for continuous time Markov chains (see Ball and
Yeo [1] and discussion there, Burke and Rosenblatt [8]). In [1] necessary and sufficient
conditions are provided for intensity matrix so that the marginal component process
of a Markov chain is a time homogenous continuous time Markov chain in its natural
filtration. If we omit the assumption of time homogeneity and weaken assumption on
intensity matrix, then there exist Markov process with marginals being also Markov
in their own filtration which does not satisfy conditions from [1] (see Example 3.2.).
Moreover assumptions imposed in these papers on intensity matrix exclude Markov
chains with absorbing states, a case that can be treated using our methodology.

In case of a bivariate Markov chain, one can also note some similarity between
our work and the studies of Markovian coupling (see e.g. Chen [9, Sect. I.5.2]). It
needs to be stressed though that the concepts of weak Markovian consistency and weak
Markovian copulae are much more than (standard) coupling of Markov chains; and this
not just because these concepts apply to multivariate case and not only to the bivariate
case. Markovian couplings deal with marginal properties of transition probabilities (cf.
equations (5.7) in [9]) and with “marginal” properties of generators (cf. equations (5.8)
in [9]). Specifically, the properties looked at within the Markovian coupling universe,
that are somewhat relevant to our present work, amount to

1. the property that marginals of a bivariate transition probability are equal to given
univariate transition probabilities (cf. equations (5.7) in [9]), and

2. the property that “univariate projections” of a bivariate Markovian generator are
equal to given univariate Markovian generators (cf. equations (5.8) in [9]).

This however is much less than dealing with the marginal laws of a process in the sense
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Markov consistency and Markov copulae

of

• asking questions regarding Markovian consistency: that is, asking questions re-
garding necessary and sufficient conditions that need to be satisfied by the gener-
ator of a multivariate Markov chain, such that the chain’s components are Marko-
vian either in their own filtrations (the property of weak Markovian consistency),
or are Markovian either in the filtration of the entire multivariate process (the
property of strong Markovian consistency), or are not Markovian at all.

• asking questions regarding Markov copulae: that is, asking questions regard-
ing construction of a generator of a multivariate Markov chain, such that the
chain’s components are Markovian either in their own filtrations and their laws
coincide with the laws of given univariate Markov chains (i.e. construction of a
weak Markovian copula), or the chain’s components are Markovian in the filtra-
tion of the entire multivariate process and their laws coincide with the laws of
given univariate Markov chains (i.e. construction of a strong Markovian copula).

In addition, studies of Markovian coupling do not touch the issues of intricate nature
of dependence between components of a multivariate Markov chain, that we study and
demonstrate in this paper.

The paper is organized as follows. In Section 1 we give a sufficient and necessary
condition for a multivariate Markov chain to be weakly consistent. Note that a sufficient
condition for weak Markovian consistency can be deduced from the result of Rogers and
Pitman [14] in which sufficient conditions for a function of a Markov process to be a
Markov process are given. Our condition for a weak Markovian consistency is not only
more explicit, but also necessary. We also study the question when weak Markovian
consistency implies strong Markovian consistency. It turns out that this is equivalent to
P-immersion between FXi

and FX , given that weak Markovian consistency holds. In
Section 2 we study weak Markov copulae. In Section 3 we present three simple, but
non-trivial examples, that illustrate intricacies of dependence between components
of a multivariate Markov chain. Specifically, in Examples 3.1–3.3 we show that

1. there exist Markov processes that are strongly Markovian consistent,

2. there exist Markov processes that are weakly Markovian consistent, but are not
strongly Markovian consistent; in addition, in this case, one would expect that
even if a multivariate Markov process is time-homogeneous, its components are
time-inhomogeneous Markov processes; Example 3.2 illustrates this,

3. there exist Markov processes that are neither strongly Markovian consistent nor
weakly Markovian consistent.

1 Markovian Consistency

As already said, we shall focus in this paper on the case of finite Markov chains. Nev-
ertheless, we shall formulate the concept of weak Markovian consistency in more gen-
erality. Towards this end we consider X = (Xn, n = 1, . . . , N), a multivariate Markov
process, defined on an underlying probability space (Ω,F ,P), taking values in RN .1 We
denote by FX the filtration of X, and by FXn

the filtration of the coordinate Xn of X.
It is well known that, in general, the coordinates of X are not Markov with respect to
their own filtrations.

1The study presented in this paper carries over to the case of multivariate Markov process taking values
in a product of arbitrary (metric) spaces.
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Markov consistency and Markov copulae

Definition 1.1. (i) Let us fix n. We say that the process X satisfies the weak Markovian
consistency condition with respect to the component Xn if for every B ∈ B(R) and all
t, s ≥ 0,

P
(
Xn

t+s ∈ B|FXn

t

)
= P

(
Xn

t+s ∈ B|Xn
t

)
, (1.1)

so that the component Xn of X is a Markov process in its own filtration.
(ii) If X satisfies the weak Markovian consistency condition with respect to Xn for each
n ∈ {1, . . . , N}, then we say that X satisfies the weak Markovian consistency condition.

Previously, in [3], [5], [6] and [7], a stronger concept was studied.

Definition 1.2. (i) Let us fix n. We say that the process X satisfies the strong Marko-
vian consistency condition with respect to the component Xn if for every B ∈ B(R) and
all t, s ≥ 0,

P
(
Xn

t+s ∈ B|FX
t

)
= P

(
Xn

t+s ∈ B|Xn
t

)
(1.2)

or equivalently
P
(
Xn

t+s ∈ B|Xt

)
= P

(
Xn

t+s ∈ B|Xn
t

)
, (1.3)

so that Xn is a Markov process in the filtration of X.
(ii) If X satisfies the strong Markovian consistency condition with respect to Xn for
each n ∈ {1, . . . , N}, then we say that X satisfies the strong Markovian consistency
condition.

Obviously, strong Markovian consistency implies weak Markovian consistency, but
not vice versa as will be seen in one of the examples in Section 3. As a matter of fact,
it may happen that all components of X are Markovian in their filtrations, but X is not
Markovian in its filtration (see e.g. Bielecki et al. [6, Example 2.4.2]).

From now on we assume that X = (X1, . . . , XN ) is a Markov chain with values in
a finite product space, say X = XN

n=1Xn, where Xn = {xn1 , . . . , xnmn
} ⊆ R. However,

to somewhat simplify the notation, in most of the paper we shall consider bivariate
processes X only, that is, we put N = 2, and we take Λ(t) = [λxy(t)]x,y∈X as a generic
symbol for the P-infinitesimal generator of X. Thus, Λ(t) is an m × m matrix, where
m = m1 ·m2. We stress that restriction to bivariate case is for a notational convenience
only. Our results naturally extend to the multivariate case.

1.1 Semimartingale characterization of a finite Markov chain

Let us consider a càdlàg process V defined on (Ω,F ,P), taking values in a finite set
V ⊂ RN .

For any two distinct states v, w ∈ V, we define an FV -optional random measure Nvw

on [0,∞) by

Nvw((0, t]) =
∑

0<s≤t

1{Vs−=v,Vs=w}. (1.4)

We shall simply write Nvw(t) in place of Nvw((0, t]). Manifestly, Nvw(t) represents the
number of jumps from state v to state w that the process V executes over the time
interval (0, t]. Let us denote by νvw the dual predictable projection (the compensator)
with respect to FV of the random measure Nvw.

Next, let us define a deterministic matrix valued function Λ on [0,∞) by

Λ(t) = [λvw(t)]v,w∈V , (1.5)

where λvw’s are real valued, locally integrable functions on [0,∞) such that for t ∈ [0,∞)

and v, v ∈ V, v 6= w, we have
λvw(t) ≥ 0
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and
λvv(t) = −

∑
w 6=v

λvw(t).

The following result, gives necessary and sufficient condition for càdlàg process V
with values in V to be a Markov chain.

Proposition 1.3. A process V is a Markov chain (with respect to FV ) with infinitesi-
mal generator Λ(t) iff the compensators with respect to FV of the counting measures
Nvw(dt), v, w ∈ V, are of the form

νvw((0, t]) =

∫ t

0

1{Vs=v}λ
v
w(s)ds. (1.6)

Proof. It has been shown in Lemma 5.1 in [5] that a process V is a Markov chain
(with respect to FV ) with infinitesimal generator Λ(t) iff the compensators with respect
to FV of the counting measures Nvw(dt), v, w ∈ V, are of the form

νvw((0, t]) =

∫ t

0

1{Vs−=v}λ
v
w(s)ds. (1.7)

Now, analysis of the proof of Lemma 5.1 in [5] indicates that the left hand limits Vt−
used in Lemma 5.1 in [5] can, in fact, be replaced with Vt, which proves the present
result.

Remark 1.4. A finite Markov chain V with a locally integrable generator Λ(t) is a
semimartingale (see, e.g., Elliott et al. [12, Chapter 7.2]). The jump measure of V , say
µV , can be expressed in terms of summation of the jump measures Nvw. Thus, in view
of Proposition 1.3 the infinitesimal characteristic of V (with respect to an appropriate
truncation function), which is the compensator of µV (denoted by νV) is given in terms
of summation of the compensators νvw. Indeed, one can easily check that if we define a
truncation function h by

h(x) := x1{|x|≤d}, where d :=
1

2
min {|v − w| : v 6= w, v ∈ V, w ∈ V},

then (0, 0, νV ) is the local characteristic of V , where

νV (dx, dt) =
∑

v,w∈V:v 6=w

δw−v(dx)νvw(dt),

and δ denotes the Dirac measure.

1.2 Necessary and sufficient conditions for weak Markovian consistency in
terms of semimartingale characteristics

Let us recall that we consider bivariate processes. We take n = 1 and we study
the weak Markovian consistency of X with respect to X1. A completely analogous
discussion can be carried out with respect to X2.

For any two states x1, y1 ∈ X 1 such that x1 6= y1, we define the following FX -optional
random measure on [0,∞):

N1
x1y1((0, t]) =

∑
0<s≤t

1{X1
s−=x1,X1

s=y1}. (1.8)

We shall write N1
x1y1(t) in place of N1

x1y1((0, t]), and we shall denote by ν1
x1y1 the dual

predictable projection (the compensator) with respect to FX of the random measure
N1

x1y1 .
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Markov consistency and Markov copulae

Next, for any two states x = (x1, x2), y = (y1, y2) ∈ X such that x 6= y, we define an
FX -optional random measure on [0,∞) by

Nxy((0, t]) =
∑

0<s≤t

1{(X1
s−=x1,X2

s−=x2),(X1
s=y1,X2

s=y2)}. (1.9)

We shall write Nxy(t) in place of Nxy((0, t]), and we shall denote by νxy the compensator
of Nxy with respect to FX .

It is easy to see that

N1
x1y1(t) =

∑
x2,y2∈X 2

N(x1,x2),(y1,y2)(t), (1.10)

and consequently (due to uniqueness of compensators)

ν1
x1y1((0, t]) =

∑
x2,y2∈X 2

ν(x1,x2),(y1,y2)((0, t]). (1.11)

In view of Proposition 1.3, we see that for any two distinct states x = (x1, x2), y =

(y1, y2) ∈ X ,
ν(x1,x2),(y1,y2)(dt) = 1{(X1

t ,X
2
t )=(x1,x2)}λ

x1x2

y1y2 (t)dt. (1.12)

Let us denote by ν̂1
x1y1 the compensator of the measure N1

x1y1 with respect to FX1

.

Lemma 1.5. Assume that X is a Markov chain with respect to its own filtration. The
FX1

-compensator of N1
x1,y1 has the form

ν̂1
x1y1(dt) = 1{X1

t =x1}
∑

x2,y2∈X 2

λx
1x2

y1y2 (t)EP(1{X2
t =x2}|FX1

t )dt. (1.13)

Proof. It follows from Lemma 4.3 in [5] that

ν̂1
x1y1(dt) =

∑
x2,y2∈X 2

EP(1{(X1
t ,X

2
t )=(x1,x2)}λ

x1x2

y1y2 (t)|FX1

t− )dt (1.14)

=
∑

x2,y2∈X 2

λx
1x2

y1y2 (t)EP(1{X1
t =x1}1{X2

t =x2}|FX1

t− )dt.

The process X is quasi-left continuous, since it is a Markov chain. Hence, X1 is also
quasi-left continuous, so its natural filtration FX1

is quasi-left continuous and hence
FX1

t = FX1

t− (see Rogers and Williams [15, III.11]). Thus by (1.14) we have (1.13).
Using Lemma 1.5 and Proposition 1.3 we obtain the following important result.

Theorem 1.6. The component X1 of X is a Markov chain with respect to its own
filtration if and only if

∀x1, y1∈X 1, x1 6= y1 we have that

1{X1
t =x1}

∑
x2,y2∈X 2

λx
1x2

y1y2 (t)EP

(
1{X2

t =x2}|FX1

t

)
=1{X1

t =x1}λ
1
x1y1(t) dt⊗ dP-a.s. (1.15)

for some locally integrable functions λ1
x1y1 . The generator ofX1 is Λ1(t) = [λ1

x1y1(t)]x1,y1∈X 1

with λ1
x1x1 given by

λ1
x1x1(t) = −

∑
y1∈X 1,y1 6=x1

λ1
x1y1(t) ∀x1 ∈ X 1.
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Markov consistency and Markov copulae

Proof. Assume that (1.15) holds. Since X is a Markov chain, for each x1, y1 ∈ X 1, the
FX1

compensator of N1
x1,y1 has, by Lemma 1.5 and (1.15), the form

ν̂1
x1y1(dt) = 1{X1

t =x1}λ
1
x1y1(t)dt

for some locally integrable deterministic function λ1
x1y1 . In particular, note that (1.15)

implies that λ1
x1y1 is non-negative for x1 6= y1. Then, by Proposition 1.3, X1 is a Markov

chain with generator Λ1(t) = [λ1
x1y1(t)]x1,y1∈X 1 . Conversely, assume that X1 is a Markov

chain with respect to its natural filtration with generator Λ1(t) = [λ1
x1y1(t)]x1,y1∈X 1 . Then

(1.15) follows from Lemma 1.5 and Proposition 1.3.

Remark 1.7. Note that (1.15) implies that

∀x1, y1∈X 1, x1 6= y1 we have that

1{X1
t =x1}

∑
x2,y2∈X 2

λx
1x2

y1y2 (t)EP

(
1{X2

t =x2}|X1
t = x1

)
= 1{X1

t =x1}λ
1
x1y1(t) dt⊗ dP-a.s. (1.16)

Thus, condition (1.16) is necessary for the weak Markovian consistency of X with re-
spect to X1.

1.3 Necessary and sufficient conditions for strong Markovian consistency

Since one of our goals is to relate the notions of weak and strong Markovian con-
sistency, we shall discuss in this section necessary and sufficient conditions for strong
Markovian consistency of our finite Markov chain. Towards this end let us first recall
condition (M) from [5]:
Condition (M): The generator matrix function Λ satisfies for every t ≥ 0∑

y2∈X 2

λx
1x2

y1y2 (t) =
∑

y2∈X 2

λx
1x̄2

y1y2 (t), ∀x2, x̄2 ∈ X 2, ∀x1, y1 ∈ X 1, x1 6= y1, (M1)

and ∑
y1∈X 1

λx
1x2

y1y2 (t) =
∑

y1∈X 1

λx̄
1x2

y1y2 (t), ∀x1, x̄1 ∈ X 1, ∀x2, y2 ∈ X 2, x2 6= y2. (M2)

Next, consider the functions λ1
x1y1 given, for t ≥ 0, by

λ1
x1y1(t) =

∑
y2∈X 2

λx
1x2

y1y2 (t), x1, y1 ∈ X 1, x1 6= y1,

λ1
x1x1(t) = −

∑
y1∈X 1,y1 6=x1

λ1
x1y1(t), ∀x1 ∈ X 1.

(1.17)

Under condition (M1), the functions λ1
x1y1 are well defined and locally integrable, and it

is straightforward to verify that they satisfy (1.15), so that weak Markovian consistency
holds for X with respect to X1.

Result analogous to Theorem 1.6, but with respect to component X2, reads:

• The process X2 is a Markov chain with respect to its own filtration if and only if

∀x2, y2∈X 2, x2 6= y2 we have that

1{X2
t =x2}

∑
x1,y1∈X 1

λx
1x2

y1y2 (t)EP

(
1{X1

t =x1}|FX2

t

)
= 1{X2

t =x2}λ
2
x2y2(t) dt⊗ dP-a.s. (1.18)
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for some locally integrable functions λ2
x2y2 . Then the generator of X2 is Λ2(t) =

[λ2
x2y2(t)]x2,y2∈X 2 with λ2

x2x2 given by

λ2
x2x2(t) = −

∑
y2∈X 2,y2 6=x2

λ2
x2y2(t), ∀x2 ∈ X 2.

Now, if we define

λ2
x2y2(t) =

∑
y1∈X 1

λx
1x2

y1y2 (t), x2, y2 ∈ X 2, x2 6= y2,

λ2
x2x2(t) = −

∑
y2∈X 2,y2 6=x2

λ2
x2y2(t), ∀x2 ∈ X 2,

(1.19)

then under condition (M2) the functions λ2
x2y2 are well defined and locally integrable.

It is straightforward to verify that they satisfy (1.18), so that weak Markovian consis-
tency holds with respect to X2.

As a matter of fact, it was shown in [5] that conditions (M1) and (M2) are sufficient
for strong Markovian consistency to hold for X with respect to both its components:
X1 and X2. It turns out however, that conditions (M1) and (M2) are too strong; in
particular, they are not necessary for strong Markovian consistency to hold for X with
respect to its components.

We now state a theorem providing sufficient and necessary conditions for strong
Markovian consistency of X.

Theorem 1.8. The component X1 of X is a Markov chain with respect to filtration FX

if and only if

1{X1
t =x1}

∑
y2∈X 2

λ
x1X2

t

y1y2 (t)=1{X1
t =x1}λ

1
x1y1(t) dt⊗ dP-a.s. ∀x1, y1∈X 1, x1 6= y1 (1.20)

for some locally integrable functions λ1
x1y1 . The generator ofX1 is Λ1(t) = [λ1

x1y1(t)]x1,y1∈X 1

with λ1
x1x1 given by

λ1
x1x1(t) = −

∑
y1∈X 1,y1 6=x1

λ1
x1y1(t) ∀x1 ∈ X 1.

The component X2 of X is a Markov chain with respect to filtration FX if and only if

1{X2
t =x2}

∑
y1∈X 1

λ
X1

t x
2

y1y2 (t)=1{X2
t =x2}λ

2
x2y2(t) dt⊗ dP-a.s. ∀x2, y2∈X 2, x2 6= y2 (1.21)

for some locally integrable functions λ2
x2y2 . The generator ofX2 is Λ2(t) = [λ2

x2y2(t)]x2,y2∈X 2

with λ2
x2x2 given by

λ2
x2x2(t) = −

∑
y2∈X 2,y2 6=x2

λ2
x2y2(t) ∀x2 ∈ X 2.

Proof. We will only give the proof regarding component X1 of X. For the component
X2 the proof is analogous.

Assume that (1.20) holds. Since X is a Markov chain, then, by (1.11), (1.12) and
(1.20), for each x1, y1 ∈ X 1 the FX-compensator of N1

x1y1 has the form

ν1
x1y1(dt) =

∑
x2,y2∈X 2

λx
1x2

y1y2 (t)1{(X1
t ,X

2
t )=(x1,x2)}dt = 1{X1

t =x1}
∑

y2∈X 2

λ
x1X2

t

y1y2 (t)dt

= 1{X1
t =x1}λ

1
x1y1(t)dt
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for some locally integrable deterministic function λ1
x1y1 . Then, by martingale characteri-

zation,X1 is a Markov chain with respect to FX with generator Λ1(t) = [λ1
x1y1(t)]x1,y1∈X 1 .

Conversely, assume that X1 is a Markov chain with respect to filtration FX with gen-
erator Λ1(t) = [λ1

x1y1(t)]x1,y1∈X 1 . Then (1.20) follows from martingale characterization,
(1.11) and (1.12). Indeed, we have

1{X1
t =x1}λ

1
x1y1(t)dt = ν1

x1y1(dt) =
∑

x2,y2∈X 2

λx
1x2

y1y2 (t)1{(X1
t ,X

2
t )=(x1,x2)}dt

= 1{X1
t =x1}

∑
y2∈X 2

λ
x1X2

t

y1y2 (t)dt.

Remark 1.9. (i) It is clear that conditions (M1) and (M2) imply conditions (1.20) and
(1.21), respectively. On the other hand, it is clear that conditions (1.20) and (1.21) im-
ply (1.16) and (1.18), respectively.
(ii) Even though conditions (M1) and (M2) are stronger that conditions needed to es-
tablish strong Markovian consistency, they are very convenient to use for that purpose.
In particular, they can be conveniently used to construct a strong Markov copula (cf.
Section 2.1). In the next section we shall provide operator form of conditions (M1) and
(M2).

Remark 1.10. Ball and Yeo [1] considered time homogeneous Markov chains with in-
tensity matrix Λ satisfying some additional assumptions (cf. [1, Condition 2.2]). In [1,
Theorem 3.1], it is proved that the marginal process X1 of a time homogenous Markov
chain X is a time homogenous Markov chain in its natural filtration if and only if a con-
dition equivalent to Condition (M1) holds. However, if we omit the assumption of time
homogeneity, then [1, Theorem 3.1] does not hold; see our Example 3.2 below. More-
over, assumptions imposed in [1] on Λ exclude Markov chains with absorbing states.

We shall see in Section 3 that there exist Markov chains that are weakly Markovian
consistent, but not strongly Markovian consistent.

1.4 Operator interpretation of necessary conditions for weak Markovian con-
sistency, and of the sufficient condition (M) for strong Markovian consis-
tency

For i = 1, 2 and t ≥ 0, we define an operator Qi
t, acting on any function f on X =

X 1 ×X 2, by

(Qi
tf)(xi) = EP(f(Xt)|Xi

t = xi), ∀xi ∈ X i. (1.22)

We also introduce an extension operator Ci,∗ as follows: for any function f i on X i

the function Ci,∗f i is defined on X by

(Ci,∗f i)(x) = f i(xi), ∀x = (x1, x2) ∈ X .

We have the following proposition, which will be important in the next section in the
context of weak Markov copulae.

Theorem 1.11. Fix i ∈ {1, 2}. The condition

Qi
tΛ(t)Ci,∗ = Λi(t), t ≥ 0, (1.23)

where Λi(t) = [λixiyi(t)], with functions λixiyi given by (1.15) for i = 1 and given by (1.18)

for i = 2, is necessary for weak Markovian consistency with respect to Xi.
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Proof. We give the proof for i = 1. It is enough to observe that (1.16) is equivalent to
(1.23). Indeed, first note that (1.23) is equivalent to the equality

(Q1
tΛ(t)C1,∗g)(x1) =

∑
y1∈X 1

λ1
x1y1(t)g(y1) (1.24)

for an arbitrary function g on X 1 and x1 ∈ X 1. Now, we rewrite the left hand side:

(Q1
tΛ(t)C1,∗g)(x1) = E

 ∑
(z1,x2)∈X

1{X1
t =z1,X2

t =x2}
∑

(y1,y2)∈X

λz
1x2

y1y2(t)g(y1)

∣∣∣∣X1
t = x1


=

∑
x2∈X 2

E(1{X2
t =x2}

∣∣X1
t = x1

) ∑
(y1,y2)∈X

λx
1x2

y1y2 (t)g(y1)


=

∑
y1∈X 1

 ∑
x2∈X 2

∑
y2∈X 2

E
(
1{X2

t =x2}
∣∣X1

t = x1
)
λx

1x2

y1y2 (t)

 g(y1).

Since g is arbitrary, (1.24) is equivalent to

λ1
x1y1(t) =

∑
x2∈X 2

∑
y2∈X 2

E
(
1{X2

t =x2}
∣∣X1

t = x1
)
λx

1x2

y1y2 (t),

which is exactly (1.16).
In the next two propositions we shall consider an operator interpretation of condition

(M) for strong Markovian consistency, and its connection with condition (1.23).

Proposition 1.12. Condition (M1) is equivalent to

(N1): There exist generator matrix function Λ1 = [λ1
x1y1 ]x1,y1∈X 1 such that:

C1,∗Λ1(t) = Λ(t)C1,∗, ∀t ≥ 0. (1.25)

Condition (M2) is equivalent to

(N2): There exist generator matrix function Λ2 = [λ2
x2y2 ]x2,y2∈X 2 such that:

C2,∗Λ2(t) = Λ(t)C2,∗, ∀t ≥ 0. (1.26)

Proof. We only prove the first equivalence. The proof of the other one is analogous.
We note that (1.25) is equivalent to the equality

(C1,∗Λ1(t)g)(x1, x2) = (Λ(t)C1,∗g)(x1, x2), ∀(x1, x2) ∈ X 1 ×X 2, (1.27)

for an arbitrary function g on X 1. By definition, the right hand side of (1.27) is

(Λ(t)C1,∗g)(x1, x2) =
∑

(y1,y2)∈X

λx
1x2

y1y2 (t)(C1,∗g)(y1, y2) =
∑

(y1,y2)∈X

λx
1x2

y1y2 (t)g(y1)

=
∑

y1∈X 1

 ∑
y2∈X 2

λx
1x2

y1y2 (t)

 g(y1),

and the left hand side of (1.27) is given by

(C1,∗Λ1(t)g)(x1, x2) =
∑

y1∈X 1

λ1
x1y1(t)g(y1).
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Since g is arbitrary, we obtain that (N1) is equivalent to existence of matrix function
Λ1 = [λ1

x1y1
]x1,y1∈X 1 such that for each t ≥ 0 we have

λ1
x1y1(t) =

∑
y2∈X 2

λx
1x2

y1y2 (t) ∀x1, y1 ∈ X 1, ∀x2 ∈ X 2. (1.28)

Hence, using the fact that Λ is the generator of a Markov chain we see that (N1)
is equivalent to (M1). Finally, note also that in a view of (1.28) it is straightforward to
verify that matrix function Λ1 is a valid generator matrix.

Proposition 1.13. Condition (1.25) implies (1.23) for i = 1 and condition (1.26) implies
(1.23) for i = 2.

Proof. Since Qi
tC

i,∗ = Id for i = 1, 2, we have

Qi
tΛ(t)Ci,∗ = Qi

tC
i,∗Λi(t) = Λi(t), t ≥ 0, i = 1, 2.

Remark 1.14. Another possible proof of Proposition 1.13 is the following: Conditions
(1.25) and (1.26) are sufficient for strong Markovian consistency of X(see Remark
1.10), which implies weak Markovian consistency of X, for which (1.23) is a neces-
sary condition.

Remark 1.15. In the case of time homogeneous Markov processes, conditions analo-
gous to (1.25) and (1.26) have been previously studied in [3] and [18], and it has been
shown that they are sufficient for strong Markovian consistency. So, (1.25) and (1.26)
imply that each coordinate of the Markov process in question is a Markov process with
respect to FX . It is worth noting that (1.25) and (1.26) agree with (10.60) of Dynkin
[11], if the latter is applied to f being a component projection function.

Remark 1.16. The operator conditions (1.25) and (1.26) for strong Markovian con-
sistency can be interpreted in the context of martingale characterization of Markov
chains.

Let Ci, i = 1, 2, be the projection from X 1 × X 2 on the ith component. Fix i ∈ {1, 2}
and 0 ≤ s ≤ t. Since X is a Markov chain, for any function f i on X i we have the
representation

Ci,∗f i(Xt) = Ci,∗f i(Xs) +

∫ t

s

(Λ(u)(Ci,∗f i))(Xu)du+MCi,∗,fi

t −MCi,∗,fi

s , (1.29)

where MCi,∗,fi

is a martingale with respect to FX . Thus,

f i(CiXt) = f i(CiXs) +

∫ t

s

(Λ(u)(Ci,∗f i))(Xu)du+MCi,∗,fi

t −MCi,∗,fi

s . (1.30)

If conditions (1.25) and (1.26) hold then we may rewrite (1.30) as

f i(Xi
t) = f i(Xi

s) +

∫ t

s

(Λi(u)f i)(Xi
u)du+MCi,∗,fi

t −MCi,∗,fi

s , (1.31)

which shows that Xi is a Markov chain with respect to FX .

1.5 When Does Weak Markov Consistency Imply Strong Markov Consistency?

It is well known that if a process X is a P-Markov chain with respect to a filtration
F, and if it is adapted with respect to a filtration F̂ ⊂ F, then X is a P-Markov chain
with respect to F̂. However, the converse is not true in general. Nevertheless, if X is
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a P-Markov chain with respect to F̂, and F̂ is P-immersed in F 2, then we can deduce
from the martingale characterization of Markov chains that X is also a P-Markov chain
with respect to F.

Thus, if FXi

is P-immersed in FX , then weak Markovian consistency of X with re-
spect to Xi will imply strong Markovian consistency of X with respect to Xi. In the fol-
lowing theorem we demonstrate that in fact this property is equivalent to P-immersion
between FXi

and FX , given that weak Markovian consistency holds.

Theorem 1.17. Assume that X satisfies the weak Markovian consistency condition
with respect to Xi. Then X satisfies the strong Markovian consistency condition if and
only if FXi

is P-immersed in FX .

Proof. ” =⇒ ” We give a proof in the case of i = 1. By Proposition 1.3 the process

M1
x1y1(t) := N1

x1y1(t)−
∫

(0,t]

ν̂1
x1y1(ds)

is an FX1

-martingale for every x1 6= y1 since X1 is a Markov process with respect to its
own filtration. By Jeanblanc, Yor and Chesney [10, Proposition 5.9.1.1] it is sufficient
to show that every FX1

-square integrable martingale Z is also an FX -square integrable
martingale under P. Using the martingale representation theorem (see Rogers and
Williams [15, Theorem 21.15]) we have

Zt = Z0 +
∑

x1 6=y1

∫
(0,t]

g(s, x1, y1, ω)(N1
x1y1(ds)− ν̂1

x1y1(ds)) (1.32)

for some function g : (0,∞)× X 1 × X 1 × Ω→ R, such that for every x1, y1 the mapping
(t, ω) 7→ g(t, x1, y1, ω) is FX1

-predictable and g(t, x1, x1, ω) = 0, P-a.s. . The FX1

-oblique
bracket of M1

x1y1 (i.e. the FX1

-compensator of (M1
x1,y1)2) is equal to (

∫ t

0
ν̂1
x1y1(ds))t≥0, and

therefore g satisfies the integrability condition

E

 ∑
x1 6=y1

∫
(0,T ]

|g(s, x1, y1)|2ν̂1
x1y1(ds)

 <∞ ∀ T > 0. (1.33)

From the assumption that weak Markovian consistency implies strong Markovian con-
sistency we infer that X1 is a Markov chain with respect to FX , and therefore M1

x1y1

are FX -martingales for every x1 6= y1. Moreover, the FX -oblique bracket of M1
x1y1

is also equal to (
∫ t

0
ν̂1
x1y1(ds))t≥0, and obviously for every x1, y1 the mapping (t, ω) →

g(t, x1, y1, ω) is FX -predictable. Hence using (1.32) and (1.33) we deduce that Z is also
an FX -square integrable martingale.
” ⇐= ” Assume that FXi

is immersed in FX . Weak Markovian consistency for X1

implies that the process M1
x1y1 is an FX1

-martingale for every x1 6= y1. By immersion

we know that M1
x1y1 are FX -martingales for every x1 6= y1 and therefore Proposition 1.3

implies that X1 is a Markov process with respect to FX .

2 Markov copulae

We now turn to the problem of constructing a multivariate finite Markov chain whose
components are finite univariate Markov chains with given generator matrices.

This problem was previously studied in [5] and [6], for example, in the context of
strong Markovian consistency. This meant that the components of the multivariate

2We say that a filtration F̂ is P-immersed in a filtration F if F̂ ⊂ F and every (P, F̂)-local-martingale is a
(P,F)-local-martingale.
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Markov chain constructed were Markovian both in their own filtrations and in the fil-
tration of the entire chain. Thus, essentially, these references dealt with constructing
of what we shall term here strong Markov copulae.

In this paper, we shall additionally be concerned with weak Markov copulae in the
context of finite Markov chains. It will be seen that any strong Markov copula is also a
weak Markov copula.

As in the previous section, in order to simplify the notation we shall consider bivari-
ate processes X only.

2.1 Strong Markov copulae

The key observation leading to the concept of strong Markov copula is the following:
Let there be given two generator functions Λ1(t) = [λ1

x1y1(t)] and Λ2(t) = [λ2
x2y2(t)], and

suppose that there exists a valid generator matrix function Λ(t) = [λx
1x2

y1y2 (t)]x1,y1∈X 1,x2,y2∈X 2

satisfying (1.17) for every x2 ∈ X 2, and satisfying (1.19) for every x1 ∈ X 1. Then, Con-
dition (M) is clearly satisfied, so that (cf. Remark 1.10) strong Markovian consistency
holds for the Markov chain, X generated by Λ(t).

Note that, typically, system (1.17) and (1.19), considered as a system with given
Λ1(t) = [λ1

x1y1(t)] and Λ2(t) = [λ2
x2y2(t)] and with unknown Λ(t) = [λx

1x2

y1y2 (t)]x1,y1∈X 1,x2,y2∈X 2 ,

contains many more unknowns (i.e., λx
1x2

y1y2 (t), x1, y1 ∈ X 1, x2, y2 ∈ X 2) than it contains

equations. In fact, given that the cardinalities of X 1 and X 2 are K1 and K2, respec-
tively, the system consists of K1(K1 − 1) + K2(K2 − 1) equations in K1K2(K1K2 − 1)

unknowns.

Thus, in principle, one can create several bivariate Markov chains X with margins
X1 and X2 that are Markovian in the filtration of X, and such that the law of Xi agrees
with the law of a given Markov chain Y i, i = 1, 2. Thus, indeed, the system (1.17) and
(1.19) essentially serves as a "copula"3 between the Markovian margins Y 1, Y 2 and the
bivariate Markov chain X. This observation leads to the following definition,

Definition 2.1. Let Y 1 and Y 2 be two Markov chains with values in X 1 and X 2, and with
generators Λ1(t) = [λ1

x1y1(t)] and Λ2(t) = [λ2
x2y2(t)]. A Strong Markov Copula between

the Markov chains Y 1 and Y 2 is any solution to (1.17) and (1.19) such that the matrix
function Λ(t) = [λx

1x2

y1y2 (t)]x1,y1∈X 1,x2,y2∈X 2 , with λx
1x2

x1x2(t) given as

λx
1x2

x1x2(t) = −
∑

(z1,z2)∈X 1×X 2, (z1,z2)6=(x1,x2)

λx
1x2

z1z2 (t), (2.1)

correctly defines the infinitesimal generator function of a Markov chain with values in
X 1 ×X 2.

Thus, any strong Markov copula between Markov chains Y 1 and Y 2 produces a
bivariate Markov chain, say X = (X1, X2), such that

• the components X1 and X2 are Markovian in the filtration of X,

• the transition laws of Xi is the same as the transition laws of Y i, i = 1, 2,

• If, in addition, the initial law of Xi is same as the initial laws of Y i, then, the law
Xi is the same as the law of Y i, i = 1, 2. In this case, according to terminology of
[7], the process X satisfies the strong Markovian consistency condition relative to
Y 1 and Y 2.

3We use the term "copula" in analogy to classical copulae for probability distributions of finite-dimensional
random variables (cf. e.g. [13]). See also discussion in Section 2.3.
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It is clear that there exists at least one solution to (1.17) and (1.19) such that the
matrix function Λ(t) = [λx

1x2

y1y2 (t)]x1,y1∈X 1,x2,y2∈X 2 is a valid generator matrix. This solu-

tion correspond to the case of independent processes X1 and X2. In this case we have
Λ(t) = I1⊗̂Λ2(t) + Λ1(t)⊗̂I2 where A⊗̂B denotes tensor product of operators A and B

(see Ryan [16]), and where Ii is identity operator on X i. Matrix Λ(t) that corresponds
to two independent processes can be also written more explicitly

λx
1x2

y1y2 (t) =


λ1
x1x1(t) + λ2

x2x2(t), y1 = x1, y2 = x2,

λ1
x1y1(t), y1 6= x1, y2 = x2,

λ2
x2y2(t), y2 6= x2, y1 = x1,

0, otherwise.

2.2 Weak Markov Copulae

The concept of weak Markov copula corresponds to the concept of weak Markovian
consistency. We do not have any clear analytical characterization of the latter property,
analogous to condition (M) that is sufficient for strong Markovian consistency.

Consequently, the concept of weak Markov copula is much more intricate than that
of strong Markov copula, because it involves both probabilistic and analytical (indeed,
algebraic in our case) characterizations.

Definition 2.2. Let Y 1 and Y 2 be two Markov chains with values in X 1 and X 2, and
with generators Λ1(t) = [λ1

x1y1(t)] and Λ2(t) = [λ2
x2y2(t)], respectively. A Weak Markov

Copula between Y 1 and Y 2 is any matrix function Λ(t) = [λx
1x2

y1y2 (t)]x1,y1∈X 1,x2,y2∈X 2 that
satisfies the following conditions:

(WMC1) Λ(t) correctly properly defines the infinitesimal generator of a bivariate Markov
chain, say X = (X1, X2), with values in X 1 ×X 2 ,

(WMC2) Conditions (1.15) and (1.18) are satisfied, so that X is weakly Markovian
consistent.

Thus, any weak Markov copula between the Markov chains Y 1 and Y 2 produces a
bivariate Markov chain, say X = (X1, X2), such that

• the components X1 and X2 are Markovian in their own filtrations, but not neces-
sarily Markovian in the filtration of X, and

• the transition laws of Xi is the same as the transition laws of Y i, i = 1, 2,

• If, in addition, the initial law of Xi is same as the initial laws of Y i, then, the law
Xi is the same as the law of Y i, i = 1, 2. In this case, we say that the process X
satisfies the weak Markovian consistency condition relative to Y 1 and Y 2.

It is clear that any strong Markov copula between Y 1 and Y 2 is also a weak Markov
copula between Y 1 and Y 2.

A possible way of constructing a weak-only Markov copula, that is a weak Markov
copula, which is not a strong Markov copula, is to start with the necessary condition
(1.23) and to find a generator matrix Λ(t) that satisfies this condition with given Λ1(t)

and Λ2(t). Typically, the matrix Λ(t) found will generate a Markov chain satisfying
the weak Markovian consistency condition relative to the Markov chains Y 1 and Y 2

generated by Λ1(t) and Λ2(t), respectively. This approach will be illustrated in Example
3.2 below.

Remark 2.3. It needs to be strongly stressed that the issue of constructing weak-only
Markov copulae is very important from the practical point of view. For example, it is
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important in the context of credit risk management since weak Markov copulae allow
for modeling of default contagion between individual obligors and the rest of the credit
pool (cf. [2] for a discussion); this kind of contagion is precluded in the context of
strong Markov copulae. Thus, weak Markov copulae make it possible to tackle two
critical modeling requirements:

• They make it possible to model contagion between credit events in credit portfo-
lios; equally importantly, they allow for modeling contagion between failure events
in complex manufacturing systems;

• They make it possible to separate calibration of the model to univariate data
(credit default spreads, for example), from calibration of the model to multivariate
data (spreads on credit portfolio contracts, such as collateralized loan obligations
or collateralized debt obligations). This aspect of the Markov copula theory is of
fundamental importance for efficient calibration of a model to market data. In [4]
and [2] (see also references therein), the strong Markov copula theory was suc-
cessfully applied to separate calibration of dependence in the pool of 125 obligors
(constituting an iTraxx index), from the calibration of univariate characteristics of
the individual obligors. We are currently working on using the weak-only Markov
copulae for such purpose.

2.3 Classical copulae theory vs Markov copulae theory

It is useful to relate the concept of Markov copulae to the classical concept of cop-
ula function used in probability to construct multivariate, finite dimensional random
variables, with given marginal distributions.

Recall that a function C : [0, 1]N → [0, 1] is an N−copula if, and only if, the following
properties hold:

1. for every j ∈ {1, 2, ..., N}, C(1, . . . , 1, uj , 1, . . . , 1) = uj;

2. C is isotonic, that is C(u) ≤ C(v) for all u, v ∈ [0, 1]N , u ≤ v;
3. C is N-increasing, that is ∑

w∈{u1,v1}×...×{uN ,vN}

(−1)#{j:wj=vj}C(w) ≥ 0

for all u, v ∈ [0, 1]N , u ≤ v.

Let now U1, . . . , UN be real valued random variables, with the corresponding cu-
mulative distribution functions F1, F2, . . . , FN , and let C be an N -copula. Next, let the
function F : RN → [0, 1] be defined by

F (u1, u2, ..., uN ) = C(F1(u1), F2(u2), . . . , FN (uN )). (2.2)

It is the classical result due to Sklar [17] that F is a cumulative distribution function of
an RN -valued random variable, say W = (W1, . . . ,WN ), such that the law of Wn is the
same as the law of Un, n = 1, 2, . . . , N. In other words, F is an N -variate distribution
function with margins F1, F2, . . . , FN .

Now, we have the following analogies between the classical copula theory and the
Markov copulae (below, we use our convention that N = 2):

• random variables U1 and U2 correspond to Markov chains Y 1 and Y 2, random vari-
ables W1 and W2 correspond to Markov chains X1 and X2, and random variable
W = (W1,W2) corresponds to Markov chain X = (X1, X2),
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• the generator functions Λ1(·) = [λ1
x1y1(·)] and Λ2(·) = [λ2

x2y2(·)], showing in equa-
tions (1.17) and (1.19) and in equations (1.15) and (1.18), are analogous to the
marginal distributions F1 and F2 showing in (2.2),

• in the case of strong Markov copula, the equations (1.17) and (1.19) and any
of their solutions, say Λ(·) = [λx

1x2

y1y2 (·)]x1,y1∈X 1,x2,y2∈X 2 , which produces a valid
Markov chain, is analogous to the pair (F,C) in (2.2),

• in the case of weak Markov copula, the equations (1.15) and (1.18) and any of their
solutions, say Λ(·) = [λx

1x2

y1y2 (·)]x1,y1∈X 1,x2,y2∈X 2 , which produces a valid Markov
chain, is analogous to the pair (F,C) in (2.2).

It needs to be stressed that we use the term "copula", in Markov copula, because
of the above correspondences, and, really, for reason of tradition. In general, there is
no copula functional that would map marginal Markov processes Xn to a multivariate
Markov process X (cf. discussion of this issue given in [5]).

3 Examples

As before, we take N = 2 in the examples below. We shall present examples illus-
trating

• Construction of a strong Markov copula (Example 3.1), i.e., a construction of a
two dimensional Markov chain X = (X1, X2) with components X1 and X2 that
are Markovian in the filtration of X, and such that the transition laws of Xi agree
with the transition laws of a given Markov chain Y i, i = 1, 2.

• Construction of a weak-only Markov copula (Example 3.2), i.e., a construction of
a two dimensional Markov chain X = (X1, X2) with the components X1 and X2

that are Markovian in their own filtrations, but are not Markovian in the filtration
of X, and such that the transition laws of Xi agree with the transition laws of a
given Markov chain Y i, i = 1, 2.

• Existence of a Markov chain for which weak Markovian consistency does not hold,
that is, a Markov chain that can’t serve as a weak Markov copula (Example 3.3).
In this example, component X2 of Markov chain X = (X1, X2) is shown to be not
Markovian in its own filtration.

Example 3.1. Let us consider two processes, Y 1 and Y 2, that are time-homogeneous
Markov chains, each taking values in the state space {0, 1}, with respective generators

Λ1 =

( 0 1

0 −(a+ c) a+ c

1 0 0

)
(3.1)

and

Λ2 =

( 0 1

0 −(b+ c) b+ c

1 0 0

)
, (3.2)

for a, b, c ≥ 0.

We shall first consider the system of equations (1.25) and (1.26) for this example. In
this case we identify Ci,∗, i = 1, 2, with the matrices

C1,∗ =


1 0

1 0

0 1

0 1

 and C2,∗ =


1 0

0 1

1 0

0 1

 . (3.3)
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It can be easily checked that the matrix Λ below satisfies (1.25) and (1.26):

Λ =


(0, 0) (0, 1) (1, 0) (1, 1)

(0, 0) −(a+ b+ c) b a c

(0, 1) 0 −(a+ c) 0 a+ c

(1, 0) 0 0 −(b+ c) b+ c

(1, 1) 0 0 0 0

. (3.4)

Thus, according to the theory of Section 2, Λ is a strong Markov copula between Y 1

and Y 2. Nevertheless, it will be instructive to verify this directly. Towards this end, let
us consider the bivariate Markov chain X = (X1, X2) on the state space

E = {(0, 0), (0, 1), (1, 0), (1, 1)}

generated by the matrix Λ given by (3.4). We first compute the transition probability
matrix for X, for t ≥ 0:

P (t)=


e−(a+b+c)t e−(a+c)t(1−e−bt) e−(b+c)t(1−e−at) e−(a+b+c)t−e−(b+c)t−e−(a+c)t+1

0 e−(a+c)t 0 1− e−(a+c)t

0 0 e−(b+c)t 1− e−(b+c)t

0 0 0 1


Thus, for any t ≥ 0,

lim
h→0

P (X2
t+h = 0|X2

t = 0)− 1

h
= −(b+ c).

Similarly, for any t ≥ 0,

lim
h→0

P (X1
t+h = 0|X1

t = 0)− 1

h
= −(a+ c).

It is clear that X1 and X2 are Markov chains in their own filtrations (as both chains are
absorbed in state 1). From the above calculations we see that the generator of Xi is Λi,
i = 1, 2.

To verify that Λ is a strong Markov copula between Y 1 and Y 2, it remains to show
that components X1 and X2 are Markovian in the filtration of X. This can also be
verified by direct computations: indeed,

lim
h→0

P (X1
t+h = 0|X1

t = 0, X2
t = 0)− 1

h
= lim

h→0

P (X1
t+h = 0|X1

t = 0, X2
t = 1)− 1

h

= −(a+ c) = lim
h→0

P (X1
t+h = 0|X1

t = 0)− 1

h
,

or, equivalently,

P (X1
t+h = 0|X1

t = 0, X2
t = 0) = P (X1

t+h = 0|X1
t = 0, X2

t = 1) = P (X1
t+h = 0|X1

t = 0)

= e−(a+c)h,

so that condition (1.2) is satisfied for X1, and similarly for X2.

Note that in accordance with the concept of strong Markovian consistency, the tran-
sition intensities and transition probabilities for X1 do not depend on the state of X2:

• No matter what the state of X2 is, whether 0 or 1, the intensity of transition of X1

from 0 to 1 is equal to a+ c.
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• The transition probability of X1 from 0 to 1 in t units of time, no matter what the
state of X2 is, is equal to

e−(b+c)t(1− e−at) + e−(a+b+c)t − e−(b+c)t − e−(a+c)t + 1 = 1− e−(a+c)t.

An analogous observation holds for X2. Finally, note that Y 1 and Y 2 are independent if
and only if c = 0.

Example 3.2. Let us consider two processes, Y 1 and Y 2, that are Markov chains, each
taking values in the state space {0, 1}, with respective generator functions

Λ1(t) =

(
−(a+ c) + α(t) a+ c− α(t)

0 0

)

and

Λ2(t) =

(
−(b+ c) + β(t) b+ c− β(t)

0 0

)
,

where

α(t) = c·
e−at(1− e−(b+c)t) b

b+c

e−(a+b+c)t + e−at(1− e−(b+c)t) b
b+c

, β(t) = c·
e−bt(1− e−(a+c)t) a

a+c

e−(a+b+c)t + e−bt(1− e−(a+c)t) a
a+c

,

for a, b, c ≥ 0.

Here we shall seek a weak Markov copula for Y 1 and Y 2. Thus we shall investigate
the necessary condition (1.23). Towards this end we first note that in this example the
matrix representation of the operator Q1

t takes the form

Q1
t =

(
P (X1

t =0, X2
t =0|X1

t =0) P (X1
t =0, X2

t =1|X1
t =0) P (X1

t =1, X2
t =0|X1

t =0) P (X1
t =1, X2

t =1|X1
t =0)

P (X1
t =0, X2

t =0|X1
t =1) P (X1

t =0, X2
t =1|X1

t =1) P (X1
t =1, X2

t =0|X1
t =1) P (X1

t =1, X2
t =1|X1

t =1)

)
,

and similarly for Q2
t . It turns out that a solution to the necessary condition (1.23) is a

valid generator matrix

Λ =


−(a+ b+ c) b a c

0 −a 0 a

0 0 −b b

0 0 0 0

 , (3.5)

where a, b ≥ 0 and c > 0. Verification of this is straightforward, but computationally
intensive, and can be obtained from the authors on request.

Since condition (1.23) is just a necessary condition for weak Markovian consistency,
the matrix Λ in (3.5) may not be a weak Markov copula for Y 1 and Y 2. This has to be
verified by direct inspection.

Let us consider the bivariate Markov chain X = (X1, X2) on the state space

E = {(0, 0), (0, 1), (1, 0), (1, 1)}

generated by the matrix Λ given by (3.5).
Arguing as in the previous example, it is clear that the components X1 and X2 are

Markovian in their own filtrations. We shall show that:

• X1 and X2 are NOT Markovian in the filtration FX , and
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• the generators of X1 and X2 are given by (3.6) and (3.7), respectively.

We first compute the transition probability matrix for X, for t ≥ 0:

P (t)=


e−(a+b+c)t e−at(1−e−(b+c)t) b

b+c e−bt(1−e−(a+c)t) a
a+c γ(t)

0 e−at 0 1− e−at

0 0 e−bt 1− e−bt

0 0 0 1


where

γ(t) = 1+e−(a+b+c)t(
a

a+ c
− c

b+ c
)− a

a+ c
e−bt− b

b+ c
e−at.

It follows that

P (X1
t+h = 0|X1

t = 0, X2
t = 0) = e−(a+b+c)t + e−at(1− e−(b+c)t)

b

b+ c

6= P (X1
t+h = 0|X1

t = 0, X2
t = 1) = e−at

unless c = 0, which is the case of independent X1 and X2. Thus, in general, X1 is NOT
a Markov process in the full filtration. Similarly for X2.

We shall now compute the generator function for X2. As in the previous example,
for any t ≥ 0,

lim
h→0

P (X2
t+h = 0|X2

t = 0)− 1

h
= −(b+ c) + c

P (X1
t = 1, X2

t = 0)

P (X2
t = 0)

.

Similarly, for any t ≥ 0,

lim
h→0

P (X1
t+h = 0|X1

t = 0)− 1

h
= −(a+ c) + c

P (X1
t = 0, X2

t = 1)

P (X1
t = 0)

.

Thus, both X1 and X2 are time-inhomogeneous Markov chains with generator func-
tions, respectively,

A1(t) =

 −(a+ c) + c
P (X1

t =0,X2
t =1)

P (X1
t =0)

a+ c− cP (X1
t =0,X2

t =1)

P (X1
t =0)

0 0

 (3.6)

and

A2(t) =

 −(b+ c) + c
P (X1

t =1,X2
t =0)

P (X2
t =0)

b+ c− cP (X1
t =1,X2

t =0)

P (X2
t =0)

0 0

 . (3.7)

It is easily checked that A1(t) = Λ1(t) and A2(t) = Λ2(t), as claimed. Consequently, the
matrix Λ in (3.5) is a weak Markov copula for Y 1 and Y 2, but it is not a strong Markov
copula for Y 1 and Y 2.

Finally, note that the transition intensities and transition probabilities for X1 do
depend on the state of X2:

• When X is in state (0, 0) at some point in time, then, the intensity of transition of
X1 from 0 to 1 is equal to a+ c; when X is in state (0, 1) at some point in time, the
intensity of transition of X1 from 0 to 1 is equal to a.
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• When X is in state (0, 0) at some point in time, then, the transition probability of
X1 from 0 to 1 in t units of time is

e−bt(1− e−(a+c)t)
a

a+ c
+ 1 + e−(a+b+c)t

(
a

a+ c
− c

b+ c

)
− a

a+ c
e−bt − b

b+ c
e−at;

when X is in state (0, 1) at some point in time, the transition probability of X1

from 0 to 1 in t units of time is
1− e−at.

An analogous observation holds for X2, that is, the transition intensities and transition
probabilities for X2 do depend on the state of X1.

Example 3.3. Here we give an example of a bivariate Markov chain which is not weakly
Markovian consistent.

Let us consider the bivariate Markov chain X = (X1, X2) on the state space

E = {(0, 0), (0, 1), (1, 0), (1, 1)}

generated by the matrix

A =


−(a+ b+ c) b a c

0 −(d+ e) d e

0 0 −f f

0 0 g −g

 . (3.8)

We denote by H2
0,1 the process that counts the number of jumps of the component X2

from state 0 to state 1. The FX -intensity of such jumps is

1{X1
t =0,X2

t =0}(b+ c) + 1{X1
t =1,X2

t =0}f,

so the optional projection of this intensity on FX2

has the form

(b+ c)P(X1
t = 0, X2

t = 0|FX2

t ) + fP(X1
t = 1, X2

t = 0|FX2

t ).

Since {X2
t = 0, X2

t/2 = 1} ⊆ {X1
t = 1}, on the set {X2

t = 0, X1
t/2 = 1} we have

P(X1
t = 0, X2

t = 0|X2
t = 0, X2

t/2 = 1) = 0, P(X1
t = 1, X2

t = 0|X2
t = 0, X2

t/2 = 1) = 1.

Therefore the above optional projection, on the set {X2
t = 0, X2

t/2 = 1}, is equal to

fP(X1
t = 1, X2

t = 0|X2
t = 0, X2

t/2 = 1) = f.

However, on {X2
t = 0} the above optional projection is equal to

(b+ c)P(X1
t = 0, X2

t = 0|X2
t = 0) + fP(X1

t = 1, X2
t = 0|X2

t = 0)

= (b+ c− f)P(X1
t = 0, X2

t = 0|X2
t = 0) + f.

Assuming that the processX starts from (0, 0) at time t = 0, it can be shown that P(X1
t =

0, X2
t = 0|X2

t = 0) > 0. Verification of this is straightforward, but computationally
intensive, and can be obtained from the authors on request. Thus, if b + c 6= f , then
the optional projection on FX2

t of the FX intensity of H2
0,1 depends on the trajectory of

X2 until time t, and not just on the state of X2 at time t. Thus, X2 is not Markovian in
its own filtration. It is obviously not Markovian in the filtration of the entire process X
either.
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