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Abstract

We define a new diffusive matrix model converging towards the β-Dyson Brownian
motion for all β ∈ [0, 2] that provides an explicit construction of β-ensembles of ran-
dom matrices that is invariant under the orthogonal/unitary group. We also describe
the eigenvector dynamics of the limiting matrix process; we show that when β < 1
and that two eigenvalues collide, the eigenvectors of these two colliding eigenval-
ues fluctuate very fast and take the uniform measure on the orthocomplement of the
eigenvectors of the remaining eigenvalues.
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1 Introduction

It is well known that the law of the eigenvalues of the classical Gaussian matrix
ensembles are given by a Gibbs measure of a Coulomb gas interaction with inverse
temperature β = 1 (resp. 2, resp. 4) in the symmetric (resp. Hermitian, resp. symplec-
tic) cases;

dPβ(λ) =
1

Zβ

∏
i<j

|λi − λj |βe−
1
2

∑
λ2
i

∏
dλi .

Such measures are associated with symmetric Langevin dynamics, the so-called Dyson
Brownian motion, which describe the random motion of the eigenvalues of a symmetric
(resp. Hermitian, resp. symplectic) Brownian motion. They are given by the stochastic
differential system

dλi(t) =
√

2 dbi(t)− λi(t)dt+ β
∑
j 6=i

1

λi(t)− λj(t)
dt (1.1)

with iid Brownian motions (bi). These laws and dynamics have been intensively studied,
and both local and global behaviours of these eigenvalues have been analyzed precisely,
starting from the reference book of Mehta [10].
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Invariant β-ensembles

More recently, the generalization of these distributions and dynamics to all β ≥ 0,
the so-called β-ensembles, was considered. As for β = 1, 2, 4, the Langevin dynamics
converge to their unique invariant Gibbs measure Pβ as times goes to infinity. Indeed,
the stochastic differential system under study is a set of Brownian motions in interaction
according to a strictly convex potential. Thus, one can then show by a standard coupling
argument that two solutions driven by the same Brownian motion but with different
initial data will soon be very close to each others. This entails the uniqueness of the
invariant measure as well as the convergence to this Gibbs measure. It turns out that
the case β ∈ [0, 1) and the case β ∈ [1,∞) are quite different, as in the first case the
eigenvalues process can cross whereas in the second the repulsion is strong enough
so that the eigenvalues do not collide with probability one in finite time. However, the
diffusion was shown to be well defined, even for β < 1, by Cépa and Lépingle [5], at list
once reordered.

The goal of this article is to provide a natural interpretation of β-ensembles in terms
of random matrices for β ∈ [0, 2]. Dumitriu and Edelman [7] already proposed a tridi-
agonal matrix with eigenvalues distributed according to the β-ensembles. However,
this tridiagonal matrix lacks the invariant property of the classical ensembles. Our con-
struction has this property and moreover is constructive as it is based on a dynamical
scheme. It was proposed by JP Bouchaud, and this article provides rigorous proofs of
the results stated in [1]. The idea is to interpolate between the Dyson Brownian motion
and the standard Brownian motion by throwing a coin at every infinitesimal time step to
decide whether our matrix will evolve according to a Hermitian Brownian motion (with
probability p) or will keep the same eigenvectors with eigenvalues diffusing according
to independent Brownian motions. When the size of the infinitesimal time steps goes to
zero, we will prove that the dynamics of the eigenvalues of this matrix valued process
converges towards the β-Dyson Brownian motion with β = 2p. The same construction
with a symmetric Brownian motion leads to the same limit with β = p. This result is
more precisely stated in Theorem 2.2. We shall not consider the extension to the sym-
plectic Brownian motion in this paper, but it is clear that the same result holds with
β = 4p. Our construction can be extended to other matrix models and will lead to sim-
ilar results. In particular, the case of Wishart matrices was treated in [2]. One could
also consider the cases of Circular and Ginibre Gaussian Ensembles.

We thus deduce from our construction that β-ensembles can be interpreted as an
interpolation between free convolution (obtained by adding a Hermitian Brownian mo-
tion) and standard convolution (arising when the eigenvalues evolve following standard
Brownian motions). It is natural to wonder whether a notion of β-convolution could be
more generally defined.

Moreover we shall study the eigenvectors of our matrix-valued process. In the case
where β ≥ 1, their dynamics is well known and is similar to the dynamics of the eigen-
vectors of the Hermitian or Symplectic Brownian motions, see e.g. [3]. When β < 1

the question is to determine what happens at a collision. It turns out that when we ap-
proach a collision, the eigenvectors of the non-colliding eigenvalues converge to some
orthogonal family B of d− 2 vectors whereas the eigenvectors of the colliding eigenval-
ues oscillate very fast and take the uniform distribution on the ortho-complement of B,
see Proposition 2.6.

2 Statement of the results

Let Hβd be the space of d × d symmetric (respectively Hermitian) matrices if β = 1

(resp. β = 2) and Oβd be the space of d× d orthogonal (respectively unitary) matrices if
β = 1 (resp. β = 2).
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Invariant β-ensembles

We consider the matrix-valued process defined as follows. Let γ be a positive real
number and Mβ

0 ∈ H
β
d with distinct eigenvalues λ1 < λ2 < · · · < λd. For each n ∈ N,

we let (εnk )k∈N be a sequence of i.i.d {0, 1}-valued Bernoulli variables with mean p in the
sense that

P[εnk = 1] = p = 1− P[εnk = 0] .

Furthermore, for t > 0, we set εnt := εn[nt].

In the following, the process (Hβ(t))t > 0 will denote a symmetric Brownian motion,
i.e. a process with values in the set of d×d symmetric matrices (respectively Hermitian if
β = 2) with entries Hβ

ij(t), t > 0, i 6 j constructed via independent real valued Brownian

motions (Bij , B̃ij , 1 6 i 6 j 6 d) by

Hβ
ij(t) =

{
Bij(t) + i(β − 1)B̃ij(t) if i < j√

2Bii(t) otherwise
(2.1)

Definition 2.1. For each n ∈ N, we define a diffusive matrix process (Mβ
n (t))t > 0 such

that Mβ
n (0) := Mβ

0 and for t > 0

dMβ
n (t) = −γMβ

n (t)dt+ εnt dH
β
t + (1− εnt )dYt (2.2)

where (Hβ
t )t > 0 is a d× d symmetric (resp. Hermitian) as defined in (2.1) whereas

dYt =
√

2

d∑
i=1

χni

(
[nt]

n

)
dBit

with i.i.d Brownian motions (Bit)t > 0 and where χni ([nt]/n) is the spectral projector as-
sociated to the i-th eigenvalue λi([nt]/n) of the matrix Mβ

n ([nt]/n) if the eigenvalues are
numbered as λ1([nt]/n) < λ2([nt]/n) < · · · < λd([nt]/n) (we shall see that the above is
possible as the eigenvalues are almost surely distinct at the given times {k/n, k ∈ N}).

As for all t, the matrix Mβ
n (t) is in the space Hβd , we know that it can be decomposed

as
Mβ
n (t) = Oβn(t)∆β

n(t)Oβn(t)∗

where ∆β
n(t) is the diagonal matrix whose diagonal is the vector of the ordered eigen-

values of Mβ
n (t) and where Oβn(t) is in the space Oβd for all t ∈ R+. We also introduce

a matrix Oβ(0) to be the initial orthogonal matrix (resp. unitary if β = 2) such that
Mβ

0 (t) = Oβ(0)∆0O
β(0)

∗
where ∆0 := diag(λ1, . . . , λd).

The evolution of the eigenvalues of Mβ
n (t) during the time interval [k/n; (k + 1)/n]

is given by independent Brownian motions if εnk = 0 and by Dyson Brownian motion if
εnk = 1.

The eigenvectors of Mβ
n (t) do not evolve on intervals [k/n; (k+ 1)/n] such that εnk = 0

and evolve with the classical diffusion of the eigenvectors of Dyson Brownian motion if
εnk = 1 (see [3] for a review on Dyson Brownian motion).

Our main theorems describe the asymptotic properties of the ordered eigenvalues
of the matrix Mβ

n (t) denoted in the following as

(λn1 (t) 6 λn2 (t) 6 · · · 6 λnd (t)) (2.3)

and also those of the matrix Oβn(t) defined above, as n goes to infinity.
Let (bit)t > 0, i ∈ {1, . . . , d} be a family of independent Brownian motions on R. Re-

call that Cépa and Lépingle showed in [5] the uniqueness and existence of the strong
solution to the stochastic differential system

dλi(t) = −γλi(t)dt+
√

2dbit + βp
∑
j 6=i

1

λi(t)− λj(t)
dt (2.4)
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Invariant β-ensembles

starting from λ(0) = (λ1 6 λ2 6 · · · 6 λd) and such that for all t > 0

λ1(t) ≤ λ2(t) ≤ · · · ≤ λd(t) a.s. (2.5)

For the scaling limit of the ordered eigenvalues, we shall prove that

Theorem 2.2. Let Mβ
0 be a symmetric (resp. Hermitian) matrix if β = 1 (resp. β = 2)

with distinct eigenvalues λ1 < λ2 < · · · < λd and (Mβ
n (t))t≥0 be the matrix process

defined in Definition 2.1. Let λn1 (t) 6 . . . 6 λnd (t) be the ordered eigenvalues of the
matrix Mβ

n (t). Let also (λ1(t), . . . , λd(t))t > 0 be the unique strong solution of (2.4) with
initial conditions in t = 0 given by (λ1, λ2, . . . , λd).

Then, for any T < ∞, the process (λn1 (t), . . . , λnd (t))t∈[0,T ] converges in law as n

goes to infinity towards the process (λ1(t), . . . , λd(t))t∈[0,T ] in the space of continuous
functions C([0, T ],Rd) embedded with the uniform topology.

In the case where βp > 1, the eigenvalues almost never collide and we will see (in
section 6.1) in this case that it is easy to construct a coupling of λ and λn so that λn

almost surely converges towards λ.
We shall also describe the scaling limit of the matrix Oβn(t) (the columns of Oβn(t)

are the eigenvectors of Mβ
n (t)) when n tends to infinity, at least until the first colli-

sion time for the eigenvalues, i.e. until the time T1 defined as T1 := inf{t > 0 : ∃i ∈
{2, . . . , d}, λi(t) = λi−1(t)}.

Let wβij(t), 1 6 i < j 6 d be a family of real or complex (whether β = 1 or 2)

standard Brownian motions (i.e. wβij(t) = B1
ij(t) +

√
−1 (β − 1)B2

ij(t) where the B1
ij , B

2
ij

are standard Brownian motions on R), independent of the family of Brownian motions
(bit)t > 0, i ∈ {1, . . . , d}. For i < j, set in addition wβji(t) := w̄βij(t) and define the skew

Hermitian matrix (i.e. such that Rβ = −(Rβ)∗) by setting for i 6= j,

dRβij(t) =
dwβij(t)

λi(t)− λj(t)
, Rβij(0) = 0 .

Then, with λi(t), 0 6 t 6 T1, i ∈ {1, . . . , d} being the solution of (2.4) until its first
collision time, there exists a unique strong solution (Oβ(t))0 6 t 6 T1 to the stochastic
differential equation

dOβ(t) =
√
pOβ(t)dRβ(t)− p

2
Oβ(t)d〈(Rβ)∗, Rβ〉t (2.6)

This solution exists and is unique since it is a linear equation in Oβ and Rβ is a well
defined martingale at least until time T1. It can be shown as in [3, Lemma 4.3.4] that
Oβ(t) is indeed an orthogonal (resp. unitary if β = 2) matrix for all t ∈ [0;T1].

We mention at this point that the matrix Oβn(t) is not uniquely defined, even when we
impose the diagonal matrix to have a non-decreasing diagonal λn1 (t) 6 . . . 6 λn(t). In-
deed, the matrix Oβn(t) can be replaced, for example, by −Oβn(t) (other possible matrices
exist). The following proposition overcomes this difficulty.

Define Tn(1) to be the first collision time of the process (λn1 (t), . . . , λnd (t)).

Proposition 2.3. There exists a continuous process (Oβn(t))0 6 t 6 T1 inOβd with a uniquely
defined law and such that for each t ∈ [0;Tn(1)], we have

Oβn(t)∆β
n(t)Oβn(t)∗

law
= Mβ

n (t) ,

where ∆β
n(t) is the diagonal matrix of the ordered (as in (2.3)) eigenvalues of Mβ

n (t).

Proposition 2.3 is proved in Section 7. We are now ready to state our main result for
the convergence in law of the matrix Oβn(t).
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Invariant β-ensembles

Theorem 2.4. Let η and T be positive real numbers. Then, conditionally on the σ-
algebra generated by (λn1 (s), . . . , λnd (s)), 0 6 s 6 T1∧T , the matrix process (Oβn(t))0 6 t 6 (T1−η)∧T
introduced in Proposition 2.3 converges in law in the space of continuous functions
C([0;T ],Oβd ) towards the unique solution of the stochastic differential equation (2.6).

Theorem 2.4 gives a convergence result as n goes to infinity for the eigenvectors of
the matrix process (Mβ

n (t)) but only until the first collision time T1. If pβ > 1, the result
is complete as one can show (see [3] and section 6.1) that the process (λ1(t), . . . , λd(t))

is a non colliding process (i.e. almost surely T1 = ∞). However, if pβ < 1, it would
be interesting to have a convergence on all compact sets [0;T ] even after collisions
occurred. Our next results describe the behavior of the columns of the matrix Oβ(t)

denoted as (φ1(t), . . . , φd(t)) when t→ T1 with t < T1.
We first need to describe the behavior of the eigenvalues (λ1(t), . . . , λd(t)) in the left

vicinity of T1.

Proposition 2.5. If pβ < 1 then almost surely T1 < ∞ and there exists a unique index
i∗ ∈ {2, . . . , d} such that λi∗(T1) = λi∗−1(T1). While we have, for all t > 0 and almost
surely, ∫ t

0

ds

(λi∗ − λi∗−1)(s)
< +∞ ,

the following divergence occurs almost surely∫ T1

0

ds

(λi∗ − λi∗−1)2(s)
= +∞ . (2.7)

The first part of Proposition 2.5 is proved in subsections 3.1 and 3.2, the last state-
ment is proved in 7. Equality (2.7) implies the existence of diverging integrals in the
SDE (2.6). Because of this singularity, we will show

Proposition 2.6. Conditionally on (λ1(t), . . . , λd(t)), 0 6 t 6 T1, we have:

1. For all j 6= i∗, i∗−1, the eigenvector φj(t) for the eigenvalue λj(t) converges almost

surely to a vector denoted φ̃j as t grows to T1. The family {φ̃j , j 6= i∗, i∗ − 1} is an
orthonormal family of Rd (respectively Cd) if β = 1 (resp. β = 2). We denote by V
the corresponding generated subspace and by W its two dimensional orthogonal
complementary in Rd (resp. Cd).

2. The family {φi∗(t), φi∗−1(t)} converges weakly to the uniform law on the orthonor-
mal basis of W as t grows to T1.

The paper is organized as follows. In Section 3, we review and establish some new
properties for the limiting eigenvalues process (λ1(t), . . . , λd(t)) defined in 2.4 that will
be useful later in our proof of Theorems 2.2 and 2.4. We also introduce, in subsection
3.4, a process with fewer collisions that approximates the limiting eigenvalue process.
In fact this gives a new construction of the limiting eigenvalues process already con-
structed in [5], perhaps simpler and more intuitive using only standard Itô’s calculus.
We give some useful estimates on the processes of eigenvalues and matrix entries of
Mβ
n in Section 4. In Section 5, we prove the almost sure convergence of the process

(λn1 , . . . , λ
n
d ) to the limiting eigenvalues process (λ1, . . . , λd) until the first hitting time of

two particles with a coupling argument. In Section 6, we finish the proof of Theorem
2.2 by approximating in the same way the process (λn1 , . . . , λ

n
d ) with the same idea of

separating the particles which collide by a distance δ > 0. At this point, it suffices to
apply the result of Section 5 to show that the two approximating processes are close in
the large n limit. In Section 7, we prove Theorem 2.4, the last statement of Proposition
2.5 and Propositions 2.3 and 2.6.
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Invariant β-ensembles

3 Properties of the limiting eigenvalues process

In this section we shall study the unique strong solution of (2.4) introduced by Cépa
and Lépingle in [5]. We first derive some boundedness and smoothness properties. In
view of proving the convergence of λn towards this process, and in particular to deal
with possible collisions, we construct it for pβ < 1 as the limit of a process which is
defined similarly except when two particles hit, when we separate them by a (small)
positive distance, see Definition 3.6.

3.1 Regularity properties of the limiting process

Lemma 3.1. Let λ = (λ1 6 λ2 6 · · · 6 λd). Then there exists a unique strong solution
of (2.4). Moreover, it satisfies

• For all T <∞, there exists α,M0 > 0 finite so that for M >M0

P

[
max

1≤i≤d
sup

0 6 t 6 T
|λi(t)| >M

]
6 e−α(M−M0)2 . (3.1)

• For all T <∞, all i, j ∈ {1, . . . , d}, i 6= j,

E

[∫ T

0

ds

|λi(s)− λj(s)|

]
<∞ .

Furthermore, there exists α,M0 > 0 finite so that for M >M0 and i 6= j, we have

P

[∫ T

0

ds

|λi(s)− λj(s)|
>M

]
6 e−α(M−M0)2 .

Proof. The existence and unicity of the strong solution is [5, Proposition 3.2].
For the first point, we choose a twice continuously differentiable symmetric function

φ, increasing on R+, which approximates smoothly |x| in the neighborhood of the origin
so that φ(0) = 0, xφ′(x) ≥ 0, |φ′(x)| ≤ c and |φ′′(x)| ≤ c, whereas |φ(x)| ≥ |x| × |x| ∧ 1

(take e.g φ(x) = x2(1 + x2)−1/2) to obtain by Itô’s Lemma

d(φ(λi(t))) = −γλi(t)φ′(λi(t))dt+
√

2φ′(λi(t))db
i
t

+ pβ
∑
j 6=i

φ′(λi(t))
dt

λi(t)− λj(t)
+ φ′′(λi(t))dt.

For all t, we have λi(t)φ′(λi(t)) > 0, and also

d∑
i=1

∑
j 6=i

φ′(λi(t))

λi(t)− λj(t)
=

1

2

d∑
i=1

∑
j 6=i

φ′(λi(t))− φ′(λj(t))
λi(t)− λj(t)

6
d(d− 1)

2
|| φ′′ ||∞ .

We deduce from the above arguments that there exists C > 0 such that

d∑
i=1

φ(λi(t)) 6
√

2

d∑
i=1

∫ t

0

φ′(λi(s))db
i
s + Ct+

d∑
i=1

φ(λi) .

By usual martingales inequality, as φ′ is uniformly bounded we know that, see e.g. [3,
Corollary H.13],

P

[
sup

0≤t≤T
|

d∑
i=1

∫ t

0

φ′(λi(t))dbi(t) |≥M

]
6 exp(−M

2

2cT
)
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and therefore using the fact that |φ(x)| ≥ |x| × |x| ∧ 1, we deduce the first point with
M0 = |

∑d
i=1 φ(λi)|+ CT and α = 1/2CT .

For the second point, we first remark as in the proof of [5, Lemma 3.5] that for all
i < d

pβ

∫ T

0

dt

| λd(t)− λi(t) |
6 pβ

∑
j<d

∫ T

0

dt

| λd(t)− λj(t) |

= pβ
∑
j<d

∫ T

0

dt

λd(t)− λj(t)

= λd(T )− λd(0)−
√

2bdT + γ

∫ T

0

λd(t)dt .

so that the first point gives the claim fo j = d. We then continue recursively.

3.2 Estimates on collisions

To obtain regularity estimates on the process λ, we need to control the probability
that more than two particles are close together. We shall prove, building on an idea
from Cépa and Lépingle [6], that

Lemma 3.2. For r ≥ 3 and I ⊂ {1, . . . , d} with |I| = r, set

SIt =
∑
i,j∈I

(λi(t)− λj(t))2 .

We let, for ε > 0,
τ rε := inf{t ≥ 0 : min

|I|=r
SIt ≤ ε}

Then, for any T > 0 and η > 0, for any r ≥ 3 there exists εr > 0 which only depends
on {SI0 , |I| ≥ 3} so that

P
(
τ rεr ≤ T

)
≤ η .

Proof. The proof is done by induction over r and we start with the case r = d,
I = {1, . . . , d}. Then, S verifies the following SDE (see e.g. [6, Theorem 1]):

dSt = −2γStdt+ 4
√
d
√
Stdβt + adt

where βt is a a standard brownian motion and a = 2d(d − 1)(2 + pβd). The square root
of ρt :=

√
St verifies the SDE

dρt = −γρtdt+ 2
√
d dβt + (

a

2
− 2d)

dt

ρt
.

In particular, one can check that, if α = 2− a
4d = 2− (d− 1)(1 + pβd/2)

dραt = −αγραt dt+ 2
√
dαρα−1

t dβt.

Thus, as α < 0 for d ≥ 3, for any ε > 0, ρα−1
t∧τdε

is bounded so that
∫ .

0
ρα−1
s∧τdε

dβs is a
martingale and therefore

E[ραT∧τdε ] ≤ ρα0 − αγ
∫ T

0

E[ραt∧τdε ]dt

By Gronwall’s lemma, since suptE[ραt∧τdε
] is finite, we deduce that

E[ραT∧τdε ] ≤ ρα0 (1− 1

αγ
)e−αγT +

ρα0
αγ

.
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As a consequence, since α < 0, we have

εα/2P(τdε ≤ T ) 6 E[S
α/2

T∧τdε
] = E[ραT∧τdε ] 6 ρα0 (1− 1

αγ
)e−αγT +

ρα0
αγ

.

We can take ε small enough to obtain the claim for r = d.
We next assume that we have proved the claim for u > r + 1 and choose εr+1 so

that the probability that the hitting time is smaller than T is smaller than η/2. We
can choose I to be connected without loss of generality as the λi are ordered. We let
R = min{τ Iε , τ r+1

εr+1
} when τ Iε is the first time where SI reaches ε. Again following [6], we

have

logSIT∧R = logSI0 − 2γT + 4
√

2
∑
k,j∈I

∫ T∧R

0

λj(t)− λk(t)

SIt
dbjt

+2βp
∑
j,k∈I

∑
l/∈I

∫ T∧R

0

λj(t)− λk(t)

SIt
[

1

λj(t)− λl(t)
− 1

λk(t)− λl(t)
]dt

+4r[(r − 1)(
pβ

2
r + 1)− 2]

∫ T∧R

0

dt

SIt
(3.2)

Note thatMt = 4
√

2
∑
k,j∈I

∫ t∧R
0

λj(s)−λk(s)
SIs

dbjs is a martingale with bracketAt = 16r
∫ t∧R

0
ds
SIs

.

For r ≥ 3, 4r[(r − 1)(rpβ/2 + 1)− 2] ≥ 2pβ > 0 and therefore we deduce

E[logSIT∧R] > logSI0 − 2γT + 2βpE

[∫ T∧R

0

dt

SIt

]

+ E

2βp
∑
j,k∈I

∑
l/∈I

∫ T∧R

0

λj(t)− λk(t)

SIt
[

1

λj(t)− λl(t)
− 1

λk(t)− λl(t)
]dt



For j, k ∈ I, we cut the last integral over times

Ωj,k = {t ≤ T ∧R :
∑
l/∈I

1

λj(t)− λl(t)
1

λk(t)− λl(t)
≤ 1

SIt
}

so that

−
∑
j,k∈I

∫
Ωj,k

(λj(t)− λk(t))2

SIt

∑
l/∈I

[
1

(λj(t)− λl(t))(λk(t)− λl(t))
]dt ≥ −

∫ T∧R

0

dt

SIt

This term will therefore be compensated by the third term in (3.2). For the remaining
term, if l /∈ I is such that mini∈I |λl − λi| ≤ mini∈I |λk − λi| for all k /∈ I then if t ∈ Ωcj,k
and i∗ ∈ I is so that mini∈I |λl − λi| = |λl − λi∗ |, we get

d− r
(λl(t)− λi∗(t))2

≥ 1

SIt

and therefore on τ r+1
εr+1
≥ t,

εr+1 ≤ SIt +
∑
j∈I

(λj(t)− λl(t))2 ≤ SIt + 2r(λi∗(t)− λl(t))2 + 2SIt ≤ (3 + 2r(d− r))SIt .
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As a consequence, we have the bound for all j, k ∈ I, all t ∈ Ωcj,k, t ≤ R,

λj(t)− λk(t)

SIt
> − 1/

√
SIt > −

√
3 + 2r(d− r)/√εr+1

which entails the existence of a finite constant c so that∑
j,k∈I

∑
l/∈I

∫
Ωcj,k

λj(t)− λk(t)

SIt
[

1

λj(t)− λl(t)
− 1

λk(t)− λl(t)
]dt

> − c
√
εr+1

∑
i∈I

∑
l/∈I

∫ T

0

dt

| λi(t)− λl(t) |
.

Using Lemma 3.1 we hence conclude that there exists a universal finite constant c′

depending only on T so that

E[logSIT∧R] > logSI0 − 2γT − c′
√
εr+1

.

On the other hand, we have

E[logSIT∧R] 6 P(τ Iε ≤ T ) log(ε) + E[ sup
0≤t≤T

logSIt ]

where the last term is bounded above by (3.1). We deduce that

P(τ Iε ≤ T ) ≤ | logSI0 |
| log(ε)|

+
c′′

√
εr+1| log(ε)|

+
c

| log(ε) |
+

2γT

| log(ε) |
.

We finally choose ε small enough so that the right hand side is smaller than η/2 to
conclude.

We next show that not only collisions of three particles are rare but also two colli-
sions of different particles rarely happen around the same time.

Lemma 3.3. For all i, j such that i+ 1 < j, set

τ ijε′ = inf{t > 0 : (λi(t)− λi−1(t))2 + (λj(t)− λj−1(t))2 6 ε′}.

Then, for any T > 0 and η > 0, there exists ε′ such that

P
[
τ ijε′ 6 T

]
6 η.

Proof. Using Itô’s formula, it is easy to see that

d
(
(λi − λi−1)2 + (λj − λj−1)2

)
= 8(1 + pβ)dt

− 2γ
[
(λi − λi−1)2 + (λj − λj−1)2

]
dt

+ 2
√

2
[
(λi − λi−1)(dbit − dbi−1

t ) + (λj − λj−1)(dbjt − db
j−1
t )

]
− 2pβ

 ∑
k 6=i−1,i

(λi − λi−1)2

(λi − λk)(λi−1 − λk)
+

∑
k 6=j−1,j

(λj − λj−1)2

(λj − λk)(λj−1 − λk)

 dt .
Set Xt := (λi(t)− λi−1(t))2 + (λj(t)− λj−1(t))2 and note that the quadratic variation of∫ t

0

(λi − λi−1)(dbis − dbi−1
s ) + (λj − λj−1)(dbjs − dbj−1

s )√
Xs
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is 2t. Thus there exists a standard Brownian motion B so that

dXt = 8(1 + pβ)dt− 2γXtdt+ 4
√
XtdBt

− 2pβ

 ∑
k 6=i−1,i

(λi − λi−1)2

(λi − λk)(λi−1 − λk)
+

∑
k 6=j−1,j

(λj − λj−1)2

(λj − λk)(λj−1 − λk)

 dt .
Note that, by the previous Lemma 3.2, we can choose ε such that

P[τ3
ε < T ] 6

η

2
. (3.3)

Moreover, for all t 6 τ3
ε such that Xt 6 ε/4, we have for all k 6= i− 1, i,

(λi − λk)(λi−1 − λk)(t) >
ε

8
.

The same property holds for j. To finish the proof, we will use the fact that the sum in
the last term is bounded for all t 6 τ3

ε such that Xt 6 ε/4. We thus need to introduce
the process Yt defined by Yt = min(Xt,

ε
4 ). Let us set f(x) := min(x, ε/4)−pβ . Note that

f is a convex function R+ → R+ and that the left-hand derivative of f is given by

f ′−(x) = −pβx−pβ−11{x 6 ε
4}.

Its second derivative in the sense of distributions is the positive measure

f ′′(dx) = pβ
(ε

4

)−pβ−1

δ ε
4

+
pβ(pβ + 1)

xpβ+2
1{x 6 ε

4} dx .

Thus, by Itô-Tanaka formula, see e.g. [9, Theorem 6.22], we have

Y −pβt = Y −pβ0 − pβ
∫ t

0

X−pβ−1
s 1{Xs 6 ε

4}dXs

+
1

2

(
pβ
(ε

4

)−pβ−1

L
ε
4
t (X) +

∫ ε
4

0

pβ(pβ + 1)

xpβ+2
Lxt (X)dx

)
,

where Lxt (X) is the local time of X in x. By definition we have∫ ε
4

0

pβ(pβ + 1)

xpβ+2
Lxt (X)dx =

∫ t

0

pβ(pβ + 1)

Xpβ+2
s

1{Xs 6 ε
4}d〈X,X〉s,

and thus, we obtain

Y −pβt = Y −pβ0 +

∫ t

0

1{Xs 6 ε
4}

(
pβγY −pβs dt+ 4Y

−pβ− 1
2

s dBs

)
(3.4)

+ 2p2β2

∫ t

0

Y −pβ−1
s

[ ∑
k 6=i−1,i

((λi − λi−1)(s))2

((λi − λk)(s))((λi−1 − λk)(s))

+
∑

k 6=j−1,j

((λj − λj−1)(s))2

((λj − λk)(s))((λj−1 − λk)(s))

]
1Xs≤ε/4ds+

1

2
pβ
(ε

4

)−pβ−1

L
ε
4
t (X) .

The definition of local time implies that, almost surely, Lxt (X) 6 t. We thus deduce from
(3.4) that

E

[
Y −pβ
T∧τ ij

ε′ ∧τ
3
ε

]
6 Y −pβ0 +

1

2
pβ
(ε

4

)−pβ−1

T + C

∫ T

0

E

[
Y −pβ
t∧τ ij

ε′

]
dt .
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with C = (pβγ + 4p2β2(d− 1) 8
ε ). Gronwall’s Lemma implies that

E

[
Y −pβ
T∧τ ij

ε′ ∧τ
3
ε

]
6

(
Y −pβ0 +

1

2
pβ
(ε

4

)−pβ−1

T

)
exp(CT ). (3.5)

If ε′ < ε/4, equation (3.5) implies that

(ε′)−pβP
[
τ ijε′ 6 T ∧ τ3

ε

]
6 Y −pβ0 exp(CT ), (3.6)

Taking ε′ small enough gives the result with (3.3).
As a direct consequence, we deduce the uniqueness of the i∗ of Proposition 2.5.

Lemma 3.4. With the same notations as in the previous Lemma 3.3, we have almost
surely

inf
(k,`):k+1<`

τk`0 = +∞.

In particular, this gives the unicity of the i∗ in Proposition 2.5.

Proof. It is enough to write that for all ε > 0

P

(
inf

k+1<`
τk`0 ≤ T

)
≤ d2{ max

k+1<`
P
(
τk`0 ≤ T ∧ τ3

ε

)
+ P

(
τ3
ε ≤ T

)
}

and deduce from Lemmas 3.3 and 3.2 that the right hand side is as small as wished
when ε goes to zero.

3.3 Smoothness properties of the limiting process

Lemma 3.5. We have the following smoothness properties:

• For all T <∞ and ε > 0, there exists C, c′, c finite positive constants so that for all
δ, η positive real numbers so that η ≤ c′(ε2 ∧ δε) we have

P

max
1≤i≤d

sup
s≤t≤(s+η)∧τ3ε

0 6 t 6 T

|λi(s)− λi(t)| ≥ δ

 ≤ C

η

(
e−cδ

4/2η + e−cε
4/η
)
.

• For all T <∞ and ε > 0, there exists C, c′, c finite positive constants so that for all
δ, η positive real numbers so that η ≤ c′(ε2 ∧ δε) we have

P

max
i 6=j

sup
s≤t≤(s+η)∧τ3ε

0 6 t 6 T

∫ t

s

du

|λi(u)− λj(u)|
≥ δ

 ≤ C

η

(
e−cδ

4/2η + e−cε
4/η
)
.

Proof. Let us first fix s ∈ [0, T ] and set I = {i ∈ {2, . . . , d} : |λi(s) − λi−1(s)| 6 ε/3}
and note that on the event {s 6 τ3

ε }, the connected subsets of I contain at most one
element. Let Tε = inf{t ≥ s : infi/∈I |λi(t) − λi−1(t)| 6 ε/4}. The continuity of the λi
implies that Tε is almost surely strictly positive.

If i 6∈ I ∪ {I − 1}, then we have, for t ∈ [s; (s+ η) ∧ τ3
ε ∧ Tε]

|λi(t)− λi(s)| 6 γ

∫ t

s

|λi(u)|du+
√

2|bit − bis|+ pβ

∫ t

s

∑
j 6=i

du

|λi(u)− λj(u)|

6 γ

∫ t

s

|λi(u)|du+
√

2|bit − bis|+ 4pβ(d− 1)
t− s
ε

.
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Using (3.1) and [3, Corollary H.13], it is easy to deduce that there exists a constant
c > 0 such that for η < εδ/(8pβ(d− 1))

P

[
max

i6∈I∪{I−1}
sup

t∈[s;(s+η)∧τ3
ε∧Tε]

|λi(t)− λi(s)| > δ

]
6 cde−

δ2

2η . (3.7)

Now, if i ∈ I, with the same argument as for (3.7) (the drift term in the SDE satisfied by
λi + λi−1 is also bounded), we can show that there exists a constant c > 0 such that

P

[
sup

t∈[s;(s+η)∧τ3
ε∧Tε]

|(λi + λi−1)(t)− (λi + λi−1)(s)| > δ

]
6 ce−c

δ2

2η . (3.8)

On the other hand, the process xi(t) := (λi − λi−1)(t) verifies

dx2
i (t) = 4(1 + pβ)dt− γx2

i (t)dt+ 2xi(t)(db
i
t − dbi−1

t )

− 2pβ
∑

k 6=j−1,j

(λi(t)− λi−1(t))2

(λi(t)− λk(t))(λi−1(t)− λk(t))
dt .

The denominator in the last term of the above r.h.s is bounded below on the interval
t ∈ [s; (s+ η) ∧ τ3

ε ∧ Tε] by 2pβ(d− 2) 1
ε . Thus, using again (3.1) and [3, Corollary H.13],

we can show that for δ > cη/ε,

P

[
sup

t∈[s;(s+η)∧τ3
ε∧Tε]

|xi(t)− xi(s)| >
√
δ

]
≤ P

[
sup

t∈[s;(s+η)∧τ3
ε∧Tε]

|x2
i (t)− x2

i (s)| > δ

]
6 ce−c

δ2

2η

(3.9)
where the first inequality is due to the fact that xi is non-negative. Using (3.8) and (3.9)
gives for η < δε/c

P

[
max

i∈I∪{I−1}
sup

t∈[s;(s+η)∧τ3
ε∧Tε]

|λi(t)− λi(s)| > δ

]
6 2cde−c

δ4

2η .

Thus, with (3.7), we deduce that for η < δε/c

P

[
max
i

sup
t∈[s;(s+η)∧τ3

ε∧Tε]
|λi(t)− λi(s)| > δ

]
6 2cde−c

δ4

2η .

In particular, there exists c′ > 0 so that if ε2 > cη,

P
[
Tε < (s+ η) ∧ τ3

ε

]
≤ P

[
max
i

sup
s≤t≤(s+η)∧Tε∧τ3

ε

|λi(t)− λi(s)| > 5ε/12

]
≤ 4cdT

η
e−c

′ε4/2η ,

which is as small as wished provided η is chosen small enough. This allows to remove
the stopping time and get for any fixed s < T , and δ > cη/ε

P

[
max
i

sup
s≤t≤(s+η)∧τ3

ε

|λi(t)− λi(s)| > δ

]
≤ 2cde−cδ

4/2η + 2dce−c
′ε4/2η .

The uniform estimate on s is obtained as usual by taking s in a grid with mesh η/2 up to
divise δ by two and to multiply the probability by 2T/η. Thus we find constant c, c′, and
C so that if η ≤ c(ε2 ∧ δε) we have

P

max
i

sup
s≤t≤(s+η)∧τ3ε

0≤s,t≤T

|λi(t)− λi(s)| > δ

 ≤ CT

η

(
e−cδ

4/2η + e−c
′ε4/η

)
.
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The second control is a direct consequence of the first as we can first consider the cas
j = d to deduce that for i < d

|
∫ t

s

du

λd(u)− λi(u)
| ≤ |λd(t)− λd(s)|+

√
2|bd(t)− bd(s)|

where the right hand side is continuous. We then consider recursively the other indices.

3.4 Approximation by less colliding processes

When pβ > 1, it is well known [3, Lemma 4.3.3] that the process λ has almost surely
no collision. In this case, the singularity of the drift which defines the SDE is not really
important as it is almost always avoided. In the case pβ < 1, we know that collisions
occur and in fact can occur as much as for a Bessel process with small parameter.
The singularity of the drift becomes important, in particular when we will show the
convergence in law of the process of the eigenvalues λn towards λ. To this end, we
show that λ can be approximated by a process which does not spend too much time in
collisions.

For δ > 0, we define a new process (λδi (t))t > 0 as follows.

Definition 3.6. Let T1 := inf{t > 0 : ∃i 6= j, λi(t) = λj(t)} and for all t < T1, set λδi (t) :=

λi(t). For t > T1, we define the process recursively by setting for all ` > 2, λδi (T
δ
` ) :=

λδi (T
δ
` −) + iδ and for t > T δ` , the process λδi (t) is defined up to time T δ`+1 := inf{t > T δ` :

∃i 6= j, λδi (t) = λδj(t)} as the unique strong solution of the system

dλδi (t) = −γλδi (t)dt+
√

2dbit + pβ
∑
j 6=i

dt

λδi (t)− λδj(t)
. (3.10)

The main result of this section is that

Theorem 3.7. Construct the process λ with the same Brownian motion b. Then, for
any time T > 0, any ξ ∈ (0, pβ/4)

lim
δ↓0
P

(
sup

0≤t≤T
max

1≤i≤d
|λi(t)− λδi (t)| ≤ δξ

)
= 1 .

The theorem is a direct consequence of the following lemma and proposition.

Lemma 3.8. Let δ > 0. Construct the process λ with the same Brownian motion b than
λδ. There exists a constant c > 0 such that, almost surely, for all ` ∈ N

max
1 6 i 6 d

sup
0 6 t 6 T δ`

|λδi (t)− λi(t)| 6 cδ` .

To finish the proof it is enough to show that T δ` goes to infinity for ` � 1/δ. This is
the content of the next proposition.

Proposition 3.9. Let T < ∞, 0 < ξ < pβ/4 and L = [1/δ1−ξ]. Then the probability
P
[
T δL 6 T

]
vanishes when δ goes to zero.

Proof of Lemma 3.8. We proceed by induction over ` to show that, for each `,

sup
0 6 t 6 T δ`

(
d∑
i=1

(λδi − λi)2(t)

)1/2

6 cδ`
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with c = (
∑d
i=1 i

2 = d(d+ 1)(2d+ 1)/6)
1
2 .

• We treat the case ` = 1. By definition of the processes, λδ = λ on [0, T δ1 ). At time
t = T δ1 , the separation procedure implies that

d∑
i=1

(λδi − λi)2(T δ1 ) =

d∑
i=1

((λδi − λi)(T δ1−) + iδ)2 = c2δ2 .

The property is true for ` = 1.
• Suppose it is true for `. For t ∈ [T δ` , T

δ
`+1), since λδ and λ are driven by the same

Brownian motion, we get

d

d∑
i=1

(λδi (t)− λi(t))2 = −2γ

d∑
i=1

(λδi (t)− λi(t))2dt

+ 2pβ

d∑
i=1

∑
j 6=i

(λδi (t)− λi(t))

(
1

λδi (t)− λδj(t)
− 1

λi(t)− λj(t)

)
dt .

Observe that

d∑
i=1

∑
j 6=i

(λδi (t)− λi(t))

(
1

λδi (t)− λδj(t)
− 1

λi(t)− λj(t)

)
(3.11)

=
1

2

d∑
i=1

∑
j 6=i

(λδi (t)− λδj(t)− (λi(t)− λj(t)))

(
1

λδi (t)− λδj(t)
− 1

λi(t)− λj(t)

)

=
1

2

d∑
i=1

∑
j 6=i

(
λδi (t)− λδj(t)− (λi(t)− λj(t))

)2 1

(λδi (t)− λδj(t))(λi(t)− λj(t))

6 0

as the (λi)1≤i≤d and the (λδi )1≤i≤d are ordered. Thus,

sup
t∈[T δ` ,T

δ
`+1)

d∑
i=1

(λδi (t)− λi(t))2 6
d∑
i=1

(λδi (T
δ
` )− λi(T δ` ))2. (3.12)

In addition, because of the separation procedure at time T δ`+1, we have(
d∑
i=1

(λδi − λi)2(T δ`+1)

)1/2

=

(
d∑
i=1

(
(λδi − λi)(T δ`+1−) + iδ

)2)1/2

6

(
d∑
i=1

(λδi − λi)2(T δ`+1−)

)1/2

+ δc 6 δ(`+ 1)c ,

where we used the induction hypothesis in the last line. The proof is thus complete.

Proof of Proposition 3.9. In the case pβ ≥ 1, it is well known [3, p. 252] that
T1 is almost surely infinite and therefore the proposition is trivial. We hence restrict
ourselves to pβ ≤ 1. Let η > 0. Let us define the stopping times

τ3,δ
ε := inf{t > 0 : min

|I|=3
SI,δt 6 ε} ,

τ2,δ
ε := inf{t > 0 : min

1 6 i,j 6 d
((λδi − λδi−1)2 + (λδj − λδj−1)2)(t) 6 ε},
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where SI,δt :=
∑
i,j∈I(λ

δ
i − λδj)2(t). Set also τ δε := τ2,δ

ε ∧ τ3,δ
ε . We know from Lemmas 3.2

and 3.3 that we can choose ε small enough so that

P
[
τ3
2ε ∧ τ2

2ε 6 T
]
6 η.

The number ε being fixed, it is then straightforward to see from Lemma 3.8 that there
exists δ0 small enough so that for all δ 6 δ0, we have

P
[
τ δε 6 T

]
6 η.

Now, we have

P
[
T δL 6 T

]
6 η + P

[
δξ

L∑
`=1

1{T δ`+1−T
δ
` > δξ} 6 T ; τ δε > T δL

]
.

We need to show that the second term goes to 0 when δ → 0. Let {Ft}t≥0 be the filtration
of the driving Brownian motion. We will prove in Lemma 3.12, there exists a constant
c > 0 such that, on the event {τ δε > T δL}, almost surely

L∑
`=1

P
[
T δ`+1 − T δ` > δξ | FT δ`

]
> c δ−pβ+ξ .

In the following, we suppose that δ is small enough so that c δ−pβ+ξ > δ−pβ+2ξ and
δ−ξ T − δ−pβ+ξ 6 − δ−pβ+2ξ. For such δ, we have

P

[
L∑
`=1

1{T δ`+1−T
δ
` > δξ} 6 δ−ξ T ; τ δε > T δL

]

6 P

[
L∑
`=1

1{T δ`+1−T
δ
` > δξ} − P

[
T δ`+1 − T δ` > δξ | FT δ`

]
6 − δ−pβ+2ξ; τ δε > T δL

]

6 P

[∣∣∣∣∣
L∑
`=1

1{T δ`+1−T
δ
` > δξ} − P

[
T δ`+1 − T δ` > δξ | FT δ`

]∣∣∣∣∣ > δ−pβ+2ξ; τ δε > T δL

]

6 δ2pβ−4ξ
L∑
`=1

P
[
T δ`+1 − T δ` > δξ; τ δε > T δL

]
where we used the Tchebychev inequality in the last line. Using Lemma 3.10, we get
that there exists a constant C > 0 such that

P

[
L∑
`=1

1{T δ`+1−T
δ
` > δξ} 6 δ−ξ T ; τ δε > T δL

]
6 C δ2pβ−4ξ Lδ(1−pβ)(1−2−1ξ) 6 C δpβ−4ξ

which goes to 0 when δ goes to 0. The proposition is proved.

Lemma 3.10. Let ξ ∈ (0; 2). Then there exists a constant C > 0 such that, almost
surely, on ; τ δε > T δL

P
[
δξ 6 T δ`+1 − T δ` | FT δ`

]
6 Cδ(1−pβ)(1−2−1ξ) . (3.13)

Proof. We know that there are no multiple collisions nor simultaneous collisions
(because of Lemmas 3.2 and 3.3) and therefore we can denote by i the unique element
such that λδi (T

δ
` −) = λδi−1(T δ` −) and (λδi − λδi−1)(T δ` ) = δ. We have by Itô’s formula

d(λδi − λδi−1)(t) = −γ(λδi − λδi−1)(t)dt+
√

2(dbit − dbi−1
t ) (3.14)

+ 2pβ
dt

(λδi − λδi−1)(t)
− βp

∑
k 6=i,i−1

(λδi − λδi−1)(t)

(λδi − λδk)(t)(λδi−1 − λδk)(t)
dt .
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Let us define the Bessel like process (Xt)t > 0 by X0 = δ and for t > 0,

dXt =
√

2(dbiT δ` +t − db
i−1
T δ` +t

) + 2pβ
dt

Xt
. (3.15)

Using the comparison theorem for SDE [9, Proposition 2.18] (note that the drifts are
smooth before T δ`+1 − T δ` ), we know that for all t ∈ [0, T δ`+1 − T δ` ), we have almost surely

(λδi − λδi−1)(T δ` + t) 6 Xt. (3.16)

Let us define T δX := inf{t > 0 : Xt = 0}. It is clear that almost surely T δ`+1 − T δ` 6 T δX .

We thus have on τ δε > T δL

P
[
δξ 6 T δ`+1 − T δ` | FT δ`

]
6 P

[
T δX > δξ

]
.

We finally conclude using a classical result for Bessel process, see e.g. [11]; the density
with respect to the Lebesgue measure on R+ of the law of the random variable T δX is

pδ(t) =
1

Γ( 1−pβ
2 )

1

t

(
δ2

2t

) 1−pβ
2

e−
δ2

2t .

Hence we deduce that for ξ ≤ 2 there exists a constant c > 0 such that

P
[
T δX > δξ

]
6 c δ(1−pβ)(1−2−1ξ).

For time t ∈ [0;T ], we define the random set

It := {i ∈ {2, . . . , d} : |λδi − λδi−1|(t) 6
√
ε/3}. (3.17)

Note that, on the event Ω := {τ δε > T}, for each t 6 T , the set It contains at most one
element. For each ` ∈ {1, . . . , L}, and i ∈ {1, . . . , d}, we define the stopping times

tδ`(
√
ε/3) := inf{t > T δ` : min

j
|λδj − λδj−1|(t) >

√
ε/3} ,

t̄δ`(i,
√
ε/6) := inf{t > T δ` : min

j 6=i
|λδj − λδj−1|(t) 6

√
ε/6} .

If i denotes the unique index such that λδi (T
δ
` −) = λi−1(T δ` −), note that if T δ` 6 τ δε then

minj 6=i |λδj − λδj−1|(T δ` ) >
√
ε/3.

Lemma 3.11. If T δ` 6 τ δε and if i denotes the (unique) index such that λδi (T
δ
` −) =

λδi−1(T δ` −) , then there exists a constant c > 0 and δ0 > 0 such that for all δ 6 δ0, we
have

cδ1−pβ 6 P
[
tδ`(
√
ε/3) ∧ t̄δ`(i,

√
ε/6) 6 T δ`+1|FT δ`

]
. (3.18)

Proof. Note that i is the unique element of the set IT δ` defined by (3.17) for which

|λδi − λδi−1|(T δ` ) = δ. For α = 1− pβ and t ∈ [T δ` ;T δ`+1), we have by Itô’s formula

d(λδi − λδi−1)α(t) = −γα(λδi − λδi−1)α(t)dt (3.19)

+ α(λδi − λδi−1)α−1(t)
√

2(dbit − dbi−1
t )− βp

∑
k 6=i,i−1

(λδi − λδi−1)α(t)

(λδi − λδk)(t)(λδi−1 − λδk)(t)
dt .

For t ∈ [T δ` , τ
δ
ε ], we deduce that

EJP 18 (2013), paper 62.
Page 16/30

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v18-2073
http://ejp.ejpecp.org/


Invariant β-ensembles

d(λδi − λδi−1)α(t) ≥ α(λδi − λδi−1)α−1(t)
√

2(dbit − dbi−1
t )− c′(λδi − λδi−1)α(t)dt

where c′ = αγ + βp(d − 2)36/ε. Let T δ,κ`+1 be the first time after T δ` so that λδi − λδ−1
i

reaches κ < δ. Then, as
∫ .∧T δ,κ`+1

0 (λδi − λδi−1)α−1(t)
√

2(dbit − dbi−1
t ) is a martingale, we find

that

E
[
(λδi − λδi−1)α(tδ`(

√
ε/3) ∧ t̄δ`(i,

√
ε/6) ∧ T δ,κ`+1) | FT δ,κ`

]
> δα exp (−c′ T ) . (3.20)

Before time t̄δ`(i,
√
ε/6), (λδj − λδj−1)(t) can not cancel if j 6= i. Therefore we can choose

κ small enough so that the last inequality implies

E
[
(λδi − λδi−1)α(tδ`(

√
ε/3) ∧ t̄δ`(i,

√
ε/6)) 1{tδ` (

√
ε/3)∧t̄δ` (i,

√
ε/6) 6 T δ`+1}

| FT δ`
]
>

1

2
δα exp (−c′ T ) .

which can be rewriten using the fact that |λδi − λδi−1|(tδ`(
√
ε/3) ∧ t̄δ`(i,

√
ε/6)) 6

√
ε/3, as

follows

P
[
tδ`(
√
ε/3) ∧ t̄δ`(i,

√
ε/6) 6 T δ`+1 | FT δ`

]
> δα

(
3√
ε

)α
exp(−c′ T ) .

The lemma follows with c = ( 3√
ε
)α exp(−c′ T ).

Lemma 3.12. Let ξ, T > 0. There exists a constant c > 0 and δ0 > 0 so that if δ ≤ δ0, on
T δ` 6 τ δε ∧ T ,

P
[
δξ 6 T δ`+1 − T δ` | FT δ`

]
> cδ1−pβ . (3.21)

Proof.We assume in the sequel that δ ≤ 1. The proof is based on Lemma 3.11. It
implies

P
[
δξ 6 T δ`+1 − T δ` | FT δ`

]
> P

[
tδ`(
√
ε/3) ∧ t̄δ`(i,

√
ε/6) 6 T δ`+1; δξ 6 T δ`+1 − T δ` ≤ 1 | FT δ`

]
.

By Lemma 3.11, we deduce that

P
[
δξ 6 T δ`+1 − T δ` ≤ 1 | FT δ`

]
> cδ1−pβ − P

[
tδ`(
√
ε/3) ∧ t̄δ`(i,

√
ε/6) 6 T δ`+1 6 T + 1; δξ > T δ`+1 − T δ` | FT δ`

]
.

But

P
[
tδ`(
√
ε/3) ∧ t̄δ`(i,

√
ε/6) 6 T δ`+1 ≤ T + 1;T δ`+1 − T δ` 6 δξ | FT δ`

]
6 P

[
tδ`(
√
ε/3) 6 ∧ T + 1;T δ`+1 − tδ`(

√
ε/3) 6 δξ | FT δ`

]
+ P

[
t̄δ`(i,
√
ε/6) 6 tδ`(

√
ε/3); t̄δ`(i,

√
ε/6)− T δ` 6 δξ | FT δ`

]
.

Let us handle the first term of the previous right hand side

P
[
tδ`(
√
ε/3) 6 T δ`+1 ∧ (T + 1);T δ`+1 − tδ`(

√
ε/3) 6 δξ | Ftδ` (

√
ε/3)

]
6 P

[
max
j

sup
tδ` (
√
ε/3) 6 s 6 (tδ` (

√
ε/3)+δξ)∧tδ` (

√
ε/12)∧(T+1)

|λδj(s)− λδj(tδ`(
√
ε/3))| >

√
ε

24
| Ftδ` (

√
ε/3)

]

6 C exp(−cε
2

δξ
)
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where we used Lemma 3.5 for the last line (actually the proof since we used the estimate
for a fixed s). For the second term, the idea is similar

P
[
t̄δ`(i,
√
ε/6) 6 tδ`(

√
ε/3); t̄δ`(i,

√
ε/6)− T δ` 6 δξ | FT δ`

]
6 P

[
max
j 6=i

sup
T δ` 6 s 6 (T δ` +δξ)∧t̄δ` (i,

√
ε/6)∧(T+1)

|λδj(s)− λδj(T δ` )| >
√
ε

12
| FT δ`

]

6 C exp(−cε
2

δξ
) ,

by Lemma 3.5. As for all ξ > 0, exp(− c
δξ/4

) � δ1−pβ for small enough δ, the proof is
complete.

4 Properties of the eigenvalues of Mβ
n

In this section, we will study the regularity and boudedness properties of the eigen-
values of Mβ

n .

Definition 4.1. Let Mβ
0 be a symmetric (resp. Hermitian) matrix if β = 1 (resp. β = 2)

with distinct eigenvalues λ1 < λ2 < · · · < λd and (Mβ
n (t))t > 0 be the matrix process

defined in Definition 2.1. For all t > 0, the ordered eigenvalues of the matrix Mβ
n (t) will

be denoted by λn1 (t) 6 λn2 (t) 6 . . . 6 λnd (t).

The following proposition characterizes the evolution of the process λn(t) until its
first collision time.

Proposition 4.2. Let (λn1 (t), . . . , λnd (t)) be the process defined in Definition 4.1 and
set Tn(1) := inf{t > 0 : ∃i 6= j, λni (t) = λnj (t)}. Then, almost surely, the process
(λn1 (t), . . . , λnd (t)) verifies for every k ∈ N, the following strict inequality

λn1 (k/n) < λn2 (k/n) < · · · < λnd (k/n) . (4.1)

In addition, there exist a sequence of Bernoulli random variables (εnk )k∈N with mean p

and a sequence of independent (standard) Brownian motions (bit)t > 0, i ∈ {1, . . . , d}
also independent of the Bernoulli random variables (εnk )k∈N such that, the process
(λn1 (t), . . . , λnd (t))t > 0 is the re-ordering of the process (µn1 (t), . . . , µnd (t))t > 0 defined for
t > 0 by

dµni (t) = −γµni (t) dt+
√

2dbit + β
∑
j 6=i

εnt
µni (t)− µnj (t)

dt . (4.2)

with initial conditions in t = 0 given by (µn1 (0), . . . , µnd (0)) = (λ1, . . . , λd). In particular,
up to time Tn(1), the process λn verifies

dλni (t) = −γλni (t) dt+
√

2dbit + β
∑
j 6=i

εnt
λni (t)− λnj (t)

dt .

Remark here that we use the property that εnt = (εnt )2.
Proof. Let us show first that for each k ∈ N such that k/n < Tn(1), we have almost
surely the strict inequality (4.1). We will proceed by induction over k. Note that under
our assumptions, it is true for k = 0. Suppose it is true at rank k and let us show it is
then true at rank k + 1. From Definition 2.1, if the eigenvalues of Mβ

n (k/n) are denoted
as λn1 (k/n) < · · · < λnd (k/n), then, depending on the value of the Bernoulli random
variable εnk , the dynamic for t ∈ [k/n; (k + 1)/n] is
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• if εnk = 1, the process (λn1 (t), . . . , λnd (t)) follows the Dyson Brownian motion with
initial conditions (λn1 (k/n), . . . , λnd (k/n)) (see [3, Theorem 4.3.2]); More precisely,
we have for t ∈ [k/n; (k + 1)/n)

dλni (t) = −γλni (t) dt+
√

2dW i
t + β

∑
j 6=i

dt

λni (t)− λnj (t)
.

where the (W i
t )t > 0, i ∈ {1, . . . , d} are independent Brownian motions. In partic-

ular, this process is non-colliding in the sense that the λni (t) will almost surely
remain strictly ordered for all t ∈ [k/n; (k + 1)/n) (see [3, Theorem 4.3.2]). Thus,
we will almost surely have λn1 ((k + 1)/n) < · · · < λnd ((k + 1)/n).

• on the other hand, if εnk = 0, we need to define a new process (µn1 (t), . . . , µnd (t)) of
independent Ornstein-Uhlenbeck processes with initial conditions (λn1 (k/n), . . . , λnd (k/n));
More precisely, the evolution for t ∈ [k/n; (k + 1)/n] is given by

dµni (t) = −γµni (t)dt+
√

2dBit (4.3)

where the Brownian motions Bi are the ones of Definition 2.1. Note that, before
time Tn(1), the two processes λn and µn coincide. In this case, the µni (t) can
cross and the ordering can be broken in the interval [k/n; (k + 1)/n]. However, if
crossing for the process µn happen before time t = (k + 1)/n still we know that
eγ(k+1)/nµni ((k + 1)/n) are almost surely distinct. The re-ordering of the µni thus
always gives λn1 ((k + 1)/n) < · · · < λnd ((k + 1)/n) a.s.

The induction is complete and proves equality (4.1) for all k ∈ N. We deduce from
the above arguments that for k such that k/n < Tn(1), the evolution of λn(t) for t ∈
[k/n; (k + 1)/n ∧ Tn(1)) is

dλni (t) = −γλni (t) dt+
√

2(εnt dW
i
t + (1− εnt )dBit) + β

∑
j 6=i

εnt
λni (t)− λnj (t)

dt .

with initial conditions in t = k/n given by (λn1 (k/n), . . . , λnd (k/n)). Let us define the

process bi for t > 0 by bit :=
∫ t

0
(εns dW

i
s + (1 − εns )dBis). Using the fact that the Brownian

motions (W i
t )t > 0, i ∈ {1, . . . , d} are mutually independent and independent of the Brow-

nian motions (Bit)t > 0, i ∈ {1, . . . , d} (also mutually independent), it is straightforward
to check that the processes (bit)t > 0, i ∈ {1, . . . , d} are mutually independent Brownian
motions. It is also easy to see that, for all s, t ∈ [k/n; (k + 1)/n], the random variables
εnk (W i

t −W i
s) + (1− εnk )(Bit −Bis) and εnk are independent. Therefore, we deduce that the

brownian motions (bit)t > 0, i ∈ {1, . . . , d} are independent of the sequence (εnk )k∈N.
The following regularity properties will be useful later on.

Lemma 4.3. Let T < ∞. Then there exist constants C,A0, c, c
′, α > 0 which depend

only on T, d such that for all n ∈ N, all A > A0 and all ε > 0

P

[
max

1 6 i,j 6 d
sup

0 6 t 6 T
|Mβ

n (t)ij | > A

]
6 C exp(−αA2) , (4.4)

P

 max
1 6 i,j 6 d

sup
0 6 s,t 6 T,
|t−s| 6 δ

|Mβ
n (t)ij −Mβ

n (s)ij | > ε

 6
c

δ
exp(− ε

2

c′δ
) . (4.5)

Proof. Using Itô’s formula, we can check that

eγtMβ
n (t)− eγsMβ

n (s) =

∫ t

s

eγs

(
εns dH

β
s + (1− εns )

√
2

d∑
i=1

χni (
[ns]

n
)dBis

)
.
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Let us set ∆n(s, t) := eγtMβ
n (t) − eγsMβ

n (s). The entries of ∆n(s, .) are martingales
with respect to the filtration of the Brownian motions conditionally to the Bernoulli
random variables (εnk )k∈N (this is due to the independence between the Brownian mo-
tions (Bit)t > 0, (H

β
t (ij))t > 0, 1 6 i, j 6 d and the sequence of Bernoulli random variables

(εnk )k∈N. Using the fact that |χni ([ns]/n)ij | 6 1 for all i, j, we can check that there exists
a constant C(d, T ) which does not depend on n such that for all n ∈ N

|〈∆n(s, ·)ij ,∆n(s, ·)kl〉t| 6 C(T, d)|t− s| .

Let A > 0, using [3, corollary H.13], we have

P

[
max

1 6 i,j 6 d
sup

0 6 t 6 T
|(eγtMβ

n (t))ij | > A

]
6 d2 max

1≤i,j≤d
P

[
sup

0 6 t 6 T
|(eγtMβ

n (t)−Mβ
0 )ij | > A−max

i,j
|Mβ

0 (i, j)|
]

= d2 max
1 6 i,j 6 d

P

[
sup

0 6 t 6 T
|∆n(0, t)ij | > A−max

i,j
|Mβ

0 (i, j)|
]

6 d2 exp

(
− (A−maxi,j |Mβ

0 (i, j)|)2

C(d, T )T

)
. (4.6)

Similarly, for any given s ∈ [0, T ], for ε > 0, using [3, Corollary H.13], we have, for each
entry ij and for every δ > 0:

P

[
max

1 6 i,j 6 d
sup

t∈[s−δ,s+δ]
|(eγtMβ

n (t)− eγsMβ
n (s))ij | > ε

]
6 d2 exp

(
− ε2

2Cδ

)
.

and therefore there exists a positive constant c′ so that

P

 max
1 6 i,j 6 d

sup
0 6 s,t 6 T,
|t−s| 6 δ

|(eγtMβ
n (t)− eγsMβ

n (s))ij | > ε


6

[2T/δ]+1∑
i=1

P

[
max

1≤i,j≤d
sup

|t− iδ2 | 6 δ/2

|(eγtMβ
n (t)− eγiδ/2Mβ

n (iδ/2))ij | > ε/2

]

6 d2 2T

δ
exp

(
− ε

2

c′δ

)
.

Lemma 4.4. Let T <∞. Then there exist constants C ′, A0, c
′, c′′, α, ε0 > 0 which depend

only on T, d such that for all n ∈ N, all A > A0 and all ε > 0

P

[
max

1 6 i 6 d
sup

0 6 t 6 T
|λni (t)| > A

]
6 C ′ exp(−αA2) , (4.7)

P

 max
1 6 i 6 d

sup
0 6 s,t 6 T,
|t−s| 6 δ

|λni (t)− λni (s)| > ε

 6
c′′

δ
exp(− ε

2

c′δ
) . (4.8)

EJP 18 (2013), paper 62.
Page 20/30

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v18-2073
http://ejp.ejpecp.org/


Invariant β-ensembles

Proof. This lemma is a consequence of Lemma 4.3 and the inequalities

max
1≤k≤d

|λnk (t)− λnk (s)| 6

(
d∑
i=1

|λni (t)− λni (s)|2
) 1

2

=

 d∑
i,j=1

|Mβ
n (t)ij −Mβ

n (s)ij |2
1/2

(4.9)

6 d max
1≤i,j≤d

|Mβ
n (t)ij −Mβ

n (s)ij |

where, for the second inequality, we used [3, lemma 2.1.19] and the fact that the λni
are ordered.

5 Convergence of the law of the eigenvalues till the first hitting
time

Proposition 5.1. Take λ(0) = (λ1 < λ2 < · · · < λd). Construct µn, strong solution
of (4.2), with the same Brownian motion than λ, strong solution of (2.4), both starting
from λ(0). λn equals µn till Tn(1). For all T > 0, we have the following almost sure
convergence

lim
n→∞

max
1 6 i 6 d

sup
t 6 T∧Tn(1)∧τ3

ε

|λni (t)− λi(t)| = 0 .

As a consequence, if we let T1 = inf{t > 0,∃i 6= j, λi(t) = λj(t)}, we have almost surely

T1 6 lim inf Tn(1) .

We point out that this convergence does not happen on a trivial interval since we
have

Remark 5.2. For any η > 0, there exists τ(η) > 0 so that

lim
n→∞

P [Tn(1) > τ(η)] > 1− η .

Proof of Remark 5.2. By the same arguments developed in (4.9), we find that

P

[
sup
t 6 T

max
1 6 i 6 d

|λni (t)eγt − λi(0)| > ε

]
6 P

[
sup
t 6 T

|tr((Mn(t)eγt −M0)2)| > ε2
]

6 d2 exp(− ε2

2C(d, T )T
) .

But since also the λni are uniformly bounded with high probability, we can choose for
any η > 0 the parameter T small enough so that

P

[
max

1 6 i 6 d
sup
t 6 T

|λni (t)− λi(0)| ≥ min
1 6 i 6 d

|λi − λi+1|/3
]
6 η

This implies that P (Tn(1) ≤ T ) ≤ η.
Proof of Proposition 5.1 Using Itô’s formula, we can compute

d∑
i=1

(λni (t)− λi(t))2
= −2γ

∫ t

0

d∑
i=1

(λni (s)− λi(s))2
ds (5.1)

+ 2β

∫ t

0

εns

d∑
i=1

∑
j 6=i

(λni (s)− λi(s))

(
1

λni (s)− λnj (s)
− 1

λi(s)− λj(s)

)
ds

+ 2β

∫ t

0

(εns − p)
d∑
i=1

∑
j 6=i

λni (s)− λi(s)
λi(s)− λj(s)

ds .
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By the same argument as in (3.11) the second term in the right hand side is non positive.
Thus using equations 5.1, we find for t 6 Tn(1)

d∑
i=1

(λni (t)− λi(t))2 6 2β

∫ t

0

(εns − p)
d∑
i=1

∑
j 6=i

λni (s)− λi(s)
λi(s)− λj(s)

ds := Rn(t) .

We next prove that
lim
n→∞

sup
0 6 t 6 T∧τ3

ε

Rn(t) = 0 a.s. (5.2)

Write Rn(t) as Rn(t) = Pn(t) +Qn(t) where

Pn(t) :=

∫ t

0

(εns − p)
d∑
i=1

∑
j 6=i

λni ([ns]/n)− λi(s)
λi(s)− λj(s)

ds ,

Qn(t) :=

∫ t

0

(εns − p)
d∑
i=1

∑
j 6=i

λni (s)− λni ([ns]/n)

λi(s)− λj(s)
ds .

We first handle the convergence of Qn(t). Set Ω1 = {sup |s−t|≤1/n
t≤T

max1≤i≤d |λni (t) −

λni (s)| 6 n−1/2+ε}. On the event Ω1, we have

|Qn(t)| ≤ n−1/2+ε
d∑
i=1

∑
j 6=i

∫ t

0

ds

| λi(s)− λj(s) |
.

Following (4.9), we know that
P (Ωc1) ≤ ce−cn

2ε

.

We thus deduce from Lemma 3.1 that

P

[
sup
t 6 T

|Qn(t)| > δ

]
6 P

 d∑
i=1

∑
j 6=i

∫ T

0

ds

| λi(s)− λj(s) |
> δn1/2−ε

+ P [Ωc1]

6 c e−c δ
2 n1−2ε

+ c e−c n
2ε

.

Hence, Borel Cantelli’s Lemma insures the almost sure convergence of Qn to zero. We
now turn to the convergence of Pn(t). Let η > 0 small and write

Pn(t) = −d(d− 1)

2

∫ t

0

(εns − p)ds+ P̃n(t)

with

P̃n(t) =

∫ t

0

(εns − p)
d∑
i=1

∑
j<i

λni ([ns]/n)− λnj ([ns]/n)

λi(s)− λj(s)
ds .

The process
∫ t

0
(εns − p)ds is a martingale and by Azuma-Hoeffding inequality, for any

δ > 0

P

(
max
t≤T
|
∫ t

0

(εns − p)ds| ≥ δ
)
≤ 2 exp(−δ

2n

2
) .

We now use the independence between the brownian motions (bit)0 6 t 6 T , i = 1, . . . , d

and the Bernoulli random variables εnk , k = 1, . . . , [nT ]. Conditionally on the (bit)0 6 t 6 T , i =

1, . . . , d, the processes λi(t), i = 1, . . . , d are deterministic and the process P̃n is a mar-
tingale with respect to the filtration of the εnk . We let

Ank =

d∑
i=1

∑
j<i

∫ k+1/n

k/n

λni ([ns]/n)− λnj ([ns]/n)

λi(s)− λj(s)
ds.
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By Lemma 3.5 and Lemma 4.4, the set

Ω = { sup
k≤nT∧τ3

ε

|Ank | ≤ n−1/8}

has probability larger than 1 − e−cn1/16

. Moreover, by martingale property it is easy to
see that for all λ ≥ 0,

E[1Ωe
λP̃n(k/n)− 1

2λ
2 ∑k−1

`=0 (Ank/n)2 ] ≤ 1 .

Taking λ = n1/16, since on Ω, −n1/16|Ank | + n1/8|Ank |2/2 ≤ 0, Tchebychev’s inequality
yields

P

{|P̃n(k/n ∧ τ3
ε )| ≥ n−1/16(

[Tn]∑
`=0

|Ank |+ t)} ∩ Ω

 ≤ e−t
As by Lemma 3.1,

∑[Tn]
`=0 |Ank | is bounded by n1/32 with probability greater than 1−e−n1/16

we conclude that

P
(
|P̃n(k/n ∧ τ3

ε )| ≥ n−1/32
)
≤ Ce−n

1/32

.

The uniform estimate is obtained easily by controlling the increments of P̃n in between
the times k/n, k ≤ [nT ] by supk≤[nT ] |Ank | which we have already bounded.

6 Proof of Theorem 2.2.

6.1 Non colliding case pβ > 1

It is straightforward to deduce Theorem 2.2 when pβ > 1. Indeed if βp > 1 we know
that there are no collisions for the limiting process and more precisely, see e.g [3, p.
252],

P(τ2
ε 6 T ) 6 c(λ0)T/| log ε|

with some finite constant c(λ0) which only depends on the spacings of the eigenvalues
at the initial time. This implies in particular that

lim
ε→0

lim
n→∞

P(Tnε 6 T ) = 0

from which we easily deduce Theorem 2.2 from Proposition 5.1.

6.2 Colliding case pβ < 1

We now define the process (λn,δi (t))t > 0 which will depend on the sequence (T δ` )`∈N
defined in Definition 3.6. To unify notations, set T δ1 := T1 and T δn(1) := Tn(1).

Definition 6.1. For t < T δ1 , set λn,δi (t) := λni (t). For time t > T δ1 , we define the process
recursively by setting for each ` > 1, λn,δi (T δ` ) = λn,δi (T δ` −) + iδ for all i ∈ {1, . . . , d}
and for t > T δ` , the process λn,δi is defined up to time T δ`+1 by ordering the process

(µn,δ1 (t), . . . , µn,δd (t))T δ` 6 t 6 T δ`+1
which is defined for t > T δ` as

dµn,δi (t) = −γµn,δi (t) dt+
√

2dbit + β
∑
j 6=i

εnt

µn,δi (t)− µn,δj (t)
dt . (6.1)

with initial conditions in t = T δ` given by (λn,δ1 (T δ` ), . . . , λn,δd (T δ` )).
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Lemma 6.2. Let T < ∞ and δ > 0. We have the following convergence in probability,
for all ` ∈ N,

lim
n→∞

max
1 6 i 6 d

sup
0 6 t 6 T δ` ∧T

|λδi (t)− λ
n,δ
i (t)| = 0 .

In particular, for every `, if T δn is the first collision time for λn,δ after T δ`−1,

T δ` ∧ T 6 lim inf T δn(`) ∧ T a.s.

Proof Again, we prove this Lemma by induction over `.
• We begin with the case ` = 1. Proposition 5.1 yields that the random variable

max1 6 i 6 d sup0 6 t 6 Tn(1)∧T |λi(t)−λni (t)| = 0 converges to 0 in probability as by Lemma
3.2, P (τ3

ε ≥ T ) goes to one as ε vanishes. Since we have the almost sure inequality
T δ1 6 lim inf T δn(1), the continuity of the λi, 1 6 i 6 d, the regularity property of the λni
given by Lemma 4.4, Lemma 3.5 and Proposition 5.1, we can check that since before
T δ1 λ

δ
i = λi and λn,δi = λni , if T δn(1) < T δ1 ∧ T ,

max
1 6 i 6 d

sup
T δn(1) 6 t<T δ1∧T

|λδi (t)− λ
n,δ
i (t)| (6.2)

6 max
1 6 i 6 d

sup
T δn(1) 6 t<T δ1∧T

{|λni (t)− λni (T δn(1))|+ |λi(t)− λi(T δn(1))|} (6.3)

+ |λni (T δn(1))− λi(T δn(1))|

goes to zero in probability, when n goes to infinity.
• Suppose the property is true for ` and let us show that it is then true for ` + 1.

By the same argument as in the proof of Proposition 5.1, we can show that, for all
t ∈ [T δ` ;T δn(`+ 1) ∧ T δ`+1], we have

d∑
i=1

(
λn,δi − λδi

)2

(t) 6
d∑
i=1

(
λn,δi − λδi

)2

(T δ` ) (6.4)

+ 2β

∫ t

T δ`

(εns − p)
d∑
i=1

∑
j 6=i

λn,δi (s)− λδi (s)
λδi (s)− λδj(s)

ds.

The same proof as in Proposition 5.1 shows that, if τ3,`
ε is the stopping time τ3

` for the
process λδ(t), t ≥ T δ` ,

lim
n→∞

sup
t∈[T δ` ;T δn(`+1)∧T δ`+1∧τ

3,`
ε ]

∫ t

T δ`

(εns − p)
d∑
i=1

∑
j 6=i

λn,δi (s)− λδi (s)
λδi (s)− λδj(s)

ds = 0 a.s. (6.5)

Thus, because of (6.4), the following convergence in holds

lim
n→∞

max
i

sup
t∈[T δ` ;T δn(`+1)∧T δ`+1∧τ3

ε ]

|λn,δi (t)− λδi (t)| = 0 a.s . (6.6)

Because of (6.6), we have T δ`+1∧τ3
ε 6 lim infn→∞ T δn(`+1)∧τ3

ε . Since the probability that
τ3
ε is larger than T goes to one as ε vanishes, we can show as in (6.2) (note that Lemma

4.4, Lemma 3.5 and Proposition 5.1 extend to {λn,δt , λδt , t ≥ T δ` }) that in probability,

lim
n→∞

max
1 6 i 6 d

sup
T δn(`+1) 6 t 6 T δ`+1

|λδi (t)− λ
n,δ
i (t)| = 0.

The property at rank `+ 1 is established. The Lemma is proved.
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Lemma 6.3. There exists a constant c > 0 such that for all L ∈ N, we have the following
almost sure estimate

max
1 6 j 6 d

sup
0 6 t 6 T δL

|λn,δj (t)− λnj (t)| 6 δ L
√
c .

Proof. Note that the estimate is striaghtforward on [0, T δ1 ]. We then proceed by
induction on the time intervals [T δ` , T

δ
`+1] as in the proof of Lemma 3.8 until the first

collision time

t1 := inf{t > T δ` : ∃i, λni (t) = λni−1(t) orλn,δi (t) = λn,δi−1(t)} .

We next claim that, at a given time, almost surely the eigenvalues λn are differ-
ent. Indeed, this is clear if the eigenvalues follows Brownian motion and even more
when they follow Dyson Brownian motion. Moreover the probability that more than two
eigenvalues collide at some time vanishes. Indeed, this can only happen if the eigen-
values follow the Brownian motion. But the probability that 3 Brownian motions collide
vanishes and hence the result.

Hence, there are almost surely at most two eigenvalues which can collide. Hence,
let i(t1) be the unique integer in {1, . . . , d} such that λni (t1) = λni−1(t1) (respectively

λn,δi (t1) = λn,δj (t1)) and let τ1 = ([nt1] + 1)/n. Notice that, for t ∈ [[nt1]/n; ([nt1] + 1)/n),

we necessarily have εnt = 0. Let µn,δi and µni for i ∈ {1, . . . , d} be the processes such that
for t ∈ [t1; τ1]

dµn,δi (t) = −γµn,δi (t)dt+
√

2dbit

dµni (t) = −γµni (t)dt+
√

2dbit

with initial conditions at t = t1 respectively given by µn,δ(t1) = λn,δ(t1) and µn(t1) =

λn(t1). We know that the λn,δi , respectively the λni , are just a re-ordering of the processes
µn,δi and µni

By definition, for t ∈ [t1; τ1], we find that :

(µn,δj − µnj )(t) = e−γ(t−t1)(µn,δj − µnj )(t1) .

As a consequence, we deduce that

d∑
j=1

(µn,δj − µnj )2(t) 6
d∑
j=1

(λn,δj − λnj )2(t1) .

Moreover, as the λ’s are ordered but the set of the values of the λ’s and the µ’s are the
same, using for instance [3, lemma 2.1.19], we have that

d∑
j=1

(λn,δj − λnj )2(t) 6
d∑
j=1

(µn,δj − µnj )2(t) .

Gathering the above inequalities, we have shown that

sup
t∈[0,τ1]

d∑
j=1

(λn,δj − λnj )2(t) 6
d∑
j=1

(λn,δj − λnj )2(T δ` ) .

We can continue inductively until we reach the time T δ`+1 to finish the proof.
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7 Asymptotic properties of the eigenvectors

Recall that wβij , i < j are real (respectively complex) standard Brownian motions if

β = 1 (resp. β = 2) with quadratic variation βt and that we also set for i < j, wβji := w̄βij .

In addition we also defined the skew Hermitian matrix Rβ = −(Rβ)∗ by setting for i < j,

dRβij(t) =
dwβij(t)

λni (t)− λnj (t)
, Rβij(0) = 0 .

Proof of Proposition 2.3
It is classical to check that the unique strong solution of the stochastic differential

equation

dOβn(t) = εnt O
β
n(t)dRβ(t)− εnt

2
Oβn(t)d〈(Rβ)∗, Rβ〉t , (7.1)

with initial condition Oβn(0) := Oβ(0) (defined at the end of Section 1), is in the space Oβd
for all time t (see e.g. [3, Lemma 4.3.4]) and is such that, with ∆β

n(t) being the diagonal
matrix of the ordered (as in (2.3)) eigenvalues of Mβ

n (t), we have

Oβn(t)∆β
n(t)Oβn(t)∗

law
= Mβ

n (t) .

The law of the continuous process Oβn is uniquely determined as the unique strong
solution of (7.1).

One can thus define the eigenvectors of Mβ
n (t), denoted as φni (t), so that they satisfy

the stochastic differential system

dφni (t) = εnt
∑
j 6=i

dwβij(t)

λni (t)− λnj (t)
φnj (t)− εnt

2

∑
j 6=i

β

(λni (t)− λnj (t))2
dtφni (t) (7.2)

where wβij , i < j is a family of i.i.d. Brownian motions (on R if β = 1, C if β = 2),
independent of the eigenvalues λni , 1 6 i 6 d.

Proof of Theorem 2.4
This proof is classical and uses the theory of stability for stochastic differential equa-

tions.
For η > 0 fixed, we deduce from Proposition 5.1 and Lemma 3.2 that the process

(λn1 (t), . . . , λnd (t)) converges almost surely in the space of continuous functions C([0; (T1−
η) ∧ T ],Rd) (respectively Cd) if β = 1 (resp. β = 2) endowed with the uniform norm
towards (λ1(t), . . . , λd(t))0 6 t 6 (T1−η)∧T where the λi’s are the unique strong solutions
of (2.4) (with the same Brownian motions bi) and where T1 is the first collision time of
the λi, 1 6 i 6 d. In the sequel we will work conditionally to the (λni , λi)’s satisfying the
above convergence.

Define for i 6= j the processes wβ,nij by setting

wβ,nij (t) =

∫ t

0

εns dw
β
ij(s) . (7.3)

Note that the quadratic variation of this continuous martingale converges almost surely
towards βpt so that by Rebolledo’s theorem (wβ,nij , i < j) converges towards (

√
pwβij , i <

j).
Moreover, if T ε1 is the first time at which two eigenvalues are at distance less than

ε, the drift coefficients being bounded, we see, with a proof similar to the proof of
Proposition 5.1, that for i 6= j ∫ t∧T ε1

0

εns
(λni − λnj )2(s)

ds
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converges towards p
∫ t∧T ε1

0
(λi(s) − λj(s))

−2ds uniformly almost surely. Since T ε1 con-
verges towards T1 as ε goes to zero, the convergence holds till (T1 − η) ∧ T for any
η > 0.

Gathering the above arguments, the result follows from [8, Theorem 6.9, p. 578].
We now turn to the analysis of the behavior of the columns φi(t) of the matrix Oβ(t)

when t→T1 with t < T1. Those vectors φi(t) form an orthonormal basis of Rd (respec-
tively Cd) if β = 1 (resp. β = 2) and it is easy to check that they verify the following
stochastic differential system

dφi(t) =
∑
j 6=i

√
p

λi(t)− λj(t)
dwβij(t)φj(t)−

pβ

2

∑
j 6=i

dt

(λi(t)− λj(t))2
φi(t) . (7.4)

In the following of this section, we will denote by i∗ the unique (because of Lemma
3.4) index such that λi∗(T1) = λi∗−1(T1).

The main issue we meet at this point in the presence of collisions (that will occur if
pβ < 1; see [5]) lies in the divergence of the integral 2.7 that we now prove.

We now describe the behavior of the d− 2 vectors φj(t), j 6= i∗, i∗ − 1 just before the
first collision time T1.

Proof of the first statement of Proposition 2.6
We will denote by φj`(t) the `-th entry of the d-dimensional vector φj(t). For 0 6 t <

T1, we have

dφj(t) =
∑
k 6=j

√
p

λj(t)− λk(t)
dwβjk(t)φk(t)− p

2

∑
k 6=j

β

(λj − λk)2
φj(t)dt . (7.5)

We recall from section 3.2 that there are no multiple collisions nor two collisions at the
same time for the system (λ1(t), λ2(t), . . . , λd(t))0 6 t 6 T1

verifying (2.4), and therefore
we may assume without loss of generality that for j 6= i∗, i∗ − 1, every diffusions and
drift terms of (7.5) remains almost surely bounded for t ∈ [0;T1]. To prove the lemma,
we just need to prove that almost surely

lim
s→T1;
s<T1

sup
s 6 t<T1

‖φj(t)− φj(s)‖2 = 0 .

The drift terms appearing in (7.5) are obvious to deal with since 1/(λj−λk)(t) is bounded
in the vicinity of T1 and that |φj`(t)| 6 1 for all t < T1. For the diffusion terms, we have
for every ` ∈ {1, . . . , d} and for every s ∈ [0;T1] the following estimate

P

 sup
s 6 t<T1

|
∫ t

s

∑
k 6=j

√
p

λj(u)− λk(u)
dwβjk(u)φk`(u)| > η

 6 exp(− η2

2βp(d− 1)M(T1 − s)
) ,

where M = supt∈[0;T1] maxk 6=j
1

(λj−λk)2(t) . Using the Borel-Cantelli Lemma, we deduce
the result.

For δ > 0, we want to define a process (φ̃1(t), φ̃2(t), . . . , φ̃d(t))T1−δ 6 t<T1
that will be a

good approximation of the process (φ1(t), φ2(t), . . . , φd(t))T1−δ 6 t<T1
on the time interval

[T1 − δ;T1]. Hence for j 6= i∗, i∗ − 1, we set φ̃j(t) = φ̃j (the vectors do not depend of

time). It remains to define the evolution for (φ̃i∗−1(t), φ̃i∗(t)) that will depend of time t.
Let V be the (d−2)-dimensional subspace spanned by the orthonormal family {φ̃j ; j 6=

i∗, i∗ − 1} and W its orthogonal complement in Rd. Let us define the“diffusive or-
thonormal basis” in the space W that will describe the evolution of the two vectors
(φ̃i∗−1(t), φ̃i∗(t)) on the interval [T1− δ;T1] (up to the initial conditions at time t = T1− δ
we will explicit later).
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Lemma 7.1. Let δ > 0 and (u, v) an orthonormal basis of the two-dimensional subspace
W . We consider the following stochastic differential system

dφ̃i∗(t) =

√
p

(λi∗ − λi∗−1)(t)
dwβi∗−1,i∗(t) φ̃i∗−1(t)− pβ

2

dt

(λi∗ − λi∗−1)2(t)
φ̃i∗(t) , (7.6)

dφ̃i∗−1(t) = −
√
p

(λi∗ − λi∗−1)(t)
dw̄βi∗−1,i∗(t) φ̃i∗(t)−

pβ

2

dt

(λi∗ − λi∗−1)2(t)
φ̃i∗−1(t)

with initial conditions (φ̃i∗−1(T1 − δ), φ̃i∗(T1 − δ)) = (u, v).
This stochastic differential system has a unique strong solution defined on the in-

terval [T1 − δ;T1) such that for each t ∈ [T1 − δ;T1), {φ̃i∗−1(t), φ̃i∗(t)} is an orthonormal
basis of W .

Proof. For all ε > 0, the function t → 1/(λi∗ − λi∗−1)(t) is bounded on the interval
[T1 − δ;T ε1 ] and therefore there is a unique strong solution to the stochastic differential
system (7.6) till the time T ε1 where |λi∗ − λi∗−1| < ε as it is driven by bounded linear
drifts. As T ε1 grows to T1 the proof is complete.

To show that for all t ∈ [T1−δ;T1) the family {φ̃i∗−1(t), φ̃i∗(t)} is an orthonormal basis
of W , we proceed along the same line as in the proof of [3, Lemma 4.3.4].

In the following lemma, we show that we can choose a constant δ > 0 small enough
and an initial condition (u, v) ∈W such that the processes (φ̃1(t), . . . , φ̃1(t))t∈[T1−δ;T1) de-
fined by Lemma 7.1 is indeed a good approximation of the process (φ1(t), . . . , φd(t))t∈[T1−δ;T1).

The advantage of the process (φ̃1(t), . . . , φ̃1(t))t∈[T1−δ;T1) is that it is simpler to study in
the vicinity of T1 (see Lemma 7.3 below).

Lemma 7.2. Let η > 0 and κ > 0. Then there exists an orthonormal basis (u, v) of W
and δ > 0 small enough such that if we denote by (φ̃i∗−1(t), φ̃i∗(t))t∈[T1−δ;T1) the unique
strong solution of the stochastic differential system (7.6) with initial conditions given in
t0 = T1 − δ by (φ̃i∗−1(t0), φ̃i∗(t0)) = (u, v), we have

P

(
sup

t∈[t0;T1)

||φi∗(t)− φ̃i∗(t)||22 + ||φi∗−1(t)− φ̃i∗−1(t)||22 > η

)
≤ κ .

Proof. Using Itô’s formula, we find1 for all t ∈ [t0;T1),

||φi∗(t)− φ̃i∗(t)||22 + ||φi∗−1(t)− φ̃i∗−1(t)||22 = ||φi∗(t0)− u||22 + ||φi∗−1(t0)− v||22

− 2

∫ t

t0

∑
i∈{i∗,i∗−1}

∑
j 6=i∗,i∗−1

√
p

(λi − λj)(s)
dwβij(s)〈φ̃i(s), φj(s)〉 . (7.7)

As for i ∈ {i∗, i∗−1} and j 6∈ {i∗, i∗−1} the terms 1/(λi−λj)2(t) have almost surely a finite
integral with respect to Lebesgue measure on the interval [t0;T1) (in fact those terms
are almost surely bounded as the corresponding particles remain at finite distance), the
quadratic variation of the last term is of order δ and therefore is smaller than η/2 with
probability greater that 1− κ for δ small enough.

It remains to check that we can choose (u, v) an orthonormal basis of W and δ > 0

such that
||φi∗(T1 − δ)− u||22 + ||φi∗−1(T1 − δ)− v||22 6 η/2 . (7.8)

This is a straightforward: Indeed we can approximate the φj(T1 − δ) for j 6∈ {i∗, i∗ − 1}
by the φ̃j because of the first point of Proposition 2.6, thus we can choose two vectors
{u, v} in the two dimensional space W so that (7.8) holds. This completes the proof.

1Note that all the diverging terms in T1 cancel in this expression.
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We now turn to the study of the couple (φ̃i∗−1(t), φ̃i∗(t)) for t ∈ [T1 − δ;T1) and in
particular when t→ T1, t < T1. A crucial point is equation 2.7 which we now prove.

Itô’s Formula gives for t < T1

ln(λi − λi−1)(t) = (−γ + 2pβ)t+

∫ t

0

√
2
dbi
∗

s − dbi
∗−1
s

(λi∗ − λi∗−1)(s)

− pβ
∫ t

0

∑
j 6=i∗,i∗−1

ds

(λi∗ − λj)(λi∗−1 − λj)(s)
−
∫ t

0

2 ds

(λi∗ − λi∗−1)2(s)
.

If we suppose that
∫ T1

0
dt/(λi∗ − λi∗−1)2(t) < +∞ and since T1 < τ3

ε for some ε > 0 small
enough, we obtain a contradiction letting t→ T1: under this assumption, the right hand
side tends to −∞ whereas the left hand side is almost surely bounded in this limit.

The next Lemma 7.3 shows that the orthonormal basis (φ̃i∗−1(t), φ̃i∗(t)) of the sub-
space W is in fact uniformly distributed in the set of all orthonormal basis of W in the
limit t→ T1, t < T1.

As W is two dimensional, up to a change basis, we can suppose that the two vectors
φ̃i∗−1(t) and φ̃i∗(t) are two dimensional (we just study the evolution of their coordinates
in an orthonormal basis of W ). Let us define the two by two matrix φ̃(t) whose first line
is the vector φ̃i∗(t) and second line is the vector φ̃i∗−1(t):

φ̃(t) :=

(
φ̃i∗(t)

φ̃i∗−1(t)

)
.

Lemma 7.3. The matrix φ̃(t) converges in law when t → T1, t < T1 to the Haar proba-
bility measure on the orthogonal group (respectively unitary group if β = 2.)

Proof. To simplify notations, we do the proof in the case β = 1.
Set t0 := T1 − δ and define for t ∈ [0; δ) the function

ϕ(t) :=

∫ t0+t

t0

ds

(λi∗ − λi∗−1)2(s)

and denote by ϕ−1 its functional inverse. We now proceed to a change of time by setting
for t ∈ [0; δ)

ψ̃i∗(t) = φ̃i∗(ϕ
−1(t)), ψ̃i∗−1(t) = φ̃i∗−1(ϕ−1(t)) .

As ϕ−1(t)→ +∞ when t→ δ, t < δ (because of (2.7)), the two by two matrix ψ̃(t) whose
first line is ψ̃i∗(t) and second line is ψ̃i∗(t):

ψ̃(t) :=

(
ψ̃i∗(t)

ψ̃i∗−1(t)

)

is now defined for all t ∈ R+ and verifies the following stochastic differential equation

dψ̃(t) =
√
pA ψ̃(t) dBt −

pβ

2
ψ̃(t) dt . (7.9)

where B is a standard Brownian motion on R and where A is the two by two matrix
defined by

A =

(
0 1

−1 0

)
.

Note in particular that A2 = −I.
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It is clear that there is pathwise uniqueness in the stochastic differential equation
(7.9) (it is linear in ψ̃). Therefore to solve entirely this equation, we just need to exhibit
one solution. Using Itô’s Formula, one can check that the solution is

ψ̃(t) = exp (
√
pABt) ψ̃(0)

=

(
cos(
√
pBt) sin(

√
pBt)

− sin(
√
pBt) cos(

√
pBt)

)
ψ̃(0) .

Note that for all t ∈ R+, the matrix ψ̃(t) is indeed in the space of orthogonal matrices.
But (cos(

√
pBt), sin(

√
pBt)) converges in law as time goes to infinity towards the law

of (θ, ε
√

1− θ2) with θ uniformly distributed on [−1, 1] and ε = ±1 with probability 1/2,
from which the result follows.

Lemmas 7.2 and 7.3 give the second statement of Proposition 2.6.
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