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Abstract

This paper is a continuation of Benjamini, Yadin and Zeitouni’s paper [4] on maximal
arithmetic progressions in random subsets. In this paper the asymptotic distributions
of the maximal arithmetic progressions and arithmetic progressions modulo n rela-
tive to an independent Bernoulli sequence with parameter p are given. The errors
are estimated by using the Chen-Stein method. Then the almost sure limit behaviour
of these statistics is discussed. Our work extends the results in [4] and gives an affir-
mative answer to the conjecture raised at the end of that paper.
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1 Introduction and main results

As T. Tao stated in [15], long arithmetic progressions are very important in number
theory. The first major result goes back to the work of van der Waerden in 1927. He
proved that if the positive integers are divided into finitely many classes, then at least
one of the classes contains arithmetic progressions of arbitrary length. In 1936, Erdös
and Turán [7] conjectured that any subset of positive integers whose sum of recipro-
cals diverges must contain arbitrarily long arithmetic progressions. Roth [12] in 1953
proved that any subset with positive upper density contains an arithmetic progression
of length three. Later in 1975, Szemerédi [13] established that such subset contains
arbitrarily large arithmetic progressions. Recently, many authors have been interested
in the arithmetic progressions in sumsets (see for instance [14]) and in random sets
(see for instance [10]).

Although Bernoulli sequences are a rather simple probabilistic model, they are also
a source of interesting discoveries. Limit behavior of the maximal length of runs in
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On the maximal length

Bernoulli sequence have been studied for a long time by many authors, see e.g. [5],
[6],[8], [9] and [11]. In 2007, Benjamini et al. [4] investigated the limit distribution of
the maximal length of arithmetic progressions in Bernoulli sequence with p = 1/2. In
this paper, we extend their result to general 0 < p < 1, as well as the case when p → 0

as n→∞, and prove a conjecture in their paper.
Suppose that ξ1, ξ2, . . . is a Bernoulli sequence with P (ξi = 1) = p = 1 − q, where

0 < p < 1. Let Σn = {1 ≤ i ≤ n : ξi = 1} be the random subset of {1, . . . , n} determined
by ξ1, . . . , ξn. For any 1 ≤ a, s ≤ n, set

U (n)
a,s = max

{
1 ≤ m ≤ 1 +

[n− a
s

]
: ξa = ξa+s = · · · = ξa+(m−1)s = 1

}
,

where [x] denotes the integer part of x. Then U
(n)
a,s stands for the maximal length of

arithmetic progressions in Σn starting at a, with difference s. The maximal length of
arithmetic progressions relative to ξ1, . . . , ξn, denoted by U (n), is defined by

U (n) = max
1≤a,s≤n

U (n)
a,s .

For any 1 ≤ a, s ≤ n, the numbers

a, a+ s (modn), . . . , a+
( n

gcd(s, n)
− 1
)
s (modn)

are different while a + n
gcd(s,n)s (modn) = a, where gcd(s, n) is the greatest common

divisor of s and n. For convenience, when n|k, we write k (modn) = n. Define

W (n)
a,s = max

{
1 ≤ m ≤ n

gcd(s, n)
:

m−1∏
i=0

ξa+is (modn) = 1
}
,

and
W (n) = max

1≤a,s≤n
W (n)
a,s .

We callW (n) the maximal length of arithmetic progressions modulo n relative to ξ1, . . . , ξn.
Note that U (n) is increasing in n while W (n) is not.

In [4], the authors discussed the limit distribution of U (n) and W (n) when p = 1/2.
We first extend their results to general p. Set C = −2/log p. In [4], it was proved that

as n tends to∞, U(n)

C logn → 1 and W (n)

C logn → 1 in probability. As for almost sure limit, they
proved that

lim
n→∞

U (n)

C log n
= 1 a.s.

and

1 = lim inf
n→∞

W (n)

C log n
<

3

2
≤ lim sup

n→∞

W (n)

C log n
a.s. (1.1)

They conjectured at the end of [4] that

lim sup
n→∞

W (n)

C log n
=

3

2
a.s. (1.2)

In this paper, like in [4], we use the Chen-Stein method to study the asymptotic
distributions of U (n) and W (n) but more carefully. For clarity, let us first introduce the
concept of dependency graph (see [1] and [4]) and the Chen-Stein method that will be
used in our proof.
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On the maximal length

Suppose that {Xi; i ∈ V } is a family of random variables indexed by the vertices of a
graph G = (V,E). For convenience, we write i ∼ j if (i, j) ∈ E, that is if (i, j) is an edge.
We call G a dependency graph of {Xi; i ∈ V } if for any i ∈ V , Xi is in independent of
{Xj ; j 6∼ i}.

Stein’s method was first proposed by Stein in 1972 for normal approximation. Chen,
Barbour and others have this method adapted to approximate Poisson distribution (see
for instance [3]). The following is a basic Poisson approximation theorem which was
proved by Arratia et al. [2] in 1989. See also Theorem 3 of [4].

Theorem 1.1. Suppose that {Xi; i ∈ V } is a family of Bernoulli random variables with
EXi = pi and suppose that G = (V,E) is a dependency graph. Let W =

∑
i∈V Xi and Z

be a Poisson random variable with mean λ =
∑
i∈V pi. If 0 < λ <∞, then

sup
A⊆Z
|P(W ∈ A)− P(Z ∈ A)| ≤ 1− e−λ

λ

[∑
i∈V

∑
j∼i

pipj +
∑
i∈V

∑
j∼i,j 6=i

E(XiXj)

]
.

To estimate the probability of U (n) < r, we write U (n) ≥ r as the union of Aa,s with
(a, s) ∈ Bn, where

Aa,s = {ξa = ξa+s = · · · = ξa+(r−1)s = 1} ∩ {a− s ≤ 0 or ξa−s = 0}

and
Bn = {(a, s) : 1 ≤ a, s ≤ n, a+ (r − 1)s ≤ n} .

It follows that

P(U (n) < r) = P

( ∑
(a,s)∈Bn

1Aa,s
= 0

)
,

where 1A denotes the indicator function of A. Find a dependency graph of the Bernoulli
random variables

{
1Aa,s

: (a, s) ∈ Bn
}

and apply Theorem 1.1, then we will give an es-
timate of P(U (n) < r). Similar arguments can be applied to W (n).

In this paper, we use Bachmann-Landau notation to describe the limiting behaviours
of two functions. For any functions f and g, if limn→∞ g(n)/f(n) = 0, then we write
g(n) = o

(
f(n)

)
. If lim supn→∞ |g(n)|/|f(n)| < ∞, then we write g(n) = O

(
f(n)

)
. When

f(n) = O
(
g(n)

)
, we also write g(n) = Ω

(
f(n)

)
. The notation g(n) = Θ

(
f(n)

)
means that

0 < lim infn→∞ |g(n)|/|f(n)| ≤ lim supn→∞ |g(n)|/|f(n)| < ∞. Set D = −C/2 = 1/log p,
h′n = C log n, gn = D log log n and hn = h′n + gn. We have the following distribution
approximations.

Theorem 1.2. 1. For any 0 ≤ a < 1, let Ln = {x : x ≥ agn, hn + x ∈ Z}. Then we
have

max
x∈Ln

∣∣∣ exp
(−q log p

4
px
)
P(U (n) < hn + x)− 1

∣∣∣ = O
( log log n

log1−a n

)
. (1.3)

Hence, for any sequence {xn} with xn ∈ Ln,

lim
n→∞

exp
(−q log p

4
pxn

)
P(U (n) < hn + xn) = 1. (1.4)

2. Let L′n = {x : x ≥ gn, h′n + x ∈ Z}. Then we have

max
x∈L′n

∣∣∣ exp
(q

2
px
)
P
(
W (n) < h′n + x

)
− 1
∣∣∣ = O

( log7 n

n1− q
2

)
. (1.5)

Hence, for any sequence {xn} with xn ∈ L′n, we have

lim
n→∞

exp
(q

2
pxn

)
P(W (n) < h′n + xn) = 1. (1.6)
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Note that if one replaces “≤" by “<" in (1) of [4], and “log(2C logN)" by “log2(2C logN)

" in (2) of [4], then the results match the corresponding equations (1.6) and (1.4) in our
paper.

The following theorem gives the almost sure limits of U (n) and W (n).

Theorem 1.3. 1. As n tends to∞,

U (n) − C log n

log log n
→ D in probability (1.7)

and

W (n) − C log n

log log n
→ 0 in probability. (1.8)

2. For almost every ω,

D = lim inf
n→∞

U (n)(ω)− C log n

log log n
< lim sup

n→∞

U (n)(ω)− C log n

log log n
= 0. (1.9)

3. The conjecture (1.2) holds and for almost every ω,

D = lim inf
n→∞

W (n)(ω)− C log n

log log n
< lim sup

n→∞

W (n)(ω)− C log n

log log n
=∞. (1.10)

Since U (n) is increasing, (1.9) also holds on the subsequence {2n}. But (1.10) fails
on the subsequence {2n} due to the fact that W (n) is not increasing. The following
theorem states the behaviours on the subsequence {2n}.

Theorem 1.4. 1. For almost every ω,

0 = lim inf
n→∞

W (2n)(ω)− C log 2n

log log 2n
< lim sup

n→∞

W (2n)(ω)− C log 2n

log log 2n
= −D. (1.11)

2. With probability one,

lim
n→∞

1

n

n∑
k=1

U (2k)(ω)− C log 2k

log log 2k
= D (1.12)

and

lim
n→∞

1

n

n∑
k=1

W (2k)(ω)− C log 2k

log log 2k
= 0. (1.13)

Using the fact that U (n) is increasing, we deduce the following Corollary from (1.12).

Corollary 1.5. For almost every ω,

lim
n→∞

1

log n log log n

( n∑
k=1

U (k)(ω)

k
+D log2 n

)
= D. (1.14)

Next, consider the case that the success probability is not necessarily the same.
Suppose that ξ(n)

1 , . . . , ξ
(n)
n are i.i.d. with

P(ξ
(n)
i = 1) = pn = 1− P(ξ

(n)
i = 0).

Use U (n,pn) and W (n,pn) to denote the the maximal length of arithmetic progressions or
of arithmetic progressions modulo n relative to ξ

(n)
1 , . . . , ξ

(n)
n respectively. The follow-

ing theorem states an interesting phenomenon that both statistics will eventually be
concentrated on a few neighbouring integer values.
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Theorem 1.6. Assume that

lim
n→∞

pn = 0, lim
n→∞

npn =∞ and lim
n→∞

2 log n

− log pn
= b (1.15)

for some 2 ≤ b ≤ ∞.

1. If b =∞, then

lim
n→∞

P
(
U (n,pn) ∈ {kn, kn + 1}

)
= 1 (1.16)

and

lim
n→∞

P
(
W (n,pn) ∈ {k′n, k′n ± 1}

)
= 1, (1.17)

where kn =
[
−2 logn+log logn

log pn

]
and k′n =

[
2 logn
− log pn

]
.

2. If b = 2, or if 2 < b <∞ and b is not an integer, then

lim
n→∞

P(W (n,pn) = [b]) = lim
n→∞

P(U (n,pn) = [b]) = 1. (1.18)

3. If b ≥ 3 and b is an integer, then

lim
n→∞

P(W (n,pn) ∈ {b, b− 1}) = lim
n→∞

P(U (n,pn) ∈ {b, b− 1}) = 1. (1.19)

If in addition u = limn→∞ n2pbn ≤ ∞ exists, then

lim
n→∞

P(U (n,pn) = b− 1) = e−
u

2(b−1) = 1− lim
n→∞

P (U (n,pn) = b) (1.20)

and

lim
n→∞

P(W (n,pn) = b− 1) = e−
u
2 = 1− lim

n→∞
P(W (n,pn) = b). (1.21)

The rest of the paper is organized as follows. In §2 and §3, we discuss the asymp-
totic distributions of U (n) and W (n), respectively, and give the proof of Theorem 1.2.
The proofs of Theorem 1.3, Theorem 1.4 and Theorem 1.6 are given in §4, §5 and §6
respectively. In §5, we also give the proof of Corollary 1.5.

2 The asymptotic distribution of U (n): Proof of Part 1 of Theorem
1.2

Suppose that 2 ≤ r ≤ n. Let

Bn = B(r)
n = {(a, s) : 1 ≤ a, s ≤ n, a+ (r − 1)s ≤ n}

=
{

(a, s) : 1 ≤ s ≤
[n− 1

r − 1

]
, 1 ≤ a ≤ n− (r − 1)s

}
.

For any (a, s) ∈ Bn, let

Aa,s = A(r)
a,s = {ξa = ξa+s = · · · = ξa+(r−1)s = 1} ∩ {a− s ≤ 0 or ξa−s = 0}.

Then

P(U (n) ≥ r) = P
(⋃

(a,s)∈Bn

Aa,s

)
. (2.1)
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Set

Ba,s = B(r)
a,s =

{
{a, a+ s, . . . , a+ (r − 1)s}, if a ≤ s;
{a− s, a, . . . , a+ (r − 1)s}, otherwise.

Let G be the graph with vertex set Bn and edges defined by (a, s) ∼ (b, t) if and only if
Ba,s ∩ Bb,t 6= ∅. Then G is a dependency graph of

{
1Aa,s

: (a, s) ∈ Bn
}

. Set I = In,r =∑
(a,s)∈Bn

P(Aa,s) and

e(n,r) =
∑

(a,s)∈Bn

∑
(b,t)∼(a,s)

P(Aa,s)P(Ab,t) +
∑

(a,s)∈Bn

∑
(b,t)∼(a,s),
(b,t)6=(a,s)

P(Aa,s ∩Ab,t).

Note that P(U (n) < r) = P
(∑

(a,s)∈Bn
1Aa,s

= 0
)
. By Theorem 1.1, we have∣∣∣P(U (n) < r)− e−I
∣∣∣ ≤ e(n,r). (2.2)

We shall estimate the value I and e(n,r).

Lemma 2.1. For any 0 < p < 1 and 2 ≤ r ≤ n, we have

pr
(n− r)2

2(r − 1)
− pr+1n

2

2r
≤ I ≤ pr n2

2(r − 1)
− pr+1 (n− r)2

2r
. (2.3)

Proof. Clearly, |Bn| = 1
2 [n−1
r−1 ]

(
2n− r + 1− (r − 1)[n−1

r−1 ]
)

. It implies that

(n− r)2

2(r − 1)
≤ |Bn| ≤

n2

2(r − 1)
. (2.4)

Note that Bn ∩ {(a, s) : a > s} =
{

(a, s) : 1 ≤ s ≤
[
n−1
r

]
, s < a ≤ n− (r − 1)s

}
. We have

(n− r)2

2r
≤ |Bn ∩ {(a, s) : a > s}| ≤ n2

2r
. (2.5)

Obviously, I = pr|Bn| − pr+1|Bn ∩ {(a, s) : a > s}|. This, together with (2.4) and (2.5),
gives (2.3).

Lemma 2.2. For any 0 < p < 1 and 2 ≤ r ≤ n, we have

e(n,r) ≤ 9
(
n3p2r−1 + n2r3p

5
3 r−1 + n2p

3
2 r−1

)
.

Proof. Let

c1 = |{(a, s, b, t) ∈ Bn ×Bn : (a, s) ∼ (b, t)}| ,
c2 = |{(a, s, b, t) ∈ Bn ×Bn : |Ba,s ∩Bb,t| ≥ 2} |

and

c3 = |{(a, s, b, t) ∈ Bn ×Bn : (a, s) ∼ (b, t), t = 2s or s = 2t}| .

Then

c1 ≤
∣∣∣{(a, s, b, t) : (a, s) ∈ Bn, 1 ≤ t ≤

[n− 1

r − 1

]
, b = a+ is− jt,

− 1 ≤ i, j ≤ r − 1
}∣∣∣ ≤ 9n3/2
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and

c3 ≤ 2 |{(a, s, b, t) : (a, s) ∈ Bn, t = 2s, b = a+ is− jt,−1 ≤ i, j ≤ r − 1}|
= 2 |{(a, s, b) : (a, s) ∈ Bn, b = a+ ks,−2r + 1 ≤ k ≤ r + 1}| ≤ 7n2.

Let us estimate c2. Suppose that |Ba,s ∩ Bb,t| ≥ 2 and x0 is the minimal number of
the set Ba,s ∩Bb,t. Then x0 = a+ is = b+ jt for some −1 ≤ i, j ≤ r− 1. If x ∈ Ba,s ∩Bb,t
and x > x0, then x = a + i′s = b + j′t for some −1 ≤ i′, j′ ≤ r − 1. It follows that
x − x0 = (i′ − i)s = (j′ − j)t. Thus t = sk1/k2 for some 1 ≤ k1, k2 ≤ r. In addition,
there is a positive integer k such that i′ − i = kt0, j

′ − j = ks0 and x− x0 = kst0, where
s0 = s/gcd(s, t) and t0 = t/gcd(s, t). Since i′ − i ≤ r, k ≤ r/t0. Similarly, k ≤ r/s0.
Therefore

|Ba,s ∩Bb,t| ≤ r/max(s0, t0) + 1.

Consequently, |Ba,s ∩ Bb,t| ≤ r/3 + 1 whenever max(s0, t0) ≥ 3. When max(s0, t0) = 2,
|Ba,s∩Bb,t| ≤ r/2+1. Actually, in this case, s = 2t or t = 2s. When max(s0, t0) = 1, s = t.
We are now in a position to show that if a 6= b and Ba,s ∩ Bb,s 6= ∅, then Aa,s ∩ Ab,s = ∅.
Assume that b > a without loss of generality. Since Ba,s∩Bb,s 6= ∅, a+is = b+js for some
−1 ≤ i, j ≤ r − 1 and hence b = a + ks for some 1 ≤ k ≤ r. Thus Aa,s ⊆ {ξa+(k−1)s = 1}
and Ab,s ⊆ {ξb−s = 0} = {ξa+(k−1)s = 0}. It implies that Aa,s ∩ Ab,s = ∅ as desired. In
view of the discussion above, we have

c2 ≤|{(a, s, b, t) : (a, s) ∈ Bn, t = sk1/k2, b = a+ is− jt,
− 1 ≤ i, j ≤ r − 1, 1 ≤ k1, k2 ≤ r}| ≤ 9n2r3/4

and

e(n,r) ≤ 2c1p
2r−1 + c2p

5r
3 −1 + c3p

3r
2 −1 ≤ 9

(
n3p2r−1 + n2r3p

5
3 r−1 + n2p

3
2 r−1

)
as desired.

For any integer 2 ≤ r ≤ n, let

λn,r = λn,r,p =
n2pr(p+ qr)

2r(r − 1)
. (2.6)

Lemma 2.3. For any 0 < p < 1, we have

max
2≤r≤n

|P(U (n) < r)− e−λn,r | = O
( log4 n log log n

n

)
. (2.7)

Proof. Lemma 2.1 and (2.6) imply that∣∣e−In,r − e−λn,r | ≤ |In,r − λn,r
∣∣ ≤ 2npr. (2.8)

Let rn =
[
−2 logn

log p + 2 log logn
log p + log log logn

2 log p

]
and Rn =

[
−3 logn

log p

]
. By (2.2), (2.8) and Lemma

2.2,

max
{∣∣∣P(U (n) < r)− e−λn,r

∣∣∣ : rn ≤ r ≤ Rn
}

≤ max
{∣∣∣P(U (n) < r)− e−In,r

∣∣∣+
∣∣e−In,r − e−λn,r

∣∣ : rn ≤ r ≤ Rn
}

≤ max
{
e(n,r) + 2npr : rn ≤ r ≤ Rn

}
≤ 9
(
n3p2rn−1 + n2R3

np
5
3 rn−1 + n2p

3
2 rn−1

)
+ 2nprn

= O
( log4 n log log n

n

)
. (2.9)

EJP 18 (2013), paper 79.
Page 7/21

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v18-2018
http://ejp.ejpecp.org/


On the maximal length

On the other hand, it is easy to check that e−λn,rn = e−O(logn
√

log logn) = o(n−1) and

1 − e−λn,Rn = 1 − e−O( 1
n log n ) = o(n−1). Note that P(U (n) < r) and e−λn,r are both

increasing functions of r. Hence when r < rn,

|P(U (n) < r)− e−λn,r | ≤ P(U (n) < r) + e−λn,r ≤ P(U (n) < rn) + e−λn,rn

≤ |P(U (n) < rn)− e−λn,rn |+ 2e−λn,rn = O
( log4 n log log n

n

)
.

Similarly, when r > Rn,

|P(U (n) < r)− e−λn,r | ≤ 1− P(U (n) < Rn) + 1− e−λn,Rn

≤ |P(U (n) < Rn)− e−λn,Rn |+ 2(1− e−λn,Rn ) = O
( log4 n log log n

n

)
.

This completes the proof of our lemma.

Proof of Part 1 of Theorem 1.2. Let r = hn + x. For convenience, set

εn,x =
∣∣∣−q log p

4
px − λn,r

∣∣∣ = px
∣∣∣−q log p

4
− q log n

2(r − 1)
− p log n

2r(r − 1)

∣∣∣.
Then ∣∣∣ exp

(−q log p

4
px
)
P(U (n) < hn + x)− 1

∣∣∣
≤ exp

(−q log p

4
px
) ∣∣∣P(U (n) < r)− e−λn,r

∣∣∣+ |exp(εn,x)− 1| . (2.10)

Clearly, pagn = loga n. Since a < 1, we have

exp
(−q log p

4
pagn

)
= exp

(
−q log p

4 log1−a n
log n

)
= o(n1/3).

Thus by Lemma 2.3, we have

max
x∈Ln

exp
(−q log p

4
px
) ∣∣∣P(U (n) < r

)
− e−λn,r

∣∣∣
= o(n1/3)O(n−1 log4 n log log n) = o(n−1/2). (2.11)

It is easy to verify that

max
x>−gn

εn,x = p−gnO(1) = O(log−1 n) (2.12)

and

max
agn≤x≤−gn

εn,x = pagnO
( log log n

log n

)
= O

( log log n

log1−a n

)
. (2.13)

Now (1.3) follows from (2.10)–(2.13).

3 The asymptotic distribution ofW (n): Proof of Part 2 of Theorem
1.2

Suppose that 2 ≤ r ≤ n. For any 1 ≤ a, s ≤ n, let

Ãa,s = Ã(n,r)
a,s =

{
ξa = 0,

r∏
i=1

ξa+is (modn) = 1
}
. (3.1)
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Let
B̃n = B̃(r)

n = {(a, s) : 1 ≤ a ≤ n, 1 ≤ s ≤ [n/2], gcd(n, s) < n/r}

and

A1 =
⋃

(a,s)∈B̃n

Ãa,s. (3.2)

Set Ca,s = {a, a + s (modn), a + 2s (modn), . . . }. Then Ca,s =
{
a, a + s (modn), . . . , a +

(n/gcd(s, n)− 1) s (modn)
}

and |Ca,s| = n/ gcd(s, n). Set

A2 =
⋃

s|n,s≤n/r,1≤a≤s

{ξi = 1 : i ∈ Ca,s}. (3.3)

Lemma 3.1. For any 2 ≤ r ≤ n, we have

P(A1) ≤ P(W (n) ≥ r) ≤ P(A1) + P(A2). (3.4)

Proof. Put
W (n)
s = max

1≤i≤n
W

(n)
i,s ,

which stands for the maximal length of arithmetic progressions modulo n in Σn with
difference s. For any m ≥ 0,

∏m
i=0 ξa+is (modn) = 1 if and only if

∏m
i=0 ξb+i(n−s) (modn) = 1,

where b = a+ms (modn). In addition, gcd(s, n) = gcd(n− s, n). Hence W (n)
s = W

(n)
n−s for

all 1 ≤ s ≤ n. Consequently,

W (n) = max
1≤s≤n

W (n)
s = max

1≤s≤[n/2]
W (n)
s .

For any 1 ≤ a, b ≤ n, Ca,s ∩ Cb,s = ∅ or Ca,s = Cb,s. Furthermore, Ca,s = Cb,s if and
only if b = a+k ·gcd(s, n) for some integer k. Thus {1, . . . , n} is the disjoint union of Ca,s
with 1 ≤ a ≤ gcd(s, n). It follows that

W (n)
s = max

1≤a≤gcd(s,n)
W̃ (n)
a,s .

where W̃ (n)
a,s = max

i∈Ca,s

W
(n)
i,s . Note that {W̃ (n)

a,s ≥ r} = {ξi = 1 : i ∈ Ca,s}when n/ gcd(s, n) =

r, and {
W̃ (n)
a,s ≥ r

}
=
(⋃

i∈Ca,s

Ãi,s

)
∪ {ξi = 1 : i ∈ Ca,s}

provided n/ gcd(s, n) > r. We deduce that{
W (n) ≥ r

}
=
(⋃

(i,s)∈B̃n

Ãi,s

)
∪
(⋃

(a,s)∈B′n
{ξi = 1 : i ∈ Ca,s}

)
,

whereB′n = {(a, s) : 1 ≤ a ≤ gcd(s, n), 1 ≤ s ≤ [n/2], n ≥ r · gcd(s, n)}. This, together with
the fact that Ca,s = Ca,gcd(s,n), yields that

{W (n) ≥ r} = A1 ∪A2. (3.5)

It implies (3.4) immediately.

We next show that P(A2) is small. Then by Lemma 3.1. P(W (n) ≥ r) is approximately
equal to P(A1). Set

B̃a,s = B̃(n,r)
a,s = {a, a+ s (modn), . . . , a+ rs (modn)}. (3.6)
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Define G̃ to be the graph with vertex set B̃n and edges defined by (a, s) ∼ (b, t) if and
only if B̃a,s ∩ B̃b,t 6= ∅. Then G̃ is a dependency graph of {1Ãa,s

: (a, s) ∈ B̃n}. Put

Ĩ = Ĩn,r =
∑

(a,s)∈B̃n
P(Ãa,s) and

ẽ(n,r) =
∑

(a,s)∈B̃n

∑
(b,t)∼(a,s)

P(Ãa,s)P(Ãb,t) +
∑

(a,s)∈B̃n

∑
(b,t)∼(a,s),
(b,t) 6=(a,s)

P(Ãa,s ∩ Ãb,t).

Then by Theorem 1.1, we have

|P(Ac1)− e−Ĩ | ≤ ẽ(n,r). (3.7)

The estimates of P(A2), Ĩ and ẽ(n,r) are given in the following two lemmas.

Lemma 3.2. For any 0 < p < 1 and 2 ≤ r ≤ n, we have

P(A2) ≤ npr

qr
(3.8)

and (
1− (r + 1)2

2n

)qn2pr

2
≤ Ĩ ≤ qn2pr

2
. (3.9)

Proof. We see at once that

P(A2) ≤
∑

s|n,s≤n/r

sp
n
s ≤

n∑
i=r

n

i
pi ≤ n

r

n∑
i=r

pi ≤ npr

qr
.

Clearly,
{

1 ≤ s ≤ [n2 ] : gcd(n, s) ≥ n
r

}
⊆
{
s = n

i j : 2 ≤ i ≤ r, 1 ≤ j ≤ [ i2 ]
}

. It implies that

n2

2
≥
∣∣B̃n∣∣ ≥ n([n

2

]
−

r∑
i=2

[ i
2

])
≥ n2

2

(
1− (r + 1)2

2n

)
.

Now the fact that Ĩ = |B̃n|qpr yields (3.9) immediately.

Lemma 3.3. For any 0 < p < 1 and 2 ≤ r ≤ n, we have

ẽ(n,r) ≤ 4
(
n3r2p2r−1 + n2r5p

3
2 r−1 + nr6pr

)
.

Proof. Let H =
{

(a, s, b, t) ∈ B̃n × B̃n : (a, s) ∼ (b, t)
}

, c̃1 = |H|,

c̃2 =
∣∣{(a, s, b, t) ∈ H : |B̃a,s ∩ B̃b,t| ≥ 2

}∣∣
and

c̃3 =
∣∣{(a, s, b, t) ∈ H : (a, s) 6= (b, t), |B̃a,s ∩ B̃b,t| > r/2 + 1, Ãa,s ∩ Ãb,t 6= ∅

}∣∣.
Then

c̃1 ≤
∣∣{(a, s, b, t) : (a, s) ∈ B̃n, 1 ≤ t ≤ [n/2], b = a+ is− jt (modn),

0 ≤ i, j ≤ r
}∣∣ ≤ n3r2. (3.10)

Suppose that |B̃a,s ∩ B̃b,t| ≥ 2. Then there are 0 ≤ j1 < j2 ≤ r and x, y ∈ B̃a,s such
that b+ j1t (modn) = x and b+ j2t (modn) = y. Hence (j2 − j1)t− kn = y − x for some
0 ≤ k ≤ j2 − j1 and b = x− j1t (modn). Therefore

c̃2 ≤
∣∣{(a, s, b, t) : (a, s) ∈ B̃n, t = (kn+ y − x)/i, b = x− jt (modn),

1 ≤ i ≤ r, 0 ≤ j, k ≤ r, x, y ∈ B̃a,s
}∣∣ ≤ 3n2r5. (3.11)
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To estimate c̃3, we first prove that if a 6= b and (a, s) ∼ (b, s), then Ãa,s ∩ Ãb,s = ∅. Set

j∗ = min
{

0 ≤ j ≤ r : b+ js (modn) ∈ B̃a,s
}
.

Then there is 0 ≤ i ≤ r such that b+j∗s ≡ a+is (modn). It follows that b+(j∗−1)s ≡ a+

(i− 1)s (modn). By the definition of j∗, j∗ = 0 or i = 0. If j∗ = 0, then b = a+ is (modn).
But i 6= 0 since a 6= b. This gives Ãa,s ∩ Ãb,s ⊆ {ξa+is (modn) = 1, ξb = 0} = {ξb = 1, ξb =

0} = ∅. Similarly, Ãa,s ∩ Ãb,s = ∅ when i = 0.
Next suppose that s 6= t, |B̃a,s∩ B̃b,t| > r/2+1 and |B̃a,s∩ B̃b,t| = {a+ i0s (modn), . . . ,

a + iks (modn)} with 0 ≤ i0 < i1 < · · · < ik ≤ r. Then there is l such that il+1 − il = 1.
It follows that there are j1 6= j2 such that 0 ≤ j1, j2 ≤ r, a + ils ≡ b + j1 (modn) and
a + il+1s ≡ b + j2 (modn). Accordingly, s = it (modn) with i = j2 − j1. If i = 1, then
s = t. If i = −1, then s = n− t and hence s = t = n/2 by the fact that 1 ≤ s, t ≤ n/2. The
contradiction shows that 1 < |i| ≤ r. Similarly, t = js (modn) for some 1 < |j| ≤ r. It
follows that s = ijs (modn), that is (ij − 1)s = vn for some |v| ≤ r2/2. Consequently,

c̃3 ≤
∣∣{(a, s, b, t) : s = vn/(ij − 1), t = js (modn), b = a+ ls−mt (modn),

1 ≤ a ≤ n, 1 < |i|, |j| ≤ r, |v| ≤ r2/2, 0 ≤ l,m ≤ r
}∣∣ ≤ 4nr6. (3.12)

Thus our result holds by noting that ẽ(n,r) ≤ 2c̃1p
2r−1 + c̃2p

3r
2 −1 + c̃3p

r.

For any integer 2 ≤ r ≤ n, let

µn,r = µn,r,p = qn2pr/2. (3.13)

Lemma 3.4. For any 0 < p < 1, we have

max
2≤r≤n

|P(W (n) < r)− e−µn,r | = O
( log7 n

n

)
. (3.14)

Proof. Combining (3.13) with (3.9) gives that

|e−Ĩn,r − e−µn,r | ≤ |Ĩn,r − µn,r| ≤ qnprr2. (3.15)

Set rn =
[−2 logn

log p + log logn
log p + log 2−log q

log p −1
]

and Rn =
[−3 logn

log p

]
. Lemma 3.3, together with

(3.4), (3.7), (3.8) and (3.15), yields that

max
{
|P(W (n) < r)− e−µn,r | : rn ≤ r ≤ Rn

}
≤ max

{
|P(W (n) < r)− e−Ĩn,r |+ |e−Ĩn,r − e−µn,r | : rn ≤ r ≤ Rn

}
≤ max

{
ẽ(n,r) + npr/(qr) + qnprr2 : rn ≤ r ≤ Rn

}
= O(n−1 log7 n). (3.16)

Furthermore, it is easy to check that e−µn,rn = o(n−1) and 1− e−µn,Rn = O(n−1). There-
fore (3.14) holds by noting that P(W (n) < r) and e−µn,r are both increasing functions of
r.

Proof of Part 2 of Theorem 1.2. Let r = h′n + x. Then µn,r = qpx/2. We conclude
from (3.14) that

max
x∈L′n

∣∣ exp(qpx/2)P(W (n) < h′n + x)− 1
∣∣

≤ exp
(qpgn

2

)
O
( log7 n

n

)
= O

( log7 n

n1− q
2

)
and completes our proof.
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4 Almost sure limits: Proof of Theorem 1.3

We first list two estimates that will be used in the proof of (1.10) and (1.11). Analysis
similar to that in the proof of Lemma 3.3 shows that for any m,n,∣∣{(a, s, b, t) ∈ B̃(rm)

m × B̃(rn)
n : |B̃(m,rm)

a,s ∩ B̃(n,rn)
b,t | ≥ 1

}∣∣ ≤ m2nrmrn (4.1)

and ∣∣{(a, s, b, t) ∈ B̃(rm)
m × B̃(rn)

n : |B̃(m,rm)
a,s ∩ B̃(n,rn)

b,t | ≥ 2
}∣∣ ≤ 3m2r2

mr
3
n. (4.2)

Proof of Part 1 of Theorem 1.3. By (2.1), we have

P(U (n) ≥ r) ≤ I. (4.3)

For any ε > 0, (4.3) and (2.3) imply that

P(U (n) ≥ C log n+ (1− ε)D log logn) = O
(

log−ε n
)
. (4.4)

On the other hand, by (2.6) and (2.7),

P(U (n) < C log n+ (1 + ε)D log log n) = e−Θ(logε n) +O
( log4 n log log n

n

)
. (4.5)

Hence (1.7) holds.
In view of (3.14), we have

P(W (n) < C log n+ εD log log n) = e−Θ(logε n) +O
( log7 n

n

)
→
{

1, ε < 0;
0, ε > 0.

From this, (1.8) follows immediately.

Part 2. By (4.5),
∑∞
k=1P(U (2k) < C log 2k + (1 + ε)D log log 2k) <∞ for any ε > 0. One

then deduces from the Borel-Cantelli Lemma that

P(U (2k) < C log 2k + (1 + ε)D log log 2k i.o.) = 0.

It follows that for almost every ω, there is K(ω) such that for k ≥ K(ω),

U (2k)(ω) ≥ C log 2k + (1 + ε)D log log 2k. (4.6)

If n > 2K(ω), then 2k ≤ n < 2k+1 for some k ≥ K(ω). Hence U (2k)(ω) ≤ U (n)(ω) ≤
U (2k+1)(ω). This, together with (4.6), gives that

U (n)(ω) ≥ C log n− C log 2 + (1 + ε)D log log n.

Since ε > 0 was chosen arbitrarily, we have that

lim inf
n→∞

U (n)(ω)− C log n

log log n
= D,

by considering (1.7).
Let Tk be the maximal length of arithmetic progressions relative to ξ2k−1 , . . . , ξ2k−1.

Then T1, T2, . . . are independent. In addition, Tk have the same distribution as U (2k−1).
By (2.7),

P(Tk ≥ C log 2k) = P(U (2k−1) ≥ C log 2k) ≥ 1− e−λn,r −O(
log4 n log log n

n
)
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with n = 2k−1 and r = [C log 2k] + 1. Note that λn,r = Θ(1/ log n). Hence

P(Tk ≥ C log 2k) = Θ(1/ log n) = Θ(1/k).

It follows that
∑∞
k=1P(Tk ≥ C log 2k) = ∞. By the Borel-Cantelli Lemma, P(Tk ≥

C log 2k i.o.) = 1. Consequently,

lim sup
k→∞

U (2k) − C log 2k

log log 2k
≥ 0 (4.7)

by noting that U (2k) ≥ Tk. On the other hand, (4.4) yields that

∞∑
k=1

P(U (2k) ≥ C log 2k + (1− ε)D log log 2k) <∞

whenever ε > 1. Hence

lim sup
k→∞

U (2k) − C log 2k

log log 2k
≤ 0. (4.8)

Combining (4.7) with (4.8) we conclude that

lim sup
n→∞

U (n) − C log n

log log n
= 0

by the fact that U (n) is increasing. This completes the proof of (1.9).

Part 3. In view of (1.1), to prove (1.2), it remains to prove that

lim sup
n→∞

W (n)

C log n
≤ 3

2
a.s.

We conclude from (3.2) that

P(A1) ≤ Ĩ . (4.9)

For any ε > 0, by (4.9), (3.8) and (3.9),

P(W (n) > (1 + ε)C log n) = O(n−2ε) +O
(n−1−2ε

log n

)
. (4.10)

Hence
∞∑
n=1

P(W (n) > (1 + ε)C log n) <∞

whenever ε > 1
2 . Therefore, lim supn→∞

W (n)

C logn ≤
3
2 a.s. as desired.

By (1.2), (1.9) and the fact that W (n) ≥ U (n), to prove (1.10), we only need to show
that

lim inf
n→∞

W (n) − C log n

log log n
≤ D a.s. (4.11)

Fix any 0 < ε < 1. Let rn = [C log n + εD log log n], Hn = {W (n) < rn} and Xk =∑2k
n=k+1 1Hn

. Then

P

( 2k⋃
n=k+1

Hn

)
= P(Xk > 0) ≥ (EXk)2

EX2
k

=

[∑2k
n=k+1P(Hn)

]2∑2n
m,n=k+1P(HmHn)

. (4.12)
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Obviously, µn,rn = O(logε n) = o(log n/4). Together with (3.14), it implies that

2k∑
n=k+1

P(Hn) ≥
2k∑

n=k+1

e−µn,rn −O(log7 k) = Ω(k3/4). (4.13)

Set En = {(a, s) : 1 ≤ a ≤ n, [ 3n
C logn ] + 1 ≤ s ≤ [n2 ], gcd(n, s) < n

rn
}. Combining (3.2) with

(3.5) yields that

P
[
(HmHn)c

]
≥ P

[(⋃
(a,s)∈Em

Ã(m,rm)
a,s

)
∪
(⋃

(b,t)∈En

Ã
(n,rn)
b,t

)]
.

Let V be the graph with vertex set Vk = {(a, s, n) : k + 1 ≤ n ≤ 2k, (a, s) ∈ En} and edges

defined by (a, s,m) ∼ (b, t, n) if and only if B̃(m,rm)
a,s ∩ B̃(n,rn)

b,t 6= ∅. Then V is a dependency

graph of {1
Ã

(n,rn)
a,s

: (a, s, n) ∈ Vk}. Write Jm =
∑

(a,s)∈Em
P(Ã

(m,rm)
a,s ). By using the

Stein’s method, we have

P(HmHn) ≤ e−Jm−Jn + ẽ(m,rm) + ẽ(n,rn) + 2ẽ(m,rm,n,rn), (4.14)

where

ẽ(m,rm,n,rn) =
∑

(a,s,m)∼(b,t,n)

[
P
(
Ã(m,rm)
a,s

)
P
(
Ã

(n,rn)
b,t

)
+ P

(
Ã(m,rm)
a,s ∩ Ã(n,rn)

b,t

)]
.

It follows that

2k∑
m,n=k+1

P(HmHn) ≤
( 2k∑
n=k+1

e−Jn
)2

+ Lk, (4.15)

where Lk = 2k
∑2k
n=k+1 ẽ

(n,rn) + 2
∑2k
m,n=k+1 ẽ

(m,rm,n,rn). One deduces from (3.9) that

Jn ≥ µn,rn
(

1− (rn+1)2

2n − 6
C logn

)
. Hence

2k∑
n=k+1

e−Jn = eO(logε−1 k)
2k∑

n=k+1

e−µn,rn (4.16)

by noting that µn,rn = O(logε n). If we have showed that Lk = O(k log8 k), then

limk→∞P(
⋃2k
n=k+1Hn) = 1 and hence (4.11) holds, in view of (4.12)–(4.16).

We are now in a position to show that Lk = O(k log8 k). By Lemma 3.3,

k

2k∑
n=k+1

ẽ(n,rn) = O(k log7 k).

Fix any (a, s,m) ∈ Vk, define γ(a, s,m) to be the set of all triples (b, t, n) ∈ Vk such that

|B̃(n,rn)
b,t ∩ B̃(m,rm)

a,s | > C log (2k)/2. Suppose that k is sufficiently large and (b, t, n) ∈
γ(a, s,m). Let il = min{j ≥ 0 : b + jt > ln}, v = max{l : il ≤ rm} and Zl =

{b+ it− ln : il ≤ i ≤ min(il+1 − 1, rn)}. Then B̃
(n,rn)
b,t is the disjoint union of Zi with

0 ≤ i ≤ v. Since [ 3n
C logn ] + 1 ≤ t ≤ [n2 ], |Zi| ≤ C log n/3 + 1 for all i ≤ v, and |Zi| ≥ 2 for

0 < i < v. Thus |B̃(n,rn)
b,t | = rn + 1 ≥ 2(v − 1). It follows that v < C log (2k)/2 − 3. Since

|B̃(n,rn)
b,t ∩ B̃(m,rm)

a,s | > C log (2k)/2 and |Zi| ≤ C log n/3 + 1, there are l and w such that

w 6= l, |Zl ∩ B̃(m,rm)
a,s | ≥ 2 and |Zw ∩ B̃(m,rm)

a,s | ≥ 1. That is to say, there are 0 ≤ i, j, ` ≤ rn
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and x, y, z ∈ B̃a,s,m such that b + it − ln = x, b + jt − ln = y and b + `t − wn = z. This
leads to (j − i)t = y − x and (w − l)n = (`− i)t+ x− z. Therefore

|γ(a, s,m)| ≤
∣∣{(b, t, n) : t = (y − x)/i, n = (`t+ x− z)/j, b+ wt (modn) = x,

|i|, |j|, |`|, |w| ≤ C log 2k, i, j 6= 0, x, y, z ∈ B̃a,s,m
}∣∣ = O

(
log7 k

)
.

Combining (4.1) with (4.2), one then deduces that

2k∑
m,n=k+1

ẽ(m,rm,n,rn) ≤
2k∑

m,n=k+1

(
2prm+rn−1m2nrmrn + 3prm+rn−C log(2k)/2m2r2

mr
3
n

)
+

∑
(a,s,m)∈Vk

prm |γ(a, s,m)| = O
(
k log8 k

)
as desired. This completes the proof of (1.10).

5 Behaviour of certain subsequences: Proof of Theorem 1.4

We first give some estimates that will be used in the proof of Theorem 1.4. Analysis
similar to that in the proof of Lemma 2.2 shows that for any m, n and 2 ≤ rm ≤ rn, with
H = {(a, s, b, t) : (a, s) ∈ B(rm)

m , (b, t) ∈ B(rn)
n },

|{(a, s, b, t) ∈ H : |B(rm)
a,s ∩B

(rn)
b,t | ≥ 1}| ≤ 9m2n/2 (5.1)

and

|{(a, s, b, t) ∈ H : |B(rm)
a,s ∩B

(rn)
b,t | ≥ 2}| ≤ 9m2rmr

2
n/4. (5.2)

We can also show that if |B(rm)
a,s ∩B(rn)

b,t | > rn/2+1 andA(rm)
a,s ∩A(rn)

b,t 6= ∅, then (b, t) = (a, s).
Therefore when 2 ≤ rm ≤ rn, we have∣∣{(a, s, b, t) ∈ H : |B(rm)

a,s ∩B
(rn)
b,t | > rn/2 + 1, A(rm)

a,s ∩A
(rn)
b,t 6= ∅

}∣∣ ≤ m2/rm. (5.3)

Lemma 5.1. Suppose that (a, s) ∈ B̃
(rm)
m and (b, t) ∈ B̃

(rn)
n . If n ≥ 2m, rn ≥ 36 and

rnt > 3n, then
∣∣B̃(m,rm)

a,s ∩ B̃(n,rn)
b,t

∣∣ < 3rn/4.

Proof. If 1 ≤ x ≤ m, A = {x, x + t, . . . , x + kt} ⊆ {1, . . . , n} and x + (k + 1)t > n, then
k ≥ 1 and x+ t(k + 1)/2 > n/2 ≥ m. Thus |A ∩ {1, . . . ,m}| ≤ (k + 1)/2 when k is odd, or
|A ∩ {1, . . . ,m}| ≤ k/2 + 1 when k is even. Hence |A ∩ {1, . . . ,m}|/|A| ≤ 2/3.

Since t > 3n/rn, there are h ≥ 3 and 0 ≤ i1 < · · · < ih < rn such that b + (i1 + 1)t >

n ≥ b+ i1t, . . . , b+ (ih + 1)t > hn ≥ b+ iht and b+ rnt ≤ (h+ 1)n. Set i0 = −1, ih+1 = rn
and

Hj =
{
b+ (ij + 1)t (modn), b+ (ij + 2)t (modn), . . . , b+ ij+1t (modn)

}
.

According to the above discussion, we have |Hj ∩ {1, . . . ,m}| ≤ 2|Hj |/3 provided 0 ≤
j ≤ h− 1, and v = |Hh ∩ {1, . . . ,m}| ≤ m/t+ 1. Clearly, B̃(n,rn)

b,t =
⋃h
j=0Hj and B̃(m,rm)

a,s ⊆
{1, . . . ,m}. It implies that∣∣B̃(m,rm)

a,s ∩ B̃(n,rn)
b,t

∣∣
rn

≤
2
3

∑h−1
j=0 |Hj |+ v

rn
≤ 2(ih + 1 + v)

3rn
+

v

3rn

≤ 2

3
+

m

3rnt
+

1

rn
<

3

4

as claimed.
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Before come to the proof of Theorem 1.4, we give some equivalent statements of
(1.12) and (1.13). The proof of these equivalent statements will use the following
Lemma.

Lemma 5.2. Suppose that

bn > 0,
∑
n

bn =∞, lim
n→∞

∑n
k=1 bk

nmax1≤k≤n bk
= 1 (5.4)

and

a ≤ lim inf
n→∞

an
bn
≤ lim sup

n→∞

an
bn

<∞. (5.5)

Then

lim
n→∞

∑n
k=1 ak∑n
k=1 bk

= a (5.6)

if and only if for any c > a,

lim
n→∞

|{1 ≤ k ≤ n : ak/bk < c}|
n

= 1. (5.7)

Proof. We first prove the sufficiency. By (5.5), there is d such that ak/bk < d for all k. For
any c > a, let An = {1 ≤ k ≤ n : ak/bk ≥ c}. Then (5.7) implies that limn→∞ |An|/n = 0.
Hence ∑n

k=1 ak∑n
k=1 bk

≤ c+
(d− c)

∑
k∈An

bk∑n
k=1 bk

≤ c+
(d− c)|An|max1≤k≤n bk∑n

k=1 bk
→ c.

Since this is true for any c > a, we have that lim supn→∞
∑n
k=1 ak/

∑n
k=1 bk ≤ a. This,

together with (5.4) and (5.5), gives (5.6).

We next show the necessity. By (5.5), for any ε > 0, there is K such that ak/bk > a−ε
for all k ≥ K. For any c > a, let Bn = {K < k ≤ n : ak/bk < c}. Then for n > K,∑n

k=1 ak∑n
k=1 bk

≥ c+

∑K
k=1(ak − cbk) + (a− ε− c)

∑
k∈Bn

bk∑n
k=1 bk

≥ c+

∑K
k=1(ak − cbk) + (a− ε− c)|Bn|max1≤k≤n bk∑n

k=1 bk
.

Letting n→∞, we get that

lim inf
n→∞

|Bn|max1≤k≤n bk∑n
k=1 bk

≥ c− a
c+ ε− a

.

The arbitrary of ε > 0, together with (5.4), implies (5.7) and completes our proof.

Suppose that (5.5) holds. In addition, suppose that bncn > 0,
∑
n bncn = ∞ and

limn→∞
∑n
k=1 bkck/(nmax1≤k≤n bkck) = 1. Lemma 5.2 shows that limn→∞

∑n
k=1 akck∑n
k=1 bkck

= a

if and only if (5.7) holds for all c > a. Particularly, by letting cn = 1/bn, we see that
limn→∞

1
n

∑n
k=1

ak
bk

= a if and only if (5.7) holds for all c > a. Thus if (5.4) and (5.5) hold,

then limn→∞
∑n
k=1 ak/

∑n
k=1 bk = a if and only if limn→∞

1
n

∑n
k=1

ak
bk

= a, and also if and
only if (5.7) holds for all c > a.
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Proposition 5.3. If (1.9) holds, then (1.12) holds if and only if

lim
n→∞

1

n log n

( n∑
k=1

U (2k)(ω) +
log 2

log p
n2

)
= D, (5.8)

and also if and only if for any 1 > ε > 0,

lim
n→∞

1

n

n∑
k=1

1{U(2k)<C log 2k+D(1−ε) log log 2k}(ω) = 1. (5.9)

Proof. Choose an = U (2n)(ω)−C log 2n and bn = log log max(2n, 4). Then (5.5) holds with
a = D. It is easy to check that

n∑
k=1

ak =

n∑
k=1

U (2k)(ω) +
log 2

log p
n2 +

log 2

log p
n

and
n∑
k=1

bk =

n∑
k=1

log k + n log log 2 + log 2.

Since n log n − n ≤
∑n
k=1 log k ≤ n log n, limn→∞

∑n
k=1 bk/(n log n) = 1 and (5.4) holds.

We also conclude that limn→∞
∑n
k=1 ak/

∑n
k=1 bk = D if and only if (5.8) holds. By

Lemma 5.2, our result holds.

The similar conclusion can be drawn for the sequence {W (2k)(ω)}.

Proposition 5.4. If (1.11) holds, then (1.13) holds if and only if

lim
n→∞

1

n log n

( n∑
k=1

W (2k)(ω) +
log 2

log p
n2

)
= 0, (5.10)

and also if and only if for any ε > 0,

lim
n→∞

1

n

n∑
k=1

1{W (2k)<C log 2k−εD log log 2k}(ω) = 1. (5.11)

Proof of Part 1 of Theorem 1.4. By (3.14), for any 0 < ε < 1,

P
(
W (2n) < C log 2n + εD log log 2n

)
= e−Θ(nε) +O(2−nn7)

and

P
(
W (2n) > C log 2n − (1 + ε)D log log 2n

)
= Θ

(
n−(1+ε)

)
.

By the Borel-Cantelli Lemma,

lim inf
n→∞

W (2n) − C log 2n

log log 2n
≥ 0 and lim sup

n→∞

W (2n) − C log 2n

log log 2n
≤ −D.

In view of (1.8), it remains to show that

lim sup
n→∞

W (2n) − C log 2n

log log 2n
≥ −D. (5.12)

For any 0 < ε < 1, let rn = [C log n− εD log log n] and

Fn = {(a, s) : 1 ≤ a ≤ n, 3n/rn < s ≤ [n/2], gcd(n, s) < n/rn}.
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To show (5.12), it suffices to show that limn→∞P
(⋃2k

n=k+1

{
W (2n) ≥ r2n

} )
= 1. What

is left is to show that limn→∞
(⋃

(a,s,m)∈Gk
Ã

(m,rm)
a,s

)
= 1, where Gk =

{
(a, s, 2n) : k +

1 ≤ n ≤ 2k, (a, s) ∈ F2n

}
. Let Xk =

∑
(a,s,m)∈Gk

1
Ã

(m,rm)
a,s

. It is easy to verify that

EXk = Θ(k1−ε). By Lemma 3.3, Lemma 5.1, (4.1) and (4.2), we have

Var(Xk) ≤
∑

(a,s,m)∈Gk

P
(
Ã(m,rm)
a,s

)
+ 2

2k∑
n=k+1

ẽ(2n,r2n )

+ 2
∑

k+1≤m<n≤2k

(
pr2m+r2n−122m2nr2mr2n + 3pr2m+ 1

4 r2n 22mr2
2mr3

2n

)
=O(k1−ε).

Consequently,

P
(⋃

(a,s,m)∈Gk

Ã(m,rm)
a,s

)
= P(Xk > 0) ≥ (EXk)2

Var(Xk) + (EXk)2
→ 1,

and complete the proof of (1.11).

Part 2. We now come to prove (1.12). By Proposition 5.3, we only need to show (5.9).
Let rk =

[
C log 2k +D(1− ε) log log 2k

]
, Vn =

{
(a, s, k) : 1 ≤ k ≤ n, (a, s) ∈ B

(rk)

2k

}
and

Λ(n) =
∑

(a,s,k)∈Vn
1
A

(rk)
a,s

. Then it suffices to show that limn→∞ Λ(n)/n = 0 a.s. Clearly,

EΛ(n) =
∑n
k=1 I2k,rk = O(n1−ε) and Var[Λ(n)] is less than the sum of prk+rm−|B

(rk)
a,s ∩B(rm)

b,t |

with (a, s, k), (b, t,m) ∈ Vn, B(rk)
a,s ∩B(rm)

b,t 6= ∅ and A(rk)
a,s ∩A(rm)

b,t 6= ∅. By (5.1)–(5.3),

Var[Λ(n)] =
∑

1≤i≤j≤n

O
(
2−jij + 2−ji2j3 + 22i−2jj1−εi−1

)
=O

( ∞∑
j=1

2−jj6

)
+O

( n∑
j=1

j−ε
j−1∑
k=0

2−2kj(j − k)−1

)

=O(1) +

∞∑
k=0

2−2k(k + 1)O

( n∑
j=1

j−ε
)

= O(n1−ε).

Then by the Tchebychev inequality, for any δ > 0,

∞∑
n=1

P(|Λn/n− E(Λn/n)| > δ) =

∞∑
n=1

O
( 1

n1+εδ2

)
<∞.

The Borel-Cantelli Lemma yields that Λn/n→ 0 a.s.. Hence (5.9) holds as desired.
As to (1.13), by Proposition 5.4, we need only to show (5.11). The proof is completed

by showing that

lim
n→∞

1

n

n∑
k=1

∑
(a,s)∈F

2k

1
Ã

(2k,r
2k

)

a,s

= 0 a.s. (5.13)

and

lim
n→∞

1

n

n∑
k=1

1Hk
= 0 a.s., (5.14)

where Hk =
{
W (2k) ≥ r2k

}
\
(⋃

(a,s)∈F
2k
Ã

(2k,r
2k

)
a,s

)
. Analysis similar to that in the

proof (5.9) shows (5.13). Note that P(Hk) = O(k−1−ε). By the Borel-Cantelli Lemma,
limk→∞ 1Hk

= 0 a.s. which gives (5.14) and completes our proof.
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Proof of Corollary 1.5. By Proposition 5.3, (5.8) holds. Let cn = [log n/ log 2]. Then
2cn ≤ n < 2cn+1. For any integers 1 ≤ a ≤ b,

log
b+ 1

a
=

∫ b+1

a

1

x
dx ≤

b∑
i=a

1

i
≤
∫ b

a−1

1

x
dx = log

b

a− 1
.

Thus
n∑
k=1

U (k)

k
≥
cn−1∑
i=0

U (2i)
2i+1−1∑
j=2i

1

j
≥ log 2

cn−1∑
i=0

U (2i)

and
n∑
k=2

U (k)

k
≤

cn∑
i=0

U (2i+1)
2i+1∑

j=2i+1

1

j
≤ log 2

cn+1∑
i=1

U (2i).

We conclude from (5.8) that

lim
n→∞

1

cn log cn

(
1

log 2

n∑
k=1

U (k)

k
+

log 2

log p
c2n

)
= D a.s.

It follows (1.14) immediately.

6 The asymptotic distributions when pn = o(1): Proof of Theorem
1.6

Proof of Part 1 of Theorem 1.6. Set qn = 1 − pn. Clearly, pkn+1
n ≤ n−2 log n ≤ pknn .

Similar to (2.9) shows that there is a constant c > 0 such that

max
0≤r≤2

∣∣∣P(U (n,pn) < kn + r
)
− e−λn,kn+r,pn

∣∣∣ ≤ cp−3
n n−1 log2 n. (6.1)

Since limn→∞
2 logn
− log pn

= ∞, logn
− log pn

≥ 10 and hence p−1
n ≤ n0.1 for sufficiently large n.

This, together with (6.1), implies that

lim
n→∞

max
0≤r≤2

∣∣∣P(U (n,pn) < kn + r
)
− e−λn,kn+r,pn

∣∣∣ = 0. (6.2)

In addition,

lim
n→∞

λn,kn,pn ≥ lim
n→∞

qn log n

2(kn − 1)
= lim
n→∞

− log pn
4

=∞ (6.3)

by noting that pn → 0. Similarly,

lim
n→∞

λn,kn+2,pn ≤ lim
n→∞

(p2
n log2 pn
8 log n

− pn log pn
4

)
= 0. (6.4)

Therefore (1.16) holds by (6.2)–(6.4). In the same manner we can prove (1.17).

Part 2 and Part 3. Since limn→∞ npn =∞, limn→∞P
(∑n

i=1 ξ
(n)
i ≥ 2

)
= 1 and hence

lim
n→∞

P
(
U (n,pn) ≥ 2

)
= 1. (6.5)

Choose an 0 < ε < 0.1 such that [b−ε, b)∪(b, b+ε) contains no integers. There is N such
that (b− ε)/2 < − log n/ log pn < (b+ ε)/2 for all n > N . It follows that for all n > N ,

p
−b+ε

2
n < n < p

−b−ε
2

n . (6.6)
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By (4.9), (6.6) and Lemma 3.2, when n > N , we have

P
(
W (n,pn) ≥ [b] + 1

)
≤ p

[b]+1−b/2−ε/2
n

qn ([b] + 1)
+
qnp

[b]+1−b−ε
n

2
→ 0. (6.7)

Suppose that r < b ≤ r + 1 where r is a positive integer. Applying (6.6) gives that
n2prn ≥ p

r−(b−ε)
n → ∞. Let Xn =

∑
(a,s)∈B(r)

n
1
A

(r)
a,s

. By Lemma 2.1 and Lemma 2.2,

EXn = Θ(n2prn) and Var(Xn) ≤ EXn +O(n3p2r−1
n ) = o

(
(EXn)2

)
. Consequently,

P(U (n,pn) ≥ r) = P(Xn > 0) ≥ (EXn)2

Var(Xn) + (EXn)2
→ 1. (6.8)

Similar to (2.9) and (3.16), by using (6.6), we can show that

lim
n→∞

|P(U (n,pn) < b)− e−λn,b,pn | = lim
n→∞

|P(W (n,pn) < b)− e−µn,b,pn | = 0 (6.9)

when b is an integer satisfying b ≥ 3. Furthermore, if u = limn→∞ n2pbn ≤ ∞ exists, then

lim
n→∞

P(U ((n,pn) < b) = lim
n→∞

e−λn,b,pn = e−
u

2(b−1) (6.10)

and

lim
n→∞

P(W (n,pn) < b) = lim
n→∞

e−µn,b,pn = e−
u
2 . (6.11)

Thus our result holds by (6.5),(6.7),(6.8),(6.10), (6.11) and by noting that W (n,pn) ≥
U (n,pn).
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