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Abstract

In this paper we prove the central limit theorem for the following multisequence

N1∑
n1=1

...

Nd∑
nd=1

f(An1
1 ...A

nd
d x)

where f is a Hölder’s continue function, A1, ..., Ad are s× s partially hyperbolic com-
muting integer matrices, and x is a uniformly distributed random variable in [0, 1]s.
Then we prove the functional central limit theorem, and the almost sure central limit
theorem. The main tool is the S-unit theorem.
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1 Introduction.

In [F], [K], Fortet and Kac proved the central limit theorem (abbreviated CLT) for
the sum

∑N−1
n=0 f(qnx) where q ≥ 2 is an integer, x ∈ [0, 1) and f is 1-periodic func-

tion. Let (ωq1,...,qd(n))n≥1 be a so-called Hardy-Littlewood-Pólya sequence, i.e. let
(ωq1,...,qd(n))n≥1 consist of the elements of the multiplicative semigroup generated by
a finite set (q1, ..., qd) of coprime integers, arranged in increasing order. In [P], [FP],
Philipp, Fukuyama and Petit obtained limit theorems for the sum

∑N−1
n=0 f(ωq1,...,qd(n)x).

In this paper, we prove some limit theorems for the sum
∑N1−1
n1=0 ...

∑Nd−1
nd=0 f(qn1

1 ...qndd x)

as N1, ..., Nd →∞, where q1, ..., qd may be not coprime integers (see Theorem 5).
In [L1], [L2], Leonov proved CLT for endomorphisms of s-torus and Hölder’s contin-

uous functions (see also [LB]). In this paper, we extend Leonov’s result to the case of
Zd+-actions by endomorphisms of s-torus (this result were announced in [Le1], [Le2]).
Note that mixing properties of Zd-actions by commuting automorphisms of s-torus was
investigated earlier by Schmidt and Ward [ScWa].

Let us describe the structure of the paper. In §2 we fix some definitions and present
our results. In §3 we examine questions of normalizations (determination of the variance
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limit). In §4 we obtain growth estimates from above and from below for the multise-
quence (|An1

1 ...Andd m|)ni∈Z,i=1,...,d. In §5 we prove a multidimensional CLT, a functional
CLT and an almost sure CLT.

2 Notations and results.

Let A be an invertible s × s matrix with integer entries. It generates a surjective
endomorphism on the s-dimensional torus [0, 1)s which we will denote by the same
letter A. The dual endomorphism A∗ : Zs → Zs is given by the transpose matrix A(t).
It induces a dual map on the characters:

e(〈m,x〉) to e(〈Am,x〉),

where e(x) = exp(2π
√
−1x), and 〈m,x〉 = m1x1 + ...+msxs. Let f be a Zs-periodic local

integrable real function. In terms of Fourier coefficients, A sends

f ∼
∑

m∈Zs
f̂(m)e(〈m,x〉) to f ◦A ∼

∑
m∈Zs

f̂ ◦A(m)e(〈m,x〉), (2.1)

where

f̂ ◦A(m) =

{
f̂(m̃), if m = A(t)m̃ for some m̃ ∈ Zs,
0, otherwise.

(2.2)

Throughout this paper f̂(y) = 0 for y /∈ Zs. To simplify the notation in the rest of the
paper, whenever there is no confusion as to which map we refer to, we will denote the
dual map by the same symbol A. Also we will denote the transposed matrices A(t), m(t)

by the symbols A and m.
Definition 1. An action A by surjectives endomorphisms A1, ..., Ad of [0, 1)s is called
partially hyperbolic if for all (n1, ..., nd) ∈ Zd \ {0} none of the eigenvalues of the matrix
An1

1 ...Andd are roots of unity.
Examples of partially hyperbolic actions :
1. Let I be the s × s identity matrix, q1, ..., qd ≥ 2 pairwise coprime integers, Ai =

qiI, i = 1, ..., d.
2. Let K be an algebraic number field of degree s, η1, ..., ηd (d ≤ s − 1) a set of fun-

damental units of K, φi(x) the minimal polynomial of ηi, and Ai the companion matrix
of φi(x) (1 ≤ i ≤ d).

Denote
m l m

′
if |m| < |m

′
|, or if |m| = |m

′
| (2.3)

and there exists k ∈ [0, s) with m1 = m
′

1, ...,mk = m
′

k and mk+1 < m
′

k+1, where
|m| = (m2

1 + ...+m2
s)

1/2.
Let

B(m) = {m̃ ∈ Zs \ 0 | ∃n = (n1, ..., nd) ∈ Zd with m̃ = An1
1 ...Andd m}, (2.4)

W = {m ∈ Zs \ 0 | @m1 ∈ Zs \ 0 with B(m) = B(m1) and m1 l m}. (2.5)

It is easy to see that⋃
m∈W

B(m) = Zs \ 0, and B(m1)
⋂
B(m2) = ∅ for m1,m2 ∈W, m1 6= m2. (2.6)

Let Zd+ = {n ∈ Zd | ni ≥ 0, i = 1, ..., d}, An = An1
1 ...Andd , ‖f‖pp =

∫
[0,1)s

|f(x)|pdx,

N = (N1, ..., Nd), Ni ∈ N (i = 1, ..., d), N̆ = N1N2 · · ·Nd, and

SN(f)) :=
∑

0≤ni<Ni, i=1,...,d

f(Anx). (2.7)

2



Theorem 1. Let A be an action by commuting partially hyperbolic endomorphisms
A1, ..., Ad of [0, 1)s, f a real Zs-periodic locally integrable function with mean zero with

S(f) :=
∑

m∈W

( ∑
n∈Zd

|f̂(Anm)|

)2

< +∞. (2.8)

Then

σ2(f) := lim
miniNi→∞

1

N̆

∥∥∥∥∥SN(f(x))

∥∥∥∥∥
2

2

=
∑

m∈W

∣∣∣∣∣ ∑
n∈Zd

f̂(Anm)

∣∣∣∣∣
2

(2.9)

=
∑

n,n′∈Zd+,n·n
′=0

∫
[0,1)s

f(Anx)f(An
′

x)dx < +∞, (2.10)

where n · n′ = (n1n
′

1, ..., ndn
′

d).

Let u = (u1, ..., us),v = (v1, ..., vs) ∈ [0, 1)s, ui < vi, i = 1, ..., s, and [u,v) =

[u1, v1) × · · · × [us, vs). We denote by 1[u,v) the indicator function of the box [u,v). Let
f[u,v)(x) = 1[u,v)(x)− (v1 − u1) . . . (vs − us). In the next theorem we show two examples
of f[u,v) with σ(f[u,v)) > 0 :

Theorem 2. Let σ(f[u,v)) be the variance limit of f[u,v). Then f[u,v) satisfies the
condition (2.8) and σ(f[u,v)) > 0 for each of the following cases :

(i) u = 0 and 1, v1, ..., vs are rational independents numbers;
(ii) 1, u1, ..., us, v1, ..., vs are rational independents numbers.

The third result permits to give a functional characterization of functions with vari-
ance limit zero (see also [FP, Theorem 3], and [KaNi, Theorem 6.2.2, Corollary 6.2.7]) :

Theorem 3. Let d ≥ 2, f be a real Zs-periodic function locally integrable with mean
zero and ∑

n≥1

nd−1‖f − f2n‖2 < +∞, (2.11)

where
fL(x) :=

∑
|mi|<L, i=1,...,s

f̂(m)e(〈m,x〉). (2.12)

Then (2.8) is true, and σ(f) = 0 if and only if there exist f (1), ..., f (d) ∈ L2([0, 1)s)

such that (2.8) is true for all gi with gi(x) = f (i)(x)− f (i)(Aix), i = 1, ..., d and

f(x) =
∑

1≤i≤d

(f (i)(x)− f (i)(Aix)) (2.13)

for almost all x ∈ [0, 1)s.

It is easy to verify that the condition (2.11) of the theorem is satisfied under the
following decreasing property of Fourier coefficients of f :

|f̂(m)| ≤ c0
s∏
i=1

1

(1 + |mi|)1/2(ln(2 + |mi|))β
(2.14)

with c0 > 0 and β > d+ 0.5.
Using the approach of ([Ah], p. 222, Theorem 1, see also [Z], p. 241, (3.3) and [Ba],

p. 160, (2.6)), we get that all Hölder’s continuous functions satisfy the condition (2.11).
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In [Ka], A.Katok and S.Katok proved the following theorem:

Theorem A. ([Ka], Theorem 2.1, [KaNi], Theorem 6.2.12) Let A be an action by
commuting partially hyperbolic automorphisms of [0, 1)s. Then there exist constants
a1, a2, c1, c2 > 0 depending on the action only such that for any initial point m ∈ Zs \ 0

c1|m|−s exp(a1|n|) ≤ |Anm| ≤ c2|m| exp(a2|n|).

In this paper we extend this result to the case of endomorphisms:

Theorem 4. Let A be an action by commuting partially hyperbolic endomorphisms
A1, ..., Ad of [0, 1)s. Then there exist constants a1, a2, b1, c1, c2 > 0 depending on the
action only such that for any n ∈ Zd, and any initial point m ∈ Zs \ 0 with Anm ∈ Zs

c1|m|−b1 exp(a1|n|) ≤ |Anm| ≤ c2|m| exp(a2|n|). (2.15)

Let q ≥ 1, d ≥ 2, Ni,j ≥ 1, Ri,j be integers, Ni = (Ni,1, ..., Ni,d) (i = 1, ..., q, j = 1, ..., d),
N̆i = Ni,1 · · ·Ni,d,

Ri = Ri(Ni) = [Ri,1, Ri,1 +Ni,1)× · · · × [Ri,d, Ri,d +Ni,d). (2.16)

Theorem 5. Let A be an action by commuting partially hyperbolic endomorphisms
A1, ..., Ad of [0, 1)s, f a real Zs-periodic locally integrable function with mean zero satisfy
the condition (2.8) and σ(f) > 0, x a uniformly distributed random variable in [0, 1]s,
Ri(Ni) ∩Rj(Nj) = ∅ for i 6= j ∈ [1, q]. Then( 1

σ(f)
√

N̆1

∑
n1∈R1(N1)

f(An1x), ...,
1

σ(f)
√

N̆q

∑
nq∈Rq(Nq)

f(Anqx)
)

converges in distribution to a Gaussian N (0, I)-distribution, where I is the q× q identity
matrix, as mini,j Ni,j −→∞.

Related questions
1. Hardy-Littlewood-Pólya (HLP) sequence. In [Fu], Furstenberg studied dense-

ness properties of HLP sequence (ω2,3(n))n≥1 (see Introduction) from an ergodic point
of view. He also asked in [Fu] the celebrated question on ergodic properties of this
sequence (see e.g. [EiWa, p.7]). In [P], Philipp proved the almost sure invariance prin-
ciple (ASIP) for the sequence (cos(ωq1,...,qd(n)x))n≥1 and the law of the iterated loga-
rithm (LIL) for the discrepancy of the sequence ({ωq1,...,qd(n)x})n≥1 (see also [BPT]). We
consider the following s-dimensional variant of HLP sequence:

Let A be an action by commuting partially hyperbolic endomorphisms A1, ..., Ad
of [0, 1)s. Denote An1

1 ...Andd l Aṅ1
1 ...Aṅdd if (n1, ..., nd) l (ṅ1, ..., ṅd) (see (2.3) ). Let

(Ωn)n≥1 consist of the elements of the multiplicative semigroup generated by a finite
set (A1, ..., Ad) arranged in increasing order. In a forthcoming paper, we will show that
the approach of [P] and [BPT] can be applied to the proof of ASIP for the sequence
(cos(Ωnx))n≥1 (the result announced in [Le1]) and to the proof of LIL for the discrep-
ancy of the sequence ({Ωnx})n≥1.

2. Salem-Zygmund CLT on lacunary trigonometric series. In 1948, Salem and Zyg-
mund proved the following theorem: Let λn ≥ 1 be integers, λn+1/λn ≥ c > 1 for n =

1, 2, ..., and let an, φn be reals, AN = (1/2(a2
1 + ...+ a2

N ))1/2 →∞, max1≤n≤N |an|/AN →
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0 as N → ∞ and let SN = 1
AN

∑N
n=1 an cos(2πλnx + φn). Then SN over any set D,

mesD > 0, tends to the Gaussian distribution with mean value 0 and dispersion 1 as
N →∞ (see [Z, p. 233]).

In [PhSt], Philipp and Stout proved that if for the coefficient aN we assume the
stronger condition aN = O(A1−δ

N ) for some δ > 0, then SN obeys ASIP. In [Le4], we
proved the following multiparameter variant of the Salem-Zygmund theorem: Let A
be an action by commuting partially hyperbolic endomorphisms A1, ..., Ad of [0, 1)s, x a
uniformly distributed random variable in [0, 1)s. Let m ∈ Zs \ {0}, R(N) = [1, N1]× ...×
[1, Nd], N0 = min(N1, ..., Nd) , an ≥ 0, φn be reals,

A(N) = (1/2
∑

n∈R(N)

a2
n)1/2 →∞, and ρ(N) = max

n∈R(N)
an/A(N)

N0→∞→ 0,

SN =
1

A(N)

∑
n∈R(N)

an cos(2π〈m, An1
1 ...Andd x〉+ φn).

Then SN over any set D ⊂ [0, 1]s, mesD > 0, tends to the Gaussian distribution with
mean value 0 and dispersion 1 for N0 →∞.

We consider the order (2.3). Let (gn)n≥1 consist of the elements of Zd+ arranged in
increasing order. Let

Ȧ(L) = (1/2
∑

1≤n≤L

a2
gn)1/2, and ṠL =

1

Ȧ(L)

∑
1≤n≤L

agn cos(2π〈m,Ωgnx〉+ φgn).

In a forthcoming paper, we will show that the approach of [PhSt] can be applied to the
proof of ASIP for the sequence (ṠL)L≥1 for the case aN = O(A(N1−δ) for some δ > 0.

3. Randomness in lattice point problems. In 1992, Beck (see [Be]) discovered a very
surprising phenomenon of randomness of the number of the lattice points {(n, n

√
2 +

m)|(n,m) ∈ Z2} in a rectangular domain and in a hyperbolic domain. According to [Be,
p.41], the generalizations of his results to the multidimensional case for a Kronecker’s
lattice {(n, nα1+m1, ..., nαs−1+ms−1) | (n,m1, ...,ms−1) ∈ Zs} is very difficult because of
the problems connected to the Littlewood’s conjecture: limn→∞ n� nα�� nβ �= 0

for all reals α, β, where� x�= min({x}, 1− {x}).
In [Le5], we consider a lattice obtained from a module in a totally real algebraic num-

ber field to avoid the mentioned problem. Let K(r1, r2) be an algebraic number field
with signature (r1, r2), r1+2r2 = s, Γ = Γ(M, r1, r2) ⊂ Rs a lattices obtained from a mod-
ule M in K(r1, r2), N = (N

′

1, ..., N
′

r1 , N1, ..., Nr2) ∈ Zr1+r2
+ , γ = (γ

′

1, ..., γ
′

r1 , γ1, ..., γr2) ∈ Rs

(γ
′

i ∈ R, γj ∈ R2, i = 1, ..., r1, j = 1, ..., r2), y = (y
′

1, ..., y
′

r1 , y1, ..., yr2), V = Rs/Γ, (y,x)

uniformly distributed random variable in [0, 1]r1+r2 ×V , 1G the indicator function of the
domain G,

G(N) =

r1∏
i=1

[−Niyi, Niyi]
r2∏
j=1

{z ∈ R2 | |z| ≤ Njyj},

and let

ξ1(N) = ξ1,r1,r2(N) =
∑

γ∈Γ+x

1G(N)(γ), ξ2(N) =
∑

γ∈Γ+x

1G(N)(γ)

r2∏
j=1

√
N2
j y

2
j − γ2

j .

We consider the group of units of K(s, 0) and the corresponding group (An)n∈Zs−1 of
hyperbolic automorphisms of [0, 1)s. In [Le5], using the Poisson summation formula, we
have shown that ξ1,s,0(N) = SṄ(f)) (see (2.7)) for some f and Ṅ. Applying the S-unit
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theorem and the approach of this paper, we have proved in [Le5] that ξ1,s,0(N) (the
number of lattice points in a shifted and dilated rectangular domain) obeys CLT.

In a forthcoming paper, we will prove CLT for the multisequence ξi(N), where i = 1

if r2 ≥ 2 and i = 2 if r2 = 1, r1 ≥ 1. The case r2 = 1, r1 = 0 was investigated earlier by
Hughes and Rudnick [HuRu]. Using the approach of this paper, in a forthcoming paper
we will prove CLT for the number of lattice in a hyperbolic domain.

4. Randomness of low discrepancy sequences. Let ((βn)N−1
n=0 ) be a sequence in

the unit cube [0, 1)s. We define the local discrepancy of an N -point set (βn)N−1
n=0 as

∆(y, (βn)N−1
n=0 ) = #{0 ≤ n < N | βn ∈ [0, y1)× · · ·× [0, ys)}−Ny1 . . . ys. We define the dis-

crepancy of a N -point set (βn)N−1
n=0 as D((βn)N−1

n=0 ) = sup0<y1,...,ys≤1 |∆(y, (βn)N−1
n=0 )|/N, A

sequence (βn)n≥0 is of low discrepancy (abbreviated l.d.s.) if D((βn)N−1
n=0 ) = O(N−1(lnN)s)

for N →∞.

Let (zn)n≥1 be a l.d.s. obtained from a lattice Γ(M, s, 0) [Le2], and let (vn)n≥1 be
a l.d.s. described in [Le3]. We consider the following classes of s-dimensional l.d.s.:
(zn)n≥1, (vn)n≥1, Halton’s sequence (see [DrTi]) and digital (t, s) sequence (see [DiPi]).

In [Le5], we proved that the local discrepancy of the sequence (zn)n≥1 obeys CLT. In
a forthcoming paper, we will prove a similar result for the sequence (vn)n≥1 and for the
s-dimensional Halton’s sequence. Note that CLT for the 1-dimensional Halton’s se-
quence is proved in [LeMe].

Let (wn)n≥1 be a digital (t, s) sequence in base b, and let x⊕y be a digital summation
(see def. in [DiPi]). In a forthcoming paper, we will prove that the local discrepancy
∆(y, (wn ⊕ x)N−1

n=0 ) obeys CLT, where (y,x) is uniformly distributed random variable in
[0, 1)2s.

The proofs of the CLT for the mentioned sequences, similar to the proof of the CLT
for the sequence ξ1,s,0(N).

5. In this paper, we use Theorem 4 to prove CLT and to give a functional character-
ization of functions with variance limit zero. Similarly to the proof of Lemma 2.3, we
can apply Theorem 4 to obtain the rate of mixing of the action A. Analogously to [Ka,
Proposition 3.1], we can use Theorem 4 to analyze periodic orbits of the action A. We
note that in [MiWa] was described a much more general method of analyze rates of mix-
ing and periodic points distribution of actions generated by commuting automorphisms
of a compact abelian group.

3 Proofs of Theorems 1 - 3.

Lemma 2.1. Let (2.8) be true. Then

∑
n,n′∈Zd+, n·n

′=0

∣∣∣∣∣
∫

[0,1)s
f(Anx)f(xAn

′

)dx

∣∣∣∣∣ < +∞. (3.1)

Proof. Bearing in mind that for all n1,n2 ∈ Zd, there exists the unique (n,n
′
) ∈ Z2d

+

with n · n′ = 0 and n2 = n1 + n− n
′
, we have from (2.8)

S(f) =
∑

m∈W

∑
n1,n2∈Zd

∣∣∣f̂(An1m)f̂(An1+n2m)
∣∣∣

=
∑

m∈W

∑
n1∈Zd

∑
n,n′∈Zd+, n·n

′=0

∣∣∣f̂(An1m)f̂(An1+n−n′m)
∣∣∣
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=
∑

n,n
′
∈Zd+

n·n
′
=0

∑
m∈Zs

∣∣∣f̂(m)f̂(An−n′m)
∣∣∣ =

∑
n,n
′
∈Zd+

n·n
′
=0

∑
m,m

′
∈Zs

Anm=An
′
m
′

∣∣∣f̂(m)f̂(m′)
∣∣∣.

Taking into account that f is a real function, we get that

f̂(m) = f̂(−m). (3.2)

Hence

S(f) ≥
∑

n,n
′
∈Zd+

n·n
′
=0

∣∣∣ ∑
m,m

′
∈Zs

Anm=−An
′
m′

f̂(m)f̂(m
′
)
∣∣∣ =

∑
n,n
′
∈Zd+

n·n
′
=0

∣∣∣ ∫
[0,1)s

f(Anx)f(An
′

x)dx
∣∣∣. (3.3)

Therefore Lemma 2.1 is proved.

Lemma 2.2. Let (2.8) be true, f̂(0) = 0, E ⊂ Zd and #E <∞. Then

ϕ(E) :=

∫
[0,1)s

(∑
n∈E

f(Anx)
)2

dx ≤ S(f)#E.

Proof. We have

ϕ(E) =
∑

n,n′∈E

ϕ̃(n,n
′
) with ϕ̃(n,n

′
) =

∫
[0,1)s

f(Anx)f(An
′

x)dx.

It is easy to see ∫
[0,1)s

f(Anx)f(An
′

x)dx =
∑

m,m
′
∈Zs

Anm=An
′
m′

f̂(m)f̂(−m
′
).

Let m0 = B(m) ∩W = B(m
′
) ∩W . Then there exist n1,n2 ∈ Zd with m = An1m0 and

m
′

= An2m0. Hence

ϕ̃(n,n
′
) =

∑
m0∈W

∑
n1,n2∈Zd

n1+n=n2+n
′

f̂(An1m0)f̂(−An2m0).

Therefore
ϕ(E) ≤

∑
m0∈W

∑
n1,n2∈Zd

∣∣∣f̂(An1m0)f̂(A−n2m0)
∣∣∣ ∑

n,n
′
∈E

n1+n=n2+n
′

1

≤ #E
∑

m0∈W

∑
n1,n2∈Zd

∣∣∣f̂(An1m0)f̂(An2m0)
∣∣∣ = S(f)#E.

Thus Lemma 2.2 is proved.

Let

δ(T) =

{
1, if T is true,

0, otherwise.
(3.4)

Proof of Theorem 1. Let

Ξ(f) =
∑

m∈W

∣∣∣∣∣ ∑
n∈Zd

f̂(Anm)

∣∣∣∣∣
2

. (3.5)
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First we consider the case when f is a polynomial trigonometric (see (2.12)) :
Repeating the proof of Lemma 2.2, we obtain

1

N̆

∫
[0,1)s

∣∣∣SN(fL(x))
∣∣∣2dx =

∑
m0∈W

∑
n1,n2∈Zd

f̂L(An1m0)f̂L(An2m0)ΨN(m0,n1,n2),

where

ΨN(m0,n1,n2) =
1

N̆

∑
n,n
′
∈R(N)

n1+n=n2+n
′

1, with R(N) =

d∏
i=1

[0, Ni − 1], N̆ = N1 · · ·Nd.

It is easy to see that

1

N̆

d∏
i=1

(Ni − 2|n1,i| − 2|n2,i|) ≤ ΨN(m0,n1,n2) ≤ 1.

Hence

lim
miniNi→∞

ΨN(m0,n1,n2) = 1. (3.6)

By (2.4), (2.5) and (2.12), we have that f̂L(m) = 0 for |m| ≥ L, and f̂L(Anm0) 6= 0 only

for |m0| < L. Using Theorem 4, we have that the set {m0 ∈ W,n ∈ Zd | f̂L(Anm0) 6= 0}
is finite. So, from (2.9) and (3.5)-(3.6), we get

σ2(fL) = lim
miniNi→∞

∑
m0∈W

∑
n1,n2∈Zd

f̂L(An1m0)f̂L(An2m0)ΨN(m0,n1,n2) = Ξ(fL). (3.7)

We will need the following equality (obtained from (3.5), (3.2) and (2.6)) :

σ2(fL) =
∑

m0∈W

∑
n1∈Zd

∑
m2∈Zs

f̂L(An1m0)f̂L(−m2)δ(m2 ∈ B(m0)) (3.8)

=
∑

m1,m2∈Zs
f̂L(m1)f̂L(m2)δ(−m2 ∈ B(m1)) =

∑
|mi|<L,i=1,2

f̂(m1)f̂(m2)δ(m1 ∈ B(−m2)).

Now we consider the general case. It follows from (2.8) and (3.5) that Ξ(f) <∞. Using
Lemma 2.2 and the Cauchy–Schwartz inequality, we have

1√
N̆
|‖SN(f)‖2 − ‖SN(fL)‖2| ≤

1√
N̆
‖SN(f − fL)‖2 ≤ (S(f − fL))1/2. (3.9)

By (2.8) , we get

S(f − fL) ≤
∑

m∈W,|m|≥L

( ∑
n∈Zd

|f̂(Anm)|

)2

.

Hence

S(f − fL)→ 0 as L→∞. (3.10)

Therefore, for all ε > 0, there exist L0 such that S(f − fL) < ε for L > L0. Using (3.9),
we obtain

1√
N̆
‖SN(fL)‖2 − ε ≤

1√
N̆
‖SN(f)‖2 ≤

1√
N̆
‖SN(fL)‖2 + ε.

8



From (2.9) and (3.7), we have

(Ξ(fL))1/2 − ε ≤ lim inf
N→∞

1√
N̆
‖SN(f)‖2 ≤ lim sup

N→∞

1√
N̆
‖SN(f)‖2 ≤ (Ξ(fL))1/2 + ε. (3.11)

Using (3.5), we get

Ξ(f)−Ξ(fL) =
∑

m∈W

∑
n1,n2∈Zd

(
f̂(An1m)f̂(An2m)−(f̂−f̂ − fL)(An1m)(f̂−f̂ − fL)(An2m)

)
.

Hence

|Ξ(f)− Ξ(fL)| ≤ Ξ(f − fL)) + 2
∑

m∈W

∑
n1,n2∈Zd

|f̂(An1m)f̂ − fL(An2m)|.

Applying the Cauchy–Schwartz inequality, we obtain from (2.8), (3.5) and (3.10):

|Ξ(f)−Ξ(fL)| ≤ Ξ(f−fL))+2Ξ1/2(f−fL)Ξ1/2(f) ≤ (S(f−fL)+2(S(f−fL)Ξ(f))1/2)→ 0

as L→∞. By (3.7)
Ξ(f) = lim

L→∞
Ξ(fL) = lim

L→∞
σ2(fL). (3.12)

From (3.11), we have σ2(f) = Ξ(f) and (2.9) follows. To obtain (2.10), we repeat the
proof of Lemma 2.1. This is possible because the series (3.1) and (3.3) converges abso-
lutely. Hence Theorem 1 is proved.

Proof of Theorem 2. We will prove the case (i). The proof of the case (ii) is similar.
From Theorem 3, (2.14) and (3.15) we get that f[u,v) satisfy the condition (2.8). By (2.9),
it is enough to prove that there exists m ∈ Zs with∑

n∈Zd
f̂[u,v)(A

nm) 6= 0. (3.13)

It is easy to verify that

f̂[u,v)(0) = 0, f̂[u,v)(m) = 1̂[u,v)(m) for m 6= 0, (3.14)

and

1̂[u,v)(m) =

s∏
i=1

1̂[ui,vi)(mi), where 1̂[a,b)(m) =

{
e(bm)−e(am)

2π
√
−1m

, if m 6= 0,

b− a, otherwise.
(3.15)

Suppose that ∑
n∈Zd

f̂[u,v)(A
nm) = 0 ∀m ∈ Zs. (3.16)

Let
Ξ̇(n,m) = {j ∈ [1, s] | (Anm)j = 0},

Ψ(i,m) = {n ∈ Zd | Anm ∈ Zs, and #Ξ̇(n,m) = i}.

We fix m ∈ Zs with mi 6= 0 for all i = 1, ..., s. It is easy to see that

Ψ(0,m) 6= ∅. (3.17)

Let

ψi(v, k) =
∑

n∈Ψ(i,m)

∏
µ∈Ξ̇(n,m)

vµ
∏

µ∈[1,s]\Ξ̇(n,m)

e((Anmk)µvµ)− 1

2π
√
−1(Anm)µ

9



and

ψ̃i(x) =
∑

n∈Ψ(i,m)

∏
µ∈Ξ̇(n,m)

vµ
∏

µ∈[1,s]\Ξ̇(n,m)

e((Anm)µxµ)− 1

2π
√
−1(Anm)µ

. (3.18)

From (3.14) and (3.16), we have

ks
∑
n∈Zd

f̂[0,v)(A
nmk) =

s−1∑
i=0

kiψi(v, k) = 0 for k = 1, 2, ... (3.19)

Applying Theorem 4, we get that the series (3.18) converges absolutely and uniformly
continuously and there exists c0(m) > 0 with

sup
v,x,i,k

(|ψ̃i(x)|, |ψi(v, k)|) ≤ c0(m). (3.20)

Thus ψ̃i(x) are continuous functions. We will prove that

sup
x∈[0,1]s

(|ψ̃i(x)|) = 0. (3.21)

Let i0 ∈ [1, s− 1], (3.21) be true for i0 < i ≤ s− 1 and

sup
x∈[0,1]s

(|ψ̃i0(x)|) = ε > 0. (3.22)

Let |ψ̃i0(x0)|) = ε. There exists ε0 > 0 such that if |x−x0| < ε0, then |ψ̃i0(x)|) ≥ ε/2. From
the condition (i) and the Kronnecker-Weil’s theorem, the sequence ({kv1}, ..., {kvs})k≥1

is uniformly distributed in [0, 1)s (see, e.g., [DrTi], p. 66). Hence, there exists a subse-
quence (kn)n≥1 such that |{knv} − x0| < ε0 and |ψi0(v, kn)|) ≥ ε/2 > 0. From (3.19) and
(3.20), we get that

ψi0(v, k) = −
i0−1∑
i=0

ki−i0ψi(v, k) and ε/2 ≤ |ψi0(v, k)| ≤ c0(m)s/k, k = 1, 2, ...

We have a contradiction (ε = O(1/k)). Thus (3.21) is true for i ∈ [1, s− 1]. By (3.19), we
have that (3.21) is true also for i = 0.

Using Definition 1 we get: if Anm = m, then 1 is the eigenvalue of An and n = 0.
Therefore, if An1m = An2m, then n1 = n2. So∫

[0,1)s
e(〈Anm,x〉)dx = 0 =

∫
[0,1)s

e(〈(An1 −An2)m,x〉) for n1 6= n2. (3.23)

Let n0 ∈ Ψ(0,m) 6= ∅ (see (3.17)). We have (An0m)i 6= 0 for i = 1, ..., s. Consider
ψ̃0(x) = 0 for x ∈ [0, 1)s (see (3.21)). Applying (3.23), we obtain from (3.18)

0 =

∫
[0,1)s

ψ̃0(x)e(< −An0m,x >)dx =
∏

µ∈[1,s]

−1

2π
√
−1(An0m)µ

6= 0.

We have a contradiction. Thus (3.13) is true. Hence Theorem 2 is proved.

Proof of Theorem 3.
Lemma 2.3. Let (2.11) be true. Then

S(f) < +∞. (3.24)
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Proof. Let

Si(f) =
∑
n∈Zd

gi(n), with g1(n) =
∑

m∈Zs
|m|≤exp(a0|n|)

∣∣f̂(m)f̂(Anm)
∣∣,

and
g2(n) =

∑
m∈Zs

|m|>exp(a0|n|)

∣∣f̂(m)f̂(Anm)
∣∣∣,

where a0 = a1/(1 + 2b1) and i = 1, 2 (see (2.15)). We have

g1(n) ≤
( ∑

m∈Zs,|m|≤exp(a0|n|)

∣∣f̂(m)
∣∣2)1/2( ∑

m∈Zs,|m|≤exp(a0|n|)

∣∣f̂(Anm)
∣∣2)1/2

.

Applying Theorem 4 with |m| ≤ exp(a0|n|), we get

|Anm| ≥ c1|m|−b1 exp(a1|n|) ≥ c1 exp((a1 − a0b1)|n|) ≥ c1 exp(a1|n|/2).

Hence
g1(n) ≤ ‖f‖2‖f − fc1 exp(a1|n|/2)‖2

and

S1(f) ≤
∑
n∈Zd

‖f‖2‖f − fc1 exp(a1|n|/2)‖2 = O
( ∞∑
k=1

‖f‖2

×
∑

n∈Zd,c1 exp(a1|n|/2∈[2k,2k+1)

‖f − f2k‖2
)

= O
( ∞∑
k=1

kd−1‖f − f2k‖2
)
< +∞.

Similarly, we have

g2(n) ≤ ‖f‖2‖f − fexp(a0|n|)‖2 and S2(f) = O(1).

From (2.8), we get

S(f) =
∑

m∈Zs

∑
n∈Zd

∣∣f̂(m)f̂(Anm)
∣∣ = S1(f) + S2(f).

Therefore Lemma 2.3 is proved.

Let ĥ(0) = f̂ , and

ĥ(i)(m) =

{∑
n1,...,ni∈Z f̂(An1

1 · · ·A
ni
i m̃), if m = A

ni+1

i+1 · · ·A
nd
d m̃

0, otherwise
(3.25)

for some m̃ ∈W , and ni+1, ..., nd ∈ Z.
Let ĝ(i) = ĥ(i−1) − ĥ(i) and

f̂ (i)(m) =
∑
k≤0

ĝ(i)(Akim), 1 ≤ i ≤ d. (3.26)

Using (2.8) and Lemma 2.3, we get that the series (3.25) and (3.26) converges. By
(3.25) we get ∑

k∈Z

ĝ(i)(Akim) = 0, ∀m ∈ Zs \ 0, i = 1, ..., d. (3.27)
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Let n(1) = (n1, ..., ni−1), An(1)

1 = An1
1 · · ·A

ni−1

i−1 for i ≥ 2, and n(1) = 0, An(1)

1 = 1 for

i = 1. Let n(2) = (ni+1, ..., nd), An(2)

2 = A
ni+1

i+1 · · ·A
nd
d for i < d, and n(2) = 0, An(2)

2 = 1 for
i = d.

By (2.4) and (2.6), we get that for all m ∈ Zd \ 0 there exists unique n(1) ∈ Zi−1,

ni ∈ Z, n(2) ∈ Zd−i and m̃ ∈W such that, m = An(1)

1 Anii An(2)

2 m̃.

Let ni < 0. Using (3.25) and (3.26), we derive the following expression for f̂ (i)(m).
Next by (3.27), we obtain a similar expression for the case ni ≥ 0 :

f̂ (i)(m) =


∑

k(1)∈Zi−1

∑
k≤0 f̂(Ak(1)

1 Ani+ki An(2)

2 m̃), if n(1) = 0, and ni < 0,

−
∑

k(1)∈Zi−1

∑
k>0 f̂(Ak(1)

1 Ani+ki An(2)

2 m̃), if n(1) = 0, and ni ≥ 0.

0. otherwise

(3.28)

Lemma 2.4. Let (2.11) be true, i ∈ [1, d]. Then

κ(i) :=
∑

m∈Zs
|f̂ (i)(m)|2 =

∑
m̃∈W

∑
n(2)∈Zd−i

∑
ni∈Z

∣∣∣f̂ (i)(Anii An(2)

2 m̃)
∣∣2 < +∞. (3.29)

Proof. By (3.28) we have κ(i) = κ(i)
1 + κ(i)

2 , where

κ1 = κ(i)
1 =

∑
m̃∈W

∑
n(2)∈Zd−i

∑
ni≥0

∣∣∣ ∑
k(1)∈Zi−1

∑
k>0

f̂(Ak(1)

1 Ani+ki An(2)

2 m̃)
∣∣∣2, (3.30)

and

κ2 = κ(i)
2 =

∑
m̃∈W

∑
n(2)∈Zd−i

∑
ni<0

∣∣ ∑
k(1)∈Zi−1

∑
k≤0

f̂(Ak(1)

1 Ani+ki An(2)

2 m̃)
∣∣2.

We will prove that κ1 < +∞. Analogously, we obtain that κ2 < +∞. We see that

κ1 ≤ 2
∑

m̃∈W
n(2)∈Zd−i

∑
ni,k1,k2≥0

∑
k
(1)
1 ,k

(1)
2 ∈Zi−1

∣∣f̂(A
k
(1)
1

1 Ani+k1i An(2)

2 m̃)f̂(A
k
(1)
1 +k

(1)
2

1 Ani+k1+k2
i An(2)

2 m̃)
∣∣

≤ 4
∑

m̃∈W
n(2)∈Zd−i

∑
ni,k1,k2≥0,ni≥k2

∑
k
(1)
1 ,k

(1)
2 ∈Zi−1

∣∣f̂(A
k
(1)
1

1 Ani+k1i An(2)

2 m̃)f̂(A
k
(1)
1 +k

(1)
2

1 Ani+k1+k2
i An(2)

2 m̃)
∣∣.

We have that κ1 ≤ 4(κ1,1 + κ1,2), where

κ1,1 =
∑

m̃∈W, n(2)∈Zd−i

∑
ni,k1,k2≥0,ni≥k2

∑
k
(1)
1 ,k

(1)
2 ∈Zi−1, |ṁ|≥exp(a0(|k(1)

2 |+k2)/2)

∣∣f̂(ṁ)f̂(A
k
(1)
2

1 Ak2i ṁ)
∣∣,

and

κ1,2 =
∑

m̃∈W, n(2)∈Zd−i

∑
ni,k1,k2≥0,ni≥k2

∑
k
(1)
1 ,k

(1)
2 ∈Zi−1, |ṁ|<exp(a0(|k(1)

2 |+k2)/2)

∣∣f̂(ṁ)f̂(A
k
(1)
2

1 Ak2i ṁ)
∣∣,

with ṁ = A
k
(1)
1

1 Ani+k1i An(2)

2 m̃, and a0 = a1/(1 + b1).
Consider κ1,1. Applying the Cauchy–Schwartz inequality, we get:

κ1,1 ≤
∑

ni≥k2≥0

∑
k
(1)
2 ∈Zi−1

Q1(0, 0)1/2Q1(k
(1)
2 , k2)1/2, (3.31)
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where

Q1(k(1), k) =
∑

m̃∈W

∑
n(2)∈Zd−i

∑
k1≥0,|ṁ|≥exp(a0(|k(1)

2 |+k2)/2)

∑
k
(1)
1 ∈Zi−1

∣∣f̂(Ak(1)

1 Aki ṁ)
∣∣2. (3.32)

It is east to see that
Q1(0, 0) ≤ ‖f − f

exp(a0(|k(1)
2 |+k2)/2)

‖22. (3.33)

We have Q1(k(1), k) = Q̇1(k(1), k) + Q̈1(k(1), k), where

Q̇1(k(1), k) =
∑

m̃∈W,|m̃|≥exp(a0ni)

∑
n(2)∈Zd−i

∑
k1≥0

∑
k
(1)
1 ∈Zi−1,|ṁ|≥exp(a0(|k(1)

2 |+k2)/2)

∣∣f̂(Ak(1)

1 Aki ṁ)
∣∣2,

and

Q̈1(k(1), k) =
∑

m̃∈W,|m̃|<exp(a0ni)

∑
n(2)∈Zd−i

∑
k1≥0

∑
k
(1)
1 ∈Zi−1,|ṁ|≥exp(a0(|k(1)

2 |+k2)/2)

∣∣f̂(Ak(1)

1 Aki ṁ)
∣∣2.

From definition of the set W (see (2.5)), we get

Q̇1(k
(1)
2 , k2) ≤ ‖f − fexp(a0ni)‖

2
2. (3.34)

Consider the case |m̃| < exp(a0ni). Using Theorem 4 and that ṁ = A
k
(1)
1

1 Ani+k1i An(2)

2 m̃,
we obtain

|Ak
(1)
2

1 Ak2i ṁ| = |Ak
(1)
1 +k

(1)
2

1 Ani+k1+k2
i An(2)

2 m̃| ≥ c1 exp
(
a1(ni+k1+k2)−b1a0ni

)
≥ c1 exp(a0ni).

Hence
Q̈1(k

(1)
2 , k2) ≤ ‖f − fc1 exp(a0ni)‖

2
2.

By (3.34), we have

Q1(k
(1)
2 , k2) ≤ 2‖f − fexp(ċ1a0ni)‖

2
2, with ċ1 = min(1, c1). (3.35)

From (3.31), (3.33) and (3.35), we derive

κ1,1 ≤ 2
∑

ni,k2≥0

∑
k
(1)
2 ∈Zi−1

‖f − f
exp(a0(|k(1)

2 |+k2)/2)
‖2 ‖f − fċ1 exp(a0ni)‖2. (3.36)

Thus
κ1,1 ≤ 2

∑
j1≥0

∑
k
(1)
2 ∈Zi−1

∑
k2≥0,exp(a0(|k(1)

2 |+k2)/2)∈[2j1 ,2j1+1)

‖f − f2j1 ‖2

×
∑
j2≥0

∑
ni≥0, ċ1 exp(a0ni)∈[2j2 ,2j2+1)

‖f − f2j2 ‖2.

By (2.11), we have

κ1,1 = O
( ∑
j1≥1

ji−1
1 ‖f − f2j1 ‖2

)
= O(1). (3.37)

Now we consider κ1,2. Applying the Cauchy–Schwartz inequality, we get:

κ1,2 ≤
∑

ni≥k2≥0

∑
k
(1)
2 ∈Zi−1

Q2(0, 0)1/2Q2(k
(1)
2 , k2)1/2, (3.38)

where

Q2(k(1), k) =
∑

m̃∈W

∑
n(2)∈Zd−i

∑
k1≥0,|ṁ|<exp(a0(|k(1)

2 |+k2)/2)

∑
k
(1)
1 ∈Zi−1

∣∣f̂(Ak(1)

1 Aki ṁ)
∣∣2.
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Using Theorem 4 with |ṁ| < exp(a0(|k(1)
2 |+k2)/2) and bearing in mind that |(k(1)

2 , k2)| ≥
(|k(1)

2 |+ k2)/2, we obtain

|Ak
(1)
2

1 Ak2i ṁ| ≥ c1 exp
(
a1|(k(1)

2 , k2)| − b1a0(|k(1)
2 |+ k2)/2

)
≥ c1 exp(a0(|k(1)

2 |+ k2)/2).

Hence
Q2(k

(1)
2 , k2) ≤ ‖f − f

c1 exp(a0(|k(1)
2 |+k2)/2)

‖22. (3.39)

We have Q2(0, 0) = Q̇2(0, 0) + Q̈2(0, 0), where

Q̇2(0, 0) =
∑

m̃∈W,|m̃|≥exp(a0ni)

∑
n(2)∈Zd−i

∑
k1≥0

∑
k
(1)
1 ∈Zi−1,|ṁ|<exp(a0(|k(1)

2 |+k2)/2)

∣∣f̂(ṁ)
∣∣2,

and

Q̈2(0, 0) =
∑

m̃∈W,|m̃|<exp(a0ni)

∑
n(2)∈Zd−i

∑
k1≥0

∑
k
(1)
1 ∈Zi−1,|ṁ|<exp(a0(|k(1)

2 |+k2)/2)

∣∣f̂(ṁ)
∣∣2.

Similarly to (3.34) - (3.35) , we obtain

Q̇2(0, 0) ≤ ‖f − fexp(a0ni)‖
2
2, Q̈2(0, 0) ≤ ‖f − fċ1 exp(a0ni)‖

2
2,

and
Q2(0, 0) ≤ 2‖f − fċ1 exp(a0ni)‖

2
2. (3.40)

By (3.38), (3.39) and (3.40), we have

κ1,2 ≤
∑

ni≥k2≥0

∑
k
(1)
2 ∈Zi−1

2‖f − f
c1 exp(a0(|k(1)

2 |+k2)/2)
‖2 ‖f − fċ1 exp(a0ni)‖2.

Similarly to (3.36) and (3.37), we obtain

κ1,2 = O(1) and κ1 ≤ 4(κ1,1 + κ1,2) = O(1). (3.41)

Hence Lemma 2.4 is proved.

End of the proof of Theorem 3. Consider the case σ(f) = 0. By (3.25), (2.9)

and Lemma 2.3, we get that ĥ(d)(m) = 0 for all m ∈ Zs. Hence f̂(m) = ĥ(0)(m) =∑
1≤i≤d ĝ

(i)(m). Using Lemma 2.4, we obtain that f̂ (i) ∈ l2. Bearing in mind that

ĝ(i)(m) = f̂ (i)(m) − f̂ (i)(A−1
i m) ∈ l2 (see (3.26)), we get that ĝ(i) ∈ l2 and ĥ(i) ∈ l2

(i = 1, ..., d). Let f (i), g(i) and h(i) be the correspondent functions of L2. We have that
g(i)(x) = f (i)(x) − f (i)(Aix) (see (2.2)) and f(x) = g(1)(x) + · · · + g(d)(x) for almost all
x ∈ [0, 1)s. The assertion (2.13) is proved. Next we have that h(i) (and hence g(i)) verify
(2.8) : ∑

m∈W

( ∑
n∈Zd

∣∣∣ĥ(i)(Anm)
∣∣∣)2

≤
∑

m∈W

( ∑
ni+1,...,nd∈Z

∑
n1,...,ni∈Z

∣∣∣f̂(Anm)
∣∣∣)2

= S(f) < +∞, i = 1, ..., d.

Now let f satisfy (2.13), f =
∑

1≤i≤d g
(i), g(i)(x) = f (i)(x)− f (i)(Aix)), f (i) ∈ L2, and

g
(i)
i satisfy (2.8) (i = 1, ..., d). By (2.8), the series∑

n∈Zd
f̂(Anm) =

∑
1≤i≤d

∑
n∈Zd

ĝi(A
nm) with m ∈W
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converges absolutely. From (2.1) and (2.2), we get∑
ni∈Z

ĝi(A
ni
i m) =

∑
ni∈Z

(f̂ (i)(Anii m)− f̂ (i)(Ani−1
i m)) = 0, with m ∈ Zs.

Hence ∑
n∈Zd

ĝi(A
nm) = 0, i = 1, ..., d,

∑
n∈Zd

f̂(Anm) = 0 and σ = 0.

Thus Theorem 3 is proved.

4 Proof of Theorem 4.

The upper bound in (2.15) follows from the formula for a degree of Jordan matrix
(see, e.g., [Ga, pp.157,158]). We can take for example a2 = dmaxi,j | ln |λi,j ||+ 1, where
λi,j are eigenvalues of Ai (i = 1, ..., d). Let us consider the lower bound :

4.1. Preliminary lemmas.
Let K1 be an algebraic number field of degree s1 over Q. Then there are s1 distinct

monomorphisms σi : K1 → C, i = 1, ..., s1 [see, e.g., Al, p.112]. By [BS, p.401], [Al,
p.222], we get

NK1/Q(ξ) = σ1(ξ) · · ·σs1(ξ). (4.1)

If ξ ∈ K1 \ 0 is an algebraic integer, then

|NK1/Q(ξ)| ≥ 1. (4.2)

Let η1, ..., ηd be units of K1 with ηn1
1 · · · η

nd
d = 1⇐⇒ n1 = ... = nd = 0. Let

χi(n) =

d∑
j=1

nj ln |σi(ηj)| i = 1, ..., s1.

Repeating the proof of ([KaNi], Lemma 6.2.14), we obtain :

Lemma 4.1. There exists a constant a3 = a3(η1, ..., ηd,K1) > 0 such that

max
i∈[1,s1]

χi(n) ≥ a3|n|.

We need the following lemma on abelian groups (see [Ln], Lemma 7.2, p. 40) :

Lemma 4.2 Let V
ϑ→ V

′
be a surjective homomorphism of abelian groups, and as-

sume that V
′

is free. Let W1 be the kernel of ϑ. Then there exists a subgroup W2 of V
such that the restriction of ϑ to W2 induces an isomorphism of W2 with V

′
, and such

that V = W1 ⊕W2.

We recall some lemmas from linear algebra :

Lemma 4.3 ([Ho], p.267, Theorem 13) Let C1 be a subfield of the field of complex
numbers C, let V a finite-dimensional vector space over C1, and let T be a linear opera-
tor on V. There is a semi-simple operator S on V and a nilpotent operator H on V such
that

(i) T = S+H;
(ii) SH = HS.

Furthermore, the semi-simple S and nilpotent H satisfying (i) and (ii) are unique, and

15



each is a polynomial in T.

Lemma 4.4 ([Ma], p.77, ref. 4.21.1) Let Ms(C) be the set of s-square matrices with
entries in C. If Bi ∈ Ms(C) (i = 1, ..., d) pairwise commute [i.e. BiBj = BjBi, (i, j =

1, ..., d)], then there exists a unitary matrix U (i.e. U∗ = U−1) such that U∗BiU is an
upper triangular matrix for i = 1, ..., d, where U∗ - conjugate transpose of U ∈Ms(C).

Lemma 4.5 ([Ga], p.224, Corollary 2) If the linear operators A,B, ..., L pairwise
commute and all the eigenvalues of these operators belong to the ground field K, then
the whole space R can be split into subspaces I1, ..., Iw invariant with respect to all the
operators such that each operator A,B, ..., L has equal eigenvalues in each of them.

4.2. Invariant subspaces.
We consider matrices A1, ..., Ad, the space Cs and we apply Lemma 4.5:
Let I1, ..., Iw be corresponding invariant subspaces of Cs with dimIj = rj , j = 1, ..., w,

r1 + · · · + rw = s. There exists a matrix U1 ∈ Ms(C) such that Ti = U1AiU
−1
1 have

the following block diagonal structure: Ti = T1,i ⊕ · · · ⊕ Tw,i with rj × rj commuting
matrices Tj,i with equal eigenvalues (j = 1, ..., w, i = 1, ..., d). We denote by λj,i the
unique eigenvalue of Tj,i in the subspace Ii. It is easy to see that λ1,i, ..., λw,i are all
eigenvalues of Ai (i = 1, ..., d).

Now we consider matrices Tj,1, ..., Tj,d and we use Lemma 4.4. We have that there
exists a matrix U2 ∈Ms(C) such that

Λi = U2AiU
−1
2 , i = 1, ..., d, (4.3)

have the following block diagonal structure:

Λ1 =

 Λ1,1 0
. . .

0 Λw,1

 , · · · ,Λd =

 Λ1,d 0
. . .

0 Λw,d

 ,

with rj × rj commuting upper triangular matrices Λj,i (j = 1, ..., w, i = 1, ..., d). Hence

An1
1 · · ·A

nd
d = U−1

2 Λn1
1 · · ·Λ

nd
d U2, and Λn1

1 · · ·Λ
nd
d =

 Λ̃1(n) 0
. . .

0 Λ̃w(n)

 , (4.4)

where n = (n1, ..., nd), and Λ̃j(n) is an upper-triangular matrix with λn1
j,1 · · ·λ

nd
j,d on the

diagonal (1 ≤ j ≤ w). Let Λ̃j(n) = (λ̃
(j)
ν1,ν2(n))1≤ν1,ν2≤rj . Using the formula for the

degree of Jordan’s normal form of matrices Λj,i (see, e.g., [Ga, pp. 157,158]), we get
that

λ̃(j)
ν1,ν2(n) = λn1

j,1 · · ·λ
nd
j,dP

(j)
ν1,ν2(n) (4.5)

for some polynomial P (j)
ν1,ν2 . It is easy to see that

P (j)
ν1,ν1(n) = 1 and P (j)

ν1,ν2(n) = 0 for ν1 > ν2. (4.6)

Taking into account that λn1
j,1 · · ·λ

nd
j,d is an eigenvalue of An1

1 ...Andd , we obtain from Defi-
nition 1 that

λn1
j,1 · · ·λ

nd
j,d = 1 ⇐⇒ (n1, ..., nd) = 0, with j ∈ [1, r]. (4.7)
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Now we decompose Λj,i to semisimple (i.e. diagonalizable) and nilpotent com-
ponents. Let Ir be an r × r identity matrix, Λj,i,1 = λj,iIrj , Λj,i,2 = Λj,i − Λj,i,1,
Λj,i,3 = Irj − λ−1

j,i Λj,i,2

Λi,l = Λ1,i,l ⊕ · · · ⊕ Λw,i,l, Ai,l = U−1
2 Λi,lU2, l = 1, 2, 3.

We see that Λj,i = Λj,i,1Λj,i,3 and Ai,1 are the semisimple matrices, Ai,2 is the nilpotent
matrix, Ai,3 is the unipotent matrix,

Ai = Ai,1 +Ai,2, and Ai = Ai,1Ai,3, i = 1, ..., d.

By Lemma 4.3 there exists only one decomposition of a matrix to semisimple and
nilpotent components. Applying Lemma 4.3 we obtain that Ai,l is a polynomial of Ai
(i = 1, ..., d,

l = 1, 2, 3). Hence, they are commuting matrices, and

An1
1 · · ·A

nd
d = An1

1,1 · · ·A
nd
d,1(An1

1,3 · · ·A
nd
d,3). (4.8)

Applying (4.5), we get
|An1

1,3 · · ·A
nd
d,3m| = O(|n|sd|m|).

Therefore there exists a constant ċ0 > 0, such that

|An1
1,3 · · ·A

nd
d,3m| ≤ ċ0|n|

sd|m| and 1 ≤ |m| ≤ ċ0|n|sd|An1
1,3 · · ·A

nd
d,3m|. (4.9)

From (4.8) and (4.9), we get

|An1
1 · · ·A

nd
d m| ≥ ċ−1

0 |n|−sd|A
n1
1,1 · · ·A

nd
d,1m|. (4.10)

Thus, to prove Theorem 4, it is enough to verify (2.15) for the semisimple case, i.e.
when Ai = Ai,1 (i = 1, ..., d). In this case,

Λi = diag[θ1,i, ..., θs,i], with θl,i = λj,i, for l ∈ (r
′

j−1, r
′

j ], (4.11)

where r
′

j = r1 + · · ·+ rj , r
′

0 = 0 (l ∈ [1, s], j ∈ [1, w], i ∈ [1, d]).

Let K2 = Q(λ1,1, ..., λw,1, ..., λ1,d, ..., λw,d), be the algebraic number field of degree s2,
and let σ1, ..., σs2 be distinct monomorphisms σi : K2 → C, i = 1, ..., s2. The first part of
the following result is mentioned without the complete proof found in [Ga, p. 220]:

Lemma 4.6. There exist an invertible matrix T = (ti,j)1≤i,j≤s with ti,j ∈ K2, (1 ≤
i, j ≤ s) and constant c3 > 0 such that

Λi = TAiT
−1 (i = 1, ..., d) and |m̃j | ≥ c3|m|−s2+1, for m̃j 6= 0, (4.12)

where m̃ = (m̃1, ..., m̃s)
(t) = Tm.

Proof. We consider the following system of linear equations:

XAi = ΛiX, i = 1, ..., d with X = (xj,ν)1≤j,ν≤s. (4.13)

By (4.3) there exists the nontrivial solution U2 ∈ Ms(C) of this system. Hence there
exists a partition G1, G2 of [1, s]2 with G1∪G2 = [1, s]2, G1∩G2 = ∅, min(#G1,#G2) ≥ 1,
and

xκ = gκ(X̃), with X̃ = {xω | ω ∈ G2}, (4.14)
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where gκ is a linear form with coefficients in K2, κ ∈ G1. We see that

detX = g(X̃),

where g is some polynomial with coefficients in K2.
Bearing in mind that detU2 6= 0, we get that g(X̃) 6≡ 0 for X̃ ∈ C#G2 . Taking into

account that K2 contains infinitely many elements, we obtain (by induction on #G2)
that g(X̃) 6≡ 0 for X̃ ∈ K#G2

2 . Let g(T̃ ) 6= 0 with T̃ ∈ K#G2

2 . From (4.14), we get that
there exists a solution T = (tj,ν)1≤j,ν≤s of the system (4.13) with tj,ν ∈ K2, (1 ≤ j, ν ≤ s)
and detT 6= 0. Let D(K2) be the ring of algebraic integers of the field K2. We take an
integer q0 ≥ 1 such that

q0tj,ν ∈ D(K2), j, ν = 1, ..., s. (4.15)

Let

m̃i =

s∑
j=1

ti,jmj , and m̃ = (m̃1, ..., m̃s)
(t) = Tm. (4.16)

By (4.1) and (4.2), we have

|NK2/Q(q0m̃i)| = qs20 |σ1(m̃i) · · ·σs2(m̃i)| ≥ 1 for m̃i 6= 0. (4.17)

Using (4.16) and (4.17), we get

|m̃i| ≥ c3|m|−s2+1, for m̃i 6= 0, where c3 = q−s20 (smax
i,j,k

σk(ti,j))
−s2+1.

Hence Lemma 4.6 is proved.

Bearing in mind that

An1
1 · · ·Anss m = T−1Λn1

1 · · ·Λnss m̃, (4.18)

we obtain that (2.15) is a result the following inequality

|Λn1
1 · · ·Λ

nd
d m̃| ≥ c4|m|−b1 exp(a1|n|) for m 6= 0

with some c4 > 0. Let

G = {i ∈ [1, s] | m̃i 6= 0}. (4.19)

By (4.11) and (4.12), to obtain (2.15), it is enough to prove that

max
j∈G
|θn1
j,1 · · · θ

nd
j,d| ≥ c5|m|

−b2 exp(a1|n|), ∀n ∈ Zd with An1
1 · · ·Anss m ∈ Zs \ 0 (4.20)

for some a1, b2, c5 > 0.
Let e1, ..., es be a standard basis of Zs, T−1 = (t̃i,j)1≤i,j≤s,

ẽi =

s∑
j=1

t̃j,iej , and m̃ = (m̃1, ..., m̃s)
(t) = Tm.

By ([Ga], pp. 59, 60 and 73), m̃1, ..., m̃s are coordinates of vector m in the basis ẽ1, ..., ẽs,
Λi is the matrix of the operator Ai in the basis ẽ1, ..., ẽs (i = 1, ..., d), and ẽ1, ..., ẽs are
eigenvectors of A1, ..., Ad in Cs. Hence

m = m̃1ẽ1 + · · ·+ m̃sẽs =
∑
i∈G

m̃iẽi.
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Let V be a subspace of Cs with basis {ẽi | i ∈ G}, Γ0 = V ∩ Zs, and let G be the
set of all of distinct lattices Γ0 . Note that #G ≤ 2s (the number of subsets G of [1, s],
see (4.19)). We denote by V0 the C-linear span of Γ0. We see that V,Γ0 and V0 are
A1, ..., Ad invariant subsets in Cs. Let d0 = dim Γ0. Taking into account that m ∈ V and
m ∈ Γ0, we get that d0 ≥ 1. Let ě1, ..., ěd0 be a basis of Γ0, and let Ǎ1, ..., Ǎd be matrices
of operators Ai : Cs → Cs (i = 1, ..., d) restricted in V0 in the basis ě1, ..., ěd0 .

It is easy to see that Ǎ1, ..., Ǎd are integer matrices, and Ǎn := Ǎn1
1 , ..., Ǎndd is a matrix

with rational coefficients. Hence the characteristic polynomial φn of Ǎn has rational
coefficients. Let h ∈ V0 be an eigenvector of Ǎn, and β a corresponding eigenvalue.
We see that h ∈ V is an eigenvector of An1

1 · · ·A
nd
d restricted on V. Therefore β is an

eigenvalue of An1
1 · · ·A

nd
d |V. Taking into account that all eigenvalues of An1

1 · · ·A
nd
d |V are

θn1

l,1 · · · θ
nd
l,d with l ∈ G, we get that there exists l0 ∈ G such that β = θn1

l0,1
· · · θndl0,d. By

(4.11) there exists j0 ∈ [1, w], such that

β = θn1

l0,1
· · · θndl0,d = λn1

j0,1
· · ·λndj0,d. (4.21)

In §4.4 we will prove that there exists a1, b2, c5 > 0 such that

|σν(β)| = |σν(θn1

l0,1
) · · ·σν(θndl0,d)| ≥ c5 exp(a1|n|)|m|−b2 (m 6= 0) (4.22)

for some ν ∈ [1, s2]. Bearing in mind that for all ν ∈ [1, s2]: σν(β) is a root of φn, we
get that there exists an eigenvector hν ∈ V0 be of Ǎn. We have that hν ∈ V is the
eigenvector of An1

1 · · ·A
nd
d |V, and σν(β) is an eigenvalue of An1

1 · · ·A
nd
d |V . Similarly to

(4.21), we obtain that there exists l1 ∈ G with

σν(β) = θn1

l1,1
· · · θndl1,d.

Now Theorem 4 follows from (4.22) and (4.20).

4.3. Some notations and inequalities from divisor theory.
Let D be the group of divisors of the field K2, K∗2 = K2 \ 0. Consider the homomor-

phism from K∗2 to D. We denote the image of the element ξ ∈ K∗2 by div(ξ). By [BS,
p.217],

NK2/Q(div(ξ)) = |NK2/Q(ξ)|. (4.23)

If d divides the rational prime p and if d has degree ḟ, then ([BS, p.217])

NK2/Q(d) = pḟ.

Let d1, ..., dµ be the set of all prime divisors of D such that for all ν ∈ [1, µ] there exists
(i, j) ∈ [1, d]× [1, w] with λj,i ≡ 0 mod dν . Thus

div(λj,i) =

µ∏
ν=1

dbi,j,ν
ν

for some nonnegative integers bi,j,ν , (i, j, ν) ∈ [1, d]× [1, w]× [1, µ]. Let

NK2/Q(dν) = pḟνν . (4.24)

Fixing j0 ∈ [1, w], we obtain

div(λn1

j0,1
· · ·λnd

j0,d
) =

µ∏
ν=1

dlν(n)
ν (4.25)
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where

lν(n) =

d∑
i=1

nibi,j0,ν . (4.26)

Let
l(n) = (l1(n), ..., lµ(n)),

and let
l+(n) = max

i∈[1,µ]
(0, li(n)), l−(n) = max

i∈[1,µ]
(0,−li(n)).

We see that
max(l+(n), l−(n)) ≤ |l(n)| ≤ µmax(l+(n), l−(n)). (4.27)

Let m
′

= An1
1 · · ·A

nd
d m ∈ Zs \ 0, and m̃

′
= (m̃

′

1, ..., m̃
′

s)
(t) = Tm

′
.

By (4.15), (4.16) and (4.18), we have that m̃
′

= Λn1
1 · · ·Λ

nd
d m̃ and q0m̃

′

l ∈ K2 (l =

1, ..., s) are algebraic integers. From (4.19) and (4.21), we obtain

m̃
′

l0 = θn1

l0,1
· · · θndl0,dm̃l0 = λn1

j0,1
· · ·λndj0,dm̃l0 6= 0 for l0 ∈ G,

with some j0 ∈ [1, w]. Hence

div(q0m̃l0) = div(q0m̃
′

l0)div(λ−n1

j0,1
· · ·λ−nd

j0,d
). (4.28)

Let l−(n) > 0. Then there exists i0 ∈ [1, µ] with −li0(n) = l−(n). We have m,m
′ ∈ Zs \ 0

and q0m̃l0 , q0m̃
′

l0
are algebraic integers. Bearing in mind (4.28) and (4.25), we get that

div(q0m̃l0) ≡ 0 mod d
−li0 (n)

i0
.

By (4.23), (4.24) and (4.17), we obtain

1 ≤ |NK2/Q(q0m̃l0)| = NK2/Q(div(q0m̃l0)) ≡ 0 mod p
−li0 (n)

i0
,

and
2−li0 (n) ≤ |NK2/Q(q0m̃l0)| ≤ (q0smax

i,j,ν
|σν(ti,j)||m|)s2 .

Hence
l−(n) ≤ c6 + s2 log2 |m| with c6 = s2| log2(q0smax

i,j,ν
|σν(ti,j)|)|. (4.29)

We see that (4.29) is also true for l−(n) = 0. By (4.23), (4.24), and (4.25), we have that

|NK2/Q(λn1
j0,1
· · ·λndj0,d)| = NK2/Q

(
div(λn1

j0,1
· · ·λnd

j0,d
)
)

=

µ∏
ν=1

pḟν lν(n)
ν ≥ 2l+(n)−c7l−(n),

where c7 = µmaxν∈[1,µ] ḟν log2(pν). Using (4.29), we obtain

|NK2/Q(λn1
j0,1
· · ·λndj0,d)| ≥ 2l

+(n)−c6c7 |m|−c7s2 . (4.30)

4.4. End of the proof of Theorem 4. Let

Γ
′

= {l(n) | n ∈ Zd} ⊆ Zµ, Γ1 = {n ∈ Zd | l(n) = 0}. (4.31)

Applying Lemma 4.2 with V = Zd, V
′

= Γ
′

and W1 = Γ1, we get that there exists a
subgroup Γ2 of Zd isomorphic with Γ

′
, and such that Zd = Γ1 ⊕ Γ2.
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Let κ1 = dim Γ1, and κ2 = d − κ1. Consider the case of min(κ1, κ2) ≥ 1. Let f1, ..., fd
(fi = (f̃1,i, ..., f̃d,i)) be a basis of Zd such that f1, ..., fκ1

is the basis of Γ1 and fκ1+1, ..., fd
is the basis of Γ2.

For all n ∈ Zd there exist n1 = (n
(1)
1 , ..., n

(1)
d ) ∈ Γ1, n2 = (n

(2)
1 , ..., n

(2)
d ) ∈ Γ2, k1 =

(k1, ..., kκ1
) ∈ Zκ1 and k2 = (kκ1+1, ..., kd) ∈ Zκ2 such that

n = n1 + n2, n1 = k1f1 + · · ·+ kκ1fκ1 , and n2 = kκ1+1fκ1+1 + · · ·+ kdfd. (4.32)

By (4.26), (4.31), (4.32) and Lemma 4.2, we have that there exists c0 > 1 such that

c−1
0 |ni| ≤ |ki| ≤ c0|ni|, i = 1, 2 and c−1

0 |k2| ≤ |l(n)| ≤ c0|k2|. (4.33)

If κi = 0, then we will use (4.33) with ni = 0 and ki = 0 (i = 1, 2). By (4.32), we have

θ̇0 := λn1
j0,1
· · ·λndj0,d = θ̇1θ̇2, where θ̇i := λ

n
(i)
1
j0,1
· · ·λn

(i)
d

j0,d
i = 1, 2,

and
θ̇1 = ηk11 · · · η

kκ1
κ1 , where ηi := λ

f̃1,i
j0,1
· · ·λf̃d,ij0,d

i = 1, ..., κ1.

From (4.25), (4.31) and (4.32), we obtain that η1, ..., ηκ1
, θ̇1 are units in K2. Let n2 = 0.

Using (4.7), we get that θ̇0 = θ̇1 = 1 if and only if n1 = 0, and

ηk11 · · · η
kκ1
κ1 = 1, ⇐⇒ k1 = · · · = kκ1

= 0.

Applying Lemma 4.1 and (4.11), we get that there exists a constant a4(l0) > 0, such that

| max
ν∈[1,s2]

σν(θ̇1)| ≥ exp(a4(l0)|k1|) ≥ exp(a4(l0)|n1|/c0).

Let a5 = c−1
0 minl0∈G a4(l0). Hence, there exists ν0 ∈ [1, s2] such that

|σν0(λ
n
(1)
1
j0,1
· · ·λn

(1)
d

j0,d
)| ≥ exp(a5|n1|). (4.34)

We will need the following notations :

b0 = 0.25a5(1 + a5)−1d−1(1 + max
i,j,ν
| ln |σν(λj,i)||)−1, a6 = dmax

i,j,ν
| ln |σν(λj,i)||,

b4 = 2b−1
0 c20µs2dmax

i,j,ν
| ln |σν(λj,i)||/ ln 2, a1 = min(a5/4, a6, b0c

−2
0 µ−1s−1

2 ln 2),

κ(m) = b−1
0 c20µ(c6 + s2 log2(|m|)), b2 = max(b4, c7), (4.35)

c8 = exp(−2b−1
0 c20µc6dmax

i,j,ν
| ln |σν(λj,i)||), c5 = min(c8, 2

−c6c7/s2).

Case 1. Let κ2 = 0. Then n1 = n and (4.22) follows from (4.34) and (4.35).
Case 2. Let |n| ≤ κ(m). Then −|n| ≥ |n| − 2κ(m), and

min
j,ν
|σν(λn1

j,1 · · ·λ
nd
j,d| ≥ exp(−|n|dmax

i,j,ν
| ln |σν(λj,i)||) (4.36)

≥ exp((|n| − 2κ(m))dmax
i,j,ν
| ln |σν(λj,i)||) ≥ c8 exp(a6|n|)|m|−b4 ≥ c5 exp(a1|n|)|m|−b2 .

Case 3. Let l+(n) ≥ b0c
−2
0 µ−1|n| . By (4.30) and (4.1), we have that there exists

ν0 ∈ [1, s2] such that

|σν0(λn1
j0,1
· · ·λndj0,d| ≥ 2l

+(n)/s2−c6c7/s2 |m|−c7

≥ 2b0c
−2
0 µ−1|n|/s2−c6c7/s2 |m|−c7 ≥ c5 exp(a1|n|)|m|−b2 . (4.37)
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Case 4. Let |n| ≥ κ(m), and κ2 = d . We see that κ1 = 0, n1 = 0, and n2 = n. By
(4.27), (4.33) and (4.35), we have b−1

0 > 4 and

max(l+(n), l−(n)) ≥ |l(n)|/µ ≥ c−2
0 µ−1|n2| = c−2

0 µ−1|n| ≥ b−1
0 (c6 + s2 log2(|m|).

Bearing in mind (4.29), we obtain that l−(n) ≤ c6 +s2 log2(|m|), and l+(n) > l−(n). Thus

l+(n) ≥ c−2
0 µ−1|n| > b0c

−2
0 µ−1|n|.

Hence we can use the inequality (4.37).
Case 5. Let |n| ≥ κ(m), d > κ2 ≥ 1 and l+(n) ≤ b0c−2

0 µ−1|n| . By (4.29), (4.27), (4.35)
and (4.33), we have that l−(n) ≤ b0c−2

0 µ−1κ(m) ≤ b0c−2
0 µ−1|n| and

|n2| ≤ c0|k2| ≤ c20|l(n)| ≤ c20µmax(l+(n), l−(n)) ≤ b0|n| ≤ |n|/2.

Thus

|n1| ≥ |n| − |n2| ≥ |n|/2. (4.38)

Using the definition of b0 (see (4.35)), we obtain

min
j,ν
|σν(λ

n
(2)
1
j,1 · · ·λ

n
(2)
d

j,d )| ≥ exp(−d|n2|max
i,j,ν
| ln |σν(λj,i)||)

≥ exp(−db0|n|max
i,j,ν
| ln |σν(λj,i)||) ≥ exp(−a5|n|/4).

Applying (4.34) and (4.38), we have

|σν0(λn1
j0,1
· · ·λndj0,d| = |σν0(λ

n
(1)
1
j0,1
· · ·λn

(1)
d

j0,d
)||σν0(λ

n
(2)
1
j0,1
· · ·λn

(2)
d

j0,d
)|

≥ exp(a5|n1| − a5|n|/4) ≥ exp(a5|n|/4) ≥ c5 exp(a1|n|)|m|−b2 . (4.39)

Now from (4.36) - (4.39), we get (4.22) and Theorem 4 for the semisimple case. Bearing
in mind (4.10), we obtain that Theorem 4 is true for the general case.

5 Proof of Limit Theorems.

5.1 Proof of Theorem 5.

By the Cramér-Wold device, it is enough to prove that for arbitrary reals α1, ..., αq

υ(N, f,x) =
1

σ(f)
√
α2

1 + · · ·+ α2
q

q∑
i=1

αi√
N̆i

∑
ni∈Ri(Ni)

f(Anix)
d→ N (0, 1). (5.1)

We consider first the case that f has a finite Fourier expansion :

Lemma 5.1. Let σ(fL) > 0. With notations as above :

ι(}) = lim
mini,j Ni,j→∞

∫
[0,1)s

|υ(N, fL,x)|}dx =

{
}!

2}/2(}/2)!
, if } is even,

0, if } is odd.
(5.2)

By the moment method, (5.1) follows from (5.2) for f = fL (see (2.12)). The proofs of
the general case and of Lemma 5.1 are given below. We consider the following variant
of the S-unit theorem (see, [SS], Theorem 1):
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Let K be an algebraic number field of degree s1 ≥ 1. Write K∗ for its multiplicative
group of nonzero elements. We consider the equation

h1∑
i=1

Pi(n)ϑn
i = 0 (5.3)

in variables n = (n1, ..., nd1) ∈ Zd1 , where the Pi are polynomials with coefficients in
K, ϑn

i = ϑn1
i,1 · · ·ϑ

nd1
i,d1

, and ϑi,j ∈ K∗ (1 ≤ i ≤ h1, 1 ≤ j ≤ d1). Let U1 be the potential
number of nonzero coefficients of the polynomials P1, ..., Ph1

, and U = max(d1, U1). A so-
lution n of (5.3) is called non-degenerate if

∑
i∈I Pi(n)ϑn

i 6= 0 for every nonempty subset
I of {1, ..., h1}. Let G be the subgroup of Zd1 consisting of vectors n with ϑn

1 = · · · = ϑn
h1

.

Theorem B. ([SS]) SupposeG = {0}. Then the number U(P1, ..., Ph1) of non-degenerate
solutions n ∈ Zd1 of equation (5.3) satisfies the estimate

U(P1, ..., Ph1
) ≤ U(d1,P) = 235U3

s6U2

1 .

It is easy to get the following

Corollary 5.1. Let d1 = d(h1 − 1), ϑh1,j = 1 (j = 1, ..., d), ϑi,j+(i−1)d = ϑj ∈ K∗ and
ϑi,j+µd = 1 (µ ∈ [0, h1 − 2], µ 6= i − 1, i = 1, ..., h1 − 1, j = 1, ..., d), n = (n1, ...,nh1−1),
ni = (ni,1, ..., ni,d) with i = 1, ..., h1 − 1, Ph1(n) ≡ −1. Suppose

ϑn1
1 · · ·ϑ

nd
d = 1 ⇐⇒ (n1, ..., nd) = 0. (5.4)

Then the number U
′
(P1, ..., Ph1−1) of non-degenerate solutions n ∈ Zd1 of the equation

h1−1∑
i=1

Pi(n)ϑn
i =

h1−1∑
i=1

Pi(n)ϑ
ni,1
1 · · ·ϑni,dd = 1

satisfies the estimate

U
′
(P1, ..., Ph1−1) ≤ U(d1,P).

Remark 1. In this paper we need only the estimate U
′
(P1, ..., Ph1−1) ≤ U, where a

constant U depends only on s, d and h1.

Remark 2. The condition defining the group G is equivalent to the condition (5.4)
in terms of Corollary 5.1. In this paper, the validity of (5.4) follows from the partially
hyperbolic property of the action A (see (4.7) and Definition 1). It is known that if A
has the partially hyperbolic property, then An is ergodic with respect to the Lebesgue
measure for all n ∈ Zd+ \ {0}. According to [ScWa] the partially hyperbolic action A is
mixing of all orders.

Definition 5.1. Let F (}) = {1, ..., }}, F ⊆ F (}), βF = #F , F = (F (1), ..., F (βF )) ,

n = (n1, ...,n}), n(F (})) = n, n(F ) = (nF (1), ...,nF (βF )), with ni = (ni,1, ..., ni,d), P = {p =

(p1, p2) | 1 ≤ p1 ≤ w, 1 ≤ p2 ≤ rp1} (see (4.3), (4.4)), p(1) ≺ p(2) if p(1)
1 < p

(2)
1 or if

p
(1)
1 = p

(2)
1 and p(1)

2 < p
(2)
2 . Let

C(n(F )) =
∑
µ∈F

TA
nµ,1
1 · · ·Anµ,dd m(µ) =

∑
µ∈F

Λ
nµ,1
1 · · ·Λnµ,dd m̃(µ), C(n(∅)) = 0, (5.5)
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where m̃ = (m̃1,1, ..., m̃1,r1 , ..., m̃w,1, ..., m̃w,rw)(t) = Tm (see (4.12)).

We have that coordinates of a vector x ∈ Rs can be enumerated by the set P :

x = (x(1,1), ..., x(1,r1), ..., x(w,1), ..., x(w,rw)), with x(p1,p2) = xp = xp1,p2 .

Hence C(n(F )) = (C(n(F ))p)p∈P , with C(n(F ))p := (C(n(F )))p. By (5.5) and (4.4)-(4.6),
we get

C(n(F ))p1,p2 =
∑
µ∈F

∑
1≤ν≤rp1

λ̃(p1)
p2,ν(nµ)m̃(µ)

p1,ν =
∑
µ∈F

λ
nµ,1
p1,1
· · ·λnµ,dp1,d

∑
p2≤ν≤rp1

P (p1)
p2,ν (nµ)m̃(µ)

p1,ν .

(5.6)

Definition 5.2. Let F0 = F̃1 = ∅, m̃(j) 6= 0 (j = 1, ..., }), p0 = (w, rw),

P1 =
{

p ∈ P | ∃j ∈ [1, }] with m̃(j)
p 6= 0

}
, p1 = max

p∈P1

p, F1 = {j ∈ [1, }] | m̃(j)
p1
6= 0}.

(5.7)
For i ≥ 2 we denote Pi,pi,Fi and F̃i recursively :

pi = max
p∈Pi

p, fi = #Fi, (5.8)

Fi = {j ∈ [1, }] \ F̃i | m̃(j)
pi 6= 0}, Fi = {Fi(1), ...,Fi(fi)}, F̃i = ∪i−1

l=1Fl, (5.9)

where
Pi =

{
p ∈ P | p ≺ pi−1 and ∃j ∈ [1, }] \ F̃i with m̃(j)

p 6= 0
}
. (5.10)

Let k = max{i ∈ [1, s] | Pi 6= ∅}.

We have
k⋃
i=1

Fi = [1, }]. (5.11)

Lemma 5.2. Let C(n(F (}))) = 0, and i ∈ [1, k]. Then

C(n(Fi))pi = −C(n(F̃i))pi , (5.12)

C(n(Fi))pi = L(n(Fi))pi , where L(n(F ))p =
∑
µ∈F

λ
nµ,1
p1,1
· · ·λnµ,dp1,d

m̃(µ)
p1,p2 , (5.13)

and
L(n(Fi))pi = −C(n(F̃i))pi . (5.14)

Proof. We need the following equality

m̃(j)
p = 0 for pk ≺ p and j ∈ Fk, k = 1, ..., k. (5.15)

Let k = 1. We see that (5.15) follows from (5.7). Consider the case k ≥ 2. We have that
pl ≺ p � pl−1 for some l ∈ [2, k]. Let pl ≺ p ≺ pl−1. We derive from (5.8) that p /∈ Pl.
By (5.10) and (5.11), we obtain that m̃(j)

p = 0 for all j ∈ [1, }] \ F̃l = ∪ν≥lFν . Bearing in
mind that l ≤ k, we get that Fk ⊆ ∪ν≥lFν and (5.15) follows. Let p = pl−1. We get from
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(5.9) that if m̃(j)
pl−1 6= 0 for some j ∈ [1, }] \ F̃l−1, then j ∈ Fl−1 and j /∈ Fi, i ≥ l . Hence,

for all j ∈ Fk we have m̃(j)
pl−1 = 0. Thus (5.15) is true.

Let k > i, then pk ≺ pi. From (5.15) we obtain that m̃(µ)
p = 0 for µ ∈ Fk, pi � p. Let

pi = (pi,1, pi,2), then m̃(µ)
pi,1,ν = 0 for µ ∈ Fk, pi,2 ≤ ν. Using (5.6) and (5.9), we get (5.12).

By (5.15), we have that m̃(µ)
pi,1,ν = 0 for µ ∈ Fi, pi,2 < ν. Applying (4.6) and (5.6),

we obtain (5.13). Now from (5.12) and (5.13), we obtain (5.14). Hence Lemma 5.2 is
proved.

Let ði ∈ [1, q], i = 1, ..., h and

R(N, F,p) = {(nF (1), ...,nF (β)) | ni ∈ RðF (i)
, i = 1, ..., β, β = #F (5.16)

and @F
′
( F with L(n(F

′
))p = 0}.

We do not suppose that Ri(Ni) ∩Rj(Ni) = ∅ for i 6= j ∈ [1, q] in the following
Lemma 5.3-Lemma 5.8 (see (2.16)).

Lemma 5.3. Let F ⊆ F (}), β = #F , N̆F =
∏
i∈F N̆i, with N̆i =

∏
j∈[1,d]Ni,j , and

$ :=
1√
N̆F

∑
n(F )∈R(N,F,p)

δ(L(n(F ))p = γ).

Then

$ ≤

{
1, if γ = 0, β = 2,

cρ(N), otherwise,

where a constant c depend only on }, and ρ(N) = maxi(N̆i)
−1/2.

Proof. Let γ 6= 0. Applying Corollary 5.1 with h1 = } + 1, d1 = d}, s1 = s2 ∈ [1, ss],
U = sd} and U(d1,P) = 235U3

s6sU2

, from (4.7), (5.4), (5.13) and (5.16), we get that

$ ≤ U(d1,P)
1√
N̆F

≤ U(d1,P)ρ(N).

Let γ = 0 and β = 1. We see that there are no solutions of the equation L(n(F ))p = 0.
Let γ = 0 and β ≥ 3. By (5.16) there are no non-degenerate solutions of the equation

L(n(F ))p = 0. Hence m̃
(i)
p 6= 0 for all i ∈ F . Let mini∈F N̆ði = N̆ðµ0 . We fix nµ0

. Let

n
′

µ,j = nµ,j − nµ0,j (µ ∈ F ). We see that

−
∑

µ∈F,µ6=µ0

λ
n
′
µ,1

1,p1
· · ·λn

′
µ,d

d,p1
m̃(µ)
p1,p2/m̃

(µ0)
p1,p2 = 1. (5.17)

Bearing in mind that λi,j are algebraic integers, we can apply Corollary 5.1. We get
that the number of solutions of (5.17) is equal to O(}). Taking into account that β ≥ 3

and N̆F ≥ (N̆µ0)3, we obtain

$ = O
(
N̆µ0

/

√
N̆F

)
= O((N̆µ0

)−1/2) = O(ρ(N)).

Let γ = 0, β = 2. Using Definition 1, we get that

#{n
′
∈ Zd | λn

′
µ,1

1,p1
· · ·λn

′
µ,d

d,p1
= −m̃(µ)

p1,p2/m̃
(µ0)
p1,p2} ≤ 1. (5.18)

Therefore
$ ≤ (N̆F )−1/2

∏
j∈[1,d]

min(NF (1),j , NF (2),j) ≤ 1. (5.19)
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Thus Lemma 5.3 is proved.

Let F (i)
r = (F1, ..., Fr) be a partition of Fi, i.e.

F1 ∪ · · · ∪ Fr = Fi, Fj ∩ Fk = ∅, j 6= k and Fi(j) < Fi(k), for j < k.

Let (F1, ..., Fr1) ≡ (F
′

1, ..., F
′

r2) if r1 = r2, and for all i ∈ [1, r1] ∃k ∈ [1, r1] such that

Fi = F
′

k. We denote by Fi the set of all nonequivalent partition of Fi, and by F0 the set
of all nonequivalent partition of F (}).

Definition 5.3. Let ġi(n) = 0, if fi = #Fi is odd, or C(n(F̃i))pi 6= 0, and let ġi(n) = 1

otherwise. Let F (i)
r = (F1, ..., Fr) ∈ Fi. Let g̈i(n,F (i)

r ) = 0, if βFk = #Fk 6= 2 for some
k ∈ [1, r], and let g̈i(n) = 1 otherwise. Let

γj = L(n(Fj))pi , n(Fj) ∈ R(N, Fj ,pi), where j = 1, ..., r,

and γ1 = ... = γr−1 = 0, γr = −C(n(F̃i))pi . (5.20)

Let
...
g i(n,F (i)

r ) = 0, if (5.20) is true, and let
...
g i(n) = 1 otherwise. Let gi(n) = 1, if there

exists a partition F (i)
r ∈ Fi with ġi(n)g̈i(n,F (i)

r )
...
g i(n,F (i)

r ) = 1. Let gi(n) = 0 otherwise
(i = 1, ..., k), and let g(n) = g1(n) · · · gk(n).

Lemma 5.4. Let i ∈ [1, k], l ∈ {0, 1}, N̆F =
∏
i∈F N̆i and

$̇i(l) :=
1√
N̆Fi

∑
nFi(j)∈RðFi(j)

j=1,...,fi

δ(L(n(Fi))pi = −C(n(F̃i))pi)δ(gi(n) = l). (5.21)

Then
$̇i(1) = O(1) and $̇i(0) = O(ρ(N)), (5.22)

where O-constants depend only on }.

Proof. Let L(n(Fi))pi = −C(n(F̃i))pi . Using (5.16), we see that there exists a parti-

tion F (i)
r = (F1, ..., Fr) ∈ Fi satisfying (5.20). By Definition 5.3, we get

δ(L(n(Fi))pi = −C(n(F̃i))pi)δ(gi(n) = l) ≤
fi∑
r=1

∑
(F1,...,Fr)∈Fi

r∏
j=1

δ(L(n(Fj))pi = γj)

× δ(n(Fj) ∈ R(N, Fj ,pi))δ(ġi(n)g̈i(n,F (i)
r ) = l)

...
g i(n,F (i)

r ).

Let βj = #Fj , and let

ej =


1, if γj 6= 0,

2, if βj = 1, and γj = 0,

3, if βj ≥ 3, and γj = 0,

4, if βj = 2 and γj = 0.

Changing the order of the summation, we obtain

$̇i(l) ≤
fi∑
r=1

∑
(F1,...,Fr)∈Fi

r∏
j=1

4∑
k=1

κj,l,k, (5.23)

where

κj,l,k =
1√
N̆Fj

∑
n(Fj)∈R(N,Fj ,pi)

δ(L(n(Fj))pi = γj)δ(ġi(n)g̈i(n,F (i)
r ) = l)

...
g i(n,F (i)

r )δ(ej = k).
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Using Lemma 5.3 we get that κj,l,k ≤ 1 for k = 4, and κj,l,k = O(ρ(N)) for k ∈ [1, 3].
Hence (5.22) is true for l = 1. Consider the case l = 0. From Definition 5.3 we get that
if ġi(n)g̈i(n,F (i)

r ) = 0, then ej0 ∈ [1, 3] for some j0 ∈ [1, r]. Hence

4∑
k=1

κj0,0,k = O(ρ(N)) and

r∏
j=1

4∑
k=1

κj,0,k = O(ρ(N)).

By (5.23) Lemma 5.4 is proved.

Lemma 5.5. Let N̆ = N̆1 · · · N̆d = N̆F1
· · · N̆Fk

and

$1 :=
1√
N̆

∑
ni∈Rði
i=1,...,}

δ(C(n) = 0)δ(g(n) = 0).

Then
$1 = O(ρ(N)),

where O-constant depends only on }.
Proof. Using (5.14) we get

δ(C(n) = 0) ≤
k∏
i=1

δ(L(n(Fi))pi = −C(n(F̃i))pi).

Hence

$1 ≤
k∏
i=1

1√
N̆Fi

∑
nFi(j)∈RðFi(j)

j=1,...,fi

δ(L(n(Fi))pi = −C(n(F̃i))pi)δ(g(n) = 0).

It is easy to see that if g(n) = 0, then there exists µ ∈ [1, k] with gµ(n) = 0. By (5.21), we
obtain

$1 ≤
∑
µ∈[1,k]

$̇µ(0)
∏

i∈[1,k],i6=µ

($̇i(0) + $̇i(1)).

Applying Lemma 5.4, we get the assertion of Lemma 5.5.

Definition 5.4. Let ǧi(n) = 0, if there exists a partition (F1, ..., Fr) ∈ Fi and j ∈ [1, r]

such that
L(n(Fk))pi = 0, βFk = 2, n(Fk) ∈ R(N, Fk,pi), ∀k ∈ [1, r], (5.24)

and C(n(Fj)) 6= 0. Let ǧi(n) = 1 otherwise (i = 1, ..., k), and let ǧ(n) = ǧ1(n) · · · ǧk(n).

Lemma 5.6. Let

$2 :=
1√
N̆

∑
ni∈Rði
i=1,...,}

δ(C(n) = 0)δ(g(n) = 1)δ(ǧ(n) = 0).

Then
$2 = O(ρ(N)),

where O-constant depends only on }.

Proof. Let ǧ(n) = 0. By Definition 5.4, we have that there exist i1 ∈ [1, k] and a

partition (F
(i1)
1 , ..., F

(i1)
r ) ∈ Fi1 satisfying (5.24). We consider the conditions C(n) = 0
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and gi(n) = 1, i ∈ [1, k] \ {i1}. From Definition 5.3 and (5.14), we obtain that there exists

a partition (F
(i)
1 , ..., F

(i)
r ) ∈ Fi satisfying (5.20) with r = fi/2, β

F
(i)
j

= 2, j = 1, ..., fi/2,

i ∈ [1, k] \ {i1}. Hence we get the following inequality

δ(C(n) = 0)δ(g(n) = 1)δ(ǧ(n) = 0) ≤
k∑

i1=1

fi1/2∑
j1=1

k∏
i=1

∑
(F

(i)
1 ,...,F

(i)

fi/2
)∈Fi

#F
(i)
j =2, j∈[1,fi/2]

1

×
fi/2∏
j=1

δ(L(n(F
(i)
j ))pi = 0)δ(C(n(F

(i1)
j1

)) 6= 0)δ(C(n) = 0),

with n(F
(i)
j ) ∈ R(N, F

(i)
j ,pi). Let

R
′
(N, F,p) = {(nF (1), ...,nF (β)) | ni ∈ RðF (i)

, i = 1, ..., β, β = #F, (5.25)

and @F ∗ ( F with C(n(F∗))p = 0}.

Consider the conditions C(n(F
(i1)
j1

)) 6= 0 and C(n) = 0. We see that there exists p ∈
P with C(n(F

(i1)
j1

))p 6= 0. Therefore, there exists a partition (F
′

1, ..., F
′

r) of F(}) \ F (i1)
j1

such that C(n(F
′
j ))p = 0 (j = 1, ..., r − 1), C(n(F

′
r))p = −C(n(F

(i1)
j1

))p 6= 0, and n(F
′
j ) ∈

R
′
(N, Fj ,p), j = 1, ..., r. Thus

$2 ≤
k∑

i1=1

fi1/2∑
j1=1

k∏
i=1

∑
(F

(i)
1 ,...,F

(i)

fi/2
)∈Fi

#F
(i)
j =2, j∈[1,fi/2]

∑
p∈P

}−1∑
r=1

∑
(F
′
1 ,...,F

′
r ,F

(i1)
j1

)∈F0

fi/2∏
j=1

κi,i1,j,j1 (5.26)

where

κi,i1,j,j1 =
1√

N̆
F

(i)
j

∑
n

(F
(i)
j

)∈R(N,F
(i)
j ,pi)

δ
(
L(n(F

(i)
j ))pi = 0

)
(5.27)

× δ
(
n(F

′
r) ∈ R

′
(N, F

′

r ,p)
)
δ
(
C(n(F

′
r))p = −C(n(F

(i1)
j1

))p 6= 0
)
.

By Lemma 5.3, we have

κi,i1,j,j1 = O(1), with j, j1 ∈ [1, fi/2], i, i1 ∈ k. (5.28)

For ς ∈ {1, 2}, we denote

ς
′
≡ ς + 1 mod 2, ς

′
∈ {1, 2}.

Let F
′

r(1) = F
(i2)
j2

(ς) for some j2 ∈ [1, fi2/2], i2 ∈ k and ς ∈ {1, 2}. Bearing in mind that

F
(i1)
j1
∩ F ′r = ∅, we get (i1, j1) 6= (i2, j2). We fix i1, j1, F

(i1)
j1

, F
′

r and p. Using (5.11), (5.13)

and (5.16), we obtain from the condition n(F
(i1)
j1

) ∈ R(N, F
(i1)
j1

,pi) that m̃(µ)
pi1
6= 0 for all

µ ∈ F (i1)
j1

, i1 = 1, ..., k, j1 = 1, ..., fi1/2. For given n
F

(i1)
j1

(ς1)
, we derive from (5.18)

#{n(F
(i1)
j1

(ς
′
1)) ∈ Rð

F
(i1)
j1

(ς
′
1)
| L(n(F

(i1)
j1

))pi1 = 0} ≤ 1, ς1 = 1, 2.

Similarly to (5.19), we have

#{n(F
(i1)
j1

) ∈ Rð
F

(i1)
j1

(1)
×Rð

F
(i1)
j1

(2)
| L(n(F

(i1)
j1

))pi1 = 0} ≤ (N̆
F

(i1)
j1

)1/2. (5.29)
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We fix n(F
(i1)
j1

). Let

B = {n(F
′
r) ∈ R

′
(N, F

′

r ,p) | C(n(F
′
r))p = −C(n(F

(i1)
j1

))p 6= 0
}
.

Applying (5.25), (5.6) and Corollary 5.1 with h1 = } + 1, d1 = d}, s1 = s2 ∈ [1, ss],
U = sd} and U(d1,P) = 235U3

s6sU2

, we get

#B ≤ U(d1,P).

Taking into account that F
′

r(1) = F
(i2)
j2

(ς), we obtain from (5.13) and (5.18) that

#{n(F
(i2)
j2

) ∈ R(N, F
(i2)
j2

,pi2) | L(n(F
(i2)
j2

))pi2 = 0, n
F

(i2)
j2

(ς)
= nF ′r(1) and n(F

′
r) ∈ B}

≤ U(d1,P). (5.30)

From (5.29) and (5.30), we derive

#{n(F
(ik)

jk
) ∈ R(N, F

(ik)
jk

,pik), k = 1, 2 | L(n
(F

(ik)

jk
)
)pik = 0, k = 1, 2,

n
F

(i2)
j2

(ς)
= nF ′r(1) and n(F

′
r) ∈ B} ≤ U(d1,P)(N̆

F
(i1)
j1

)1/2.

Using (5.27), we get√
N̆
F

(i1)
j1

κi1,i1,j1,j1
√

N̆
F

(i2)
j2

κi2,i1,j2,j1 ≤ U(d1,P)(N̆
F

(i1)
j1

)1/2

and
κi1,i1,j1,j1κi2,i1,j2,j1 = O(ρ(N)). (5.31)

Consider (5.26). Applying (5.28) for (i, j) /∈ {(i1, j1), (i2, j2)} and (5.31) for (i, j) ∈
{(i1, j1), (i2, j2)}, we obtain the assertion of Lemma 5.6.

Definition 5.5. Let g̃i(n) = 0. If there exists two partitions (F1, ..., Ffi/2), (F
′

1, ..., F
′

fi/2
) ⊂

Fi such that βFj = βF ′j
= 2, L(n(Fj))pi = L(n(F

′
j ))pi = 0 for j = 1, ..., fi/2, Fj1(ς1) =

F
′

j2
(ς2) and Fj1(ς

′

1) 6= F
′

j2
(ς
′

2) for some j1, j2 ∈ [1, fi/2], ς1, ς2 ∈ {1, 2}. Let g̃i(n) = 1, other-
wise (i = 1, ..., k), and let g̃(n) = g̃1(n) · · · g̃k(n).

Lemma 5.7. Let

$3 :=
1√
N̆

∑
ni∈Rði
i=1,...,}

δ(C(n) = 0)δ(g(n) = 1)δ(g̃(n) = 0).

Then
$3 = O(ρ(N)),

where O-constant depends only on } and ρ(N) = maxi(Ni,1 · · ·Ni,d)−1/2.
Proof. Using (5.14), we have

$3 ≤
∑
i∈[1,k]

$̈3(i)
∏

i1∈[1,k]
i1 6=i

N̆
−1/2
Fi1

∑
nFi1 (j)∈RðFi1 (j)

j=1,...,fi1

δ(L(n(Fi1 ))pi1 = −C(n(F̃i1 ))pi1 )δ(gi1(n) = 1),

where

$̈3(i) =
1√
N̆Fi

∑
nFi(j)∈RðFi(j)

j=1,...,fi

δ(L(n(Fi))pi = −C(n(F̃i))pi)δ(gi(n) = 1)δ(g̃i(n) = 0).
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Applying Lemma 5.4, we obtain that the assertion of Lemma 5.7 is obtained using the
following estimate:

$̈3(i) = O(ρ(N)), i = 1, ..., k. (5.32)

From Definition 5.5, we derive

δ(g̃i(n) = 0) ≤
fi/2∑

j1,j2=1

2∑
ς1,ς2=1

∑
(F

(i)
1 ,...,F

(i)

fi/2
)∈Fi

#F
(i)
j =2, j∈[1,fi/2]

∑
(F
′(i)
1 ,...,F

′(i)
fi/2

)∈Fi

#F
′(i)
j =2, j∈[1,fi/2]

fi/2∏
j=1

1

× δ(L(n(F
(i)
j ))pi = 0)δ(L(n(F

′(i)
j ))pi = 0)δ(F

(i)
j1

(ς1) = F
′(i)
j2

(ς2))δ(F
(i)
j1

(ς
′

1) 6= F
′(i)
j2

(ς
′

2)).

By Definition 5.3, we get

$̈3(i) ≤
fi/2∑
j2=1

2∑
ς2=1

$̃3(i, j2, ς2), (5.33)

with

$̃3(i, j2, ς2) ≤
fi/2∑
j1=1

2∑
ς1=1

∑
(F

(i)
1 ,...,F

(i)

fi/2
)∈Fi

#F
(i)
j =2, j∈[1,fi/2]

∑
(F
′(i)
1 ,...,F

′(i)
fi/2

)∈Fi

#F
′(i)
j =2, j∈[1,fi/2]

fi/2∏
j=1

κ̇(i,j,j1)
j2,ς1,ς2

, (5.34)

where

κ̇(i,j,j1)
j2,ς1,ς2

= (N̆
F

(i)
j

)−1/2
∑

n
(F

(i)
j

)∈R(N,F
(i)
j ,pi)

δ(L(n(F
(i)
j ))pi = 0)δ(L(n(F

′(i)
j ))pi = 0)

× δ(F (i)
j1

(ς1) = F
′(i)
j2

(ς2))δ(F
(i)
j1

(ς
′

1) 6= F
′(i)
j2

(ς
′

2)).

By Lemma 5.3, we have

κ̇(i,j,j1)
j2,ς1,ς2

= O(1), with j, j1, j2 ∈ [1, fi/2], ς1, ς2 ∈ [1, 2], i ∈ k. (5.35)

Consider the conditions F (i)
j1

(ς1) = F
′(i)
j2

(ς2)) and F (i)
j1

(ς
′

1) 6= F
′(i)
j2

(ς
′

2). It is easy to see that
for given (j2, ς2) there exists at most one such (j1, ς1) ∈ [1, fi/2]× [1, 2]. Using (5.13) and

(5.16), we get from the conditions n(F
(i)
j ) ∈ R(N, F

(i)
j ,pi) (j = 1, ..., fi/2) that m̃(µ)

pi 6= 0

for all µ ∈ F (i)
j , j = 1, ..., fi/2. Hence for given n

F
′(i)
j2

(ς2)
there exists only one n

F
′(i)
j2

(ς
′
2)

and only one n
F

(i)
j1

(ς
′
1)

satisfying the following equations

L(nF
′(i)
j2 )pi = 0 and L(n(F

(i)
j1

))pi = 0.

It is easy to see that there exists only one (j3, ς3) ∈ [1, fi/2] × {1, 2} with F
(i)
j3

(ς3) =

F
′(i)
j2

(ς
′

2). Therefore for given nF
′(i)
j2 there exists only one n

F
(i)
j3

(ς
′
3)

satisfying to L(n(F
(i)
j3

))pi =

0. Similarly to (5.29) - (5.31), we get

κ̇(i,j1,j1)
j2,ς1,ς2

κ̇(i,j3,j1)
j2,ς1,ς2

≤ (N̆
F

(i)
j1

N̆
F

(i)
j3

)−1/2
∑

n
(F

(i)
j1

)
∈R(N,F

(i)
j1
,pi)

n
(F

(i)
j3

)
∈R(N,F

(i)
j3
,pi)

δ(L(n(F
(i)
j1

))pi = 0)
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× δ(L(n(F
(i)
j3

))pi = 0)δ(L(n(F
′(i)
j2

))pi = 0)δ(F
(i)
j1

(ς1) = F
′(i)
j2

(ς2))δ(F
(i)
j1

(ς
′

1) 6= F
′(i)
j2

(ς
′

2))

= O((N̆
F

(i)
j3

)−1/2) = O(ρ(N)). (5.36)

Consider (5.34). Applying (5.35) for j /∈ {j1, j3} and (5.36) for j ∈ {j1, j3}, we obtain
$̃3(i, j2, ς2) = O(ρ(N)). Now by (5.32) and (5.33), we get the assertion of Lemma 5.7.

Lemma 5.8. Let

$4 :=
1√
N̆

∑
ni∈Rði , i=1,...,}

δ(C(n) = 0).

Then
$4 = O(ρ(N)) if } is odd, (5.37)

and
$4 = $

′

4 +O(ρ(N)) if } is even,

with

$
′

4 =

k∏
i=1

∑
(F

(i)
1 ,...,F

(i)

fi/2
)∈Fi

#F
(i)
j =2, j∈[1,fi/2]

fi/2∏
j=1

1√
N̆
F

(i)
j

∑
nµi,j,k∈Rðµi,j,k

k=1,2

1 (5.38)

× δ(Anµi,j,1 m(µi,j,1) = −Anµi,j,2 m(µi,j,2))

where µi,j,k = F
(i)
j (k), ρ(N) = maxi(N̆i)

−1/2 and O-constants depend only on }.

Proof. Let

$5(ν) :=
1√
N̆

∑
ni∈Rði
i=1,...,}

δ(C(n) = 0)δ
(
g(n)ǧ(n)g̃(n) = ν

)
with ν = 0, 1.

By Lemma 5.5, Lemma 5.6 and Lemma 5.7, we get

$5(0) = O(ρ(N)).

By Definition 5.3, we get that if } is odd, then g(n) = 0. The assertion (5.37) is proved.
It is easy to see that

$4 = $5(0) +$5(1) = $5(1) +O(ρ(N)).

Consider $5(1). Let C(n) = 0 and g(n) = 1. Applying (5.14) and Definition 5.3, we get

that for all i = 1, ..., k there exists a partition (F
(i)
1 , ..., F

(i)
r ) ∈ Fi with fi = #Fi is even,

C(n(F̃i))pi = 0, L(n(F
(i)
j ))pi = 0, and β

F
(i)
j

= 2, for all j ∈ [1, r], r = fi/2. By Definition 5.5

this partition is unique for g̃(n) = 1. Using Definition 5.4 for ǧi(n) = 1, we have that

C(n(F
(i)
j )) = 0. Hence Anµi,j,1 m(µi,j,1) = −Anµi,j,2 m(µi,j,2) with µi,j,k = F

(i)
j (k), k = 1, 2

(see (5.5)). Therefore

δ(C(n) = 0)δ
(
g(n)ǧ(n)g̃(n) = 1

)
=

k∏
i=1

∑
(F

(i)
1 ,...,F

(i)

fi/2
)∈Fi

#F
(i)
j =2, j∈[1,fi/2]

fi/2∏
j=1

δ
(
g(n)ǧ(n)g̃(n) = 1

)

× δ(Anµi,j,1 m(µi,j,1) = −Anµi,j,2 m(µi,j,2))δ(n(F
(i)
j ) ∈ R(N, F

(i)
j ,pi)).
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Bearing in mind that m(µi,j,k) 6= 0 ∀ i, j, k, we get that if Anµi,j,1 m(µi,j,1) = −Anµi,j,2 m(µi,j,2),

then n(F
(i)
j ) ∈ R(N, F

(i)
j ,pi). Hence

δ(C(n) = 0)δ
(
g(n)ǧ(n)g̃(n) = 1

)
=

k∏
i=1

∑
(F

(i)
1 ,...,F

(i)

fi/2
)∈Fi

#F
(i)
j =2, j∈[1,fi/2]

fi/2∏
j=1

1

× δ
(
g(n)ǧ(n)g̃(n) = 1

)
δ(Anµi,j,1 m(µi,j,1) = −Anµi,j,2 m(µi,j,2)).

Changing the order of summations, we obtain

$5(1) = $6(1), (5.39)

where

$6(ν) =

k∏
i=1

∑
(F

(i)
1 ,...,F

(i)

fi/2
)∈Fi

#F
(i)
j =2, j∈[1,fi/2]

fi/2∏
j=1

1√
N̆
F

(i)
j

δ
(
g(n)ǧ(n)g̃(n) = ν

)

×
∑

nµi,j,k∈Rðµi,j,k
,k=1,2

δ(Anµi,j,1 m(µi,j,1) = −Anµi,j,2 m(µi,j,2)).

It is easy to see that
$6(0) ≤ 2}$5(0) = O(ρ(N)). (5.40)

Now from (5.38)-(5.40), we get

$4 = $6(1) +O(ρ(N)) = $6(0) +$6(1) +O(ρ(N)) = $
′

4 +O(ρ(N)).

Thus Lemma 5.8 is proved.

We assume in the following that Ri(Ni) ∩Rj(Ni) = ∅ for i 6= j ∈ [1, q] (see (2.16)).

Lemma 5.9. Let 0 < |m(i)| < L (1 ≤ i ≤ }), } be an even. Then

$4 =
∑

(F1,...,F}/2)∈F0

#Fi=2, i∈[1,}/2]

}/2∏
i=1

δ(ðFi(1) = ðFi(2))δ(m
(Fi(1)) ∈ B(−m(Fi(2)))) +O(ρ1(N)), (5.41)

where O-constant depends only on } and L, and ρ1(N) = maxi,j(Ni,j)
−1.

Proof. Consider the equation (5.38). Let µi,j,k = F
(i)
j (k), k = 1, 2. Bearing in mind

that |m(µi,j,k)| < L, we get from Theorem 4 that there exists L
′
> 0 such that |n0| < L

′

if An0m(µi,j,2) = −m(µi,j,1). From Definition 1, we obtain that there are no two solutions
of this equation. Let ðµi,j,1 = ðµi,j,2 , mµi,j,2 ∈ B(−mµi,j,1), and let

β = #
{
nµi,j,k ∈ Rðµi,j,k , k = 1, 2 | Anµi,j,2 m(µi,j,2) = −Anµi,j,1 m(µi,j,1)

}
. (5.42)

We see that Rðµi,j,1 = Rðµi,j,2 , N̆
F

(i)
j

= (Nðµi,j,1 ,1 · · ·Nðµi,j,1 ,d)
2 and

(Nðµi,j,1 ,1 − L
′
) · · · (Nðµi,j,1 ,d − L

′
) ≤ β ≤ Nðµi,j,1 ,1 · · ·Nðµi,j,1 ,d = (N̆

F
(i)
j

)1/2.

Hence

(1− L
′
ρ1(N))d ≤ β(N̆

F
(i)
j

)−1/2 ≤ 1 and β(N̆
F

(i)
j

)−1/2 = 1 +O(ρ1(N)). (5.43)
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Let ðµi,j,1 6= ðµi,j,2 , N̆
F

(i)
j (ν)

= min(N̆
F

(i)
j (1)

, N̆
F

(i)
j (2)

) for some ν ∈ [1, 2] and

β = #{nµi,j,k ∈ Rðµi,j,k , k = 1, 2 | nµi,j,2 = nµi,j,1 + n0}.

Taking into account that |n0| < L
′
, (2.16) and that Ri1 ∩Ri2 = ∅ for i1 6= i2 ∈ [1, q], we

get ∃l ∈ [1, d] with [Rðµi,j,1,l , Rðµi,j,1,l +Nðµi,j,1,l) ∩ [Rðµi,j,2,l , Rðµi,j,2,l +Nðµi,j,2,l) = ∅,

#{nµi,j,k,l ∈ [Rðµi,j,k,l , Rðµi,j,k,l +Nðµi,j,k,l), k = 1, 2 | nµi,j,1,l = nµi,j,2,l + n0,l} ≤ L
′
,

and

β ≤ L
′ ∏
k∈[1,d],k 6=l

Nðµi,j,ν ,k ≤ L
′
N̆
F

(i)
j (ν)

/min
i,j

Ni,j = O((N̆
F

(i)
j

)1/2ρ1(N)). (5.44)

Note that ρ1(N) ≥ ρ(N) = maxi(Ni,1 · · ·Ni,d)−1/2 (d ≥ 2). By (5.38), (5.43) and (5.44),
we have

$4 =

k∏
i=1

∑
(F

(i)
1 ,...,F

(i)

fi/2
)∈Fi

#F
(i)
j =2, j∈[1,fi/2]

fi/2∏
j=1

δ(ð
F

(i)
j (1)

= ð
F

(i)
j (2)

)δ(m(µi,j,1) ∈ B(−m(µi,j,2))) +O(ρ1(N)).

Thus

$4 =
∑

(F1,...,F}/2)∈F0

#Fi=2, i∈[1,}/2]

}/2∏
i=1

δ(ðFi(1) = ðFi(2))δ(m
(Fi(1)) ∈ B(−m(Fi(2))))

×
∑

j∈[1,}/2]

δ(Fi ⊆ Fj) +O(ρ1(N)).

Now to obtain (5.41) it is enough to prove that if Fi(1) ∈ Fj for some j ∈ [1, k] and
m(Fi(1)) ∈ B(−m(Fi(2))) , then Fi(2) ∈ Fj (i = 1, ..., }/2). Let j1 = Fi(1) and j2 = Fi(2).
Suppose that there exists 1 ≤ i1 < i2 ≤ k with j1 ∈ Fi1 and j2 ∈ Fi2 . Using (5.9), (5.10)
and (5.15), we get pi2 ≺ pi1 ,

m̃(j1)
pi1
6= 0, m̃(j1)

p = 0 for pi1 ≺ p and m̃(j2)
pi2
6= 0, m̃(j2)

p = 0 for pi2 ≺ p. (5.45)

Let m(Fi(1)) ∈ B(−m(Fi(2))). Hence m(Fi(1)) = −Anm(Fi(2)) for some n. By (4.12) we
have −m̃(Fi(1)) = Λnm̃(Fi(2)). Bearing in mind that (λ̇p1,p2

)p1,p2∈P := Λn is an upper
triangular matrix, we get from (5.45)

λ̇pi1 ,p = 0 for p ≺ pi1 , and m̃(j2)
p = 0 for pi1 � p.

Thus m̃(j1)
pi1

=
∑

pi1�p
λ̇pi1 ,pm̃

(j2)
p = 0. By (5.45), we have a contradiction. Therefore

Lemma 5.9 is proved.

Proof of Lemma 5.1. Using (5.1) we get

(υ(N, fL,x))} =
( β1

σ(fL)

)} q∑
ð1,...,ð}=1

αð1
· · ·αð}√

N̆ð1 · · · N̆ð}

(5.46)

×
∑

|m(i)|<L, i=1,...,}

f̂(m(1)) · · · f̂(m(}))
∑

ni∈Rði (Nði ),i=1,...,}

e
(〈

x,

}∑
i=1

Anim(i)
〉)
,
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where β1 = (α2
1 + · · ·+ α2

q)
−1/2. Hence

κ :=

∫
[0,1)s

(υ(N, fL,x))}dx

=
( β1

σ(fL)

)} q∑
ð1,...,ð}=1

αð1 · · ·αð}

∑
|m(i)|<L, i=1,...,}

f̂(m(1)) · · · f̂(m(}))κ1

where

κ1 = (N̆ð1 · · · N̆ð})−1/2
∑

ni∈Rði (Nði ),i=1,...,}

δ
( }∑
i=1

Anim(i)
)
.

Applying (5.5) and Lemma 5.8 for odd }, we obtain

κ = O(ρ(N)),

where O-constants depend only on }, f , and L. Hence (5.2) is true for odd }.
Let } be even. Using (5.5) and Lemma 5.9, we get

κ =
( β1

σ(fL)

)} q∑
ð1,...,ð}=1

αð1
· · ·αð}

∑
|m(i)|<L, i=1,...,}

f̂(m(1)) · · · f̂(m(}))

×
∑

(F1,...,F}/2)∈F0

#Fi=2, i∈[1,}/2]

}/2∏
i=1

δ(ðFi(1) = ðFi(2))δ
(
m(Fi(1)) ∈ B(−m(Fi(2)))

)
+O(ρ1(N)),

where O-constant depends only on }, f , and L. Changing the order of the summation,
we obtain

κ =
( β1

σ(fL)

)} ∑
(F1,...,F}/2)∈F0

#Fi=2, i∈[1,}/2]

q∑
ð1,...,ð}=1

αð1 · · ·αð}

}/2∏
i=1

δ(ðFi(1) = ðFi(2))

×
∑

|m(Fi(j))|<L, j=1,2

f̂(m(Fi(1)))f̂(m(Fi(1)))δ
(
m(Fi(1)) ∈ B(−m(Fi(2)))

)
+O(ρ1(N)).

By (3.8) and (5.46), we have that β1 = (α2
1 + · · ·+ α2

q)
−1/2 and

κ =
( β1

σ(fL)

)} ∑
(F1,...,F}/2)∈F0

#Fi=2, i∈[1,}/2]

q∑
ð1,...,ð}/2=1

α2
ð1
· · ·α2

ð}/2

×
( ∑
|m(i)|<L, i=1,2

f̂(m(1))f̂(m(2))δ(m(1) ∈ B(−m(2)))
)}/2

+O(ρ1(N))

=
( β1

σ(fL)

)} ∑
(F1,...,F}/2)∈F0

#Fi=2, i∈[1,}/2]

( q∑
i=1

α2
ð1

)}/2
(σ(fL))} +O(ρ1(N)) =

∑
(F1,...,F}/2)∈F0

#Fi=2, i∈[1,}/2]

1

+O(ρ1(N)) =
1

(}/2)!

(
}
2

)(
}− 2

2

)
· · ·
(

2

2

)
+O(ρ1(N)) =

}!

(}/2)!2}/2
+O(ρ1(N)).

Therefore Lemma 5.1. is proved .
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Lemma 5.10. [Bi, Theorem 3.2, p. 28] Suppose that XL,n, Xn are random variables.

If XL,n
d→ ZL as n→∞, ZL

d→ X as L→∞, and

lim
L→∞

lim sup
n→∞

P (|XL,n −Xn| > ε) = 0 (5.47)

for each ε > 0, then Xn
d→ X as→∞.

End of the proof of Theorem 5. We have σ(f) > 0. To prove (5.1), we will use
Lemma 5.10 with X = N (0, 1), ZL = Xσ(fL)/σ(f), XL,n = υ(Nn, fL,x)σ(fL)/σ(f), and

Xn = υ(Nn, f,x), where Nn = (N
(n)
1 , ...,N

(n)
q ), N

(n)
i = (N

(n)
i,1 , ..., N

(n)
i,d ), with

limn→∞mini,j N
(n)
i,j →∞.

From (3.12) we have σ(fL) → σ(f) and ZL
d→ X as L → ∞. Using Lemma 5.1, we

get that XL,n
d→ X. Let

υ
′
(N, f, fL,x) = υ(N, f,x)− σ(fL)

σ(f)
υ(N, fL,x). (5.48)

Applying Chebyshev’s inequality, we get that to obtain (5.47) it is enough to verify that

lim
L→∞

lim sup
n→∞

∥∥υ′(Nn, f, fl,x)
∥∥

2
= 0. (5.49)

By (5.1) and (2.12) we have

υ
′
(N, f, fL,x) =

1

σ(f)

q∑
ð=1

αð√
α2

1 + · · ·+ α2
q

Ṡð, (5.50)

where

Ṡð = N̆
−1/2
ð

∑
|m|≥L

f̂(m)
∑

n∈Rð(Nð)

e(〈x,Anm〉). (5.51)

Bearing in mind that∑
n1,n2∈Rð(Nð)

δ(An1m1 = An2m2) =
∑

0≤ni,j<Nð,i,i=1,...,d,j=1,2

δ(An1m1 = An2m2),

from (2.7) we obtain

N̆ð‖Ṡð‖22 =
∑

|m1|,|m2|≥L

f̂(m1)f̂(−m2)
∑

n1,n2∈Rð(Nð)

δ(An1m1 = An2m2) = ‖SNð(f − fL)‖22.

Now by the triangle inequality

σ(f)
∥∥υ′(N, f, fL,x)

∥∥
2
≤

q∑
ð=1

1√
N̆ð
‖SNð(f − fL)‖2.

Using (3.9), we get
1√
N̆ð
‖SNð(f − fL)‖2 ≤ (S(f − fL))1/2.

By (3.10), S(f − fL)→ 0 and (5.49) follows. Hence Theorem 5 is proved.
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5.2 Functional CLT.

Let D([0, 1]d) be the Skorokhod space of functions (see def., e.g.,[BuSh, p.252]),
(ζn)n∈Zd+ a random multisequence. We introduce the partial sums process by the fol-
lowing formula

WN(t) =
1√
N̆

∑
0≤ni<tiNi, i=1,...,d

ζn where t ∈ [0, 1]d and N̆ = N1 · · ·Nd.

Definition 5.6. (see, e.g., [BuSh], p.255) One says that the multisequence (ζn)n∈Zd+
satisfies the weak invariance principle or a functional CLT (abbreviated FCLT) if there
exist σ2 > 0 and a multiparameter Brownian motion W defined on [0, 1]d such that the
law of WN weakly converges to the law of σW in the space D([0, 1]d) as miniNi →∞.

Theorem 6. Let A be an action by commuting partially hyperbolic endomorphisms
A1, ..., Ad of [0, 1)s, f a real Zs-periodic local integrable function with absolutely con-
vergent Fourier series, with mean zero and σ(f) > 0. Then (f(An)x)n∈Zd+ satisfies the
FCLT .

Proof. By Prohorov’s theorem (see, e.g., [Bi], p.66, Th. 6.1, 6.2) the necessary and
sufficient condition for the weak convergence of a sequence of processes (Wn(t))n∈Zd+
where t ∈ [0, 1]d is the tightness (see def., e.g., [BuSh] p.253) of the sequence of their
distributions in the Skorokhod space D([0, 1]d) and weak convergence of the finite-
dimensional distributions. The weak convergence of the finite-dimensional distributions
follows from Theorem 5. Let

SN(f,R) =
∑
n∈R

f(Anx), with R = R(N) = [R1, R1 +N1)× · · · × [Rd, Rd +Nd).

By [BW, Theorem 3, p.1665], to prove the tightness condition it is enough to verify that
SN(f,R) belong to the class T(2, 4) defined in [BW] (see inequalities 2,3 p.1658), i.e.

E
((

min
(
|SN1(f,R1)|, |SN2(f,R2)|

))4)
≤ c0(N̆1 + N̆2)2 for R1 ∩R2 = ∅,

with some constant c0 > 0. It is easy to see that this inequality follows from the estimate

E(|SN(f,R)|4) = O(N̆2). (5.52)

Applying (5.1) and Lemma 6.1 with q = 1, } = 4, we get (5.52). Hence Theorem 6 is
proved.

Lemma 6.1. With notations as above

lim
mini,j Ni,j→∞

∥∥υ(N, f,x)
∥∥}
} =

{
}!

2}/2(}/2)!
, if } is even,

0, if } is odd.
(5.53)

Proof. Using (5.1), (5.48), (5.50), (5.51) and the Minkowski’s inequality, we get

σ(fL)

σ(f)

∥∥υ(N, fL,x)
∥∥
} −

∥∥υ′(N, f, fL,x)
∥∥
} ≤

∥∥υ(N, f,x)
∥∥
} (5.54)

≤ σ(fL)

σ(f)

∥∥υ(N, fL,x)
∥∥
} +

∥∥υ′(N, f, fL,x)
∥∥
}
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and

σ(f)
∥∥υ′(N, f, fL,x)

∥∥
} ≤

q∑
ð=1

∥∥Ṡð
∥∥
}. (5.55)

We have for ð ∈ [1, q]

∥∥Ṡð
∥∥}
} =

∑
|m(i)|≥L, i=1,...,}

f̂(m(1)) · · · f̂(m(}))(N̆ð)−}/2
∑

ni∈Rð(Nð),i=1,...,}

δ(

}∑
i=1

Anim(i)).

Let } is even. By (5.5) and Lemma 5.8, we obtain∥∥Ṡð
∥∥}
} =

∑
|m(i)|≥L, i=1,...,}

f̂(m(1)) · · · f̂(m(}))

×
(
O(ρ(N)) +

k∏
i=1

∑
(F

(i)
1 ,...,F

(i)

fi/2
)∈Fi

#F
(i)
j =2, j∈[1,fi/2]

fi/2∏
j=1

κi,j
)
,

with

κi,j =
1√

N̆
F

(i)
j

∑
nµi,j,k∈Rðµi,j,k

,k=1,2

δ(Anµi,j,1 m(µi,j,1) = −Anµi,j,2 m(µi,j,2)),

where O-constant depends only on }. It is easy to verify that κi,j ≤ 1 (see Definition 1
and (5.19)). Therefore∥∥Ṡð

∥∥}
} = O

(
(1 + ρ(N))

∑
|m(i)|≥L, i=1,...,}

f̂(m(1)) · · · f̂(m(}))
)
,

where O-constant depends only on }, and ρ(N) = (mini N̆i)
−1/2.

Bearing in mind that Fourier series of the function f converge absolutely, we get
that for all ε > 0 ∃ L(ε) > 0 with

∥∥Ṡð
∥∥
} ≤ εσ(f)/q for all N and L ≥ L(ε). From (5.54)

and (5.55), we get for L ≥ L(ε)

σ(fL)

σ(f)

∥∥υ(N, fL,x)
∥∥
} − ε ≤

∥∥υ(N, f,x)
∥∥
} ≤

σ(fL)

σ(f)

∥∥υ(N, fL,x)
∥∥
} + ε.

Applying Lemma 5.1, we get

σ(fL)

σ(f)

}!

2}/2(}/2)!
− ε ≤ lim inf

mini,j Ni,j→∞

∥∥υ(N, f,x)
∥∥
}

≤ lim sup
mini,j Ni,j→∞

∥∥υ(N, f,x)
∥∥
} ≤

σ(fL)

σ(f)

}!

2}/2(}/2)!
+ ε. (5.56)

By (3.12), we obtain that σ(fL) → σ(f) > 0 as L → ∞. Now from (5.56), we get (5.53)
for } is even. Using Lemma 5.8 we obtain (5.53) for } is odd similarly. Hence Lemma
6.1 is proved.
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5.3 Almost sure CLT.

Let ζn be a random multisequence with V ar(ζn) = 1 (n ∈ Zd+), δ̃(x) denotes the
point mass at x ∈ Rs. We say that ζN satisfies the almost sure central limit theorem
(abbreviated ASCLT) (see, e.g., [FR]) if with probability one

1

lnN1 · · · lnNd

∑
ni∈[1,Ni],i=1,...d

δ̃(ζn)

n1 · · ·nd
w→ N (0, 1) as min

i
Ni →∞. (5.57)

Similarly to [Li, Lemma 6.1], we have that it is enough to verify the almost sure conver-
gence

1

lnN1 · · · lnNd

∑
ni∈[1,Ni], i=1,...,d

g(ζn)

n1 · · ·nd
→ 1√

2π

∫ +∞

−∞
g(y) exp(−y2/2)dy (5.58)

for each fixed bounded Lipschitz function g on Rs to obtain (5.57).
We say that the multisequence ζn satisfies the polynomial ASCLT if (5.58) is true for

arbitrary polynomial g(x). One can observe that the polynomial ASCLT implies a stan-
dard ASCLT.

Theorem 7. Let A be an action by commuting partially hyperbolic endomorphisms
A1, ..., Ad of [0, 1)s, f a real Zs-periodic local integrable function with absolutely conver-
gent Fourier series, with mean zero and σ(f) > 0,

SN(f) =
(
σfN̆

1/2
)−1 ∑

n∈R(N)

f(Anx), with R(N) = [0, N1)× · · · × [0, Nd). (5.59)

Then SN(f) satisfies the polynomial ASCLT .

Proof. Clearly, that is enough to prove (5.58) for g(x) = x}1 (}1 = 1, 2, ...). Applying
Theorem 6, we get

γ := lim
miniNi→∞

E((SN(f))}1) =
1√
2π

∫ +∞

−∞
y}1 exp(−y2/2)dy.

Hence

lim
miniNi→∞

1

lnN1 · · · lnNd

∑
ni∈[1,Ni],i=1,...d

E((Sn(f))}1)

n1 · · ·nd
= γ.

Let
ξn =

(
(Sn(f))}1 − E((Sn(f))}1)

)
/(n1 · · ·nd). (5.60)

To prove Theorem 7, it is enough to verify that

1

lnN1 · · · lnNd

∑
ni∈[1,Ni],i=1,...d

ξn → 0 a.s. (5.61)

Lemma 7.1. Let Ni = (Ni,1, ..., Ni,d) ∈ Nd (i = 1, 2), Ṅi = min(N1,i, N2,i) and
N̈i = max(N1,i, N2,i) (i = 1, ..., d). Then there exists a constant C > 0 with

|E(ξN1
ξN2

)| ≤ C(

d∏
i=1

(Ṅi)
−3/2(N̈i)

−1 +

d∏
i=1

(Ṅi)
−1/2(N̈i)

−3/2). (5.62)
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The proof of Lemma 7.1 is given after Lemma 7.3. But first we give some definitions.
From (5.62), we get

Q := E(|
∑

Ii≤ni≤Ji,i=1,...,d

ξn|2) ≤
∑

Nj,i∈[Ii,Ji],i=1,...d,j=1,2

|E(ξN1ξN2)|

≤ C2d
∑

Ii≤Ṅi≤N̈i≤Ji,i=1,...d

(

d∏
i=1

(Ṅi)
−3/2(N̈i)

−1 +

d∏
i=1

(Ṅi)
−1/2(N̈i)

−3/2).

Hence

Q ≤ C24d
∑

Ii≤N̈i≤Ji,i=1,...d

∏
i∈[1,d]

1

N̈i

By Jensen’s inequality and Lemma 7.3, we obtain

E
(

max
1≤Ii≤Ji≤Ni,i=1,...,d

∣∣∣ ∑
Ii≤ni≤Ji,i=1,...,d

ξn

∣∣∣√2)

≤
(
E
(

max
1≤Ii≤Ji≤Ni,i=1,...,d

∣∣∣ ∑
Ii≤ni≤Ji,i=1,...,d

ξn

∣∣∣2))1/
√

2

≤ C1/
√

2
2 C24d

∑
1≤ni≤Ni,i=1,...d

1

n1 · · ·nd
.

Applying Lemma 7.2, we get (5.61) and the assertion of Theorem 7.

Using [NT, Theorem 3] with aN = (N1 · · ·Nd)−1, bN = ln(N1) · · · ln(Nd), N = (N1, ..., Nd)

and r =
√

2, we obtain
Lemma 7.2. Let ζn be the random multisequence, C1 > 0 and

E
(

max
1≤ni≤Ni,i=1,...d

∣∣∣ ∑
1≤ki≤ni,i=1,...,d

ζk

∣∣∣√2)
≤

∑
ni∈[1,Ni],i=1,...d

C1

n1 · · ·nd
∀N ∈ Nd. (5.63)

Then

lim
miniNi→∞

1

lnN1 · · · lnNd

∑
1≤ni≤Ni,i=1,...,d

ζn = 0 a.s. (5.64)

Applying Móricz’s maximal inequality [Mo, Corollary 1, p. 340] with γ = 2 and
α =
√

2, we get
Lemma 7.3. Let ζn be the random multisequence, C2 = (5/2)d(1−2(1−

√
2)/2)−2d and

E(|
∑

Ii≤ni≤Ji,i=1,...,d

ζn|2) ≤
( ∑
Ii≤ni≤Ji,i=1,...d

1

n1 · · ·nd

)√2

∀ Ii ≤ Ji ∈ N, i = 1, ..., d.

Then

E
(

max
1≤Ii≤Ji≤Ni,i=1,...,d

|
∑

Ii≤ni≤Ji,i=1,...,d

ζn|2
)
≤ C2

( ∑
1≤ni≤Ni,i=1,...d

1

n1 · · ·nd

)√2

.

Proof of Lemma 7.1. From (5.59) and (5.60), we have

N̆ξN = (σfN̆
1/2)−}1

∑
m(i)∈Zs, i=1,...,}1

f̂(m(1)) · · · f̂(m(}1))

∑
ni∈RN,i=1,...,}1

e
(
〈x,

}1∑
i=1

Anim(i)〉
)
δ
( }1∑
i=1

Anim(i) 6= 0
)
.
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Let } = 2}1, Ri = R(Ni) (i ∈ [1, 2]), ði = 1 for l ∈ [1, }1]) and ði = 2 for l ∈ [}1 + 1, }]) .
We see

N̆1N̆2E(ξN1
ξN2

) = σ−}f

∑
m(i)∈Zs, i=1,...,}

f̂(m(1)) · · · f̂(m(}))ϕ, (5.65)

where

ϕ = (N̆1N̆2)−}1/2
∑

ni∈Rði ,i=1,...,}
δ(
∑
i∈[1,}]

Anim(i) = 0)ψ(n)

with

ψ(n) = δ(
∑

i∈[1,}1]

Anim(i) 6= 0)δ(
∑

i∈[}1+1,}]

Anim(i) 6= 0). (5.66)

Applying (5.5) and Lemma 5.8 with q = 2, we get

ϕ = O(ρ(N)) + σ−}f

k∏
i=1

∑
(F

(i)
1 ,...,F

(i)

fi/2
)∈Fi

#F
(i)
j =2, j∈[1,fi/2]

fi/2∏
j=1

κi,j (5.67)

with

κi,j = (N̆
F

(i)
j

)−1/2
∑

nµi,j,k∈Rðµi,j,k
,k=1,2

δ(Anµi,j,1 m(µi,j,1) = −Anµi,j,2 m(µi,j,2))ψ(n), (5.68)

where µi,j,k = F
(i)
j (k) ∈ [1, }], k = 1, 2, µi,j,1 < µi,j,2, O-constant depends only on } and

ρ(N) = max
i=1,2

(Ni,1 · · ·Ni,d)−1/2 ≤ (Ṅ1 · · · Ṅd)−1/2. (5.69)

For given partition (F
(i)
j )i,j , consider the case (µi,j,1 − }1 − 1/2)(µi,j,2 − }1 − 1/2) > 0

∀(i, j). From (5.66) and (5.68), we get κi,j = 0 ∀(i, j). Now consider the case that
there exists i0, j0 such that µi0,j0,1 ≤ }1 and µi0,j0,2 > }1. We see N̆

F
(i0)
j0

= N̆1N̆2. Let

An0m(µi0,j0,1) = −m(µi0,j0,2). Similarly to (5.42)-(5.44), we obtain from (5.68)

κi0,j0(N̆
F

(i0)
j0

)1/2 ≤ #{nµi0,j0,k ∈ Rðµi0,j0,k
, k = 1, 2 | nµi0,j0,1 = nµi0,j0,2 + n0} ≤ Ṅ1 · · · Ṅd.

Taking into account that N̆
F

(i0)
j0

= N̆1N̆2 = Ṅ1 · · · ṄdN̈1 · · · N̈d, we have

κi0,j0 ≤
d∏
i=1

(Ṅi/N̈i)
1/2. (5.70)

Using Definition 1 and (5.19), we obtain from (5.68)

κi,j = O(1), for i ∈ [1, k], j ∈ [1, fi/2],

with O-constant depending only on }.
By (5.67), (5.70) and (5.69), we get

ϕ = O
( d∏
i=1

(Ṅi)
−1/2 +

d∏
i=1

(Ṅi/N̈i)
1/2
)
,

with O-constant depending only on }.
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Bearing in mind that Fourier series of the function f converge absolutely, we get
from (5.65)

E(ξN1
ξN2

) = O
( d∏
i=1

(Ṅi)
−3/2(N̈i)

−1 +

d∏
i=1

(Ṅi)
−1/2(N̈i)

−3/2
)
,

with O-constant depending only on }. Therefore Lemma 7.1 is proved.

Acknowledgments. I am very gratiful to the referee for corrections and suggestions
which improved this paper.
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