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Central limit theorem for Zi-actions
by toral endomorphisms
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Abstract

In this paper we prove the central limit theorem for the following multisequence

N1 Ny
> FATLLAGx)

ni=1 ng=1

where f is a Holder’s continue function, Ay, ..., Ay are s x s partially hyperbolic com-
muting integer matrices, and x is a uniformly distributed random variable in [0, 1]°.
Then we prove the functional central limit theorem, and the almost sure central limit
theorem. The main tool is the S-unit theorem.
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1 Introduction.

In [F], [K], Fortet and Kac proved the central limit theorem (abbreviated CLT) for
the sum 27121;01 f(¢™x) where ¢ > 2 is an integer, € [0,1) and f is 1-periodic func-
tion. Let (wq,,. . q,(n))n>1 be a so-called Hardy-Littlewood-Pélya sequence, i.e. let
(Wqy.....qa(n))n>1 consist of the elements of the multiplicative semigroup generated by
a finite set (q1,...,q4) of coprime integers, arranged in increasing order. In [P], [FP],
Philipp, Fukuyama and Petit obtained limit theorems for the sum Zg;ol flwgs,....q0(n)X).
In this paper, we prove some limit theorems for the sum Zanl:_ol Zg ::_01 flgit...q) )
as Ny,..., Ng — oo, where ¢, ..., g may be not coprime integers (see Theorem 5).

In [L1], [L2], Leonov proved CLT for endomorphisms of s-torus and Holder’s contin-
uous functions (see also [LB]). In this paper, we extend Leonov’s result to the case of
Zi-actions by endomorphisms of s-torus (this result were announced in [Lel], [Le2]).
Note that mixing properties of Z“-actions by commuting automorphisms of s-torus was
investigated earlier by Schmidt and Ward [ScWal].

Let us describe the structure of the paper. In §2 we fix some definitions and present
our results. In §3 we examine questions of normalizations (determination of the variance
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limit). In §4 we obtain growth estimates from above and from below for the multise-
quence (|A7'...A}"m|)p,cz.i=1,.. 4. In §5 we prove a multidimensional CLT, a functional
CLT and an almost sure CLT.

2 Notations and results.

Let A be an invertible s x s matrix with integer entries. It generates a surjective
endomorphism on the s-dimensional torus [0,1)® which we will denote by the same
letter A. The dual endomorphism A* : Z* — Z* is given by the transpose matrix A®).
It induces a dual map on the characters:

e({m,x)) to e({(Am,x)),

where e(z) = exp(27v/—1z), and (m, x) = myxy + ... + msz,. Let f be a Z*-periodic local
integrable real function. In terms of Fourier coefficients, A sends

F~ Y Fme((mx) to fod ~ Y foA(m)e((m,x)), 2.1)
mezZs mezZs
where R
f/o\A(m) _ {f(ﬁl), if m :.A(t)ﬁl for some m € Z*, 2.2)
0, otherwise.

~

Throughout this paper f(y) = 0 for y ¢ Z°. To simplify the notation in the rest of the
paper, whenever there is no confusion as to which map we refer to, we will denote the
dual map by the same symbol A. Also we will denote the transposed matrices A®), m()
by the symbols A and m.
Definition 1. An action A by surjectives endomorphisms Ay, ..., Aq of [0,1)* is called
partially hyperbolic if for all (ny, ...,nq) € Z%\ {0} none of the eigenvalues of the matrix
ATt Al are roots of unity.

Examples of partially hyperbolic actions :

1. Let I be the s x s identity matrix, ¢1,...,qq > 2 pairwise coprime integers, A; =
¢l, i=1,....d.

2. Let K be an algebraic number field of degree s, 11, ...,n4 (d < s — 1) a set of fun-
damental units of K, ¢;(z) the minimal polynomial of 7;, and A; the companion matrix
of ¢i(z) (1 < i < d).

Denote
m<m if m/</m|, orif |m|=|m| (2.3)
and there exists k € [0, s) with m; = mll, My = m;g and my41 < m;€+1, where
jm| = (m} 4 ... + m2)1/2.
Let
B(m)={m€Z*\0|3n=(ny,..,ng) € Z* with m= A" Am]}, (2.4)
W={mecZ\0|Pm; € Z*\ 0 with B(m) = B(m;) and m; < m}. (2.5)
It is easy to see that
U B(m)=27°\0, and B(ml)mB(mg) =0 for my,my €W, m; #my. (2.6)
meW
Let Z¢ = {ne 2 |n >0, i=1,.,d}, A® = AT A",
N = (Ny,...,Ng), N;eN (i=1,...,d), N= NNy --- Ny, and
Sn(f)) == > f(A™x). (2.7)

0<n;<Ni, i=1,....d

Al = fo. 1FGOPdx,



Theorem 1. Let A be an action by commuting partially hyperbolic endomorphisms
Ay, ..., Aq 0f [0,1)*, f a real Z*-periodic locally integrable function with mean zero with

S(f) =Y (Z f(Anm)|) < +00. (2.8)

meW \ nezd
Then
2 2
2 L . _ N
o*(f)i= lim < Se(fe)| = D | ) f(ATm) (2.9)
meW | nezd
= / FA™X) f(A™ x)dx < 400, (2.10)
n,n EZd n-n’=0 [0,1)*
where n-n’ = (niny, ..., nan,).
Let u = (u1,...,u5),v = (v1,...,05) € [0,1)%, w; < v;, ¢ = 1,...,5, and [u,v) =

[u1,v1) X -+ X [us,vs). We denote by 1p, ) the indicator function of the box [u, v). Let
Jruv) (%) = Lpgv)(x) — (v1 —u1) ... (vs — us). In the next theorem we show two examples
of f[u’v) with O'(f[u’v)) >0:

Theorem 2. Let o(fuv)) be the variance limit of fy, ). Then f}, ) satisfies the
condition (2.8) and o(flu,)) > 0 for each of the following cases :

(i)u=0 and 1, v, ..., vs are rational independents numbers;

(ii) 1, uy, ..., us, v1, ..., vs are rational independents numbers.

The third result permits to give a functional characterization of functions with vari-
ance limit zero (see also [FP, Theorem 3], and [KaNi, Theorem 6.2.2, Corollary 6.2.7]) :

Theorem 3. Let d > 2, f be a real Z*-periodic function locally integrable with mean
zero and

>t f = fanlla < 400, (2.11)

n>1

where

~

fr(x) = > f(m)e((m,x)). (2.12)

|m;|<L,i=1,...,s
Then (2.8) is true, and o(f) = 0 if and only if there exist f() ..., f{¥ ¢ 12([0,1)%)
such that (2.8) is true for all g; with g;(x) = f®(x) — f)(A;x), i=1,...,d and
fx) = (FO0%) - FO4ix) (2.13)
1<i<d
for almost all x € [0,1)*.

It is easy to verify that the condition (2.11) of the theorem is satisfied under the
following decreasing property of Fourier coefficients of f:

1
m)] < COH (14 |mi)Y/2(In(2 4 |m4)))? (14

with ¢g > 0 and 8 > d + 0.5.
Using the approach of ([Ah], p. 222, Theorem 1, see also [Z], p. 241, (3.3) and [Ba],
p. 160, (2.6)), we get that all Holder’s continuous functions satisfy the condition (2.11).



In [Ka], A.Katok and S.Katok proved the following theorem:

Theorem A. ([Ka], Theorem 2.1, [KaNi], Theorem 6.2.12) Let A be an action by
commuting partially hyperbolic automorphisms of [0,1)%. Then there exist constants
a1, as,c1,c2 > 0 depending on the action only such that for any initial point m € Z* \ 0

c1|m|™* exp(ai[n|) < [A"m]| < cz/m]|exp(az[n|).
In this paper we extend this result to the case of endomorphisms:

Theorem 4. Let A be an action by commuting partially hyperbolic endomorphisms
Ay, ...,Ay of [0,1)°. Then there exist constants ai,as,by,c1,c2 > 0 depending on the
action only such that for any n € Z?, and any initial point m € Z* \ 0 with A®m € Z*

(:1|rn|_b1 exp(ai|n|) < |A"m| < co|m|exp(az|n|). (2.15)

Let q > ].,d > Q,Niﬁj > 1;Ri,j be integers, Nz = (Ni,la ~~3Ni,d) (Z = ]., ...,q,j = ]., ...,d),
N; =Nii1---Nig,

R =Ri(N;) = [Ri1, Rii + Nijp) X - X [R; g, Ri g + Nj.a). (2.16)

Theorem 5. Let A be an action by commuting partially hyperbolic endomorphisms
Ay, ..., Aq 0f[0,1)%, f a real Z*-periodic locally integrable function with mean zero satisfy
the condition (2.8) and o(f) > 0, x a uniformly distributed random variable in [0, 1]°,
9%1(N1) ﬂ%j(Nj) = () fori +j€ [1,(]}. Then

1 1
LI fA™MX), ..., ———— f(AMx)
(O—(f)\/ﬁ n1€%zl(N1) O'(f)\/quan%:(Nq) )

converges in distribution to a Gaussian N (0, I)-distribution, where I is the q X q identity
matrix, as min; j; N; ; — 00.

Related questions

1. Hardy-Littlewood-Pélya (HLP) sequence. In [Fu], Furstenberg studied dense-
ness properties of HLP sequence (w2 3(n)),>1 (see Introduction) from an ergodic point
of view. He also asked in [Fu] the celebrated question on ergodic properties of this
sequence (see e.g. [EiWa, p.7]). In [P], Philipp proved the almost sure invariance prin-
ciple (ASIP) for the sequence (cos(wy,.....q,(7)x))n>1 and the law of the iterated loga-
rithm (LIL) for the discrepancy of the sequence ({wy, ... ¢,(n)2})n>1 (see also [BPT]). We
consider the following s-dimensional variant of HLP sequence:

Let A be an action by commuting partially hyperbolic endomorphisms A, ..., Aq
of [0,1)*. Denote A}'.. A" < AP, A% if (ni,..,n4) < (1,...,nq) (see (2.3) ). Let
(Q)n>1 consist of the elements of the multiplicative semigroup generated by a finite
set (A, ..., Aq) arranged in increasing order. In a forthcoming paper, we will show that
the approach of [P] and [BPT] can be applied to the proof of ASIP for the sequence
(cos(92,%x))pn>1 (the result announced in [Lel]) and to the proof of LIL for the discrep-
ancy of the sequence ({Q,x})n>1.

2. Salem-Zygmund CLT on lacunary trigonometric series. In 1948, Salem and Zyg-
mund proved the following theorem: Let A, > 1 be integers, \,+1/An > ¢ > 1 forn =
1,2, ..., and let a,, ¢, be reals, Ay = (1/2(a? + ... + a%))"/? = 0o, maxi<p<n |an|/Axn —



0 as N — oo and let Sy = ﬁ Zf:;l an, cos(2r\,x + ¢,,). Then Sy over any set D,
mesD > 0, tends to the Gaussian distribution with mean value 0 and dispersion 1 as
N — oo (see [Z, p. 233]).

In [PhSt], Philipp and Stout proved that if for the coefficient ay we assume the
stronger condition ay = O(A}V%) for some § > 0, then Sy obeys ASIP. In [Le4], we
proved the following multiparameter variant of the Salem-Zygmund theorem: Let A
be an action by commuting partially hyperbolic endomorphisms Aj, ..., A4 of [0,1)°, x a
uniformly distributed random variable in [0,1)®. Let m € Z* \ {0}, R(N) = [1, N1] X ... X
[1, Ng], No = min(Ny,...,Ng), an > 0, ¢ be reals,

N()A)OO

A(N) = (1/2 2)1/2 500, and p(N) = n/ AN 0,
MN)=(1/2 3, a0 and plN) = g an/ARN)
1 ,
Sn = AN) Z an cos(2m(m, A7' .. ALX) 4+ ¢n).

neR(N)

Then Sn over any set D C [0,1]°, mesD > 0, tends to the Gaussian distribution with
mean value 0 and dispersion 1 for Ny — oo.

We consider the order (2.3). Let (g,,)n>1 consist of the elements of Zi arranged in
increasing order. Let

A(L) = (1/2 Z agn)l/Q, and SL:% Z ag, cos(2m(m, Qg X) + ¢y, ).

1<n<L (L) 1<n<L

In a forthcoming paper, we will show that the approach of [PhSt] can be applied to the
proof of ASIP for the sequence (S1.)r>1 for the case ay = O(A(N!~?) for some § > 0.

3. Randomness in lattice point problems. In 1992, Beck (see [Be]) discovered a very
surprising phenomenon of randomness of the number of the lattice points {(n,nv2 +
m)|(n,m) € Z?} in a rectangular domain and in a hyperbolic domain. According to [Be,
p-41], the generalizations of his results to the multidimensional case for a Kronecker’s
lattice {(n, na;+mq, ...,nas_14+ms_1) | (n,mq,...,ms_1) € Z*} is very difficult because of
the problems connected to the Littlewood’s conjecture: lim, , . n < noa ><K nf >=0
for all reals «, 3, where < z >»>= min({z},1 — {z}).

In [Le5], we consider a lattice obtained from a module in a totally real algebraic num-
ber field to avoid the mentioned problem. Let K (ri,72) be an algebraic number field
with signature (ry,73), 11 4+2ry = s, T = T'(M, r1,72) C R® alattices obtained from a mod-
ule M in K (r1,79), N = (N7, ., Ny, N1y ooy Niy) € ZF72, 4 = (314 ooy Yoy 1 o V) € R®
('y;- ER, v, €eR%i=1,.,r,j=1,...m),y = (y/l,...7y;,1,y1,...,yr2), V =RT, (y,x)
uniformly distributed random variable in [0, 1]"**"2 x V, 1 the indicator function of the
domain G,

1 T2

G(N) = [[[=Nigi, Niwi] [ [{z € R? | |2 < Njy;},

i=1 j=1
and let
o
GN) =& mN) = Y 1), M) = > lem@) [[/N?2 12
~yel'+x yel'+x Jj=1

We consider the group of units of K(s,0) and the corresponding group (A™),czs-1 of
hyperbolic automorphisms of [0,1)®. In [Le5], using the Poisson summation formula, we
have shown that &; 5 o(N) = Sy (f)) (see (2.7)) for some f and N. Applying the S-unit



theorem and the approach of this paper, we have proved in [Le5] that & 5o(N) (the
number of lattice points in a shifted and dilated rectangular domain) obeys CLT.

In a forthcoming paper, we will prove CLT for the multisequence &;(N), where i = 1
ifro >2and ¢ =2ifro = 1,71 > 1. The case r, = 1,r; = 0 was investigated earlier by
Hughes and Rudnick [HuRu]. Using the approach of this paper, in a forthcoming paper
we will prove CLT for the number of lattice in a hyperbolic domain.

4. Randomness of low discrepancy sequences. Let ((ﬁn)ﬁfgol) be a sequence in
the unit cube [0,1)°. We define the local discrepancy of an N-point set (ﬁn)nN;01 as
Aly, (6n)g:_01) =#{0<n<N|B,€[0,y1)X---%x[0,y5)} — Ny . ..ys. We define the dis-
crepancy of a N-point set (8,)0_y as D((B.)2=¢) = supgey, ... y.<1 1AW, (Ba)hZg)/N, A
sequence (f3,),>0 is of low discrepancy (abbreviated 1.d.s.) if D((8,)=;') = O(N~'(In N)*)
for N — oc.

Let (z,)n>1 be a l.d.s. obtained from a lattice I'(M, s,0) [Le2], and let (v,),>1 be
a l.d.s. described in [Le3]. We consider the following classes of s-dimensional 1.d.s.:
(zn)n>1, (Un)n>1, Halton’s sequence (see [DrTil) and digital (¢, s) sequence (see [DiPil).

In [Le5], we proved that the local discrepancy of the sequence (z,),>1 obeys CLT. In
a forthcoming paper, we will prove a similar result for the sequence (v,),>1 and for the
s-dimensional Halton’s sequence. Note that CLT for the 1-dimensional Halton’s se-
quence is proved in [LeMel].

Let (wy)n>1 be a digital (¢, s) sequence in base b, and let x @y be a digital summation
(see def. in [DiPi]). In a forthcoming paper, we will prove that the local discrepancy
Ay, (w, ® x)flvz_ol) obeys CLT, where (y, x) is uniformly distributed random variable in
[0,1)2s.

The proofs of the CLT for the mentioned sequences, similar to the proof of the CLT
for the sequence ¢; 5 o(N).

5. In this paper, we use Theorem 4 to prove CLT and to give a functional character-
ization of functions with variance limit zero. Similarly to the proof of Lemma 2.3, we
can apply Theorem 4 to obtain the rate of mixing of the action .A. Analogously to [Ka,
Proposition 3.1], we can use Theorem 4 to analyze periodic orbits of the action A. We
note that in [MiWa] was described a much more general method of analyze rates of mix-
ing and periodic points distribution of actions generated by commuting automorphisms
of a compact abelian group.

3 Proofs of Theorems 1 - 3.

Lemma 2.1. Let (2.8) be true. Then

>

n,n/EZi, n-n’ =0

< +00. (3.1)

/ FIAPX) f(xA™ )dx
[0,1)¢

Proof. Bearing in mind that for all n;, n, € Z<, there exists the unique (n, n,) € Zid
withn-n = 0 and n, =n; +n-— n,, we have from (2.8)

SH=3 Y |Famm)f(annm)

meW n; nycZd

=3 Y Y |fammfanten'm)

meW n, €74 n,n’ EZi, n-n’ =0



-Y > | Pl F(AR="m)| = X X | Flam) Flm)|-
n,n GZd mez? n,n GZd m,m GZg
n~n/=0 n-n _0 Am= A"

Taking into account that f is a real function, we get that

=~ ~

(m) = f(—m). (3.2)
Hence
shH= Y ‘ Y fm)fm ‘/ F(ARX)f(A® x)dx|. (3.3)
n,n/EZi m,mIEZ‘j n,n eZd 0.1
nn =0 A"m=—A" m’ nn =

Therefore Lemma 2.1 is proved. H

Lemma 2.2. Let (2.8) be true, f(0) =0, E C Z and #E < cc. Then
o(®)= [ F(A")) dx < S(/HE
. (D4
Proof. We have
PE)= Y pnn) with pnn)= [ f(A)F(A x)dx.

S
nn OF [0,1)

It is easy to see
/[0 JamoraTgac= 3 fmfem),

!
m,m €7Z°
’

A"m=A" m’
Let my = B(m) N W = B(m') N W. Then there exist n;,n, € Z% with m = A m, and

!
m = A™mg,. Hence

> ST (A mg) f(—ARemy).
moeW n1,n2€Zd

’
n;+n=nz+n

> ) ‘f(Anlmo)A(A_HQmo)) >l

moEW n; ,nycZ4 n,n/elE

Therefore

n1+n:n2+n/
<#E Y Y [FAmm) f(Aremg)| = S(N#E.
moEW n;,n,e€Z9
Thus Lemma 2.2 is proved. H

Let
1, if T is true,

(%) = 3.4
®) {O, otherwise. 3-4)

Proof of Theorem 1. Let

2H =Y | f(A™m
A

meW | nezd

(3.5)




First we consider the case when f is a polynomial trigonometric (see (2.12)) :
Repeating the proof of Lemma 2.2, we obtain

1 2 — P a—
= SN(fL(X))’ dx = Z Z fL(A™myo) fr (A™2mg)¥n(mg, ny, n2),
N [0,1) moEW n; ,n,czd
where
d
1 . o
Un(mg,ny,ny) = < 1, with  ®’MN)=]JO,N;—1], N=DN---Ng
n,nleiﬂ(N) i=1

n;+n=nz+n

It is easy to see that
1.
< H(Ni, —2[n1,i| = 2|n2,i|) < ¥n(mg,n1,n2) < 1.
=1

Hence

lim  ¥Un(mg,ng,ny) =1. (3.6)
min; N; —o0

By (2.4), (2.5) and (2.12), we have that E(m) =0 for jm| > L, and ?;(A“mo) # 0 only
for |mg| < L. Using Theorem 4, we have that the set {my € W,n € Z% | f(A®m) # 0}
is finite. So, from (2.9) and (3.5)-(3.6), we get

2 — 3 T AM T (An )
o*(fr) = min}lNr?_mo Z Z frL(A™mg) fr(AP2mo)¥n(mo, n1,n2) = =(fr). (3.7)
moEW n;,n,cZd

We will need the following equality (obtained from (3.5), (3.2) and (2.6)) :

()= > 3 D Tu(A™mg)fL(—m3)dé(my € B(my)) (3.8)

moEW n; €Z? mp€ZS
= Y fem)fe(mo)d(-ma € B(my)) = > f(my)f(ms)i(my € B(-my)).
mi,my€Z* |m;|<L,i=1,2

Now we consider the general case. It follows from (2.8) and (3.5) that Z(f) < co. Using
Lemma 2.2 and the Cauchy-Schwartz inequality, we have

L isn ()2 — 1Sn(f2)llal < —

VN

By (2.8) , we get

m||SN<f — )l < (S(f = f)2 (3.9

Hence

S(f—fr)—0 as L — oo. (3.10)

Therefore, for all € > 0, there exist Ly such that S(f — f1) < e for L > Ly. Using (3.9),
we obtain )

VN

1

VN

1

VN

[Sn(fr)ll2 —€ < [Sn(f)ll2 < [Sn(fz)ll2 + €.



From (2.9) and (3.7), we have

1 1
(E(fL)/? —e< liminf —=|[|Sn(f)[2 < limsup —=|[Sn(f)l2 < (E(L)? +e (3.1D)

N—oo

Using (3.5), we get

EH-E) =Y. Y (FAamm)fAmm)—(F-f = f)(A™ m)(f—f = f1)(A™m)).

meW n; ,nycZa

Hence

I2(f) = E(f)| < E(f = fr)) +22 Z F(A™m)f — fr(A™m)|.

meW n; ,nycZa

Applying the Cauchy-Schwartz inequality, we obtain from (2.8), (3.5) and (3.10):
I2(/)=E(fu) S E(f = fu))+22V2(F = fL)EV2(f) < (S(f = f)+2(S(f = fL)E(f)?) = 0

as L — oo. By (3.7)
E(f)= lim =(fr) = ngr;o‘72(fL)- (3.12)

L—o0
From (3.11), we have ¢%(f) = Z(f) and (2.9) follows. To obtain (2.10), we repeat the
proof of Lemma 2.1. This is possible because the series (3.1) and (3.3) converges abso-
lutely. Hence Theorem 1 is proved. ®

Proof of Theorem 2. We will prove the case (i). The proof of the case (ii) is similar.
From Theorem 3, (2.14) and (3.15) we get that f[u,v) satisfy the condition (2.8). By (2.9),
it is enough to prove that there exists m € Z° with

> fruw) (APm) £ 0. (3.13)
neZzd
It is easy to verify that
Fraw)(0) =0, fruy)(m) =Ty )(m) for m#o0, (3.14)
and
. e(bm)—e(am) ¢ 0
H oo (My), - where Tpgp(m) =4 2nvetm 2 2T 70 515
1 ' b—a, otherwise.
Suppose that
Z )=0 VmeZ® (3.16)

€z

Let '
Em,m) = {j € [1,5] [ (A"m); = 0},

U(i,m) = {n € Z? | A"m € Z*, and #Z(n, m) = i}.
We fix m € Z° with m; #0foralli=1,...,s. It is easy to see that

(0, m) # 0. (3.17)

Let

e((A"mk),v,) — 1
bi(vik) = Y II o I gﬂm()Anljl)u

n€¥(i,m) yc=(n,m)  pell,s]\E(n,m)



and

7 e((A"m),x,) — 1
i = . 3.18
vitx) Z H “ ]'_‘[ 2mv/—1(A”m),, ( )
neV(im) yeZ(nm)  pells)\E(n,m)
From (3.14) and (3.16), we have
Y fow(APmk) =3 Ki(v.k) =0 for k=1,2,... (3.19)
nezd i=0

Applying Theorem 4, we get that the series (3.18) converges absolutely and uniformly
continuously and there exists co(m) > 0 with

sup (|9(x)], [¢(v, k)]) < co(m). (3.20)

v,X,i,k
Thus 1/31(x) are continuous functions. We will prove that

sup ([¥i(x)]) = 0. (3.21)
x€[0,1]¢

Let ig € [1,s — 1], (3.21) be true forig < i < s — 1 and

sup (|ihi, (x)]) = € > 0. (3.22)
x€[0,1]3

Let |4;, (x0)|) = €. There exists ¢y > 0 such that if [x—xo| < €, then |¢);, (x)|) > €/2. From
the condition (i) and the Kronnecker-Weil’s theorem, the sequence ({kv1},..., {kvs})r>1
is uniformly distributed in [0, 1)® (see, e.g., [DrTi], p. 66). Hence, there exists a subse-
quence (k,)n>1 such that [{k,v} — x| < € and |¢;, (v, ky)|) > €/2 > 0. From (3.19) and
(3.20), we get that

io—1

wio (Vv k) == Z kiiiowi(vv k) and 6/2 < WJZO (Vv k)| < co(m)s/k, k=1,2,..
i=0

We have a contradiction (¢ = O(1/k)). Thus (3.21) is true for i € [1,s — 1]. By (3.19), we
have that (3.21) is true also for i = 0.

Using Definition 1 we get: if A"m = m, then 1 is the eigenvalue of A™ and n = 0.
Therefore, if A"*m = A™m, then n; = ny. So

/ e({(A"m, x))dx =0 = / e(((A™ — A™)m,x)) for n; # ns. (3.23)
[0,1)¢ [0,1)*

Let ny € U(0,m) # () (see (3.17)). We have (A™m); # 0 for i = 1,...,s. Consider
Yo(x) = 0 for x € [0,1)° (see (3.21)). Applying (3.23), we obtain from (3.18)

-1
2my/—1(Arom),,

0= Yo(x)e(< —A™m, x >)dx = H
[0’1)5 ME[I,S]

£0.

We have a contradiction. Thus (3.13) is true. Hence Theorem 2 is proved. B

Proof of Theorem 3.
Lemma 2.3. Let (2.11) be true. Then

S(f) < +oc. (3.24)

10



Proof. Let

Si(f) =Y gn), with gi(n)= > |f(m)f(A"m)),

nezd meZ?®
|m|<exp(ao|n|)

and

gm = Y [Jm)famm),

|m|[>exp(ao[nl)

where ag = a1 /(1 + 2b;) and i = 1,2 (see (2.15)). We have

g1(n) < ( Z |f(m)’2)1/2( Z ‘f(A“m)|2>1/2.

meZs,|m|<exp(ao|n|) meZs,|m|<exp(ao|n|)

Applying Theorem 4 with | m| < exp(ag|n

), we get
|A"m| > cl|m|_b1 exp(ai|n|) > ¢1 exp((a1 — aphby)|n|) > ¢1 exp(ay|n|/2).

Hence
gl(n) < Hf”?Hf - fcl exp(a1|n|/2)||2

and

$1A Z D IS = fer explantmiszllz = O( D 1513

nezd k=1

X Z If— f2k||2) = O(deﬂﬂf - f2k||2) < +o00.
k=1

nez,ci exp(aq|n|/2€[2F 2k+1)

Similarly, we have

92(n) < ”fH?”f - fcxp(aoln\)”2 and SQ(f) = O(l)

From (2.8), we get

S =33 |fm)f(APm)| = Si(f) + Sa(f).

meZs nezZ

Therefore Lemma 2.3 is proved. H

Let (® = 7, and

) - { S FAT AT, itm = A A
0, otherwise
for some 1@ € W, and nit1,...,nq € Z.
Let gV = (=1 — h(9) and
fOm) =3 g0 (Afm), 1<i<d (3.26)

k<0

Using (2.8) and Lemma 2.3, we get that the series (3.25) and (3.26) converges. By
(3.25) we get

S g0(Afm) =0, VmeZ'\0, i=1,.d (3.27)
kez

11



Let nV = (ny,...,m;_y), AP = A" ... A" fori > 2, and n® = 0, A" =1 for
i=1.Letn® = (n;1,...,nq), A“(Z) = Aj[t - At fori < d, and n® =0, Ag‘(z) =1 for
1 =d.

By (2.4) and (2.6), we get that for all m € Z¢\ 0 there exists unique n(") € 771,
n; € Z, n® € 74~ and m € W such that, m = A®" A" A2 m

Let n; < 0. Using (3.25) and (3.26), we derive the followmg expression for f(9)(m).
Next by (3.27), we obtain a similar expression for the case n; > 0 :

- Yk ezi-1 X k<o f( k(1)A"’+kA“(2) m), if n =0, and n; <0,
FOm) =~z Zk>of(Ak(”A? +’“Aa“” m), ifn® =0, andn; >0. (3.28)

0. otherwise

Lemma 2.4. Let (2.11) be true, i € [1,d]. Then

0= 3 fomp=3 Y % ‘@(A?iA§(2>rYl)‘2<+oo. (3.29)

meZzZs meW n(2) ezd—in,€Z

(@)

Proof. By (3.28) we have »(!) = x| (i)

+ 2¢;,’, where

SR YD VD S I VD SEC A

meW n(®ezd—in; >0 kMezi-1 k>0

(3.30)

and

= %2 Z Z Z | Z Z f Ak(l)An +kAn(2) ~)|

meW n(®eZzd-in;<0 k(1) ezi-1 k<0

We will prove that »; < +00. Analogously, we obtain that s < +00. We see that

~ kM @ 7 k(l) kY @) -
m<2 YYD Yoo AT ARTR AT m) AT T AR AR )|
MEW  1y,k1,ke>01.(1) 1 (D) ~ri
n(gleezd—inl D=k, TeZi !
~ (1) ~ (1) (1)
k . (2) ~ k k; (2) ~
<4 § E § ’f(All A?HrlﬂAn ) ( + An +k1+k2An )‘
BEW ke ,ke>0,n; ks (1) (1) i
n(gleezd—i Mo ZR =R K kY €zt

We have that sey < 4(3¢1,1 + 51 2), where

= Y 3 S |Flai) F(A% b

meW, n® €Zd=ini ki k2 20mi2ka 1 k(D ezi—1, || >exp(ao (k" |[+k2)/2)

)

and

= Y 3 S |Flai) F(A% b

mEW, n® ezt ni ki k2 20mi2ka 1 k(D ezi—1, || <exp(ao (k" |[+k2)/2)

b

(1)
with th = A AT AR m and ag = a1 /(1 + by).

Consider s ;. Applying the Cauchy-Schwartz inequality, we get:

ar< DY Qu(0,0)2Qu (k) k)2, (3.31)

nizkzzo k(21) cZi—1

12



where

QxOn=3 ¥ 3 S |Fa¥ Abm)’. (3.32)

MEW n €ZI~ k) >0, |th| >exp(ao(|k§" [+k2)/2) kiVezi—1

It is east to see that
2
Q1(0, 0) < ”f - fexp(a0(|k;1)|+k2)/2)HQ' (3.33)

We have Q; (k™M k) = Q1 (k™ k) + Q1 (k™ k), where
Q&M R= Y > 2 > |FAY A,
meW;[m|2explaon:) n( €24~ k120 k(D e7i-1 || 2exp(ao (k| +52) /2)

and

Qi k) = > > 2 > |FAY" Afm)|*

MEW, || <exp(aon:) n(® €24~ k120 k(U e7zi-1, 1| >exp(ao (k" | +k2)/2)

From definition of the set W (see (2.5)), we get

Ql(kgl)’kz) < ||f - fexp(aom) %

(3.34)

o
Consider the case |m| < exp(agn;). Using Theorem 4 and that m = Alfl A;”*’“Ag@)ﬁl,
we obtain

(1) (1) 4 4.(1)
|Alf2 Af2r'n| = |Alf1 e A?i+k1+k2A§(2)rYl| > c1exp (al(ni—kkl—&—kg)—blaoni) > c1 exp(agn;).

Hence
. 1
Ql(k; )7k2) < ”f - fcl exp(aon;) %

By (3.34), we have
Q1 (kY k) < 21 f = foxperaonn |2 With ¢ = min(1, ¢y). (3.35)

From (3.31), (3.33) and (3.35), we derive

71,1 S 2 Z Z ||f - fexp(a0(|k(21)‘+k2)/2)“2 Hf - fc'l exp(aon;) |12 (336)
n;,k2>0 k(zl)GZ,i,l
Thus
SEEEDIRDD > 1f = fan o
3120,V eZi-1 ky>0,exp(ao(|kS |+k2)/2)€[291,291 1)
<2 ) 1f = fasalo-

j220 n;>0, ¢ exp(agn;)€[272,272+1)
By (2.11), we have

1= 0( Dt = fon ||2) =0(1). (3.37)

Jjizl

Now we consider s 2. Applying the Cauchy-Schwartz inequality, we get:

a < Y Y Qa(0,002Qu (kY k)2, (3.38)

g Zk}g 20 kél)EZi71

where

QMR =3 3 > > IFAT b))

MEW n( €Z4~ k) >0, |rh| <exp(ao(|k§" |+k2)/2) kiVezi—1
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Using Theorem 4 with || < exp(a0(|ké1)| + k2)/2) and bearing in mind that |(k§1), ko)| >
(|k§1)\ + ko) /2, we obtain

(1)
AT Abi| > egexp (anl(kEY, kz) | = brao(IKS| + k2)/2) = ex explag (kS| + k2)/2).

Hence

1
QQ(kg )a k2) < ||f - fc1 exp(a0(|kél)|+k2)/2)”%' (3.39)

We have Q2(0,0) = Q2(0,0) + Q2(0,0), where

%00= 3 DS ) |F(xn)

mEW mZexplaon:) nt €247 k201D €71, ria| <exp(ao ([} [ +h2)/2)

and
= N2
Q0.0= 3 > > 2 )l
MEW, || <exp(aoni) n( €24~ k120 k(D) e7i-1 [1ia| <exp(ao (kS [+ka) /2)

Similarly to (3.34) - (3.35) , we obtain

Q2(070) < Hf - fexp(aoni)

%7 Q2(070) S ||f - fc'1 exp(aon;)

2
29

and

Q2(0u0) S 2Hf - fc'l exp(aon;) % (340)

By (3.38), (3.39) and (3.40), we have
712 < Z Z 2Hf - fcl exp(ao(|kgl)\+k2)/2) HQ Hf - fc‘1 exp(aon;)

T, 2]{:220 k(zl)ezi—l

2.

Similarly to (3.36) and (3.37), we obtain
H12 = 0(1) and n < 4(%1’1 + %1’2) = O(l) (341)

Hence Lemma 2.4 is proved. H

End of the proof of Theorem 3. Consider the case o(f) = 0. By (3.25), (2.9)

o~

and Lemma 2.3, we get that W(m) = 0 for all m € Z*. Hence f(m) = h(®(m) =

D i<i<d ﬁ(m), Using Lemma 2.4, we obtain that f() € [?. Bearing in mind that
gD (m) = fO(m) — fO(A7 m) € 1% (see (3.26)), we get that ¢() € [? and h() € [?
i=1,..,d). Let f ¢ and h() be the correspondent functions of 2. We have that
gV (x) = fO(x) — fD(A;x) (see (2.2)) and f(x) = gV (x) + --- 4 g9 (x) for almost all
x € [0,1)°. The assertion (2.13) is proved. Next we have that h() (and hence g(i)) verify
(2.8) :

—~

> (Z W(A“mi)z

meW \ngZzd

2
< Z( DY ’f(A“m)D = S(f) < +o0, i=1,...d.

meWw Nit1se-0Nd€ELNY,..., N €L
Now let f satisfy (2.13), f = >1,49', g7 (x) = f(x) — f)(Aix)), f) € L?, and
g\ satisfy (2.8) (i = 1,...,d). By (2.8), the series

Y farm)= 3 Y Gi(A™m) with meW

neZd 1<i<d nez?
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converges absolutely. From (2.1) and (2.2), we get

S aArm) = 3 (FO(APm) — fO(AM 'm) =0,  with m € Z°.
n,€Z n,€Z

Hence
> Gi(AMm) =0, i=1,...d, > f(Am)=0 and o=0.
neZzd

nezd

Thus Theorem 3 is proved. B

4 Proof of Theorem 4.

The upper bound in (2.15) follows from the formula for a degree of Jordan matrix
(see, e.g., [Ga, pp.157,158]). We can take for example as = dmax; ; |In|A; ;|| + 1, where
Ai,; are eigenvalues of A; (¢ = 1,...,d). Let us consider the lower bound :

4.1. Preliminary lemmas.

Let K7 be an algebraic number field of degree s; over Q. Then there are s; distinct
monomorphisms ¢; : Ky — C, i = 1,...,s1 [see, e.g., Al, p.112]. By [BS, p.401], [A],
p.222], we get

Ni,/(§) = 01(§) -+ 05, (8). (4.1)
If ¢ € K3\ 0is an algebraic integer, then
Nk, /()] = 1. (4.2)
Let 71, ...,nq be units of K1 with i ---n)? =1 <= n; = ... =ng = 0. Let

d
xi(m) =Y n;jlnoi(n;)| i=1,....s1.
j=1

Repeating the proof of ([KaNi], Lemma 6.2.14), we obtain :

Lemma 4.1. There exists a constant az = a3(n1, ...,Mq, K1) > 0 such that

max x;(n) > az|n|.
i€[1,81]

We need the following lemma on abelian groups (see [Ln], Lemma 7.2, p. 40) :

Lemma 4.2 Let V % V' be a surjective homomorphism of abelian groups, and as-
sume that V' is free. Let W, be the kernel of 9. Then there exists a subgroup Wy of V
such that the restriction of ¥ to W5 induces an isomorphism of W, with V, and such
that V=W; & W,.

We recall some lemmas from linear algebra :

Lemma 4.3 ([Ho], p.267, Theorem 13) Let C, be a subfield of the field of complex
numbers C, let 'V a finite-dimensional vector space over Cy, and let T be a linear opera-
tor on V. There is a semi-simple operator $ on V and a nilpotent operator H on V such
that

iT=S5+H;

(ii) SH = HS.

Furthermore, the semi-simple $ and nilpotent H satisfying (i) and (ii) are unique, and
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each is a polynomial in T.

Lemma 4.4 ([Mal, p.77, ref. 4.21.1) Let M;(C) be the set of s-square matrices with
entries in C. If B; € M(C) (¢ = 1,...,d) pairwise commute [i.e. B;B; = B;B;, (i,j =
1,...,d)], then there exists a unitary matrix U (i.e. U* = U~!) such that U*B,;U is an
upper triangular matrix fori = 1, ...,d, where U* - conjugate transpose of U € M(C).

Lemma 4.5 ([Ga], p.224, Corollary 2) If the linear operators A, B, ..., L pairwise
commute and all the eigenvalues of these operators belong to the ground field K, then
the whole space R can be split into subspaces I, ..., I, invariant with respect to all the
operators such that each operator A, B, ..., L has equal eigenvalues in each of them.

4.2. Invariant subspaces.

We consider matrices Ay, ..., A4, the space C® and we apply Lemma 4.5:

Let I, ..., I, be corresponding invariant subspaces of C° with dim/; =r;, 7 =1,...,w,
r1+ -+ ry, = s. There exists a matrix U; € M(C) such that T; = UlAZ-Ufl have
the following block diagonal structure: T; = T1; @ --- & Ty, ; with 7; X r; commuting
matrices T ; with equal eigenvalues (j = 1,...,w, ¢ = 1,...,d). We denote by \;; the
unique eigenvalue of T} ; in the subspace I;. It is easy to see that Ay ;,..., A\, ; are all
eigenvalues of 4; (i = 1,...,d).

Now we consider matrices Tj 1, ..., 7,4 and we use Lemma 4.4. We have that there
exists a matrix U, € M,(C) such that

A =Up AU, i=1,...,d, (4.3)
have the following block diagonal structure:

Al,l 0 A17d 0
A1: a"'7Ad: )
0 Aw,l 0 Aw,d

with r; x r; commuting upper triangular matrices A;; (j =1,...,w, i =1,...,d). Hence

Ai(n) 0
AP AR = U AT AU, and AT Al = , (4.4)

where n = (nq,...,n4), and /N\j(n) is an upper-triangular matrix with )\?711 e )\% on the

diagonal (1 < j < w). Let Kj(n) = (Xl(/{),uz(n))lgyl,yzgrj . Using the formula for the
degree of Jordan’s normal form of matrices A;; (see, e.g., [Ga, pp. 157,158]), we get
that

AR, () = Xy - NJG P, (m) (4.5)
for some polynomial P,Ef ,)1,2. It is easy to see that
Plsf?l,l(n) =1 and Plff?yg (n) =0 for v >, (4.6)

ni

Taking into account that A}

nition 1 that

-+ Al4 is an eigenvalue of Aj"...A}?, we obtain from Defi-

A Ajg=1 < (n,..,nq) =0, with je€[l,r]. (4.7)
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Now we decompose A;; to semisimple (i.e. diagonalizable) and nilpotent com-
ponents. Let ]IT be an r x r ldentlty matrix, Aj,i,l = Aj,i]Ile Ajﬂ"g = Ajﬂ‘ — Aj,i,lf
Ajisg =T =X Ajio

Ni=Mi1® DAyt Ajy =Uy AUy, 1=1,2,3.

We see that A;; = A;;1A;,;3 and A;; are the semisimple matrices, A, » is the nilpotent
matrix, A; 3 is the unipotent matrix,

Ai = Ai,l + Ai,27 and Ai = Ai,lAi,?n 1= 1, 7d

By Lemma 4.3 there exists only one decomposition of a matrix to semisimple and
nilpotent components. Applying Lemma 4.3 we obtain that A;; is a polynomial of A;
(i=1,..4d,

1 =1,2,3). Hence, they are commuting matrices, and

A;u .. .Agd = A?ﬁ . AZ,?(AT’,% ... AZ%). (4.8)

Applying (4.5), we get
AT - Ajgml| = O(|n|*|m).

Therefore there exists a constant ¢y > 0, such that
|ATS - Ajgm| < éomn[*m| and 1<|m|< c'0|n|8d\A?713 - Agsml. (4.9)
From (4.8) and (4.9), we get
AT - At > & AT - ALt ml. (4.10)

Thus, to prove Theorem 4, it is enough to verify (2.15) for the semisimple case, i.e.
when 4, = 4,1 (i =1,...,d). In this case,

AZ' = diag[&l,i, ey 95’1‘], with 9[}1‘ = /\j,iu for e (7‘/ 7“/-

i, (4.11)
where r; =7+ 415, 70 =0 (1 € [1,5],j € [Lw],i € [1,d]).

Let Ko = QA1 1, Aw1s s AL ds --s Aw,a), De the algebraic number field of degree so,
and let 0y, ..., 05, be distinct monomorphisms o; : Ko — C, ¢ =1, ..., so. The first part of
the following result is mentioned without the complete proof found in [Ga, p. 220]:

Lemma 4.6. There exist an invertible matrix T' = (¢; j)1<i j<s With t; ; € Ko, (1 <
i,7 < s) and constant c3 > 0 such that

A =TAT  (i=1,..,d) and |mj|>cslm|~*>" for m; #0,  (4.12)
where m = (my, ..., m,)® = Tm.
Proof. We consider the following system of linear equations:
XA, =MNX, i=1,...,d with X = (2;,)1<jv<s- (4.13)
By (4.3) there exists the nontrivial solution Us € M,(C) of this system. Hence there
exists a partition G, G of [1, s]? with Gy UGy = [1, 5]%, G1 NGy = 0, min(#G 1, #Gs) > 1,

and 3 }
xx = 0s(X), with X ={z,|w € Ga}, (4.14)
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where g, is a linear form with coefficients in K5, x € GG;. We see that

det X = g(X),

where g is some polynomial with coefficients in K.

Bearing in mind that det Uy # 0, we get that g(X) # 0 for X € C#%2. Taking into
account that K, contains infinitely many elements, we obtain (by induction on #G5)
that g(X) # 0 for X ¢ K;’éGQ. Let g(T) # 0 with T ¢ KfGZ. From (4.14), we get that
there exists a solution T = (¢;,,)1<;.<s Of the system (4.13) with ¢; , € Ky, (1 < j,v <s)
and det T # 0. Let D(K>) be the ring of algebraic integers of the field K>. We take an
integer go > 1 such that

qot;.v € D(Ks), jrv=1,..s. (4.15)

Let

M= tijmj, and M= (M, ..,ms) " = Tm. (4.16)
j=1

By (4.1) and (4.2), we have

Using (4.16) and (4.17), we get

|mi| > c3lm|™*2 for m; #0, where c3 = qp (s Iinga/}fgk(ti’j))_sﬁl'
Hence Lemma 4.6 is proved. H
Bearing in mind that

APt ATem =T TAT - Alem, (4.18)

we obtain that (2.15) is a result the following inequality
|AT* - AZm| > ¢slm| 7" exp(ai|n|) for m # 0
with some ¢4 > 0. Let
G={ie][l,s]|m; #0}. (4.19)

By (4.11) and (4.12), to obtain (2.15), it is enough to prove that

Ijneag 075074 > cs|m|~%2 exp(aq |n|), Vn € Z4 with A?'-.- A" m € Z°\ 0 (4.20)

for some aq, by, c5 > 0.
Let ey, ..., e5 be a standard basis of Z*, T~ = (£; ;)1<ij<s

s
Ei = ij’iej, and m = (T?Ll, ...,ms)(t) =Tm.

Jj=1

By ([Gal, pp. 59, 60 and 73), m1, ..., m, are coordinates of vector m in the basis €1, ..., €;,
A; is the matrix of the operator A; in the basis €4,...,€, (i = 1,...,d), and €y, ..., €5 are
eigenvectors of A;, ..., Ag in C°. Hence

m=me, +- - +mse, = m;e;.
i€G
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Let V be a subspace of C* with basis {€; | i € G}, 'y = VN Z? and let & be the
set of all of distinct lattices I'y . Note that #® < 2° (the number of subsets G of [1, 5],
see (4.19)). We denote by V, the C-linear span of I'j. We see that V, Iy and V, are
Aq, ..., Aq invariant subsets in C*®. Let dy = dimI'y. Taking into account that m € V and
m € I'y, we get that dy > 1. Let &, ..., &4, be a basis of I'y, and let Ay, ..., A; be matrices
of operators A4; : C° — C° (i =1,...,d) restricted in Vj in the basis &, ..., &g4,.

It is easy to see that A, ..., A4 are integer matrices, and A" := /1;“ s e Asd is a matrix
with rational coefficients. Hence the characteristic polynomial ¢, of A™ has rational
coefficients. Let h € V, be an eigenvector of A, and /3 a corresponding eigenvalue.
We see that h € V is an eigenvector of A}" .- A} restricted on V. Therefore (3 is an
eigenvalue of A7 --- A)?|y. Taking into account that all eigenvalues of A}" --- A}¢|y are
0y -0 with I € G, we get that there exists /o € G such that 3 = 0", ---0'*;. By
(4.11) there exists jy € [1,w], such that

B=0p" Oty =Nty N (4.21)

In §4.4 we will prove that there exists aq, b2, c5 > 0 such that
0w (B)| = low(6])1) -+~ 00 (85%4)] > es exp(asn])|m|™*  (m # 0) (4.22)

for some v € [1, s3]. Bearing in mind that for all v € [1,s3]: 0,(8) is a root of ¢,, we
get that there exists an eigenvector h, € V, be of A™. We have that h, € V is the
eigenvector of A7 --- A}|y, and 0,(3) is an eigenvalue of A}'--- A?|y . Similarly to
(4.21), we obtain that there exists [; € G with

ou(B) =07y - 0%
Now Theorem 4 follows from (4.22) and (4.20).

4.3. Some notations and inequalities from divisor theory.

Let © be the group of divisors of the field Ks, Kj = K> \ 0. Consider the homomor-
phism from KJ to ©. We denote the image of the element { € K3 by div(§). By [BS,
p.217],

N, /q(div(§)) = [Nk, /q(§)]- (4.23)
If 0 divides the rational prime p and if 0 has degree f then ([BS, p.217])
NKQ/Q(D) = pf'
Let 4, ...,0, be the set of all prime divisors of © such that for all v € [1, u] there exists
(2,7) € [1,d] x [1,w] with X\;; =0 mod d,. Thus
w
div()\j,i) = H OB‘W
v=1

for some nonnegative integers b; ; ., (¢,j,v) € [1,d] x [1,w] x [1, p]. Let

Ni/q(0,) = ply. (4.24)
Fixing jp € [1, w], we obtain
o
div(AlLy A ) = T o™ (4.25)
v=1
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where

d
L) = nibijo.- (4.26)
i=1
Let
I(n) = (li(n), ..., l,(n)),
and let
IT(n) = max (0,;(n)), 7 (n) = max (0, —I;(n)).
ie[l,u) i€[1,u]
We see that
max(IT(n),I”(n)) < [I(n)| < pmax({(n),l” (n)). (4.27)

Letm = A7 .- A%"m € Z°\ 0, and ' = (7, ..., 7)) = Tm.
By (4.15), (4.16) and (4.18), we have that m = ATt A?m and qoﬁlz € Ky (I =
1,...,s) are algebraic integers. From (4.19) and (4.21), we obtain

!
~ _ AN nd .~ Y Nd
my, = 910,1 . -~910_’dmlo = )\jml . -~)\j0’dmlo #0 for Iy € G,

with some jy € [1,w]. Hence

div(qomy,) = div(qoﬁlio)div()\j;f‘f c A (4.28)

Let [~ (n) > 0. Then there exists iy € [1, u] with —I;,(n) = [~ (n). We have m,m’ € Z* \ 0
and gomy,, QO"%ZO are algebraic integers. Bearing in mind (4.28) and (4.25), we get that

div(qomy,) =0 mod 0;01‘0(“).

By (4.23), (4.24) and (4.17), we obtain

~ . ~ —1; n
1 < [Nk, /q(g0iiu,)| = Ni, jq(div(qofin,)) =0 mod p;. ™,

and
270 < Nge, g a0, )| < (gos max|ory (ti,5)]m))*.

Hence
[7(n) <cg+ s2logy Im| with ¢ = s2|logy(gos max |0, (¢ 5)])]- (4.29)
iV

We see that (4.29) is also true for [~ (n) = 0. By (4.23), (4.24), and (4.25), we have that

nw
n n : n n ‘,, v(in +t(n)—csl” (n
|NK2/Q(’\]‘01,1 T /\j(,d,d)| = N,/ (dlv(/\jol,l T /\jod,d)) = H pl! () > ol () merln),

v=1

where ¢7 = pmax, 1 f, logy(py ). Using (4.29), we obtain

[Nica (N - Aj )] 2 217 (Vo7 | ~e%2, (4.30)

4.4. End of the proof of Theorem 4. Let
I'={I(n) [nez’ CZ", Ty={nez|1ln)=0} (4.31)

Applying Lemma 4.2 with V = Z¢, V' =T and W, =TI';, we get that there exists a
subgroup I', of Z? isomorphic with "', and such that Z? = T'; & I's.
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Let k1 = dimTy, and k2 = d — k1. Consider the case of min(ky,k2) > 1. Let fy, ..., f
(f; = (f1.i, -, fa.i)) be a basis of Z? such that fy, ..., f,, is the basis of I'; and f,, 1, ..., f4
is the basis of I's.

For all n € Z? there exist n; = (ngl),...,ng)) eIy, ny = (nf),...,nf)) eIy, ki =
(k1, ..., ky,) € Z" and ko = (ky, 41, ..., kq) € Z"2 such that

n=n; +Il2, n; = klfl + "‘+k',§1f,{1, and ny, = k,{1+1f,{1+1 ++kdfd (432)
By (4.26), (4.31), (4.32) and Lemma 4.2, we have that there exists ¢y > 1 such that
co | < kil < colngl, i=1,2 and c;ltlks| < [1(n)] < colkal. (4.33)

If k; = 0, then we will use (4.33) with n; = 0 and k; = 0 (¢ = 1, 2). By (4.32), we have

. .. . (4) ()
.\ ndg  __ M1\ P
0y = )‘jO,l e )‘jO,d =010y, where 0;:= >‘jo,1 )\j07d 1=1,2,
and _ _
fii fa,i i=1,

: A o :
91 :7]11 "'77l€117 where i = )\30,1.” Jo,d

ey K1

From (4.25), (4.31) and (4.32), we obtain that 7, ..., 77,{1,9.1 are units in K5. Let n, = 0.
Using (4.7), we get that 0y = #; = 1 if and only if n; = 0, and

g e =1, = ky == ke, = 0.
Applying Lemma 4.1 and (4.11), we get that there exists a constant a4(lg) > 0, such that

| Ier[lfxlau(él)l > exp(aa(lo) k1) = exp(as(lo)[n|/co).
v yS2

Let as = cO_1 min, g as(lo). Hence, there exists vy € [1, s2] such that

(1) (1)
oy (N1 - AT

o Njena)l = exp(as|nyl). (4.34)

We will need the following notations :

bo = 0.25a5(1 + a5)~'d~" (1 +max |In|o, (X;:)|]) ™",  as = dmax|In|o, (A;)|],
1,7,V 1,5,V

by = 2by ' cgusedmax |In|o, (N;)]]/ In2, ay = min(as /4, ag, bocy 2 tsy t In2),
1,7,V
»(m) = bo_lcg,u(cﬁ + s21ogs(Jm))), by = max(by, c7), (4.35)
cg = exp(—2balc(2)ucﬁdmax |In oy, (N)])s ¢5 = min(cg, 2_0607/52).
1,7,V

Case 1. Let ko = 0. Then n; = n and (4.22) follows from (4.34) and (4.35).
Case 2. Let |n| < s(m). Then —|n| > |n| — 25¢(m), and

min [0, (2 -+~ \4| > exp(—|n|d max | In]a, (A1) (4.36)
IV ’ ’ 1,7,V

= exp((jn| = 22(m))dmax [ In |o, (A;4)[]) = cs exp(ag|n|)|m|~"* > c5 exp(as |n|)[m]| 2.

Case 3. Let [t(n) > bocg2/f1|n\ . By (4.30) and (4.1), we have that there exists
vy € [1, s3] such that

‘0-1/0 ()\;_101’1 .. )‘;‘lod,d| > 2[+(n)/s2—csc7/52 ‘ml—m
> 2b00072’fl‘“‘/52_6667/52|m|_c7 > cx exp(a1|n|)\m|_b2. (4.37)
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Case 4. Let |n| > »(m), and ko = d . We see that k1 = 0, n; = 0, and np = n. By
(4.27), (4.33) and (4.35), we have bgl > 4 and

max (I (n), 17 (n)) > I(n)|/p > g In2| = ¢g®u" n| = by (c6 + 52 logy(jm]).

), and [*(n) > [~ (n). Thus

Bearing in mind (4.29), we obtain that " (n) < cg+s2

I (n) > cg?p n| > bocy *p tnl.

Hence we can use the inequality (4.37).
Case 5. Let [n| > »(m), d > k3 > 1 and [T(n) < b0052u_1\n\ . By (4.29), (4.27), (4.35)
and (4.33), we have that [~ (n) < bocy *p " 3¢(m) < bocy >~ |n| and

ng] < colke| < cEf1(n)] < umax(i*(n), = (n)) < boln| < [n]/2.

Thus
n;| > n| — |ng| > |n|/2. (4.38)

Using the definition of by (see (4.35)), we obtain

. 71/(2)
min o, (A5 -
ij ]7

VLd

)| = exp(—djng| max| [, (1))

> exp(—dboln| max | In o, (A1) ) = exp(—as/n/4).

Applying (4.34) and (4.38), we have

(1) o) n(® n(®

lowe Ny Nl = lowg (Nl - ALt ) o (A1 - A )

Jo,1°
> exp(as|ny| — as|n|/4) > exp(as|n|/4) > s exp(ay|n|)|jm|~°2. (4.39)

Now from (4.36) - (4.39), we get (4.22) and Theorem 4 for the semisimple case. Bearing
in mind (4.10), we obtain that Theorem 4 is true for the general case. R

5 Proof of Limit Theorems.
5.1 Proof of Theorem 5.

By the Cramér-Wold device, it is enough to prove that for arbitrary reals oy, ..., oy

ST fAMx) SN0, 1), (5.1)

J(f),/al—F +a2;\/71n69%(N)

We consider first the case that f has a finite Fourier expansion :

v(N, f,x) =

Lemma 5.1. Let o(fr) > 0. With notations as above :

if A is even

Al
= tw |v<N,fL,x>ﬁdXZ{WW”” " 52)
[0,1)s

min; ; Ni,j—>oo 0, lf ﬁ iS Odd

By the moment method, (5.1) follows from (5.2) for f = f;, (see (2.12)). The proofs of
the general case and of Lemma 5.1 are given below. We consider the following variant
of the S-unit theorem (see, [SS], Theorem 1):
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Let K be an algebraic number field of degree s; > 1. Write K* for its multiplicative
group of nonzero elements. We consider the equation

}L]

> P9l =0 (5.3)
i=1

in variables n = (n1,...,ng,) € Z%, where the P; are polynomials with coefficients in
K, 0} =9} 9%, and ¥;; € K* (1 <i < hy, 1 <j<d). Let Up be the potential
number of nonzero coefficients of the polynomials P, ..., P,,, and U = max(d;, U;). A so-
lution n of (5.3) is called non-degenerate if ), _; P;(n)¥]" # 0 for every nonempty subset
I of{1,...,h1}. Let G be the subgroup of Z% consisting of vectors n with 97 = --- = ¥}

Theorem B. ([SS]) Suppose G = {0}. Then the number (P, ..., Py, ) of non-degenerate
solutions n € Z% of equation (5.3) satisfies the estimate

< 3 2
u(Pla"'aphl) Sm(dlaP) :235U S?U :
It is easy to get the following

Corollary 5.1. Letd; = d(hy — 1), 9p, ; =1 (j = 1,...,d), ¥; j1(i—1a = U; € K* and
ﬁi’j+ud =1 (,U/ S [O,hl — 2]7 12 7& Z — 1, Z = 1, ...,hl — 1, ] = 1, ...,d), n= (1’117 ...,nhl,l),
n; = (i1,...,Ni,q) withi =1,...,hy — 1, Pp, () = —1. Suppose

I 9t =1 <= (nq,..,nq) = 0. (5.4)

Then the number Y’ (Py, ..., Py, —1) of non-degenerate solutions i € Z% of the equation

hi—1 hi—1

ZP ZP Yy =1

satisfies the estimate
(P, ..., Pyy—1) < U(dy, P).

Remark 1. In this paper we need only the estimate ill(Pl, ey Pry—1) < U, where a
constant U depends only on s, d and h;.

Remark 2. The condition defining the group G is equivalent to the condition (5.4)
in terms of Corollary 5.1. In this paper, the validity of (5.4) follows from the partially
hyperbolic property of the action A (see (4.7) and Definition 1). It is known that if A
has the partially hyperbolic property, then A™ is ergodic with respect to the Lebesgue
measure for all n € Z¢ \ {0}. According to [ScWa] the partially hyperbolic action A is
mixing of all orders.

Definition 5.1. Let F™ = {1,...h}, F C F", Bp = #F, F = (F(Q1),...,F(8r)) ,

n= (Ill, . l’lﬁ) (F(m) ﬁ(F) = (nF(l), ""nF(BF))' withn; = (ni,l, ...,niyd), P = {p =

(p1,p2) | 1 < p1 < w, 1 < py <1y} (see (4.3), (4.4), pV) < p@ ifpgl) < pf) or if
)

=l

pgl) = p§2) and p(l) < pg . Let
c@m) = TAP AP m) =y AT A ), c@m?”) =0, (5.5)
pneF HeF
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Where M = (721 1, oy ey s ey Mg 15 ovy Mgy, )Y = T'm (see (4.12)).
We have that coordinates of a vector x € R® can be enumerated by the set P :
X = (%(1,1), veny x(l,,.l), ...,lL’(u,J), ~'~7x(w,rw))a With x(pl,pz) = l‘p = xpl,pQ'

Hence C(a") = (C(@*),)pep, with C(@)), := (C(@*))),. By (5.5) and (4.4)-(4.6),
we get

aF ) E E (m ~(/L) - § Tl Td § (pl (k)
C PlyP2 - )‘pg v )\pl, )\pl d sz v Pl v
pEF 1<v<ry, pneFr p2<v<rp,

(5.6)

Definition 5.2. Let Fo =F, =0, m®) £0 (j = 1,...,h), po = (w0, 7).

P = {P € P|3jel,h] with ﬁlg) %0}, P1 = II)IéE%p, F,={j€clln ‘mgl) £0}.

(5.7)
Fori > 2 we denote P;, p;, IF; and IF; recursively :

P; = maxp, fz = #]Fz, (58)
pEP

k3

where B
P; = {p €P|p<pi1 and Fe[L,H\F, with m{) # o}. (5.10)

Lett = max{i € [1,s] | P; # 0}.

We have

4
UF: = (1,7 (5.11)

=1

Lemma 5.2. Let C(n (F " ))) 0, and i € [1,¢]. Then

C(ﬁ(Fi)>pi = _C(ﬁ(Fi))pi’ (512)
Cm*)p, = L@ ")y, where L@D)p =Y Ajr - Ajrgmft),. (5.13)
peEF
and _
LEE)), = —c@m))y,,. (5.14)
Proof. We need the following equality
my) =0 for py<p and jEF,, k=1t (5.15)

Let kK = 1. We see that (5.15) follows from (5.7). Consider the case k > 2. We have that
pi < p = p;—1 for some ! € [2,k]. Let p; < p < p;—1. We derive from (5.8) that p ¢ P;.
By (5.10) and (5.11), we obtain that m(J) =0forall j € [1,A] \iEv‘l = U,>/IF,. Bearing in
mind that [ < k, we get that I, € U,>;IF, and (5.15) follows. Let p = p;—1. We get from
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(5.9) that if mg) . # 0 for some j € [1, 7] \INFl,l, then j € F,_; and j ¢ IF;, i > [ . Hence,

for all j € F, we have mY) | = 0. Thus (5.15) is true.

Let k > 4, then p;, < p;. From (5.15) we obtain that m(“) =0 for u € Fy, p; =< p. Let
pi = (pi1,pi2), then mz(j,iw)w =0 for u € Fy, p; 2 < v. Using (5.6) and (5.9), we get (5.12).

By (5.15), we have that m!/", , = 0 for 4 € F;, p;2 < v. Applying (4.6) and (5.6),
we obtain (5.13). Now from (5.12) and (5.13), we obtain (5.14). Hence Lemma 5.2 is
proved. H

Letd; € [1,¢], i=1,...,h and
R(N7F7 p) = {(DF(1)7 ...7nF(ﬁ)) | n; € i)%sm), 1=1, ...,ﬁ, 8= #F (5.16)
and PF CF with L@ET)), = 0}.

We do not suppose that R;(N;) "R, (N;) = 0 for i # j € [1, ¢ in the following
Lemma 5.3-Lemma 5.8 (see (2.16)).

Lemma 5.3. Let F C F("), = #F, Np = [Licr N;, with N; = [L;ep,q Nij, and
1

@ = > s@mP), =1).

Ng n") eR(N,F,p)

Then
L, ify=0, 8=2,
w <
cp(N), otherwise,
where a constant ¢ depend only on #, and p(N) = max; (N;) /2.

Proof. Let v # 0. Applying Corollary 5.1 with h; = i+ 1, d; = dh, s1 = s2 € [1,s°],
U = sdfi and U(dy, P) = 235U° $65U° from (4.7), (5.4), (5.13) and (5.16), we get that

1

— <
VNF
Let v = 0 and 5 = 1. We see that there are no solutions of the equation L(ﬁ(F)) = 0.

Lety=0and g > 3. By (5.16) there are no non- degenerate solutions of the equation
L@mY)), = 0. Hence mp #0foralli e F. Let min;ep Np, = N5 . We fixn,,. Let

n;w' =Ny, — Nuo,j (1 € F). We see that

@ < U(dy, P) U(dy, P)p(N).

- Z )‘1 P11 /\d‘;fﬁvm?pz/mg?ﬁz =1 (5.17)
nEF, u#po

Bearing in mind that ), ; are algebraic integers, we can apply Corollary 5.1. We get
that the number of solutions of (5.17) is equal to O(k). Taking into account that 8 > 3
and Ny > (N,,)3, we obtain

® = O(N,, /\/NF) = O((N,i)~12) = O(p(N)).

Let v = 0, § = 2. Using Definition 1, we get that

#{n' ez | )\1“ i Ad;j =—mW fmle) 1 < 1. (5.18)
Therefore
@ < (Np)™? ] min(Nea) , Nre),;) < 1. (5.19)
JEll,d]
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Thus Lemma 5.3 is proved. ®
Let ]—'T(i) = (F1,..., F}) be a partition of IF;, i.e.

FU---UF,=F,, F;NnF,=0, j#k and F(j) < F(k), for j<k

’

Let (Fy,..,F,) = (Fy,..,F.) if 1, = 7o, and for all i € [1,71] 3k € [1,7,] such that

I T2
F; = F,; We denote by §; the set of all nonequivalent partition of IF;, and by §g the set
of all nonequivalent partition of F("),

Definition 5.3. Let g;(n) = 0, if f; = #I; is odd, or C(ﬁ(ﬁi))m # 0, and let g;(n) =1
otherwise. Let F\" = (Fy,...,F.) € ;. Let g;(m, ]-}Z)) =0, if Bp, = #F}), # 2 for some
k € [1,r], and let g;(n) = 1 otherwise. Let

v = L@y, al) e R(N, F;,pi), where j=1,..,r,
and 1 =..=v_1 =07 = —C@¥)),,. (5.20)
Let §;(n, F\V) = 0, if (5.20) is true, and let §;(0) = 1 otherwise. Let g;(n) = 1, if there
exists a partition F\" € §; with g;(0)g; (@, FL)§;(m, FV) = 1. Let g;([) = 0 otherwise
(i=1,...,¢), and let g(n) = g1(n) - - - ge(M).

Lemma 5.4. Leti e [1,¢], [ € {0,1}, Ny = [Licr N; and

wi(l) = { Yoo @), = ~Cm™),,)8(gi(@) = 1), (5.21)
\V N]Fi an,,(J')G%BJEi(j)
J=L,esfi
Then
w;(1) =0(1) and ©5;(0) = O(p(N)), (5.22)

where O-constants depend only on 7.
Proof. Let L(n™)),, = —C(@¥)),,. Using (5.16), we see that there exists a parti-
tion £V = (Fy,..., F.) € §,; satisfying (5.20). By Definition 5.3, we get

~ fi r
S(LET))p, = —CET)p)o(@@m =D <D > [[oLE™)p, =)
r=1(Fy,...,F)€g; j=1
x 6@ € RN, Fj, p))d(8:(m)g: (0, ) = )83 FY).
Let 8; = #1F}, and let
; if Vi 7é 0)
, if B8 =1, andy; =0,
, if B; >3, and y; =0,
4, if Bj =2andy; =0.

w N =

Changing the order of the summation, we obtain

fi r 4
o) <> > T %k (5.23)

r=1(Fy,...,F,)€F; j=1k=1

where

1 ) O(L@)p, = 7;)6(gi (Mg (0, V) = 1) §3(1, F{V)d(e; = k).

Ak = — =
VNE 550 e r(N,F,pi)
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Using Lemma 5.3 we get that »;;, < 1 for k = 4, and »;,;; = O(p(N)) for k € [1,3].
Hence (5.22) is true for [ = 1. Consider the case | = 0. From Definition 5.3 we get that
if g;(m)g;(m, }'7(.1)) =0, then ¢j, € [1, 3] for some j, € [1,7]. Hence

Z #jo,0,k = O(p(N)) and H Z #jo.k = O(p(N)).
k=1 j=1k=1

By (5.23) Lemma 5.4 is proved. H
Lemma 5.5. Let N = Nl - -Nd = NFl --~1<I]FE and

\}ﬁ > A(C(m) = 0)d(g(m) = 0).
n; ERp,

i=1,...,h

w1 «—

Then

where O-constant depends only on A.
Proof. Using (5.14) we get

4
s(cm) =0) < [Jo@@m®),, = —c@m™™),,).

Hence

1 —_(F, (T, _
<[ A= X @), = -caf),)sam) = o).
=1 \/N]R n]pi(j)Gmaﬁ,i(j)
J=1,....fi
It is easy to see that if g(nn) = 0, then there exists p € [1, £] with g, (n) = 0. By (5.21), we
obtain
@< Y @0 ] (@:(0) +@(1).
pel,e] 1€[1,€],i#p

Applying Lemma 5.4, we get the assertion of Lemma 5.5. ®H

Definition 5.4. Let §,(n1) = 0, if there exists a partition (Fi,...,F,) € §; and j € [1,r]
such that
L@Y)), =0, Bp, =2, o) € R(N, Fy,,p;),  Vke[l,7], (5.24)

and C(n'f7)) # 0. Let g;() = 1 otherwise (i = 1,...,¢), and let §(71) = §; (@) - - - §e (7).
Lemma 5.6. Let

@y i= = Y 5(Cm) = 0)3(g(m) = @) = 0).

Then
w2 = O(p(N)),

where O-constant depends only on h.

Proof. Let () = 0. By Definition 5.4, we have that there exist i; € [1,¢] and a
partition (F{", ..., F{")) € §,, satisfying (5.24). We consider the conditions C (1) = 0
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and g;(m) =1, 7 € [1,¢\ {¢1}. From Definition 5.3 and (5.14), we obtain that there exists
a partition (F() . F(z)) € §; satisfying (5.20) with r = §;/2, F = =2,7=1,../2
i € [1,€\ {i1}. Hence we get the following inequality

e fi /2 ¢

6(C(m) = 0)d(g(m) = 1)4(d <> > 11 > 1
i1=171=14=1 (F(Z)7 ,F(Z/Z)GSL
#F(V=2, je[1,§:/2]

fi/2 )
x H S(L@ETM),, = 0)s(c@@n) £ 0)5(C(m) = 0),

with a®5") e R(N,Fj(l)api)' Let

R (N,F,p) = {(mp@), - npp) | 0 € Rop,y, i =1,..,8, B=#F, (5.25)
and BF*CF with C@)), =0}

(i1)
Consider the conditions C(ﬁ(Fh )) # 0 and C(:1) = 0. We see that there exists p €
(i1) ’ ’ i
P with C(a"1" ")), # 0. Therefore, there exists a partition (F}, ..., F\) of T \Fj(ll)
’ ’ (1) !
such that C(@")), =0 (j = 1,..,r — 1), C@F)), = —c@m@Fn' ), # 0, and a3 €
R (N,Fj,p),j=1,..,7. Thus

e il /2 ¢ §i/2

S5 35 55 | SEED SR 5) SENED DI | CTFPRNRCE

1 1 1 1 ) j=1
i1=1j1=11i= (Fl(iv)"“’Ff(,;}2)€g" pPEP r= (Fl """" FT»F;II )6303
#FD =2, je[1,f:/2]

where

! 3> (L@, = 0) (5.27)

Kisin, g1 = <
N ., ,
FyY E‘Fa‘(l)’eR(N FD b))
FY ps

’ ’ ’ / (l )
x 5@ € R (N, F.,p))s(C@m™), = —c@m®n' ), £0).
By Lemma 5.3, we have
iy ,5.51 — 0(1), with j,j1 S [l,fz/Q], i,il €t (528)

For ¢ € {1,2}, we denote
¢ =¢+1 mod2, §/€{1,2}.

Let F.(1) = Fj(f)(g) for some jo € [1,f;,/2], i2 € € and ¢ € {1,2}. Bearing in mind that

FiY N F. =0, we get (i1, j1) # (iz, j2). We fix z‘l,jl,ijl),F; and p. Using (5.11), (5.13)
i .

and (5.16), we obtain from the condition n’: ) € R(N, Fj(l”)7p,) that mpl) # 0 for all

€ F]-(I“), i1=1,..,t 71 =1,...,f;, /2. For given n we derive from (5.18)

(i1) y
Fjl (c1)

#{n Jl (§1)) c %8 I L(ﬁ(Fhl ))Pil = O} S 1’ Sl = 1,2

F_;;”(:i)
Similarly to (5.19), we have

Jalss ) (i1) o
#{nF' € Mo, X R | L@ ), =0} < (Na))Y2 (5.29)

ce
£{D (2) i
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(i1)
We fix o1 ). Let

(Ll))

B = {n"") € K (N,F..p) | C@"™), = ~c@""), # 0}.

Applying (5.25), (5.6) and Corollary 5.1 with by = h+ 1, d; = dh, sy = s2 € [1,5%],
U = sdh and U(dy, P) = 230" 6sU°  we get

Taking into account that F;(l) = F-(:Z)(g), we obtain from (5.13) and (5.18) that

(i) 7
#n) € RN, FL py) | L), =0, myn =gy and 00D € )

2
< U(dy,P). (5.30)
From (5.29) and (5.30), we derive
(i) . )
45 € RN FI py), k=1,2 | L@, =0, k=12,
i =Re) and B € B < Ul PY(Ne)

Using (5.27), we get

< < 9
HNF,(il)%ihil,jl,jlHNF,(Q)%iz,ihjz,h < U(ds, )( F(Ll)) Y
J1 J2

Hiy,i1,51,01 2insit,ge.01 — O(p(N)) (5.31)

Consider (5.26). Applying (5.28) for (i,5) ¢ {(i1,71), (i2,72)} and (5.31) for (i,j) €
{(i1,41), (i2,j2)}, we obtain the assertion of Lemma 5.6. W

and

Definition 5.5. Let g;(n) = 0. If there exists two partitions (Fy, ..., Fj, j2), (Fy, ..., F, 5) C

3: such that B, = B = 2, L(@M)),, = LEFD)y, = 0 for j = 1,...5:/2, Fj(s1) =
F;Q (2) and Fj, (s;) # F]/-2 () for some ji,jz € [1,1:/2], 51,52 € {1,2}. Let g;(@) = 1, other-

wise (i = 1,...,¢), and let g(n) = g1(0) - - - ge ().

Lemma 5.7. Let

Then

where O-constant depends only on h and p(N) = max;(N; 1 --- N; 4) " /2.
Proof. Using (5.14), we have

w3 < Z W3 H ]Flll/2 Z 6(L(ﬁ(Fil))Pz‘l = _C(ﬁ(ﬁil)h)q )5(921 (ﬁ) = 1)7

i€[1,€] 116[1 €] ng, (j)€Rsy ;
1171 ' lj(z)l,.“,f]:;l(.)
where
.. 1 (T (T -~
ws(i) = —= > sL@TI),, = —c@mTI),)6(gi (M) = 1)3(gi(A) = 0).
\V N, ny, ;) €Rayp, ()
J=1,.0fi
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Applying Lemma 5.4, we obtain that the assertion of Lemma 5.7 is obtained using the
following estimate:

ws(i) = O(p(N)), i=1,..,¢ (5.32)
From Definition 5.5, we derive

fi/2 2 fi/2

sEm=0< Y Y > >. It

==t (50 L er (O F e, 71

#FV=2, GE[LTi/2 4F D=2, je[1,fi/2]

(i) " (i) i (4 i
x S(L@ T ), = 0)5(LET D), = 08(F (q) = F D (@)8(F (o) # FL (o).
By Definition 5.3, we get

fi/2 2
<D Bsli s sa),s (5.33)
ja=1lg2=1
with
ji/2 2 /2
AN RIES S > > [T 52, (5.34)
n=la=1 (F(ib), Ff( }2)631 (Fll(l) Ff(}g)e& J=1
#F;U:Q J€[1,§i/2] #F;( ):2’ JEll,5i/2]
where
i\dy1 < - _(F® _(F®
s = (Np) /2 > S(L@E" T ), = 0)8(L@S ), =0)
_(r(y )
n J ER(N7FJ' 7p1?)

x S(F D (e1) = F(6))8(F P (s)) # F, ().

By Lemma 5.3, we have

P —0(1), with joji,js € [LF/2, ez € (1,2, i€k (5.35)
Consider the conditions F(i)(gl) = F/(i)( 2)) and F(Z () # F]lz(l) (¢»). It is easy to see that
for given (ja,¢2) there exists at most one such (jl,gl) € [1,§:/2] x [1,2]. Using (5.13) and
(5.16), we get from the conditions n( ") € R(N, F} ),pi) (j =1,...,§;/2) that mﬁ,‘? # 0

D _ . » - »
forall p e F; 7, j=1,.., fi/2. Hence for given nF,.;‘)(cz) there exists only one nFj;")(g;)

and only one n satisfying the following equations

O
I0) —(FD)
L@ )y, =0 and L@, =0

It is easy to see that there exists only one (js,s3) € [1,§:/2] x {1,2} with Fj(,:)(gg) =

(i), . _F® . e —(FYyy
F;,"(s5). Therefore for givenn 72 there exists only one n satisfying to L(" 73 /), =

Ef)(s3)
0. Similarly to (5.29) - (5.31), we get
. (4,51,01 ,J3,J1 _(F®
LR < (NN o) ™2 3 S(LE "))y, =0)

(%) )
a1 e RN po)

)
F i
aFis )eR(N,Fj(s),pi)
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) (i) ; ” 0 Y

x (L)), = 0)(LE =)y, = 03(F]) (@) = F ()8 (1) # F) (%)

= O((N ) ™?) = O(p(N)). (5.36)
73

Consider (5.34). Applying (5.35) for j ¢ {j1,43} and (5.36) for j € {j1,j3}, we obtain

ws (4, j2,52) = O(p(IN)). Now by (5.32) and (5.33), we get the assertion of Lemma 5.7. H

Lemma 5.8. Let

Wy = —— > §(C(m) = 0)
1% N niemgi, i=1,..., h
Then
wy = O(p(N)) if A is odd, (5.37)
and
wy = wy + O(p(N)) if 7 is even,
with
€ fi/2 1
-1 Y Mae ¥ (530
=1 (Flm, ,F(’) yeg: J=1 NEj(i) Ny, . €Rs,, gk
#FV=2, jelL./2] S
% 5(Anﬂi,]‘,1 m(ui,y,l) = — A" g2 m(ﬂi,jﬂ))

where p; j = FJ(Z)(k) p(N) = max;(N;)~1/2 and O-constants depend only on F.

Proof. Let
w5 () = > és(c 0)5(g(m)g(M)g(m) = v) with v =0,1.
\/7 n; ERp,
=1, ..,h

By Lemma 5.5, Lemma 5.6 and Lemma 5.7, we get

By Definition 5.3, we get that if % is odd, then g(n) = 0. The assertion (5.37) is proved.
It is easy to see that

@y = w5(0) + w5 (1) = @s(1) + O(p(N)).

Consider ws(1). Let C(n) = 0 and g(1n) = 1. Applying (5.14) and Definition 5.3, we get
that for all : = 1, ..., ¢ there exists a partition (Fl(i), . F(i)) € §; with §; = #F; is even,
C(ﬁ(ﬁi)) p; =0, L(0 (F( ))) . =0, and 51«“() =2, forall j € [1,r], r = §;/2. By Definition 5.5
this partition is unique for g(n) = 1. Usmg Definition 5.4 for §;(m) = 1, we have that
c@m’")) = 0. Hence A™isimUin) = —A™isemise) with i, = FO(k), k= 1,2
(see (5.5)). Therefore

4 fi/2
§(C(m) = 0)(g(m)g(m)g(n =11 §(a(m)g(m)g(m) = 1)
=1 (Fl()v"'va(ijg)egl j=1
#FV=2, je[1,];/2]

<

% 5(A“ui,j,1 m(Pii1) — — APui g0 (Hi, 2))5( (F( ) € R(N, F(l)7 pz))
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Bearing in mind that m(#i.i.%) £ 0V 4, j, k, we get that if A™#iam(#i51) = — Arij2m(#i6.2),
(4) i
then n'f7 ) R(N7Fj( ), pi). Hence

fi/2
scm=0semamam=1)=]] >  []1
=L F ) es T
#F V=2, je[1,f;/2]
X 5(g(ﬁ)g(ﬁ)§(ﬁ) = 1)6(Anw,j.1 m#iit) = — Awig2 m(“i’ja))'

Changing the order of summations, we obtain

w@s(1) = we(1), (5.39)
where
Fi/2 1
@s(v) =[] > [ ==d(smampa(m) = v)
=1 (R0 L F), ess I NF;”
#F V=2, je[1,f:/2]
X Z 5(A“ui,j,1 m(#z‘,j,l) = —AMHijo2 m(#z‘,jﬂ)).
Nk Eiﬁaw,]_,k k=12
It is easy to see that
w6(0) < 2"w5(0) = O(p(N)). (5.40)

Now from (5.38)-(5.40), we get
@1 = wg(1) + O(p(N)) = w6(0) + ws(1) + O(p(N)) = =, + O(p(N)).

Thus Lemma 5.8 is proved. H
We assume in the following that %, (N;) N9R;(N;) =0 for i # j € [1,¢] (see (2.16)).

Lemma 5.9. Let 0 < |m?)| < L (1 <i < h), h be an even. Then

/2
W = ) [16@F0) =526 ") € B(=m ")) + 0(py(N)), (5.41)

(F1,. s Fry2)€Fo t=1
#F;=2,i€[1,h/2]

where O-constant depends only on f and L, and p; (IN) = max; ;(N; ;)

Proof. Consider the equation (5.38). Let ;1 = Fj(i)(k:), k = 1,2. Bearing in mind
that |m(##)| < L, we get from Theorem 4 that there exists L' > 0 such that |ng| < L’
if Atom(kis2) = —m#is1) | From Definition 1, we obtain that there are no two solutions

of this equation. Let 0, ,, =0, ,,, m,, ,, € B(-m,, ), and let

B = #{nl»h:,j.,k € mﬁ#i gk k=12 | AMrige l’H(M'j‘z) = —An”i’j'rlm(m'j’l)}- (5.42)
We see that Rp,, | =NRs,, . N, = (No,,, .1 No,, _.a)? and

i—L)<B<Ns 1---Ns a= (N )2

Hi g1 B g1 F

1-L'p(N)*<BN, ) *<1  and  B(Nw») 2 =1+0(p(N)). (5.43)
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¥ 9 .

Let Oy, ;, # Opu, ;00 NF;i)(V) = min(NFWu)vN for some v € [1,2] and

FJ.(“(Q))
B = #{nl‘i,j,k € %8“'i,j,k ) k= 1,2 | Ny = Dy iy + 1’10}.

Taking into account that |ng| < L, (2.16) and that R;, N R;, = () for i; # iy € [1,q], we
get 3 € [1,d] with [Rj, Ry +Na,, . ,.)N[Rs, Rs + Ny =0,

9,107 7 Tk g1l PR Hi,j,2:! Mz’,j,zﬂl)

’
#{nﬂz‘,j,kal € [Raui,j,k,l?Rawvj_’k,z + N(r)“iyj’k,z)a k=1,2 | i sl = Moy 2,1 + nOJ} <L,
and

g<r ] Mo, k< L/Nng)(V)/Irilin Nij = O((N,)?p1(N)). (5.44)
ke[l,d], k£l ’ 7 ’

Note that p;(N) > p(N) = max;(N; 1 --- Nig)~*/? (d > 2). By (5.38), (5.43) and (5.44),
we have

fi/2
wm=[] Y T[0@p00 =0p0 e8P0 € Bmbh2)) + 0o (N)).
i=1 (Fl(i)"“’Ff(ZJQ)GSi j=1
#F[=2, j€[1.f:/2]
Thus
n/2
wi= 3 [0k =0re)im"0) € BEm )

(F1,...,Fr/2)€To =1
#Fi=2, i€[1,//2)

xS 8(F C )+ 0o (N)).
J€[1,h/2]
Now to obtain (5.41) it is enough to prove that if F;(1) € F; for some j € [1,¢] and
mFi) ¢ B(—mF2)) | then F;(2) € F; (i = 1,...,//2). Let j; = F;(1) and j» = F;(2).
Suppose that there exists 1 < i; < iy < £ with j; € IF;; and j» € F;,. Using (5.9), (5.10)
and (5.15), we get p;, < piy,

m&f #0, my") =0 for p;, <p and mgjg #0, my?) =0 for p;, < p. (5.45)

Let m(F(1) ¢ B(—m ), Hence m(Fi(1) = —A»m(Fi(?) for some n. By (4.12) we
have —m(Fi(1) = A*m("(2)) Bearing in mind that (A, p,)p,.pep := A™ is an upper
triangular matrix, we get from (5.45)

Api,p =0 for p=<pi, and T?LgQ) =0 for p; Xp.

Thus ﬁzgll) = Zpiljp }\pil ,pmg” = 0. By (5.45), we have a contradiction. Therefore

Lemma 5.9 is proved. H
Proof of Lemma 5.1. Using (5.1) we get

AU « S
(v(N, f1,%)) —(J(m) 526321 S (5.46)

% 3 Fm®)y- .. f(m®™) 3 e(<X7§: Anim<z‘>>)’

Im®|<L,i=1,...,ik n; Ry, (N3, ),i=1,....,h i=1
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where 81 = (o} + -+ + a2)~'/2. Hence

= X k X
. /[071)5 (W(N, f1,x))"d

= (U(B;L)>h Z ap, gy, Z f(m(l)) . A(m(h))/gl

lm®) |<L, i=1,...,k
where

i
k1 = (N, - N, )~1/2 3 5(3 Amm®).
niefﬁai (szi),iil,...,ﬁ i=1
Applying (5.5) and Lemma 5.8 for odd %, we obtain

k= O(p(N)),

where O-constants depend only on £, f, and L. Hence (5.2) is true for odd A.
Let 7 be even. Using (5.5) and Lemma 5.9, we get

r= (U(BfIL))h Z Qg - Ay, Z ]?(m(l))...f(m(ﬁ))

01,...,0p=1 Im®|<L, i=1,...,h
/2
x > TI6@ra = 5F@-<2>)5(mm(1)> € B(*m(Fi(”))) +0(p1(N)),

(P, Fry2) €S0 =1
#F;=2, ic[1,h/2)]

where O-constant depends only on %, f, and L. Changing the order of the summation,
we obtain

51 A q h/2
o (U(fL)) 2. > o, ag, [[00r0) =)

(F1,...,Fp/2)€F0 O1,...,05=1 i=1
#F=2, i€[1,5/2]

~

X f(m(Fi(l)))f(m(Fi(l)))é(m(Fi(l)) e B(_m(ﬂ@)))) + O(p1(N)).

m(FiG) | <L, j=1,2

By (3.8) and (5.46), we have that 3; = (o + -+ + ozg)_l/2 and

B \" -
T
o(fr) ! "
(F1,.,Fr/2)€S0 O1,...,05/2=1
#F;=2, ic[1,//2]

-~ ~

(X Tm®)fm®)sm® € Bem®))" 4 0ou))

Im®|<L, i=1,2

2

(B " 5\ /2 h _

=) X (k) U +ommy= 3
(F1,....Fp/2)€T0 =1 (F1,...,Frn/2)€T0
#F;=2, i€[1,h/2] #F;=2, i€[1,h/2]

0 = g7 (5) (15 7) ++ (5) + 001 = i + 060,

Therefore Lemma 5.1. is proved . B
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Lemma 5.10. [Bi, Theorem 3.2, p. 28] Suppose that Xy, ,,, X,, are random variables.
IfXp,-% Z, asn — 00, Z;, % X as L — oo, and

hm limsup P(| Xz, — X, >€) =0 (5.47)

L—oo pooo
d
for each ¢ > 0, then X,, -+ X as — oo.

End of the proof of Theorem 5. We have o(f) > 0. To prove (5.1), we will use
Lemma 5.10 with X = N(0,1), Z;, = Xo(fr)/o(f), Xp.n = v(Ny, fr,x)o(fr)/o(f), and
X, = v(N,, f,x), where N,, = (N{", .., N{"), N/ = (N7, ., N), with
lim;, —, 0o min; ; N( " .

From (3.12) we have o(f;) — o(f) and Zp, % X as L — co. Using Lemma 5.1, we
get that X7, -5 X. Let

o(fr)
o(f)

Applying Chebyshev’s inequality, we get that to obtain (5.47) it is enough to verify that

U/(N, f, fr,x) =v(N, f,x) — (N, fr,x). (5.48)

lim limsup [|v' (Ny, f, f1,x)||, = 0. (5.49)
L—oo nooo

By (5.1) and (2.12) we have

q
V(N f, fr.x) Z Sa, (5.50)
) i o+ +a2
where
Ss=Nz"2 3" fm) > e((x,A"m)). (5.51)
|m|>L neRs(Ny)

Bearing in mind that

E 5(A“1m1 = A“2m2) = E 6(A“1m1 = 1&“21112)7
ny,nz2€NRs(Np) 0<n; j<Ns,;i=1,...,d,j=1,2

from (2.7) we obtain

NollSal3 = 0 Fm)f-ma) YD S(AMmy = A™my) = |Sn, (f — fo)l3.

[mi|,|m2|>L n; ,nzeRs(Np)

Now by the triangle inequality

q

0f)||U,(NafafL7 Z

(f = fo)ll2-

Using (3.9), we get

J%snsmf — fo)ll2 < (S(F — fu) V2

By (3.10), S(f — fr) — 0 and (5.49) follows. Hence Theorem 5 is proved. B

35



5.2 Functional CLT.

Let D(]0,1]¢) be the Skorokhod space of functions (see def., e.g.,[BuSh, p.252]),
(Cm)nezd+ a random multisequence. We introduce the partial sums process by the fol-
lowing formula

1 N
Wn(t) = —= E (n where t€[0,1]% and N=N;---Ng.
VN o<ni<t;N;, i=1,....d

Definition 5.6. (see, e.g., [BuSh], p.255) One says that the multisequence (Cn)nezi
satisfies the weak invariance principle or a functional CLT (abbreviated FCLT) if there
exist 02 > 0 and a multiparameter Brownian motion W defined on [0, 1]¢ such that the
law of W weakly converges to the law of oW in the space D([0,1]%) as min; N; — oc.

Theorem 6. Let A be an action by commuting partially hyperbolic endomorphisms
Ay, ..., Aq of [0,1)%, f a real Z*-periodic local integrable function with absolutely con-
vergent Fourier series, with mean zero and o(f) > 0. Then (f(An)X)nezi satisfies the
FCLT.

Proof. By Prohorov’s theorem (see, e.g., [Bil, p.66, Th. 6.1, 6.2) the necessary and
sufficient condition for the weak convergence of a sequence of processes (Wn(t))nezi

where t € [0,1]? is the tightness (see def., e.g., [BuSh] p.253) of the sequence of their
distributions in the Skorokhod space D([0,1]?) and weak convergence of the finite-
dimensional distributions. The weak convergence of the finite-dimensional distributions
follows from Theorem 5. Let

Sn(f. %) = > f(A"x), with 9% =R(N) = [Ri,R1+ Ny) x - x [Rq, Ra + Na).
neR

By [BW, Theorem 3, p.1665], to prove the tightness condition it is enough to verify that
Sn(f, ) belong to the class ¥(2,4) defined in [BW] (see inequalities 2,3 p.1658), i.e.

4 . o
E((min (15w, (f, 9R1)], |sN2<f,m2)\)) ) < co(Ny 4 No)2 for 4Ny =0,
with some constant ¢y > 0. It is easy to see that this inequality follows from the estimate
E(|Sn(f,®)[") = O(N?). (5.52)

Applying (5.1) and Lemma 6.1 with ¢ = 1, A = 4, we get (5.52). Hence Theorem 6 is
proved. H

Lemma 6.1. With notations as above

Al Ipgpay
sasr,  1f R is even,
[N fx)|fy = 2T (5.53)
min; j Ny, j—00 0, if A is odd.

Proof. Using (5.1), (5.48), (5.50), (5.51) and the Minkowski’s inequality, we get

o(fL)

o ) WO Fr 0 = [0 (N, £ £z, < ([N, £, (5.54)

o(fr)
a(f)

<

[N, fr 3], + [0 (N £ o),
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and

q
(N ™ F frx)], <D |1S6],- (5.55)
o=1
We have for d € [1, ¢
. ﬁ ~ -~ 9 h .
1alls=" > F@®W). fmNg)=2 T (Y AN mY),
lm®|>L, i=1,...,i n;€R5(Nyg),i=1,....h =1

Let A is even. By (5.5) and Lemma 5.8, we obtain

HSSHZ — Z FmWy ... fm®)

|m@|>L, i=1,....,hA

£ fi/2

(0o +IT Y II#u).
=L (O, F s I
#F V=2, jE(1,};/2]

with

*ij = - Z S(A™iaamHian) = — A™migemHiaz))

JN G _
FO n, €%, k=12

where O-constant depends only on /. It is easy to verify that s»; ; < 1 (see Definition 1
and (5.19)). Therefore

ISlly = o((+p@) > Fm®)-- fm®)),
@ |>L, i=1,....,h
where O-constant depends only on 7, and p(N) = (min; N;)~1/2,
Bearing in mind that Fourier series of the function f converge absolutely, we get
that for all € > 0 3 L(e) > 0 with ||Ss||, < eo(f)/q for all N and L > L(e). From (5.54)
and (5.55), we get for L > L(e)

I

UL, g = = o, 19, < SL2 ot 1), +
Applying Lemma 5.1, we get
f hl o
S S it 22,

~ o(fr) A
< mmhinj\?%&oo [v(N, £, x)]|, < () D) +e. (5.56)

By (3.12), we obtain that o(f;) — o(f) > 0 as L — co. Now from (5.56), we get (5.53)
for f is even. Using Lemma 5.8 we obtain (5.53) for A is odd similarly. Hence Lemma
6.1 is proved. m
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5.3 Almost sure CLT.

Let (, be a random multisequence with Var(¢,) = 1 (n € Z%), (x) denotes the
point mass at x € R®. We say that (v satisfies the almost sure central limit theorem
(abbreviated ASCLT) (see, e.g., [FR]) if with probability one

1 0(Cn)
- —= 5 N(0,1 in N; — o0. 5.57
In N, ---In N, Z ny---ng N(0,1) as minN; — o9 (5.57)
n; €[1,N;],i=1,...d
Similarly to [Li, Lemma 6.1], we have that it is enough to verify the almost sure conver-
gence

S > o), = /+OC 9(y) exp(—y®/2)dy (5.58)
In Ny---In Ny ni€[1,N;], i=1,...,d M d 2m J oo
for each fixed bounded Lipschitz function g on IR® to obtain (5.57).
We say that the multisequence (,, satisfies the polynomial ASCLT if (5.58) is true for
arbitrary polynomial g(z). One can observe that the polynomial ASCLT implies a stan-
dard ASCLT.

Theorem 7. Let A be an action by commuting partially hyperbolic endomorphisms
Ay, ..., Aq 0f [0,1)%, f a real Z*-periodic local integrable function with absolutely conver-
gent Fourier series, with mean zero and o(f) > 0,

SN(f):(ngl/Q)_l > f(A"x),  with  R(N) =[0,N1) x -+ x [0, Ng). (5.59)

neR(N)

Then SN (f) satisfies the polynomial ASCLT .

Proof. Clearly, that is enough to prove (5.58) for g(x) = ™ (; = 1,2,...). Applying
Theorem 6, we get

. h 1 +ee h 2
vi= B8 = o= / y exp(—y? /2)dy.

min; N; —oco

Henee ((SulF)")
. 1 E((Sa(f)™
1 =7.
min,,lli,/{:l%oo InNy---1In Ny Z ny---ng 7
n;€[1,N;],i=1,...d
Let
én = ((SalP)™ = B(Salh)™)) /(- na). (5.60)
To prove Theorem 7, it is enough to verify that
1
> € =0 as. (5.61)

m ni€[1,N;],i=1,...d

Lemma 7.1. Let N; = (N1;717...7N,;7d) S IN¢ (’L = 1,2)7 Nz = miH(Nl_’hNgﬂ;) and
N; = max(N; ;, No;) (i =1,...,d). Then there exists a constant C' > 0 with

d d
|E(6n, &n,)| < C TN 722N~ + T (Vi) /2 (1) ~372). (5.62)

i=1 i=1
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The proof of Lemma 7.1 is given after Lemma 7.3. But first we give some definitions.
From (5.62), we get

Q= E( Yoo aP< > |B(én,éns)]
ILS’N,LSJ“’L:].,,CI NJJ‘,E[I,‘,Jﬁ,],iil,...dJ:l,Q
d . . d . .
< 2! > (JNa)=32(@3) =t + T (o) =2 (0V;) =3/2).
I;<N;<N;<J;,i=1,...d =1 1=1

Hence )
< 24 —
Q< 2 I %

I;<N;<J;,i=1,...d1€[1,d]

By Jensen’s inequality and Lemma 7.3, we obtain

V2
E( max ‘ E fn)
1<I;<J;<Nj,i=1,....d '
I;<n;<J;i=1,....d
24\ 1/V2 1
1 2
<l w0y af)eaem L
1<I;<J;<N;,i=1,...,d , i ni---Ng
I;<n;<J;,i=1,....d 1<n;<N;,i=1,...d

Applying Lemma 7.2, we get (5.61) and the assertion of Theorem 7. ®

Using [NT, Theorem 3] with an = (Ny -+ Ng) ™1, by = In(Ny) - - In(Ng), N = (Ny, ..., Ng)
and r = v/2, we obtain
Lemma 7.2. Let (,, be the random multisequence, C; > 0 and

V2
E( max ’ > Ck’ < ) _G VN e N, (5.63)
1<n;<N;,i=1,...d - : N1 ng
1<k;<n;,i=1,...,d n;€[1,N;],i=1,...d
Then 1
li —_—— =0 5. 5.64
minilﬁ?—mo thl-"lIlNd Z Cn a8 ( )

1<n;<N;,i=1,....d

Applying Moricz’s maximal inequality [Mo, Corollary 1, p. 340] with v = 2 and
a = /2, we get
Lemma 7.3. Let (,, be the random multisequence, Cy = (5/2)%(1—2(1-V2)/2)=2d apnq

1 V2 )
E(| E Cn|2) < ( E 7) VI; <J,eN,i=1,..,d.
! : ny--- nd
Ii<n;<J;i=1,...,d I;<n;<J;,i=1,...d
Then

1 V2

E( 2) < ( ) .
1§I,ing£18\Lr)f,i:1,...,d| Z (nl”) = Oy Z ny Ny
I;<n;<J;,i=1,....d 1<n;<N;,i=1,...d

Proof of Lemma 7.1. From (5.59) and (5.60), we have

Nén = (o/NV2)= > Fm®)-- f(m™)
meZs, i=1,... .k
ﬁ] hl

Z e((x,ZA’”m“U)é(ZA’”mw # 0).

mERN,i=1,....h i=1 i=1
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Let h = 2hy, R; = R(N;) (1 € [1,2]), 9; =1forl € [1,/]) and 0; = 2 forl € [hy + 1,R]) .
We see

N N2 E(én,én,) = o) " > Fm®). - Fm™M)p, (5.65)
m)eZs, i=1,..., h
where
p = (N1Ny)~™/2 > (Y AMm" = 0)y(n)
n; Ry, ,i=1,....,h i€[l,A]
with
p@) =46 Y A™m £0)5( Y AMm® £0). (5.66)
i€[17h1] Z‘E[ﬁlJrl,ﬁ]

Applying (5.5) and Lemma 5.8 with ¢ = 2, we get

3 fi/2

0 =0(p +0fﬁH > JIEZ (5.67)

RO I
#FD=2, je[1,}:/2]

with
Hij = (NF(U)_l/Q Z 5(Anl»"i,j,l mFii1) — _ AP m(#wg))w(ﬁ)’ (5.68)
J Ny ik E%SHi,j,k k=1,2

where p; jr = F]-(i)(k) €[L,h], k=1,2, u; j1 < pi 2, O-constant depends only on % and

p(N) = max(Ni, S Nig) Y2 < (Ny - Ng) Y2 (5.69)

=1,

For given partition (Fj-(i))m, consider the case (y; ;1 — A1 — 1/2)(1ij2 —h —1/2) > 0
V(4,7). From (5.66) and (5.68), we get s;; = 0 V(4,j). Now consider the case that
there exists i, jo such that p;, j,,1 < A1 and g, 5,2 > fi. We see NF(’0> =N Ng Let

Arom(Hioo.1) = —m(Hio.d0-2) | Similarly to (5.42)-(5.44), we obtain from (5 68)

+n0}§N1~--Nd.

\ 1/2
Zig,jo (NF]Oo)) / < #{n“iodo,k S %aw Jk=1,2 | Ny, on
0

=n, .
030k Hig,jo,2

Taking into account that NFuo) = NlNg = N1 . Nle e Nd, we have
Jjo

d
Hio jo H (N;/N;)Y2, (5.70)

Using Definition 1 and (5.19), we obtain from (5.68)
M5 = O(l), for 7€ [1,%],] € [1,%/2],

with O-constant depending only on #.
By (5.67), (5.70) and (5.69), we get

d
o = 0TI ™2 + [TV %),

i=1 =1

with O-constant depending only on #.
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Bearing in mind that Fourier series of the function f converge absolutely, we get
from (5.65)

d d
E(£N15N2) = O(H(Ni)_gm(]i']i)_l + H(Ni)_1/2(Ni)_3/2),

i=1 i=1

with O-constant depending only on 4. Therefore Lemma 7.1 is proved. B

Acknowledgments. I am very gratiful to the referee for corrections and suggestions
which improved this paper.
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