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Abstract

When studying stochastic processes, it is often fruitful to understand several different
notions of regularity. One such notion is the optimal Hölder exponent obtainable
under reparametrization. In this paper, we show that chordal SLEκ in the unit disk for
κ ≤ 4 can be reparametrized to be Hölder continuous of any order up to 1/(1 + κ/8).

From this, we obtain that the Young integral is well defined along such SLEκ paths
with probability one, and hence that SLEκ admits a path-wise notion of integration.
This allows us to consider the expected signature of SLE, as defined in rough path
theory, and to give a precise formula for its first three gradings.

The main technical result required is a uniform bound on the probability that an
SLEκ crosses an annulus k-distinct times.
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1 Introduction

Oded Schramm introduced Schramm-Loewener Evolutions (SLE) as a stochastic pro-
cess to serve as the scaling limit of various discrete models from statistical physics be-
lieved to be conformally invariant in the limit [21]. It has successfully been used to
study a number of such processes (for example, loop-erased random walk and uniform
spanning-tree [11], percolation exploration process [24], Gaussian free field interfaces
[23], and Ising model cluster boundaries [25]).

To define SLE, it is convenient to parametrize the curve so that the half-plane capac-
ity increases linearly and deterministically with time – a change which allowed the use
of a form of the Loewner differential equation. This has proven an extremely fruitful
point of view, enabling the definition of SLEκ and the proof of all of the above conver-
gence results.

However, in doing so, the original parametrizations of the discrete models are lost
along with any information about the regularity of these parameterizations. We will
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Regularity of SLE, crossings, and rough paths

say a curve η is a reparametrization of a curve γ if η = γ ◦ g for some increasing
continuous function g. To try and recover some information on the possible regularity
properties of the original discrete parametrizations, it is reasonable to ask the question:
what are the best regularity properties that SLEκ curves can have under any arbitrary
reparametrization?

Regularity of SLEκ under the capacity parametrization is well understood. In [7],
Johansson Viklund and Lawler prove a conjecture of Lind from [15] that for chordal
SLEκ parametrized by capacity, the optimal Hölder exponent is

α0 = min
{1

2
, 1− κ

24 + 2κ− 8
√

8 + κ

}
.

However, this value differs greatly from what one might expect. In [2], Beffara shows
that the almost sure Hausdorff dimension of a chordal SLEκ is 1 + κ/8. A d-dimensional
curve γ cannot be reparametrized to be Hölder continuous of any order greater than
1/d, and intuition from other stochastic processes implies that SLEκ should be able to
be reparametrized to be Hölder continuous of all remaining orders, which is not what
we see under capacity parametrization.

In this paper, we answer this question for κ ≤ 4 and show that the best possible
result is true.

Theorem 1.1. Fix 0 ≤ κ ≤ 4 and let γ : [0,∞]→ D be a chordal SLEκ from 1 to −1 in D
and d = 1 + κ/8 be its almost sure Hausdorff dimension. Then, with probability one the
following holds:

• for any α < 1/d, γ can be reparametrized as a curve γ̃ : [0, 1]→ D which is Hölder
continuous of order α, and

• for any α > 1/d, γ cannot be reparametrized as a curve γ̃ : [0, 1] → D which is
Hölder continuous of order α.

The critical case of α = 1/d is still open, however it is natural to conjecture that it
cannot be reparametrized to be Hölder continuous of this order.

With this result, we are able to provide a few preliminary results in the rough path
theory of SLE.

First, we obtain a definition of integration against a SLEκ curve. In particular, this
result shows that SLEκ for κ ≤ 4 has finite d-variation for some d < 2 in the sense used
in [18] and thus both the Young integral and the integral of Lions as defined in [16]
give a way of almost surely integrating path-wise along an SLE curve. Iterating such
integrals provides the almost sure existence of differential equations driven by an SLE

curve.

Second, we provide a partial computation of the expected signature for SLEκ in
the disk. In rough path theory, the expected signature is a non-commutative power
series which is regarded as a kind of non-commutative Laplace transform for paths.
It is believed to characterize the measure on the path up to an appropriate sense of
equivalence of paths [4, 6]. We provide a computation of the first three gradings of this
non-commutative power series.

The main technical tool used to prove these results is a result by Aizenman and
Burchard in [1] which states, informally, that all that is needed to obtain a certain
degree of Hölder regularity in a random curve is a uniform estimate on the probabilities
that the curve crosses an annulus k distinct times. In particular, we obtain the following
result for SLEκ in D. Let ARr (z0) denote the annulus with inner radius r and outer radius
R centered at z0.
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Theorem 1.2. Fix κ ≤ 4. For any k ≥ 1, there exists ck so that for any z0 ∈ D, r < R,

P{γ traverses ARr (z0) at least k separate times} ≤ ck
( r
R

) β
2 (bk/2c−1)

.

Finally, there has been recent work defining a parametrization of SLE, called the
natural parametrization, which should be the scaling limit for the parametrizations of
the discrete curves (see [12, 14] for the theory in deterministic geometries, and [3]
for a version in random geometries). It is conjectured that SLEκ under the natural
parametrization should have the optimal Hölder exponent our result indicates however
our techniques do not immediately illuminate this question.

The paper is organized as follows. In Section 2, we review the basic definition of
SLEκ and introduce the notation used throughout. Then, in Section 3, a brief overview
of the regularity results needed from [1] is given along with a discussion of their ap-
plication to SLEκ. Before proving the regularity result, we present our applications by
providing a definition of integration against an SLE path and the computation of the
first three gradings of the expected signature in Section 4. Finally, in Section 5, we
prove the main estimate bounding the probability that an SLEκ crosses an annulus at
least k times.

We consider 0 ≤ κ ≤ 4 to be fixed and write a := 2/κ. All constants throughout may
implicitly depend on κ.

2 SLE definition and notation

We first review the definition of chordal SLEκ in H. For a complete introduction to
the subject, see, for example, [8, 10, 26]. For any κ ≥ 0, let a = 2/κ and define gt(z) to
be the unique solution to

∂tgt(z) =
a

gt(z) +Bt
, g0(z) = z.

where Bt is a standard Brownian motion. We refer to this equation as the chordal
Loewner equation in H, and the Brownian motion is the driving function.

For any z ∈ H this is well defined up to some random time Tz. Let Ht = {z ∈ H |
Tz > t} be the set of points for which the solution is well defined up until time t. The
chordal Loewner equation is defined so that gt : Ht → H is the unique conformal map
from Ht to H which fixes infinity with gt(z) = z + at

z +O(z−2) as z →∞.

It was shown by Rohde and Schramm in [20] that for any value of κ 6= 8 there exists
a unique continuous curve γ : [0,∞)→ H such that Ht = H \ γ[0, t]. This holds for κ = 8

as well, however the proof in this case differs significantly [11]. This curve is chordal
SLEκ from 0 to∞ in H.

To define SLEκ in other simply connected domains D from z1 ∈ ∂D to z2 ∈ ∂D, let
f : H→ D be a conformal map so that f(0) = z1 and f(∞) = z2, and define SLEκ in this
new domain by taking the image of the curve γ under this conformal map.

In this work, we mainly consider SLEκ from 1 to −1 in D. In this case, it is known
that γ(∞−) = −1 (see, for example, [8, Chapter 6] for the proof in H), and hence we
extend γ to be well defined on the times [0,∞]. While this particular choice of domain
and boundary points is not required for the work that follows, it is important to choose
a domain with sufficiently smooth boundary to avoid detrimental boundary effects (for
instance, domains and boundary points without any Hölder continuous curves between
them).
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3 Tortuosity, Hölder continuity, and dimension

3.1 Definitions and relations

To prove the claimed order of continuity, we need to use tools first described by
Aizenman and Burchard in [1]. This review is devoid of proofs, which the interested
reader may find in the original paper along with many results beyond what are needed
in this paper. To aid in this, we have included the original theorem numbers for each
result with each statement. We begin by describing three different measures of regu-
larity and their deterministic relationships. Throughout this section γ : [0, 1] → Rd is a
compact continuous curve in Rd.

First, recall that a curve γ(t) is Hölder continuous of order α if there exists a constant
Cα such that for all 0 ≤ s ≤ t ≤ 1, we have that |γ(s) − γ(t)| ≤ Cα|t − s|α. This
condition becomes stricter for larger values of α, thus if one wants to turn this into a
parametrization independent notion of regularity it makes sense to define

α(γ) = sup{α | γ admits an α-Hölder continuous reparametization}.

While a familiar and useful notion of regularity, it can be hard to work with directly
for random curves. A similar notion, which is more amenable to estimation is the con-
cept of the tortuosity. Let M(γ, `) denote the minimal number of segments needed to
partition the curve γ into segments of diameter no greater than `. As with most of these
dimension like quantities, we wish to understand its power law rate of growth, thus we
define the tortuosity exponent to be

τ(γ) = inf{s > 0 | `sM(γ, `)→ 0 as `→ 0}.

These two notions are similar in so far as they define a type of regularity for a curve
in a local way which is, to a large extent, insensitive to the large scale geometry of the
curve. As such, one should not be surprised that they are deterministically related by
the following result.

Theorem 3.1 ([1, Theorem 2.3]). For any curve γ : [0, 1]→ Rd,

τ(γ) = α(γ)−1.

Often times, it is easier still to estimate a quantity which takes global geometry in
to account, in particular we discuss the upper box dimension. Let N(γ, `) denote the
minimal number of sets of diameter at most ` needed to cover γ. Then the upper box
dimension is

dimB(γ) = inf{s > 0 | `sN(γ, `)→ 0 as `→ 0}.

The upper box dimension can differ quite markedly from the tortuosity exponent
as a single set in the cover can contain a large number of different segments of γ of
similar diameter. In fact, there exist curves in the plane which cannot be parametrized
to be Hölder continuous of any order, and hence τ(γ) = ∞, while dimB(γ) ≤ d for any
compact curve γ : [0, 1] → Rd. In general, it is immediate from the definitions that
dimB(γ) ≤ τ(γ), however the inequality can be strict.

What is desired is a condition which deterministically ensures that the upper box di-
mension and the tortuosity exponent coincide, allowing us to control the optimal Hölder
exponent with the upper box dimension.

Aizenman and Burchard provide such a property which they refer to as the tempered
crossing property. A curve γ exhibits a k-fold crossing of power ε at the scale r ≤ 1 if it
traverses some spherical shell of the form

D(x; r1+ε, r) := {y ∈ Rd | r1+ε ≤ |y − x| ≤ r}
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k times. A curve has the tempered crossing property if for every 0 < ε < 1 there exists
k(ε) and 0 < r0(ε) < 1 such that on scales smaller than r0(ε), the curve has no k(ε)-fold
crossings of power ε.

Theorem 3.2 ([1, Theorem 2.5]). If γ : [0, 1]→ Rd has the tempered crossing property,

τ(γ) = dimB(γ).

Thus, the goal is to find a probabilistic condition which ensures that with probability
one the tempered crossing property holds. We present a weaker form of the theorem
than is found in [1].

Theorem 3.3 ([1, Lemma 3.1]). Let γ : [0, 1]→ Λ be a random curve contained in some
compact set Λ ⊆ Rd. If for all k there exists ck and λ(k) so that for all x ∈ Λ and all
0 < r ≤ R ≤ 1 we have

P{γ traverses D(x; r,R) at least k separate times} ≤ ck
( r
R

)λ(k)

where additionally λ(k) → ∞ as k → ∞, then the tempered crossing probability holds
almost surely, and hence

dimB(γ) = τ(γ) = α(γ)−1.

3.2 SLE specific bounds

We need two ingredients to apply the techniques of the previous section to SLEκ and
obtain Theorem 1.1.

First, we need to prove that SLEκ from 1 to −1 in D satisfies the conditions of The-
orem 3.3. This is the main work of this paper and the result, Theorem 1.2, is proven
in Section 5. This estimate shows that for any κ ≤ 4 the tempered crossing property
holds with probability one, and hence α(γ)−1 = dimB(γ). Note that the condition that
the curve has a finite parametrization is immaterial since we may turn the normally
infinite parametrization of and SLEκ curve to a finite one by precomposing by an appro-
priate function.

Second, we need to know the upper box dimension is 1 + κ/8 with probability one.
This is a consequence of a pair of well known results. From [20, Theorem 8.1] we
obtain that the upper box dimension is bounded above by the desired value, while the
lower bound can be obtained by noting the Hausdorff dimension is 1+κ/8 almost surely
(proven by Beffara in [2]) and using that the Hausdorff dimension is a lower bound for
the box dimension.

4 Integrals and rough path theory

Before proving our regularity result, we discuss a few applications to integration
along SLE paths and the rough path theory of SLE.

4.1 d -variation and integrals

With the main regularity result, we may prove the existence of integrals of the form∫ t

0

f(s) dγ(s)

when γ is an SLEκ and f is a sufficiently nice function. In particular, both the Young
integral (as first defined in [27], and used in rough path theory) and the integral defined
by Lions in [16] are well-defined with probability one for SLEκ with κ ≤ 4. For simplicity
we discuss only the Young integral – checking the condition Lions’ integral is similar.
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Given a continuous curve γ : [0, 1]→ Rd, let ‖γ‖p denote the p-variation of γ, defined
as

‖γ‖p =

[
sup
P

#P∑
i=1

|γ(ti)− γ(ti−1)|p
]1/p

where the supremum is taken over partitions P = {t0, . . . , tn} of [0, 1]. This notion of
p-variation is not the one most commonly used elsewhere in probability which would
have lim sup|P|→0 in place of the supremum where |P| is the mesh of the partition. Let

Vp(Rd) denote the set of all γ : [0, 1]→ Rd with finite p-variation.
It is immediate from the definitions that if γ : [0, 1] → Rd is Hölder continuous of

order 1/p, then it is an element of Vp(Rd). Thus for SLEκ in D from 1 to −1, the main
regularity result implies that a sample path γ has finite p variation for all p > 1+κ/8 with
probability one. The converse is also true: if γ ∈ Vp(Rd) then γ can be reparametrized
to be Hölder continuous of order 1/p [18, Section 1.1.2].

The space Vp(Rd) is in many ways nicer than the space of curves Hölder continuous
curves of a fixed order. In particular, membership in Vp(Rd) does not depend on the
choice of the parametrization. This is convenient for us since regularity properties of
the reparametrized curves, namely Hölder continuity, can be used to imply regularity of
the original curve in the form of membership in Vp(Rd). To emphasize the importance
of this fact, we provide the following restatement of Theorem 1.1.

Corollary 4.1. Fix 0 ≤ κ ≤ 4 and let γ : [0,∞] → D be a chordal SLEκ from 1 to −1 in
D and d = 1 + κ/8 be its almost sure Hausdorff dimension. Then, with probability one
the following holds:

• for any p > d, γ ∈ Vp(R2), and
• for any p < d, γ 6∈ Vp(R2).

The following theorem contains the definition of the Young integral (for a proof see,
for example, [18, Theorem 1.16]).

Theorem 4.2. Fix p, q > 0 such that 1/p + 1/q > 1. Take f ∈ Vq(R), and g ∈ Vp(Rd),
then for every t ∈ [0, 1], we have∫ t

0

f(s) dg(s) := lim
|P|→0

#P∑
j=1

f(tj)(g(tj)− g(tj−1)),

where P is a partition of [0, t], exists and is called the Young integral. Moreover, when
considered as a function of t, the Young integral is an element of Vp(Rd) and the integral
depends continuously on f and g under their respective norms.

Thus, we may integrate any element of Vq(R) for some q < (8 + κ)/κ against an
SLEκ sample path with probability one. Moreover, from the definition of the integral,
the result will be measureable with respect to the sigma algebra supporting the SLEκ.
This includes functions such as Lipshitz functions of γ itself (since 1+κ/8 < (8+κ)/κ < 2

when κ < 8). Thus, via Picard iteration, we may define ordinary differential equations
driven by SLEκ in a path-wise manner (see [18] for details of the general theory).

It is important to note that this definition makes sense on Vp(Rd) and thus does not
depend on the particular choice of parametrization. This is to our benefit since our
reparametrization is not explicit.

When working with these integrals, one often wants to apply results from standard
calculus. Luckily, this may frequently be done using the following density result. Given
a curve γ : [0, 1] → Rd and a partition P = {0 = t0, t1, . . . , tn = 1} of [0, 1], let γP be the
piecewise linear approximation to γ obtained by linearly interpolating between γ(ti)

and γ(ti+1) for each i.
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Proposition 4.3 ([18, Proposition 1.14]). Let p and q be such that 1 ≤ p < q and take
γ ∈ Vp(Rd). Then, γP tends to γ in Vq norm as the mesh of P tends to zero. Additionally,
this convergence may be taken simultaneously in supremum norm.

Using this approximation technique, statements about integrals against functions in
Vp(Rd) for p < 2 may be reduced to questions about the classical Stieltjes integral, as
it and the Young integral are identical for piecewise linear functions. In our case, we
want to ensure that we may find an approximating sequence which is simple. The proof
of the following lemma is due to Laurence Field [5].

Lemma 4.4. Let γ : [0, 1] → C be a simple curve. Then for any ε > 0, there exists a
partition P with the mesh of P less than epsilon and γP simple.

Proof. We prove a slightly stronger fact that there exists a partition P such that for
each not only is the mesh of P smaller than ε, but so is |γ(ti) − γ(ti−1)| for all i. Since
γ is simple, it is a homeomorphic to its image, and thus both γ and γ−1 are uniformly
continuous. Thus, we may find δ1 < ε, δ2 < ε, δ3, and δ4 so that

|t− s| < δ1 =⇒ |γ(t)− γ(s)| < ε,

|γ(t)− γ(s)| < δ2 =⇒ |t− s| < δ1,

|t− s| < δ3 =⇒ |γ(t)− γ(s)| < δ2, and

|γ(t)− γ(s)| < δ4 =⇒ |t− s| < δ3.

Let Σ be the set of all times s ∈ [0, 1] with times 0 = t0 < t1 < . . . < tn = s so that

• ti − ti−1 < ε and |γ(ti)− γ(ti−1)| < ε for all i,

• The curve η obtained by concatenating the segments between γ(ti−1) and γ(ti) is
simple, and

• γ−1(η) ⊆ [0, s].

We first show that sup Σ ∈ Σ. Suppose not, and take times 0 = t0 < t1 < · · · < tn
as above with |γ(tn) − γ(sup Σ)| < δ4. By shortening the sequence of times ti, we may
assume that γ(tk) is closest to γ(sup Σ) when k = n. By the choice of δ4, we know that
|tn−sup Σ| < δ3. Let tn+1 be the maximum time s so that γ(s) is contained in the interval
between γ(tn) and γ(sup Σ). tn+1 is at least sup Σ in size, so we will be done as long as
tn+1 ∈ Σ. The first condition is satisfied since since |γ(tn+1) − γ(tn)| < δ2 < ε and thus
tn+1−tn < δ1 < ε. The second condition holds since a non-trivial intersection of the final
interval with any previous one would force either non-simplicity of γ or a violation of the
third condition for the curve up to time tn. The third condition holds by the definition
of tn+1.

We now show that sup Σ = 1. Suppose not, and take times 0 = t0 < t1 < · · · < tn =

sup Σ as above. Take any t ∈ (tn, tn + δ3) so that γ(t) is closer to γ(tn) than it is to any
of the intervals of η not containing γ(tn). As before, let tn+1 be the maximum time s

such that γ(s) is contained in the interval from γ(tn) and γ(t) – a time no smaller than t.
Analogously to before, one may readily check that this shows tn+1 ∈ Σ.

4.2 Partial expected signature for SLE

Once iterated integrals are defined, we may understand the signature, which is
the fundamental object of study in rough path theory (See [18] for a more detailed
introduction to this field of study). Of particular interest when dealing with random
processes is the expected signature of the path [4, 17].
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In this section we provide a computation of the first few gradings of the expected
signature for γ, an SLEκ from 0 to 1 in the disk of radius 1/2 about 1/2, which we denote
by D.

Let γ1, γ2 : [0, 1] → R denote the real and imaginary components of γ : [0, 1] → C

respectively and define the coordinate iterated integrals as

γk1k2...kn :=

∫
· · ·
∫

0<t1<t2<...<tn<1

dγk1(t1) dγk2(t2) · · · dγkn(tn)

=

∫ 1

0

∫ tn

0

∫ tn−1

0

· · ·
∫ t2

0

dγk1(t1) dγk2(t2) · · · dγkn−1
(tn−1) dγkn(tn)

defining γ∅ := 1. It is convenient to let k = k1k2 . . . kn denote the multi-index used
above.

An important computational tool when dealing with these iterated integrals is the
notion of the shuffle product, as defined in the following proposition. We say a permu-
tation σ of r + s elements is a shuffle of 1, . . . , r and r + 1, . . . , r + s if σ(1) < · · · < σ(r)

and σ(r + 1) < · · · < σ(r + s).

Proposition 4.5 ([18, Theorem 2.15]). Let γ be in Vp(Rd) for p < 2. Then

γk1...kr · γkr+1...kr+s =
∑

shuffles σ

γkσ−1(1)...kσ−1(r+s) .

We let ek := ek1 ⊗ · · · ⊗ ekn denote the basis element for formal series of tensors on
the standard basis of R2 (viewed as C). Then the signature is defined to be

S(γ) =
∑
k

γkek

where the sum is taken over all multi-indices k. The expected signature is thus

E[S(γ)] =
∑
k

E[γk]ek.

Computing the expected signature of any process is difficult (see, for example, [17]
for the computation of the expected signature of Brownian motion upon exiting a disk,
where the solution is found in terms a recursive series of PDE), and thus computing the
full expected signature of SLEκ would be a major undertaking. We provide a computa-
tion of the first three gradings.

To do so, we use the probability that a point in D is above the curve γ. This is a well
known computation in the SLE literature, and was found by Schramm in [22] for SLE

in the upper half plane from 0 to ∞ in terms of a hyper-geometric function. We use an
alternative form which can be found in [9]. Let λ = β − 1 = 4a− 2 = 8/κ− 2. Then the
probability that an SLEκ from 0 to∞ in H passes to the right of a point r0e

iθ0 is

φ(θ0) := Cκ

∫ θ0

0

sinλ(t) dt where C−1
κ :=

∫ π

0

sinλ(t) dt =

√
πΓ(λ+1

2 )

Γ(λ+2
2 )

.

Given a point x+ iy ∈ D, let p(x, y) be the probability that an SLEκ from 0 to 1 in D
passes below x + iy, which by conformal invariance can be obtained be pre-composing
the above expression with the conformal map z 7→ iz/(1− z), which maps D to H fixing
0 and sending 1 to∞.
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λ κ Aκ

0 4 1
48

1 8
3

1
48 (6K − 5)

2 2 1
4 log(2)− 1

6

3 8
5

1
96 (54K − 49)

4 4
3

2
3 log(2)− 11

24

5 8
7

1
128 (150K − 137)

6 1 6
5 log(2)− 199

240

Table 1: Values of Aκ across a range of integer values of λ. K :=
∑∞
i=1

(−1)k

(2k+1)2 ≈
0.91596 . . . denotes Catalan’s constant.

Proposition 4.6. Fix κ ≤ 4 and let

Aκ =
1

12
−
∫
D

yp(x, y) dx dy

=
Cκ
4

[∫ π/2

0

sin(t)− t cos(t)

sin3(t)
cosλ(t) dt

]
− 1

24
.

Then

E[S(γ)] = 1 + e1 +
1

2
e11 +

1

6
e111 +Aκe122 − 2Aκe212 +Aκe221 + · · ·

where γ is an SLEκ from 0 to 1 in D.

The integrability of the terms of S(γ) is not immediately clear. Indeed, we only prove
in what follows that the terms in the first three gradings are integrable. The remaining
terms should be integrable as well, however this is not discussed.

For integer values of λ (which includes the values κ = 4, 8/3, and 2) this integral can
also be evaluated nearly in closed form. Several values of Aκ for integer λ may be found
in Table 1. For an understanding of the qualitative behavior of Aκ for other values of κ,
we have included a graph in Figure 1.

Aκ

0.000

0.005

0.010

0.015

0.020

κ
0 1 2 3 4

Figure 1: A graph of Aκ as a function of κ.
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Proof of Proposition 4.6. First note the iterated integrals defining the signature exist
since SLEκ curves are in Vp(C) for some p < 2.

The initial 1 occurs by definition of γ∅. Since every SLEκ is a curve from 0 to 1,

γ1 =

∫ 1

0

dγ1(t) = γ1(T )− γ1(0) = 1, γ2 =

∫ 1

0

dγ2(t) = γ2(T )− γ2(0) = 0

both with probability one, computing the first grading. Thus, by considering these along
with the shuffle products γ1γ1, γ2γ2, γ1γ1γ1, and γ2γ2γ2, we get the claimed values for
γ11, γ22, γ111, and γ222 with probability one, and hence in expectation.

Next, the law of γ is invariant under the map γ 7→ γ̄. From the definition of the
coordinate iterated integral, along with the definition of the Young integral one may see
this implies

E[γk1...kn ] = (−1)#{i|ki=2}E[γ̄k1...kn ]

and hence any coordinate iterated integral with an odd number of imaginary compo-
nents in its multi-index must have zero expectation as long as E[γk] exists. For the
cases we need, one may repeat the Green’s theorem argument which follows to show
the there is some Ck so that |γk| ≤ Ck with probability one and thus conclude that E[γk]

exists. Thus we have reduced the computation to the terms γ122, γ212, and γ221. By
considering the shuffle products

0 = γ2 · γ12 = γ212 + 2γ122, 0 = γ2 · γ21 = 2γ221 + γ212

we need only compute E[γ221].
We use a version of Green’s theorem for the Young integral. Let η be the concate-

nation of γ with counter-clockwise arc from 1 to 0 along the boundary of the disk, and
A(γ) be the region enclosed within this simple loop. In particular we wish to show that∫ 1

0

η2
2(t) dη1(t) = −2

∫
A(γ)

y dx dy.

where the right integral should be understood in the Lebesgue sense.
Given a curve γ in Vp(R2) for some p < 2, by Proposition 4.3, it is possible to approx-

imate it arbitrarily well in Vq(R2) and supremum norm for some p < q < 2 by piecewise
linear curves, which may be assumed to each be simple by Lemma 4.4. Let γn be such
a sequence of approximations to the SLE curve γ. Let ηn be the concatenation of this
piecewise linear approximation with the counter-clockwise arc from 1 to 0 along the
boundary of the disk. By the continuity properties of the Young integral, as stated in
Theorem 4.2, we know that∫

0

(ηn)2
2(t) d(ηn)1(t)→

∫ 1

0

η2
2(t) dη1(t) as n→∞.

As these are piecewise smooth, we know by Green’s theorem that

−2

∫
A(γn)

y dx dy →
∫ 1

0

η2
2(t) dη1(t) as n→∞.

Thus, the argument is complete as long as∫
A(γn)

y dx dy →
∫
A(γ)

y dx dy as n→∞.

Since the γn tend towards γ in supremum norm, the desired convergence holds as long
as the area within ε of the curve γ tends to zero as ε tends to zero. This is ensured by
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the almost sure order of Hölder continuity of γ, completing the proof of the required
instance of Green’s theorem.

One may see (by another similar approximation argument, or an application of the
shuffle product γ2γ2 on the curve up to the time t) that

γ221 =

∫ 1

0

∫ t

0

∫ t2

0

dγ2(t1) dγ2(t2) dγ1(t)

=
1

2

∫ 1

0

γ2
2(t) dγ1(t)

and hence that

γ221 =
1

2

(
1

8

∫ π

0

sin3(θ) dθ − 2

∫
A(γ)

y dx dy

)
=

1

12
−
∫
A(γ)

y dx dy.

Thus, all that needs to be understood is

E

[∫
A(γ)

y dx dy

]
=

∫
D

yP{x+ iy ∈ A(γ)} dx dy.

However, P{x+ iy ∈ A(γ)} = p(x, y) and hence we have the first formula.
To obtain the more explicit formula, we need to work with the explicit definition of

p(x, y). Let g(z) = iz/(1 − z) be the conformal map from D to H used in the definition
of p(x, y) and f(w) := w/(w + i) be its inverse. Examining the integral, and changing
variables to H by setting z = x+ iy = f(w)∫

D

yp(x, y) dx dy =

∫
D

Im(z)φ(arg(g(z))) dA(z)

=

∫
H

Im(f(w))φ(arg(w))|f ′(w)|2 dA(w)

=

∫
H

Im(w/(w + i))φ(arg(w))|w + i|−4 dA(w)

Changing to polar coordinates yields∫
H

Im(f(w))φ(arg(w))|w + i|−4 dA(w)

= −
∫ π

0

φ(θ) cos(θ)

∫ ∞
0

r2

(r2 + 1 + 2r sin θ)3
dr dθ

=

∫ π/2

0

(1− 2φ(θ)) cos(θ)

∫ ∞
0

r2

(r2 + 1 + 2r sin θ)3
dr dθ

where the last line follows by the symmetries of sin, cos and φ.
A lengthy computation shows that the inner integral can be computed exactly. The

result is

H(θ) := cos(θ)

∫ ∞
0

r2

(r2 + 1 + 2r sin θ)3
dr

=
(2 sin2(θ) + 1)(π2 − θ − sin(θ) cos(θ))

8 cos4(θ)
− tan(θ)

4
.

It will be convenient to later reparametrize, so note that

H
(π

2
− θ
)

=
3θ − 2θ sin2(θ)− 3 cos(θ) sin(θ)

8 sin4(θ)
.
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By inserting the definition of φ(θ), reorganizing, and applying Fubini’s theorem∫ π/2

0

(1− 2φ(θ))H(θ) dθ

= 2Cκ

∫ π/2

0

H(θ)

∫ π/2

θ

sinλ(t) dt dθ

= 2Cκ

∫ π/2

0

H
(π

2
− θ
)∫ θ

0

cosλ(t) dt dθ

= 2Cκ

∫ π/2

0

cosλ(t)

∫ π/2

t

H
(π

2
− θ
)
dθ dt.

One may again compute the inner integral exactly and obtain∫ π/2

t

H
(π

2
− θ
)
dθ =

1

8

(
1− sin(t)− t cos(t)

sin3(t)

)
.

Substituting this back in to the integral in question, and rearranging yields∫
D

yp(x, y) dx dy =
1

8
− Cκ

4

∫ π/2

0

sin(t)− t cos(t)

sin3(t)
cosλ(t) dt.

5 Annulus crossing probabilities

In this section we prove our regularity result by providing the bound on annulus
crossing probabilities for SLE.

5.1 Notation and topology

We let Br(z) denote the closed ball of radius r around z, and Cr(z) denote the circle
of radius r around z.

Let ARr (z) denote the open annulus with inner radius r and outer radius R centered
on z. Let γ : [0,∞]→ D be a chordal SLE from 1 to −1 in the unit disk, considered under
the standard capacity parametrization, and let Dt be the component of D \ γ[0, t] which
contains −1.

We wish to understand the probability that γ crosses ARr (z) k times. Fixing an annu-
lus ARr (z), let Ck = Ck(z; r,R) denote the set of simple curves from 1 to −1 that crosses
the annulus precisely k times.

To be precise in our definition of crossing, we define the following set of recursive
stopping times. In all the definitions, the infimums are understood to be infinity if taken
over an empty set. Let τ0 = inf{t > 0 | γ(t) 6∈ ARr (z)}. This is the first time that the SLE

is not contained within the annulus. In the case that the annulus is bounded away from
1, this time is zero.

We proceed recursively as follows. Assuming τi < ∞, let Li be the random variable
taking values in the set {I,O} where

Li =

{
I γ(τi) ∈ Br(z),
O γ(τi) ∈ D \BR(z).

This random variable encodes the position of the curve at τi, taking the value I if it in
inside the annulus, and O if it is outside.
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Assuming τi <∞, define

τi+1 =

{
inf{t > τi | γ(t) ∈ Br(z)} Li = O,

inf{t > τi | γ(t) ∈ D \BR(z)} Li = I.

In words, τi+1 is the first time after τi that the curve γ completes a traversal from the
inside of the annulus to the outside, or from the outside of the annulus to the inside. By
continuity of γ, we know τi+1 > τi. We call the times τi, for i ≥ 1, crossing times. In this
notation, Ck is precisely the set of curves such that τk <∞ and τk+1 =∞.

Let σi = sup{t < τi | γ(t) 6∈ ARr (z)}, which is to say the last entrance time of γ in to
the annulus, before crossing. These are not stopping times, but it is useful to have them
to aid in our definitions. We call the curve segments γi := γ[σi, τi] crossing segments.
An illustration of the definitions so far are given in Figure 2.

z

σ1

τ1

σ2

τ2

σ3

τ3

σ4

τ4

σ5

τ5 σ6

τ6

σ7

τ7

σ8

τ8

ARr (z)

γ

Figure 2: An illustration of the definitions given so far. This picture should be under-
stood as all strictly contained within D. All points along the curve γ are labeled by the
time the curve crosses the point, not by the point itself. The crossing segments are
indicated in bold.

When we wish to estimate the probability that SLE performs various crossings, we
will need some way of telling which crossings will require a decrease in probability. For
instance, in Figure 2, a crossing as between σ8 and τ8 cannot be of small probability
given the curve up to the time τ7 since the curve must leave the annulus in order to
reach −1. As we will see in Section 5.2, the right way to handle this is to keep track of
the crossing distance of the tip to −1, which we denote by ∆t.

We define this notion as follows. Let Et, the set of extensions of γ[0, t], denote the
set of simple curves η : [0,∞]→ D so that η agrees with γ up to time t with η(∞) = −1.
We then define

∆t = min{k ≥ 0 | Ck ∩ Et 6= ∅} −#{k > 0 | τk ≤ t},

which is to say the minimum number of crossings needed after time t to be consistent
with the curve up to time t. As an example, the sequence of values of ∆τi for 0 ≤ i ≤ 8
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from Figure 2 are (0, 1, 0, 1, 2, 3, 2, 1, 0). By considering such examples, we quickly arrive
at the following lemma.

Lemma 5.1. Given the above definitions, the followings statements all hold when −1 6∈
ARr (z):

1. ∆t is integer valued and non-negative,

2. given t1 < t2 so that there is no i ≥ 1 with t1 < τi ≤ t2, we have ∆t1 = ∆t2 , and

3. |∆τi+1 −∆τi | = 1.

Proof. The first statement is immediate from the definition. To prove the second, we
proceed by showing that each side is an upper bound for the other.

First, #{k > 0 | τk ≤ t1} = #{k > 0 | τk ≤ t2} since there is no τi with t1 < τi ≤ t2.
Thus ∆t2 ≥ ∆t1 since every element of Et2 is an element of Et1 .

To see the opposite inequality, we will take an element of Et1 ∩ C∆t1
and produce an

element of Et2 ∩ C∆t1
, thus proving the opposite inequality. Let η be such a curve in

Et1 ∩ C∆t1
. Let t∗ = max{t ≥ t1 | η(t) ∈ γ[t1, t2]}, and let t∗ = max{t ≤ t2 | γ(t) = η(t∗)}.

Both of these exist by compactness and continuity of γ and η. We construct η′ as follows.
First, follow the curve γ up to time t2, then follow the curve γ backwards from t2 until
time t∗, and then follow η from t∗ until it reaches −1.

The curve η′ is not an element of Et2 since it retraces its path in reverse between t2
and t∗, however otherwise it is simple. By openness of Dt2 (as defined at the beginning
of Section 5.1), we may perturb the curve so that after t2, rather than retrace γ exactly,
it follows a similar path in Dt2 which eventually continues as η, but still never crosses
ARr (z), yielding a curve η′′ (see Figure 3 for an illustration of this process in an alternate
case, which we will use later, where t1 = τi and t2 = τi+1). This curve does not have any
more crossings than η by construction, but also can have no fewer by our choice of η.
thus η′′ is the desired element in Et2 ∩ C∆t1

.

We now prove the third item. First note that ∆τi+1 ≥ ∆τi − 1 since Eτi+1 is contained
in Eτi and #{k > 0 | τk ≤ τi+1} = #{k > 0 | τk ≤ τi}+ 1.

By the same construction as above, we may take a curve η ∈ Eτi+1 and produce a
curve η′′ ∈ Eτi with at most two more crossing of the annulus than η. Thus ∆τi+1 ≤
∆τi + 1.

We can complete proof of the lemma as long as we can show that ∆τi+1
6= ∆τi .

However, this follows since −1 6∈ ARr (z) and hence the pairity of ∆τi must alternate
(since we we know which boundary of ARr (z) must be passed through last and γ(τi)

alternates which boundary it is contained in by definition).

z z
τi τi

τi+1 τi+1

γ γ

η η′′

Figure 3: An example of the construction of η′′ from η.
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Note that everything besides the third bullet point in the above lemma would hold
for any annulus, including those containing −1. This issue will return later when our
main estimate will need an extended proof when −1 ∈ ARr (z).

As ∆t is constant on away from the crossing times, we often suppress the exact
dependence on time, and let ∆i := ∆τi . As they will play a special role in the proof, we
call the times τi+1 such that ∆i+1 = ∆i + 1 the times of increase, and the times such
that ∆i+1 = ∆i − 1 the time of decrease. We may further refine our understanding of
the times of increase with the following lemma.

Lemma 5.2. Fix an annulus ARr (z) not containing −1. Let ξ1 be the arc of Dτi ∩ (Cr(z)∪
CR(z)) which contains γ(σi+1), and ξ2 be the arc of Dτi ∩ (Cr(z)∪CR(z)) which contains
γ(τi+1). Then, τi+1 is a time of increase if and only if ξ1 separates γ(τi) and −1 from ξ2
in Dτi .

Proof. First, if ξ1 separates ξ2 from −1, every η ∈ Eτi+1 (as defined above Lemma 5.1)
intersects ξ1 after τi+1. Let t∗ = sup{t ≥ τi+1 | γ(t) ∈ ξ1}. Consider the curve η′ ∈ Eτi
which is constructed by following η until σi+1, then following ξ1 between the points
γ(σi+1) and γ(t∗) and then following η again after t∗. This curve has at least two fewer
crossings of the annulus after the time τi than η did, and hence by taking η as a mini-
mizer for the crossing distance, we see that ∆i+1 ≥ ∆i + 1 and hence τi+1 is a time of
increase.

Thus we need only show the converse. Note that ξ1 always separates γ(τi) from ξ2
in Dτi and thus we need only show ξ1 separates −1 from ξ2 in Dτi . We do so by showing
that if ξ2 is not separated from −1 in Dτi then τi+1 must be a time of decrease. To do so
we preform a construction quite similar to the previous lemma. Take η ∈ Eσi+1 so that
it minimizes ∆σi+1 = ∆i. First, note that η may be assumed to be contained entirely in
the component of Dτi \ ξ1 that contains both ξ1 in its interior and and −1 in its boundary
after the time σi+1 since otherwise we may follow very near to ξ1 between σi+1 and η’s
last crossing of ξ1 and obtain a new curve that stays within the desired component and
certainly has no more crossings than η.

Now, we construct a curve η′ ∈ Eτi+1 with at most one more crossing of ARr (z) than
η. We take η′ to be a simple curve very near to the curve formed by following γ until
time τi+1 and then following the reversal of γ back to time σi+1 and then following η

after time σi+1. By our choice of η to stay within Dτi \ ξ1 after σi+1, we may choose η′

to have at most one more crossing of ARr (z) than η (which is the crossing that occurred
between σi+1 and τi+1) and hence ∆i+1 ≤ ∆i showing τi+1 is a time of decrease.

5.2 Crossing bounds

With the above definitions, we may prove our main estimates.
First, we recall the definition of excursion measure, which is a conformally invari-

ant notion of distance between boundary arcs in a simply connected domain (see, for
example, [8]). Let D be a simply connected domain and let V1, V2 be two boundary arcs.
As it is all we use, we assume the boundary arcs are C1. If it were needed, conformal
invariance would allows us to extend this definition to arbitrary boundaries. Let hD(z)

denote the probability that a brownian motion started at z exits D through V2. Then the
excursion measure between V1 and V2 is defined to be

ED(V1, V2) =

∫
V1

∂nhD(z) |dz|

where ∂n denotes the normal derivative.
Given a pair of disjoint simple C1 curves ξ1, ξ2 : (0, 1) → D in D with ξi(0

+) and
ξi(1

−) both contained in ∂D, we write ED(ξ1, ξ2) for the excursion measure between ξ1
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and ξ2 in the unique component of D \ (ξ1(0, 1), ξ2(0, 1)) which has both ξ1 and ξ2 on the
boundary.

To relate this to probabilities involving SLE, we need a lemma which can be found
in [13, Lemma 4.5]. The statement here is slightly modified from the version there,
but the proof follows immediately from an application of the monotonicity of excursion
measure.

Lemma 5.3. There exists a c > 0 so the following holds. Let D be a domain, and let γ
be a chordal SLEκ path from z1 to z2 in D. Let ξ1, ξ2 : (0, 1)→ be a pair of disjoint simple
curves so that ξi(0+) and ξi(1

−) are both in ∂D so that ξ1 separates ξ2 from z1 and z2.
Then

P{γ[0,∞] ∩ ξ2(0, 1) 6= ∅} ≤ c ED(ξ1, ξ2)β

where β = 4a− 1 = 8
κ − 1.

We apply this lemma when ξ1 and ξ2 are arcs contained in ∂ARr (z), and hence we
wish to bound the size of the excursion measure between two such arcs. We use the
Beurling estimate (see, for example, [8, Theorem 3.76]) as the main tool in providing
this bound. Given a Brownian motion Bt, let τD = inf{t > 0 | Bt 6∈ D}.

Theorem 5.4 (Beurling estimate). There is a constant c <∞ such that if γ : [0, 1]→ C

is a curve with γ(0) = 0 and |γ(1)| = 1, z ∈ D, and Bt is a Brownian motion, then

Pz{B[0, τD] ∩ γ[0, 1] = ∅} ≤ c|z|1/2.

Combining this with a number of standard Brownian motion estimates (see, for ex-
ample [19]), we may provide the following estimate.

Lemma 5.5. There exists a c < ∞ so the following holds. Let r < R/16, γ : (0, 1) →
ARr (z0) be a curve with γ(0−) ∈ Cr(z0) and γ(1+) ∈ CR(z0), and U = ARr (z0) \ γ(0, 1).
Let ξ1 be an open arc in Cr(z0) subtending an angle θ1 and ξ2 be an open arc in CR(z)

subtending an angle θ2. Then

EU (ξ1, ξ2) ≤ c θ1θ2

( r
R

)1/2

.

Proof. We bound hU ((r + ε)eiθ) by splitting into three steps: the probability the Brow-
nian motion reaches radius 2r (providing the bound needed to take the derivative), the
probability it reaches radius R/2 (providing the dependence on r/R), and finally the
probability it hits ξ2 if it reaches radius R (providing dependence on θ2). Integrating
this bound over ξ1 provides the desired bound on the excursion measure.

First, if the Brownian motion is to reach ξ2, it must reach C2r(z). By considering the
gambler’s ruin estimate applied to a Brownian motion motion started at (r+ ε)eiθ in the
annulus A2r

r (z0), the probability that the Brownian motion reaches C2r(z0) is at most

log(r + ε)− log(r)

log(2r)− log(r)
= log

(
1 +

ε

r

)
≤ ε

r
.

Second, to estimate the probability that the Brownian motion travels from C2r(z0)

to CR/2(z0) avoiding γ, we apply the Beurling estimate (Theorem 5.4). This yields the

bound of c(r/R)1/2 by considering the curve in the annulus AR/2−2r
4r (γ(0−)) (which is

non-degenerate, and has a ratio of radii comparable to r/R since we assumed r < R/16).
Finally, we wish to estimate the probability that a Brownian motion starting on

CR/2(z0) hits an arc subtending an angle of θ2 located on CR(z0). By an explicit compu-
tation with the Poisson kernel in D, we obtain an upper bound of cθ2.
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Using the strong Markov property, we may combine these estimates yielding

hU ((r + ε)eiθ) ≤ c ε 1

r
θ2

( r
R

)1/2

, ∂nhU (reiθ) ≤ c 1

r
θ2

( r
R

)1/2

and hence

EU (ξ1, ξ2) =

∫
ξ1

∂nhU (z) |dz| ≤ c θ1θ2

( r
R

)1/2

.

The above lemma allows us to show the occurrence of a time of increase must be
paid for with a corresponding cost in probability.

Proposition 5.6. There exists a c > 0 so that for i ≥ 1

P{τi+1 <∞ ; ∆i+1 = ∆i + 1 | Fτi} ≤ c 1{τi <∞}
( r
R

)β/2
,

where β is as defined in Lemma 5.3.

Proof. If τi = ∞, the curve cannot cross again, and hence we may restrict to the com-
plementary case.

We wish to bound the probability that τi+1 < ∞ and it is a time of increase. Let ξ1
and ξ2 be a pair of arcs of ∂ARr (z0) ∩ Dτi (as defined at the beginning of Section 5.1)
which could contain σi+1 and τi+1 respectively (by which we mean a pair of arcs with
ξ1 on the same component of ∂ARr (z0) as τi and ξ2 on the opposite boundary component
such that both arcs are in the boundary of a single component U ).

Since i ≥ 1 the annulus has been crossed at least once by time τi. Thus, ξ1 and ξ2
are contained in the boundary of some domain U which is bounded by some crossing
segment γj . By monotonicity of excursion measure, we may use Lemma 5.5 to conclude
that

EU (ξ1, ξ2) ≤ EARr (z0)\γj (ξ1, ξ2) ≤ c θ1θ2

( r
R

)1/2

where θ1 and θ2 are the angles subtended by the arcs ξ1 and ξ2.

Since τi+1 is time of increase, Lemma 5.2 implies that ξ1 separates ξ2 from both γ(τi)

and −1 as needed for Lemma 5.3. Restricting to such arcs we see

P{γ[τi,∞] ∩ ξ2(0, 1) 6= ∅ | Fτi} ≤ c EDτi (ξ1, ξ2)β

≤ c θβ1 θ
β
2

( r
R

)β/2
≤ c θ1θ2

( r
R

)β/2

where c is being used generically, and the β = 4a− 1 = 8
κ − 1 may be removed from the

θi since θi ≤ 2π and β ≥ 1 when κ ≤ 4.

We conclude the bound by summing over all possible pairs of arcs satisfying the
above criteria. We use the extremely weak bound that perhaps every pair of arcs,
one on the interior boundary and one on the exterior boundary, might satisfy these
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conditions. By summing over all such pairs we see

P{τi+1 <∞ ; ∆i+1 = ∆i + 1 | Fτi}

≤
∑
ξ1,ξ2

P{τi+1 <∞ ; ∆i+1 = ∆i + 1 ; γ(σi+1) ∈ ξ1 ; γ(τi+1) ∈ ξ2 | Fτi}

≤
∑
ξ1,ξ2

P{γ[τi,∞] ∩ ξ2(0, 1) 6= ∅ | Fτi}

≤ c
∑
ξ1,ξ2

θ1θ2

( r
R

)β/2
= 4π2c

( r
R

)β/2
.

It is useful to note here that the proof of this proposition required that κ ≤ 4, and
it is this proof which forces our regularity result to only hold in this range. While it is
likely that the result will hold for 4 < κ < 8, and perhaps even for κ ≥ 8, new ideas
seem to be required.

The restriction that there is already at least one crossing is necessary in the above
lemma. By using the SLE Green’s function (see, for example, [12, 13]), the probability of
at least a single crossing is of the order (r/R)2−d for an annulus contained in D bounded
away from −1 and 1. This is a weaker bound for κ < 4 than the one obtained above.
Additionally, an SLE must cross any annulus with 1 and −1 in separate components of
D \ ARr (z0) at least once. Since we need the bound to hold uniformly for all annuli but
we do not need the exponents to be optimal, we use the trivial bound of 1 for the first
crossing. More care must be taken in this estimate if a sharper exponent is desired.

We now obtain our bound on the number of annulus crossings by combinatorial
estimates enforced by the form of ∆i as a function of i given in Lemma 5.1. These paths
are closely related to Dyck paths. A Dyck path of length k is a walk on N with 2k steps
of ±1, which both starts and ends at zero. Let Ck denote the total number of Dyck paths
of length k. Since the path starts and ends at zero, there must be the same number of
+1 steps as −1 steps.

Theorem 5.7. There exist c1, c2 such that for any k ≥ 1, z0 ∈ D, and r < R,

P{Ck(z0; r,R)} ≤ c1
(
c2
r

R

) β
2 (bk/2c−1)

.

Proof. Due to the topology of the situation, we must split this proof into two main cases:
the case where −1 is not contained in ARr (z0) and the case where it is.

First, we prove the case −1 6∈ Arr(z0) as the second case reuses much of the same ar-
gument. We proceed by splitting the event into those crossings which share a common
sequence of values for ∆i, bounding the probability of a particular sequence by re-
peated application of Proposition 5.6, and then relating the number or such sequences
to the number of Dyck Paths to obtain the constant.

Take some curve in Ck(z0; r,R), and consider the associated ∆i for 0 ≤ i ≤ k. In
this case, ∆k = 0 since the curve proceeds to −1 without any further crossings. Also,
depending on if γ(τ0) and −1 are in the same component of D \ ARr (z0) or not, we have
that ∆0 ∈ {0, 1} (this observation strongly uses that D is convex and hence can force
at most one crossing of the annulus). If ∆0 = 1, ∆1 = 0 since γ(τ1) would have to be
the first time γ was contained in the boundary of the component of D \ ARr (z0) which
contains −1. Thus by Lemma 5.1, either (∆0, . . . ,∆k) or (∆1, . . . ,∆k) is a Dyck path of
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length bk/2c (and indeed since the number of steps in a Dyck path must be even, at
most one of these cases can hold for any given k). In either case the Dyck path must
contain exactly bk/2c steps of +1, which is to say at least bk/2c times of increase.

Thus, for a fixed Dyck path d = (d0, . . . , d2bk/2c), we let Cd ⊆ Ck denote the set of
curves for which either (∆0, . . . ,∆k) = d or (∆1, . . . ,∆k) = d. On this event, after
discarding the first time of increase, and applying Proposition 5.6 to each subsequent
time of increase we obtain

P{Cd} ≤ cbk/2c−1
( r
R

) β
2 (bk/2c−1)

.

Finally, any such Dyck path d of length bk/2c can occur, and hence we need to sum
over all of the possibilities yielding

P{Ck(z0; r,R)} =
∑
d

P{Cd}

≤ cbk/2c−1Cbk/2c

( r
R

) β
2 (bk/2c−1)

.

Since C` ≤ 4`, there are universal c1 and c2 so that

P{Ck(z0; r,R)} ≤ c1
(
c2
r

R

) β
2 (bk/2c−1)

as needed for the first case.
In the second case, where −1 ∈ ARr (z0), we may no longer apply the above reasoning

as Lemma 5.1 no longer holds for our annulus. In particular, crossing the annulus need
not change the number of crossings needed to reach −1 and hence we have no lower
bound on the number of times of increase. Let r0 = |z0 + 1| be the distance between the
center of the annulus and −1. To extend the proof to this case, we split the annulus into
the pair of annuli AI := Ar0r (z0) and AO := ARr0(z0) and produce an upper bound of the
exact same order by running the same argument in parallel for both annuli.

Take any curve that crosses ARr (z0) exactly k times. Any such curve must cross both
AI and AO at least k times. Let kI be the number of times the curve crosses AI and
similarly let kO be the number of times the curve crosses AO. Let ∆I

i and ∆O
i be the

associated crossing functions. As −1 is contained in neither AI nor AO, Lemma 5.1
applies and, as above, we may associate a Dyck path of length bkI/2c to ∆I

i and a Dyck
path of length bkO/2c to ∆O

i .
We have no upper bound on kO and kI in comparison to k, and thus attempting to

mirror the exact proof from above will not succeed since summing over all pairs of Dyck
path of length at least bk/2c could yield a divergent sum since we have no control on the
ratios r/r0 and r0/R. Thus we must make this sum finite depending only on k. Given a
Dyck path of length `′ > ` we must have at least ` times of increase in the first 2` steps
of that Dyck path as otherwise the path would be negative at step 2`. Thus, as we only
need bk/2c times of increase to obtain the desired bound, we need only consider the
initial segments of the Dyck paths associated to ∆I

i and ∆O
i .

Thus, for two initial segments dI and dO of Dyck paths both containing exactly
2bk/2c steps, we let CdI,dO

⊆ Ck denote the set of curves for which both either (∆I
0, . . . ,∆

I
k) =

dI or (∆I
1, . . . ,∆

I
k) = dI and either (∆O

0 , . . . ,∆
O
k ) = dO or (∆O

1 , . . . ,∆
O
k ) = dO . On this

event, after discarding the first time of increase for both annuli, and applying Proposi-
tion 5.6 to the next bk/2c − 1 subsequent time of increase we obtain

P{CdI,dO
} ≤ c2bk/2c−2

( r
r0

) β
2 (bk/2c−1) (r0

R

) β
2 (bk/2c−1)

= c2bk/2c−2
( r
R

) β
2 (bk/2c−1)

.
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Finally, noting that there are at most 16bk/2c different pairs of dI,dO, we may sum
over each of these possibilities and obtain the desired bound in the same manner as the
first case.

To apply the results of Aizenman and Burchard, we need to have a bound on the
probability of having at least k0 crossings. Such bound is easily obtained from the
above by summing over all k ≥ k0 to see that

P{γ traverses ARr (z0) at least k0 separate times} ≤ ck0
( r
R

) β
2 (bk0/2c−1)

where ck0 is some new constant depending only on k0, thus completing the proof of the
Theorem 1.2, and hence of all results.
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