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Central limit theorem for biased random walk
on multi-type Galton–Watson trees
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Abstract

Let T be a rooted supercritical multi-type Galton–Watson (MGW) tree with types
coming from a finite alphabet, conditioned to non-extinction. The λ-biased random
walk (Xt)t≥0 on T is the nearest-neighbor random walk which, when at a vertex v with
dv offspring, moves closer to the root with probability λ/(λ+ dv), and to each of the
offspring with probability 1/(λ + dv). This walk is recurrent for λ ≥ ρ and transient
for 0 ≤ λ < ρ, with ρ the Perron–Frobenius eigenvalue for the (assumed) irreducible
matrix of expected offspring numbers. Subject to finite moments of order p > 4 for
the offspring distributions, we prove the following quenched CLT for λ-biased random
walk at the critical value λ = ρ: for almost every T, the process |Xbntc|/

√
n converges

in law as n → ∞ to a reflected Brownian motion rescaled by an explicit constant.
This result was proved under some stronger assumptions by Peres–Zeitouni (2008)
for single-type Galton–Watson trees. Following their approach, our proof is based
on a new explicit description of a reversing measure for the walk from the point of
view of the particle (generalizing the measure constructed in the single-type setting
by Peres–Zeitouni), and the construction of appropriate harmonic coordinates. In
carrying out this program we prove moment and conductance estimates for MGW
trees, which may be of independent interest. In addition, we extend our construction
of the reversing measure to a biased random walk with random environment (RWRE)
on MGW trees, again at a critical value of the bias. We compare this result against a
transience–recurrence criterion for the RWRE generalizing a result of Faraud (2011)
for Galton–Watson trees.
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1 Introduction

Let T denote an infinite tree with root o. The λ-biased random walk on T, hereafter
denoted RWλ(T), is the Markov chain (Xt)t≥0 with X0 = o such that given Xt = v with
offspring number dv and v 6= o, Xt+1 equals the parent of v with probability λ/(λ+ dv),
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and is uniformly distributed among the offspring of v otherwise (and if Xt = o, then
Xt+1 is uniformly distributed among the offspring of o).

For supercritical Galton–Watson trees without leaves, if ρ denotes the mean offspring
number, then RWλ is a.s. recurrent if and only if λ ≥ ρ ([25, Thm. 4.3 and Propn. 6.4]),
and ergodic if and only if λ > ρ ([20, Propn. 9-131] and [25, p. 944 and p. 954]). With
|v| denoting the (graph) distance from vertex v to the root o, |Xt|/t converges a.s. to
a speed V , with V = V (λ) deterministic, positive for λ < ρ and zero otherwise (see
[27, 28] for λ < ρ and [32] for λ = ρ; the case λ > ρ follows trivially from positive
recurrence).

Further, subject to no leaves and finite exponential moments for the offspring
distribution, a quenched CLT for RWλ (λ ≤ ρ) on single-type Galton–Watson trees was
shown by Peres–Zeitouni [32], and extended to the setting of random walk with random
environment (RWRE) by Faraud [13]. In contrast, if leaves occur, there emerges a zero-
speed transient regime λ < λc (for λc < ρ) [28] where the leaves “trap” the random
walk and create slow-down. It follows from the results of Ben Arous et al. [3] that in this
setting, for sufficiently small λ there cannot be a (functional) CLT with diffusive scaling.
Analogous results on the critical (ρ = 1) Galton–Watson tree conditioned to survive were
shown by Croydon et al. [9]. In this paper we consider the critical case λ = ρ, where [32,
Thm. 1] proves that on a.e. Galton–Watson tree, the processes (|Xbntc|/

√
n)t≥0 converge

in law to the absolute value of a (deterministically) scaled Brownian motion. Their proof
is based on the construction of harmonic coordinates and an explicit description of a
reversing probability measure IGWR for RWρ “from the point of view of the particle.”
Having such an explicit description is a very delicate property: even for Galton–Watson
trees, no such description was known for λ < ρ except at λ = 1 which is done by [27,
Thm. 3.1].1 One thus might be led to believe that [32, Thm. 1] is a particular property
resulting from the independence inherent in the Galton–Watson law.

Here we show to the contrary that such a quenched CLT extends to the much larger
family of supercritical multi-type Galton–Watson trees with finite type space. We allow
for leaves (but condition on non-extinction), demonstrating that at λ = ρ the “trapping”
phenomenon of [3] does not arise. We also replace the assumption of exponential
moments for the offspring distribution by an assumption of finite moments of order
p > 4, so that our result restricted to the single-type case strengthens [32, Thm. 1].
However, the main interest of our result lies in moving from an i.i.d. to a Markovian
structure for the random tree.

As in [32], the key ingredient in our proof is the construction of an explicit reversing
(probability) measure IMGWR for RWλ from the point of view of the particle, generalizing
IGWR to the multi-type setting, for λ at the critical value on the boundary between
transience and recurrence. See §2 for the details of the construction which may be of
independent interest.

The model we consider is as follows: let Ω be the space of rooted trees with type,
where each vertex v is given a type χv from a finite alphabet Q. We let BΩ be the σ-
algebra on Ω generated by the cylinder sets (determined by the restrictions of trees to
finite neighborhoods of the root). We write T for a generic element of Ω and o for its
root. A multi-type Galton–Watson tree is a random element T ∈ Ω, generated from a
starting type χo ∈ Q and a collection of probability measures qa (a ∈ Q) on

Q? ≡
⋃

`≥0

Q`,

as follows: begin with a root vertex o of type χo. Supposing inductively that the first

1While this work was in review, Aïdékon discovered a construction of the invariant measure for RWλ with
λ < ρ, and used this construction to obtain a formula for the speed of RWλ [1].
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n levels of T have been constructed, each vertex v at the n-th level generates random
offspring according to law qχv . For our purposes the ordering of the children does
not matter, so each qa may equivalently be regarded as a probability measure on
configurations x = (xb)b∈Q ∈ (Z≥0)Q, where xb is the number of children of type b.
Continuing to construct successive generations in this Markovian fashion, we denote
the resulting law on (Ω,BΩ) by MGWχo . We denote by MGW any mixture of the measures
(MGWa)a∈Q (with (2.1) the canonical mixture) and let X ≡ {|T| < ∞} denote the event
of extinction.

For a, b ∈ Q let
A(a, b) =

∑

x

qa(x)xb,

the expected number of offspring of type b at a vertex of type a. (Unless otherwise
specified, the implicit assumption hereafter is that Eqa [|x|] < ∞ for all a ∈ Q where
|x| ≡∑b xb.) Throughout the paper we will refer to the following assumptions:

(H1) The matrix A ≡ (A(a, b))a,b∈Q is irreducible with Perron–Frobenius eigenvalue ρ.

(H2) A is positive regular (every entry of An0 is positive for some n0 ∈ N), ρ > 1, and
Eqa [|x| log |x|] <∞ for all a ∈ Q.

(H3p) Eqa [|x|p] <∞ for all a ∈ Q.

Note that (H1) and ρ > 1 together imply MGWa(X) < 1 for all a ∈ Q.

1.1 Central limit theorems

We take all real-valued processes to be in the space D[0,∞) equipped with the
topology of uniform convergence on compact intervals. Our main theorem is the
following:

Theorem 1.1. Under (H1), (H2), and (H3p) with p > 4, for MGW-a.e. T /∈ X, if
X ∼ RWρ(T) then the processes (|Xbntc|/(σ

√
n))t≥0 converge in law in D[0,∞) to the

absolute value of a standard Brownian motion for σ a deterministic positive constant
(see (3.1)).

Remark 1.2. By [12, Propn. 3.10.4], an equivalent statement is that the polygonal
interpolation of k/n 7→ |Xk|/(σ

√
n) converges to standard Brownian motion in the space

C[0,∞) (again with the topology of local uniform convergence).

Let RWcts
λ (T) denote the continuous-time version of RWλ(T), which when at v ∈ T

moves to the parent of v (if v 6= o) at rate λ and to each offspring of v at rate 1.

Corollary 1.3. Under the assumptions of Thm. 1.1, for MGW-a.e. T /∈ X, if Xcts ∼
RWcts

ρ (T) then the processes (|Xcts
nt |/(σ

√
2ρn))t≥0 converge in law in D[0,∞) to the

absolute value of a standard Brownian motion.

By moving the root of the tree to the current position of the random walk, RWλ on
the tree induces a random walk on the space Ω, the “walk from the point of view of
the particle.” As in [32, §3], to make the latter process Markovian we amend the state
space so as to keep track of the ancestry of the vertices. Specifically, we consider the
space Ω↓ of pairs (T, ξ), where T is an infinite tree and ξ = (o = v0, v1, v2, . . .) is a ray
emanating from the root o; this ray indicates the ancestry of each vertex in the tree. Let
BΩ↓ denote the σ-algebra generated by the cylinder sets. We define a height function h
on T as follows: set h(vn) = −n, and for v /∈ ξ set

h(v) = h(Rv) + d(v, ξ) (1.1)
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where d denotes graph distance and Rv is the nearest vertex to v on ξ (see Fig. 1). We
denote by RWλ(T, ξ) the λ-biased random walk (Yt)t≥0 on (T, ξ), where the bias goes in
the direction of decreasing height. With Tv the tree T rooted at v instead of o, and ξv

the unique ray emanating from v such that ξ ∩ ξv is an infinite ray, let

(T, ξ)Yt ≡ (TYt , ξYt), t ≥ 0. (1.2)

This is a Markov process with state space Ω↓, and we hereafter refer to it as TRWλ.
Let RWcts

λ denote the continuous-time version of RWλ(T, ξ) (moving in the direction of
increasing height at rate 1 and in the direction of decreasing height at rate λ), and let
TRWcts

λ denote the induced continuous-time process on the space Ω↓.
As in the single-type Galton–Watson case considered in [32], the key to our proof lies

in finding an explicit reversing measure IMGW for TRWcts
ρ , which is then easily translated

to a reversing measure IMGWR for TRWρ. For a tree T (with or without marked ray) and
for any vertex v ∈ T, we denote by T(v) the subtree induced by v and its descendants,
where descent is in direction of increasing distance from the root for a rooted tree, and
in the direction of increasing height for a tree with marked ray. If µ is a law on trees we
use µ⊗ RWλ to denote the joint law of the tree together with the realization of RWλ on
that tree.

Theorem 1.4. Assume (H1).

(a) There exists a reversing probability measure IMGW for TRWcts
ρ , and if we define

dIMGWR

dIMGW
=
do + ρ

2ρ
,

then IMGWR is a reversing probability measure for TRWρ.

(b) For ((T, ξ), (Yt)t≥0) ∼ IMGWR⊗RWρ, the stationary sequence ((T, ξ)Yt)t≥0 is ergodic.

The IMGW trees always have an infinite ray ξ, though the trees coming off the ray
may be finite. The measures IMGW, IMGWR are the multi-type analogues of the measures
IGW, IGWR of [32]. Thm. 1.4 and the construction of harmonic coordinates allow us
to prove the following quenched CLT for RWρ on IMGWR trees, which will be used to
deduce Thm. 1.1.

Theorem 1.5. Under (H1), (H2), and (H3p) with p > 2, for IMGWR-a.e. (T, ξ), if
Y ∼ RWρ(T, ξ) then the processes (h(Ybntc)/(σ

√
n))t≥0 converge in law in D[0,∞) to

a standard Brownian motion.

1.2 Transience–recurrence boundary in random environment

In the setting of RWλ on MGW trees, λ = ρ represents the onset of recurrence.
Indeed, MGW-a.e. tree T on the event of non-extinction has branching number brT = ρ

[25, Propn. 6.5], therefore RWλ(T) is transient for λ < ρ and recurrent for λ > ρ

[25, Thm. 4.3]. In fact, recurrence for all λ ≥ ρ follows from a simple conductance
calculation (for the general theory see [29, Ch. 2]), therefore ρ is the boundary between
transience and recurrence for RWλ on MGW trees. Further ρ is the boundary between
non-ergodicity and ergodicity, with RWρ null recurrent (see [20, Propn. 9-131] and [25,
p. 944 and p. 954]) and of zero speed (e.g. from the bound of Lem. 3.5).

We believe that the existence of a reversing measure and CLT is a feature of the
onset of recurrence in a more general setting. Indeed, suppose each vertex v ∈ T\{o}
has, in addition to its type χv from the (finite) alphabet Q, a weight αv ∈ (0,∞). Fixing
such a tree T (the environment), the λ-biased random walk with random environment
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RWREλ(T) is the Markov chain (Xt)t≥0 with X0 = o which, when at vertex v with
offspring

(y, α) ≡ ((y1, α1), . . . , (y`, α`)) ∈ Q̄`,

jumps to a random neighbor w of v with probability proportional to αw if w is a child of
v, and to λ if w is the parent of v. (Note that RWρ(T) corresponds to the case αv = 1 for
all v.) We let RWREcts

λ (T) denote the continuous-time version of RWREλ(T).
If qa (a ∈ Q) is a probability measure on

Q̄? ≡
⋃

`≥0

Q̄`, Q̄ = Q× (0,∞),

then the collection (qa)a∈Q together with starting type χo ∈ Q specifies a law MGW
a0 on

the space Ω of typed weighted rooted trees. As before we let MGW denote any mixture of
the MGW

a0 . This model, studied in the single-type case in [13], allows for quite general
distributions on the (immediate) neighborhood of each vertex, but conditioned on types
the weights in different neighborhoods must be independent.

For γ ∈ R and a, b ∈ Q, let

Ā(γ)(a, b) ≡
∫

Q̄?

∑

j

1{yj=b}α
γ
j dq

a(y, α) (1.3)

(not necessarily finite for all γ). Let ρ̄(γ) be the Perron–Frobenius eigenvalue of
Ā(γ) where well-defined (i.e. where Ā(γ) has finite entries and is irreducible), and ∞
otherwise. We will prove the following characterization of the transience–recurrence
boundary for RWREλ, extending part of [13, Thm. 1.1]:

Theorem 1.6. Suppose Ā(0) is positive regular, and ρ̄(γ) < ∞ for γ in an open
neighborhood of 0. For λ > 0 let

pλ ≡ inf
0≤γ≤1

ρ̄(γ)

λγ
.

(a) If pλ < 1, then RWREλ is positive recurrent MGW-a.s.

(b) If pλ > 1, then RWREλ is transient MGW(· |Xc)-a.s.

Thus the transience–recurrence boundary for RWREλ occurs at the unique value
λ = ρ◦ for which pρ◦ = 1. On the other hand, let Ω↓ denote the space of typed weighted
trees with ray, and let TRWREλ and TRWREcts

λ denote the Markov chains in Ω↓ induced by
RWREλ and RWREcts

λ respectively. We have the following generalization of Thm. 1.4 (a):

Theorem 1.7. Suppose MGW is such that Ā ≡ Ā(1) is irreducible with Perron–Frobenius
eigenvalue ρ̄ ≡ ρ̄(1). Then there exists a reversing probability measure IMGW on Ω↓ for
TRWREcts

ρ̄ . If we let α0j denote the weight for the j-th child of the root o, and set

dIMGWR

dIMGW
=
ρ̄+

∑do
j=1 α0j

2ρ̄
,

then IMGWR is a reversing probability measure for TRWREρ̄.

We can see that ρ◦ matches ρ̄ if and only if the function γ 7→ ρ̄(γ)/(ρ◦)γ attains its
infimum over 0 ≤ γ ≤ 1 at γ = 1. If this fails, Thm. 1.7 still gives a reversing measure at
ρ̄, but ρ̄ > ρ◦ and the walk is already positive recurrent above ρ◦. However, at least in
the single-type case, we have ρ◦ = ρ̄ in all cases in which a CLT is possible: indeed, if

κ ≡ inf

{
γ ≥ 0 :

ρ̄(γ)

(ρ◦)γ
= 1

}
,
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by results of [17] a CLT cannot hold unless κ ≥ 2 (see [13, p. 3]). We expect κ ≥ 2

also to be a necessary condition in the multi-type case, and thus Thm. 1.6 and Thm. 1.7
support the claim that reversing measures occur at the boundary between transience
and recurrence in cases in which a CLT is possible. However, even in the single-type
case the random environment creates technical difficulties, and the RWRE-CLT of [13]
requires some restriction on κ. While we expect that the methods of this paper and [13]
can also be adapted to extend the RWRE-CLT to the multi-type setting under the same
restrictions on κ, new ideas are required to achieve a CLT for the entire regime κ ≥ 2.

Outline of the paper

• In §2 we construct the reversing measure IMGWR for TRWρ (in §2.1) and its
generalization IMGWR for TRWREρ̄ (in §2.2); these constructions are based on ideas
from [22]. In §2.3 we give an alternative characterization of IMGWR (extending a
characterization of [32] to the multi-type setting) which we use to prove ergodicity
of the stationary sequence ((T, ξ)Yt)t≥0.

• In §3 we prove the quenched IMGWR-CLT Thm. 1.5: in §3.1 we construct on
IMGWR-a.e. (T, ξ) a function v 7→ Sv (v ∈ T) which is harmonic with respect to the
transition probabilities of RWρ(T, ξ). By stationary and ergodicity of ((T, ξ)Yt)t≥0

with respect to IMGWR we are able to control the quadratic variation of the
martingale Mt ≡ SYt to obtain an IMGWR-a.s. martingale CLT. In §3.2 we adapt
the methods of [32] and [13] to show that h(Yt) is uniformly well approximated by
Mt/η (η an explicit constant), proving Thm. 1.5.

• In §4 we prove the quenched MGW-CLT Thm. 1.1. In §4.1 we review (a
slight modification of) a construction of [32] which gives a “shifted coupling” of
(T, (Xt)t≥0) ∼ MGW ⊗ RWρ with ((T�, ξ), (Yt)t≥0) ∼ IMGW0 ⊗ RWρ such that fresh
excursions of X are matched with fresh excursions of Y away from ξ. From this
we obtain an annealed MGW-CLT (in §4.2) for X by controlling the amount of time
spent outside the coupled excursions as well as the drift of Y along ξ. Because
of the dependence between T and Y we do not see how to this coupling directly
to prove a quenched (MGW-a.s.) CLT. Instead, in §4.3 we adapt the method of [6]
to deduce Thm. 1.1 from the annealed CLT by controlling the correlation between
two realizations of RWρ on a single MGW tree T (as was done in [32, §7] in the case
λ < ρ).

• In §5 we prove Thm. 1.6 describing the transience–recurrence boundary for
RWREλ. The main result needed is a large deviations estimate (Lem. 5.2) on the
conductances at the n-th level of the tree.

• In §6 are collected some basic properties of MGW which are needed in the course
of our proof and which may be of independent interest. In §6.2 we show that
moments for the offspring distributions translate directly to moments for the
normalized population size defined in §2.3. In §6.3 we prove the existence of
harmonic moments for the normalized population size, and use this result to prove
conductance estimates used in the proof of Thm. 1.1.

Open problems

We conclude this section by mentioning some open problems in this area. These
problems are open even for single-type Galton–Watson trees.

1. Does a CLT with diffusive scaling hold for RWρ in the entire regime p ≥ 2?

2. Does a CLT with diffusive scaling hold for RWREρ̄ in the entire regime κ ≥ 2?
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3. What happens for simple random walk on the critical Galton–Watson tree
(conditioned to survive)?

4. Does a CLT with any scaling (or other limit law) hold for RWρ when p < 2?

A common feature of these problems is that while the reversing measure for the process
from the perspective of the particle is given by Thm. 1.4, the method of martingale
approximation used in [32, 13] and in this paper seem not to be directly applicable.
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2 Reversing probability measures for TRWρ and TRWREρ̄

Assuming only (H1), in this section we construct the reversing measure IMGWR
for TRWρ (§2.1) as well as its generalization IMGWR for TRWREρ̄ (in §2.2). In §2.3 we
give an alternative characterization of IMGWR which we use to prove ergodicity of the
stationary sequence ((T, ξ)Yt)t≥0. Except in §2.2 we work throughout with unweighted
trees.

Consider a multi-type Galton–Watson measure MGW with offspring distributions
(qa)a∈Q and mean matrix A. Hereafter we let e and g denote the right and
left eigenvectors respectively associated to the Perron–Frobenius eigenvalue of A,
normalized so that

∑
a ga =

∑
a ea = 1. Since our results are stated for MGW-a.e.

tree, with no loss of generality we set hereafter

g(a) ≡ MGW(χo = a) = ga. (2.1)

Unless otherwise specified, X and Y denote RWρ on trees without and with marked ray
respectively.

2.1 Construction of IMGWR

We begin by constructing two auxiliary measures on the space Ω↓ of trees with ray
(T, ξ). Let the infinite ray ξ (without types) be given. For some n > 0, we let vertex vn
be given a type χn according to a distribution π, to be determined shortly. It is then
given offspring xvn according to the inflated offspring distribution q̂χn , where

q̂a(x) ≡ qa(x)
〈x, e〉
ρea

∀a ∈ Q;

note that q̂a(|x| ≥ 1) = 1. One offspring w of vn is then identified with the next vertex
vn−1 along ξ, where each w is chosen with probability eχw/〈xvn , e〉. We proceed in
this manner along the ray ending with the identification of v0 = o. The sequence of
types χn, χn−1, . . . seen along the ray is then (by (H1)) an irreducible Markov chain with
transition probabilities

K(a, b) =
∑

x

q̂a(x)
ebxb
〈x, e〉 =

∑

x

qa(x)
ebxb
ρea

=
eb
ρea

A(a, b). (2.2)
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Figure 1: IMGW0 tree
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This chain has stationary distribution π(a) ≡ eaga/〈e, g〉, so starting with χn ∼ π yields
a consistent family of distributions for (vn, . . . , v1) and their (immediate) offspring, with
types. By Kolmogorov’s existence theorem, this uniquely specifies the distribution of
the backbone of the tree, that is, of the ray ξ together with all (immediate) offspring
of the vertices vi, i > 0. To each of these offspring (off the ray) and to o, we attach an
independently chosen MGW tree conditioned on the given type, and denote by IMGW0

the resulting measure on Ω↓.
The inflated multi-type Galton–Watson measure IMGW is obtained from IMGW0 by an

additional biasing according to the root type χo. Specifically, we set

dIMGW

dIMGW0
=

1/eχo
Eπ[1/eχ]

=
Eg[eχ]

eχo
,

where χ denotes a random variable on Q with the specified distribution. We note that
under IMGW, χo ∼ g and so T(o) has marginal law MGW, which implies

EIMGW[do] = EMGW[do] =
∑

a

ga
∑

b

A(a, b) = ρ.

With this in mind, we define the probability measure IMGWR such that

dIMGWR

dIMGW
=

do + ρ

EIMGW[do + ρ]
=
do + ρ

2ρ
, (2.3)
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and proceed to show that it is a reversing measure for TRWρ. From now on we adopt
the notation that if µ is a law on trees T (with or without marked ray) and a ∈ Q, µa

refers to the law conditioned on χo = a.

Proof of Thm. 1.4 (a). For the purposes of this proof we let Ω and Ω↓ be spaces
of labelled (or planar) trees (without and with marked ray, respectively), with
corresponding Borel σ-algebras BΩ and BΩ↓ . We extend MGW, IMGW0, etc. to be
measures on these spaces by choosing an independent uniformly random ordering for
the offspring of each vertex. For (T, ξ) ∈ Ω↓ we use the shorthand i for vi ∈ ξ, and write
(i1, . . . , idi) for its ordered offspring (with xi denoting the counts of offspring of i ≡ vi
of each type).

Recalling the notation of (1.2), let S denote the map (T, ξ) 7→ (T, ξ)1. We will show
that for A,B ∈ BΩ↓ ,

∫

A

p((T, ξ), B) dIMGWR(T, ξ) =

∫

B

p((T′, ξ′), A) dIMGWR(T′, ξ′) (2.4)

where p((T, ξ), B) denotes the transition kernel of the process TRWρ. This identity
implies reversibility of TRWρ on the space of labelled trees. Since this process projects
to TRWρ on the space of unlabelled trees, the reversibility of the latter follows.

For (T, ξ) ∼ IMGW0, let IMGW←−−−
a
0 denote the law of the subtree T\T(i−1) rooted at i with

marked ray ξi, conditioned on the event {χi−1 = a}, for any i ≥ 1 (note that this law
does not depend on i). Then

dIMGW0(T, ξ) = π(χ1)
q̂χ1(x1)

d1!

eχ0

〈x1, e〉dIMGW←−−−
χ1

0 (T\T(1), ξ2)

d1∏

j=1

dMGWχ1j (T(1j)).

Let Pinj denote the collection of BΩ↓ -measurable sets on which S is injective, and
suppose B ∈ Pinj. If µ is a measure on Ω↓, S∗Bµ(·) ≡ (µ ◦ S)(B ∩ ·) is a well-defined
measure on Ω↓. Then

dS∗B IMGW0(T, ξ) = 1{(T,ξ)∈B}π(χ1)
qχ1(x1)

d1!
dIMGW←−−−

χ1

0 (T\T(1), ξ2)

d1∏

j=1

dMGWχ1j (T(1j)).

so
dS∗B IMGW0

dIMGW0
= 1B

ρeχ1

eχ0

.

We then verify that

dS∗B IMGW

dIMGW
= 1B

( dS∗B IMGW
dS∗B IMGW0

)
(
dIMGW
dIMGW0

) dS∗B IMGW0

dIMGW0

= 1B

(
dIMGW
dIMGW0

◦ S
)

(
dIMGW
dIMGW0

) dS∗B IMGW0

dIMGW0
= 1B

1/eχ1

1/eχo

ρeχ1

eχo
= 1Bρ, (2.5)

and similarly
dS∗B IMGWR

dIMGWR
= 1B

ρ(d1 + ρ)

do + ρ
.

The left-hand side of (2.4) can be written as

∫

A∩S−1B

ρ

do + ρ
dIMGWR(T, ξ) +

∫

A

1

do + ρ

do∑

i=1

1{(T0i,ξ0i)∈B} dIMGWR(T, ξ).
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Using the injectivity of S on B, the second integral can be written as

∫

A∩SB

1

do + ρ
dIMGWR(T, ξ) =

∫

S−1A∩B

1

d1 + ρ
dS∗B IMGWR(T, ξ)

=

∫

S−1A∩B

ρ

do + ρ
dIMGWR(T, ξ).

Combining these yields an expression for the left-hand side of (2.4) which is symmetric
in A and B, from which it is clear that the two sides must agree.

Since every cylinder event F can be decomposed into the disjoint union of the event
Fj = {(T, ξ) ∈ F : o = 1j} (i.e., o is the j-th child of 1), with Fj clearly in Pinj, we have
that Pinj generates BΩ↓ . To conclude, for fixed A let B′Ω↓ denote the collection of sets

B ∈ BΩ↓ for which (2.4) holds. From the above B′Ω↓ contains the π-system Pinj. Further
B′Ω↓ is closed under monotone limits and countable disjoint unions, and in particular it

contains Ω↓ since Ω↓ can be decomposed as a countable disjoint union of sets in Pinj by
a similar argument as above. Thus by the π-λ theorem (2.4) holds for all B ∈ σ(Pinj),
and extends to all B ∈ BΩ↓ again using the claim above.

The proof that IMGW is a reversing measure for the Markov pure jump process
TRWcts

ρ is similar: instead of (2.4) we show that

∫

A

λ(T, ξ)p((T, ξ), B) dIMGW(T, ξ) =

∫

B

λ(T, ξ)p((T′, ξ′), A) dIMGW(T′, ξ′) (2.6)

where λ(T, ξ) ≡ λ + do is the instantaneous jump rate of the process at state (T, ξ). As
before, it suffices to show this for B ∈ Pinj. In this case the left-hand side of (2.6) equals

∫

A∩S−1B

ρ dIMGW(T, ξ) +

∫

S−1A∩B
dS∗B IMGW(T, ξ),

which by (2.5) coincides with the right-hand side of (2.6).

2.2 Extension of IMGWR to random environment

We now extend the methods of the previous section to prove Thm. 1.7. Let ē, ḡ denote

the right and left Perron–Frobenius eigenvectors of Ā ≡ Ā(1), normalized to have sum
1; as before we set g(a) ≡ MGW(χo = a) to be ḡa.

We proceed much as in the deterministic environment setting, although the notation
becomes more complicated. For y ∈ Q` write ē(y) ≡ (ēyj )

`
j=1. For a ∈ Q

Eqa [〈ē(y), α〉] =
∑

b

Ā(a, b)ēb = ρ̄ēa,

so we define the inflated offspring measure q̂a by

dq̂a

dqa
=
〈ē(y), α〉
ρ̄ēa

.

We then construct the measure IMGW0 on Ω↓ generalizing the measure IMGW0 of the
previous section: let the infinite ray ξ (without types or weights) be given, and for some
n > 0 let vn have type χn. It is given offspring (yvn , αvn) ∼ q̂χn . One offspring w of vn is
identified with the next vertex vn−1 along ξ, where each w is chosen with probability

ēχwαw
〈ē(y), αvn〉 .
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Continuing the procedure along the ray up to v0 = o, the sequence of types χn, χn−1, . . .

seen along ξ is an irreducible Markov chain with transition probabilities

K̄(a, b) = Eq̂a

[
ēb
∑
j αj1{yj=b}

〈ē(y), α〉

]
=

ēb
ρ̄ēa

Ā(a, b)

and stationary distribution π̄(a) = ēaḡa/〈ē, ḡ〉. Thus, starting with χn ∼ π̄ and
applying Kolmogorov’s existence theorem, we obtain a measure IMGW0 on Ω↓ which
is a generalization of IMGW0.

Proof of Thm. 1.7. The proof is by a straightforward modification of the proof of
Thm. 1.4 (a). Let S : (T, ξ) 7→ (T, ξ)1; we emphasize that S is a mapping on typed
weighted labelled trees. For (T, ξ) ∼ IMGW0, let IMGW←−−−

a
0 denote the law of the subtree

T\T(i−1) rooted at i with marked ray ξi, conditioned on the event {χi−1}, for any i ≥ 1.
Let Pinj denote the collection of BΩ↓ -measurable sets on which S is injective. For
A ∈ BΩ↓ and B ∈ Pinj, we compute

dIMGW0(T, ξ) = π̄(χ1)q̂χ1(y1, α1)
ēχ0α0

〈ē(y1), α1〉dIMGW←−−−
χ1

0 (T\T(1), ξ2)

d1∏

j=1

dMGW
χ1j

(T(1j)),

dS∗B IMGW0(T, ξ) = 1{(T,ξ)∈B}π̄(χ1)qχ1(y1, α1)dIMGW←−−−
χ1

0 (T\T(1), ξ2)

d1∏

j=1

dMGW
χ1j

(T(1j)),

so ēχ0
α0 dS

∗
B IMGW0 = 1B ρ̄ēχ1

dIMGW0. Letting

dIMGW

dIMGW0

≡ 1/ēχo
Eπ̄[1/ēχ]

=
Eg[χ]

ēχ0

,

dIMGWR

dIMGW
≡

ρ̄+
∑do
j=1 α0j

EIMGW[ρ̄+
∑do
j=1 α0j ]

=
ρ̄+

∑do
j=1 α0j

2ρ̄
,

we obtain

α0 dS
∗
B IMGW = 1B ρ̄ dIMGW,

α0

ρ̄+
∑d1
j=1 α1j

dS∗B IMGWR = 1B
ρ̄

ρ̄+
∑d0
j=1 α0j

dIMGWR.

The analogue of (2.4) thus holds for all B ∈ Pinj, and we extend to all B ∈ BΩ↓ by
essentially the same argument used in the proof of Thm. 1.4 (a).

2.3 IMGW0 as a weak limit and ergodicity

In this section we provide an alternative characterization (Propn. 2.1) of the inflated
Galton–Watson measure IMGW0, which is then used in proving the ergodicity result
Thm. 1.4 (b). Propn. 2.1 is also of independent interest as a multi-type extension of [32,
Lem. 1].

To this end, we will define the notion of “normalized population size” for rooted
trees T with type. Let Tn denote the subtree induced by {v ∈ T : |v| ≤ n}, and Dn the
set {v ∈ T : |v| = n}. Let (Fn)n≥0 denote the natural filtration of the tree, i.e., Fn is the σ-
algebra generated by Tn (a finite tree with vertex types). Let Zn = (Zn(b))b∈Q ∈ (Z≥0)Q

count the number of vertices of each type at level n, so Zn is Fn-measurable. Then

Zn ≡
〈Zn, e〉
ρn

=
1

ρn

∑

v∈Dn

eχv
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is a non-negative (Fn)-martingale under MGWa for every a, with EMGWa [Z0] = ea (see
e.g. [15, p. 49]). By the normalized population size of the tree we mean the a.s. limit
of Zn, denoted Wo. For v ∈ T we use Wv to denote the normalized population size of
T(v). Under (H1) and (H2), it follows from the multi-type Kesten–Stigum theorem (see
[21], or the conceptual proof of [22]) that Wo > 0 a.s. on the event of non-extinction,
and EMGWa [Wo] = ea.

For a ∈ Q let Qan be a probability measure on (infinite) rooted trees defined by

dQan
dMGWa =

Zn
ea
. (2.7)

For T ∼ Qan choose vn ∈ Dn at random with probabilities proportional to weights eχvn ,
and let Qan? denote the law of the resulting pair (T, vn). Let Qn? ≡

∑
a∈Q πaQ

a
n? and

Qn ≡
∑
a∈Q πaQ

a
n, so that dQn/dMGW = Zn/Eg[eχ]. Finally let IMGW0(n) denote the law

of (T, ξ0)vn (see (1.2) for this notation), where (T, vn) ∼ Qn? and ξ0 is any infinite ray
emanating from o not sharing an edge with the geodesic from o to vn.

Proposition 2.1. Under (H1), IMGW0(n) converges weakly to IMGW0.

The proposition can be seen from the following explicit construction of Qan?: begin
with v0 ≡ o of type a, and suppose inductively that we have constructed (Ti, vi) (i < n)
where Ti is the tree up to level i and vi is the i-th vertex on the geodesic from o to
vn. Then vi is given offspring xvi according to q̂χvi , and one of these offspring w is
randomly chosen (according to weights ew) to be distinguished as vi+1. Meanwhile all
other vertices v ∈ Di\{vi} are given offspring xv according to qχv . Once (Tn, vn) has
been constructed, attach to each v ∈ Dn an independent MGWχv tree. For N ≥ n,

Qan?(TN , vn)

MGWa(TN )
=

n−1∏

i=0

〈xvi , e〉
ρeχvi

eχvi+1

〈xvi , e〉 =
eχvn
ρnea

,

and summing over vn ∈ Dn gives (2.7).
Letting n → ∞ in Qan?,Qn? we obtain the measures Qa∞?,Q∞? on rooted trees with

infinite marked ray which coincide precisely with the measures M̂GW
a

?, M̂GW? of [22].

The corresponding marginals Qa∞ ≡ M̂GW
a
,Q∞ ≡ M̂GW on trees without marked ray

satisfy
dQa∞
dMGWa

∣∣∣∣
Fn

=
Zn
ea
,

dQ∞
dMGW

∣∣∣∣
Fn

=
Zn

Eg[eχ]
.

By the Kesten–Stigum theorem and Scheffé’s lemma (see e.g. [35, §5.10]), Zn
L1

−→ Wo,
hence

dQa∞
dMGWa =

Wo

ea
,

dQ∞
dMGW

=
Wo

EMGW[Wo]
=

Wo

Eg[eχ]
.

We remark that although Q∞? ≡ M̂GW? and IMGWR are both measures on trees with
rays, they are not in general equivalent unless K is reversible.

Proof of Propn. 2.1. Since dQn/dMGW = Zn/Eg[eχ] and χo ∼ g under MGW, it follows
that χo ∼ π under Qn?. It is then clear from the constructions of IMGW0 and Qn?
that if (T, ξ) ∼ IMGW0, then (T(vn), o) ∼ Qn?. In other words the portion of (T, ξ)

descended from vn has the same distribution under IMGW0(n) as under IMGW0, proving
the result.

Turning now to the proof of Thm. 1.4 (b), it is useful to define a two-sided version
of IMGW0, as follows. Let Ωl denote the space of trees with marked line: pairs (T, ξ̄)

where T is an infinite tree and

ξ̄ ≡ (. . . , ξ̄−1, ξ̄0 = o, ξ̄1, . . .)
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is a line (doubly infinite simple path) passing through the root. The positive and
negative parts ξ̄± ≡ (ξ̄±j)j≥0 of ξ̄ are edge-disjoint rays emanating from o.

Now suppose in the construction of IMGW0 we continue the backbone indefinitely
rather than stopping at o, so that Kolmogorov’s existence theorem gives a doubly infinite
backbone based on a line ξ̄. Attaching MGW trees to the leaves of this backbone then
gives a tree with marked line (T, ξ̄), whose law IMGW is clearly stationary with respect to
the shift S : (T, ξ̄) 7→ (T, ξ̄)ξ̄−1 which defined by moving the root to ξ̄−1. (Alternatively, if
(T, ξ) has law IMGW0 conditioned on non-extinction of T(o) and ξ̄ is any line with ξ̄− = ξ,
then Sn(T, ξ̄) converges weakly to an IMGW tree.)

It follows from the discussion preceding Propn. 2.1 that if we let

(T, ξ) ∼ IMGW0 and (T′, ξ′) ∼ Qχo∞?

(independently conditioned on χo), and we delete from T all the vertices descended
from o and identify o with the root of T′, then we obtain a tree with marked line ξ̄− = ξ,
ξ̄+ = ξ′ whose law is precisely IMGW. It follows that the marginal law IMGW1 of (T, ξ̄−)

under IMGW is given by
dIMGW1

dIMGW0
=

dQχo∞
dMGWχo

=
Wo

eχo
. (2.8)

Proof of Thm. 1.4 (b). We adapt the proof of [36, Cor. 2.1.25]. Abbreviating T ≡ (T, ξ),
we let ν denote the law of T ≡ (Tt)t≥0 ≡ ((T, ξ)Yt)t≥0 in the space Ω∞↓ of sequences of
trees with ray, and S0 the shift (T0, T1, . . .) 7→ (T1, T2, . . .) on Ω∞↓ . The content of the
result is that the measure-preserving system (Ω∞↓ ,F

∞, ν,S0) is ergodic.

Step 1: reduction to induced system.
Recall that under the measure IMGW0 the trees T(i)\T(i−1) are conditionally independent
given the ray ξ with types, and maxa∈QMGWa(X) < 1; therefore it holds IMGW0-a.s. that
|T(i)| =∞ for infinitely many i ∈ ξ. Since the walk Yt on (T, ξ) has a backward drift along
ξ, this implies that if we let

A ≡
{
T ∈ Ω∞↓ : T0 ∈ {(T, ξ) ∈ Ω↓ : |T(o)| =∞}

}

and nA(T) ≡ inf{n ≥ 1 : Sn
0T ∈ A} the first hitting time of A after time zero, then

ν(nA < ∞) = 1. Thus (Ω∞↓ , ν,S0) forms a (Kakutani) tower over the induced measure-
preserving system (A, νA ≡ ν(· |A),SnA

0 ). We now show that the induced system is
ergodic, which is equivalent to ergodicity of the original system ([33]; see also [27, §2]).

Step 2: reduction to S-invariance.
Let niA(T) denote the i-th hitting time of A after time zero and Hi ≡ σ(T0, . . . , TniA); note
that (TniA)i≥0 forms an (Hi)-Markov chain. Write S ≡ SnA

0 and let I denote the σ-field
of S-invariant subsets of A. Fix B ∈ I, and define

φ : Ω↓ → [0, 1], φ(T) ≡ νA(T ∈ B | T0 = T).

The S-invariance of B together with the Markov property implies

νA[T ∈ B |Hi] = νA[SiT ∈ B |Hi] = νA[SiT ∈ B | TniA ] = φ(TniA),

i.e., φ(TniA) is an (Hi)-martingale. By Lévy’s upward theorem, limi→∞ φ(TniA) = 1B,
νA-a.s., so that for any 0 < a ≤ b < 1,

1

t

t−1∑

i=0

1{φ(T
ni
A

)∈[a,b]}
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converges νA-a.s. to zero. On the other hand, by the Birkhoff ergodic theorem (see e.g.
[11, Thm. 6.2.1]), it converges νA-a.s. to νA(φ(T) ∈ [a, b] | I). Taking expectations on
both sides we find φ(T) ∈ {0, 1} νA-a.s., that is, φ = 1C0

for some C0 ∈ BΩ↓ . Further,
since φ is a {0, 1}-valued martingale, it holds ν-a.s. that T0 ∈ C0 if and only if TnA ∈ C0.
Since νA(TnA = ST0) > 0 where S is as defined above, 1C0

≤ 1S−1C0
νA-a.s. Applying

the same argument with the martingale 1− φ gives 1C0
= 1S−1C0

νA-a.s., i.e., that C0 is
S-invariant.

Step 3: IMGWR-triviality of S-invariant sets.
It follows from B ⊆ A that C0 is a subset of A0 ≡ {(T, ξ) ∈ Ω↓ : |T(o)| = ∞}. Since
IMGWR � IMGW1 on A0 by (2.8), the result follows by showing that S-invariant subsets
of A0 are IMGW1-trivial. For any C ′0 ⊆ A0 let C ′0 ≡ {(T, ξ̄) : (T, ξ̄−) ∈ C ′0}; the S-
invariance of C0 implies S-invariance of C0. But the ergodicity of the Markov chain of
types along the line ξ̄ readily implies that S-invariant subsets of A0 are IMGW-trivial, e.g.
by the following modification of the argument of [18, Thm. 2.15]: take Cn0 measurable
with respect to the portion ξ̄[−n,0] of the line between ξ̄−n and o, together with the
descendant subtrees of ξ̄−n, . . . , ξ̄−1 away from ξ̄, such that the symmetric difference
Cn04C0 has IMGW-measure tending to zero in n. It follows from S-invariance of C0

together with S-stationarity of IMGW that IMGW[Cn04C0] = IMGW[(SmCn0 )4C0] for any
m, so (by the triangle inequality)

lim
n→∞

sup
m
|IMGW(C0)− IMGW[Cn0 ∩ (SmCn0 )]| = 0.

But for any m > n we have

IMGW[Cn0 ∩ (SmCn0 )] = IMGW[ξ̄[−n,0], ξ̄[m−n,m]]IMGW[Cn0 | ξ̄[−n,0]]IMGW[SmCn0 | ξ̄[m−n,m]],

which tends as m→∞ to IMGW[Cn0 ]2. Therefore

IMGW[C0] = lim
n→∞

IMGW[Cn0 ] = lim
n→∞

IMGW[Cn0 ]2 = IMGW[C0]2

which gives IMGW[C0] ∈ {0, 1} as required.

3 Harmonic coordinates and quenched IMGWR-CLT

In this section we prove the quenched IMGWR-CLT Thm. 1.5. Let

η ≡ EQ∞ [Wo] =
EMGW[W 2

o ]

Eg[eχ]
, σ2 ≡ Eg[eχ]2

EMGW[W 2
o ]
. (3.1)

In §3.1 we construct harmonic coordinates for RWρ on IMGWR-a.e. (T, ξ), and use
the ergodicity result Thm. 1.4 (b) proved above to show an IMGWR-a.s. CLT for the
martingale Mt ≡ SYt , with Mbntc/(ησ

√
n) converging to standard Brownian motion. In

§3.2 we control the error between h(Yt) and Mt/η to prove Thm. 1.5. The following
result, whose proof is deferred to §6.2, implies finiteness of η and σ under (H32):

Proposition 3.1. If (H1), (H2), and (H3p) hold with p > 1, then EMGW[W p
o ] <∞.

3.1 Harmonic coordinates for RWρ and martingale CLT

From now on, if µ is a probability measure on trees (with or without marked ray),
we use µ as shorthand also for µ ⊗ RWρ. We write PT for the law of the quenched
random walk RWρ(T) and ET for expectation with respect to PT, and let (GT

t )t≥0 denote
the corresponding filtration of the walk. Given T, for a vertex v ∈ T we let ∂v denote
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the neighbors of v, and ∂+v the offspring of v, i.e., ∂+v = ∂v ∩ T(v). We write v ≤ w if
w ∈ T(v), with v < w if w 6= v.

For v ∈ T recall that Wv denotes the normalized population size of the subtree T(v).2

For vertices v ∈ T we define Sv as in [32, §3]: if T is a rooted tree, let

Sv ≡
∑

o<u≤v

Wu. (3.2)

If T has marked ray ξ, recalling (1.1) we set

Sv ≡ SRv + Sξv where SRv ≡ −
∑

u∈ξ,o≥u>Rv

Wu, Sξv ≡
∑

Rv<u≤v

Wu. (3.3)

While on MGW-a.e. T the map v 7→ Sv is harmonic except at o with respect to the
transition probabilities of RWρ(T), on IMGW-a.e. (T, ξ) the map v 7→ Sv is harmonic
at every vertex with respect to the transition probabilities of RWρ(T, ξ). Thus, if
(Yt)t≥0 ∼ RWρ(T, ξ), Mt ≡ SYt will be a martingale given a fixed realization of the
tree; we regard it as providing “harmonic coordinates” for the random walk. Using the
reversing measure IMGWR it is easy to prove a quenched CLT for M (extending [32,
Cor. 1]):

Proposition 3.2. Under (H1), (H2), and (H32), on IMGW-a.e. (T, ξ) the process
Mbntc/(ησ

√
n) converges in distribution to a standard Brownian motion as n→∞.

Proof. We check the conditions of the Lindeberg–Feller martingale CLT (see e.g. [11,
Thm. 7.7.4]): letting

Vn =
1

n

n−1∑

t=0

ET[(Mt+1 −Mt)
2 |GT

t ],

we verify that for IMGW-a.e. (T, ξ),

(i) Vn → η2σ2 in probability and

(ii) for all ε > 0, 1
n

∑n−1
t=0 ET[(Mt+1 −Mt)

21{|Mt+1−Mt|>ε
√
n}]→ 0.

Let Yn denote the random walk on (T, ξ): we rewrite Vn in terms of the induced random
walk on Ω↓ as

Vn =
1

n

n−1∑

t=1

ϕ[(T, ξ)Yt ], ϕ[(T, ξ)] ≡ ρ

ρ+ do
W 2
o +

1

ρ+ do

do∑

j=1

W 2
0j .

By Thm. 1.4 (b) and the Birkhoff ergodic theorem, we have Vn converging IMGWR-a.s.
to EIMGWR[ϕ] provided ϕ ∈ L1(IMGWR). We calculate

EIMGWR[ϕ] =
1

2ρ
EMGW

[
ρW 2

o +
∑

v∈∂o

W 2
v

]
= EMGW[W 2

o ] = η2σ2,

so condition (i) is proved. Condition (ii) is checked similarly using dominated
convergence.

2Note that if T has a marked ray ξ, then for v ∈ ξ, Zvn = 〈Zvn, e〉/ρn is not necessarily a martingale for the
first |h(v)| steps. Nevertheless it is eventually a martingale so we can still define Wv to be the a.s. limit of
Zvn.

EJP 17 (2012), paper 75.
Page 15/40

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v17-2294
http://ejp.ejpecp.org/


CLT for biased random walk on multi-type Galton–Watson trees

Remark 3.3. To give some indication of how our results might be extended to RWREρ̄,
we note that the main ingredient needed is the appropriate generalization of the
normalized population size: we define it to be the random variable W o which is the
a.s. limit of the martingale Zn ≡ Z

(1)
n defined by (5.1). If W v denotes the normalized

population size of T(v), then
ρ̄W v =

∑

w∈∂+v

αwWw,

so the W v can be used to define harmonic coordinates for the RWRE. In the single-
type case, W o has finite second moment if and only if κ ≥ 2 [24, Thm. 2.1], so clearly
Propn. 3.2 cannot apply outside this regime. We emphasize again that due to the same
technical barriers which arise in [13], simple adaptations of our proof will not cover the
full regime κ ≥ 2.

3.2 Quenched IMGWR-CLT

We now prove the quenched CLT for IMGWR trees by controlling the corrector

εt ≡
Mt

η
− h(Yt)

on the interval 0 ≤ t ≤ n. For 1/2 < δ < 1 and n ≥ 0 fixed, let τn(j), for jbnδc ≤ n

denote integer times chosen uniformly at random (independently of one another and of
the random walk Y ) from the interval [jbnδc, (j + 1)bnδc).
Proposition 3.4. Assume (H1), (H2), and (H3p) with p > 2. There exists δ0 ≡ δ0(p) ∈
(1/2, 1) such that for δ0 ≤ δ < 1 and ε > 0,

lim
n→∞

P(T,ξ)

(
max

jbnδc≤n

∣∣ετn(j)

∣∣ ≥ ε√n
)

= 0, IMGWR-a.s. (3.4)

Further, for any ε′ with 2ε′ + δ < 1,

lim
n→∞

P(T,ξ)

(
max

r,s≤n,|r−s|≤nδ
|h(Yr)− h(Ys)| ≥ n1/2−ε′

)
= 0, IMGWR-a.s. (3.5)

Given this proposition, we can prove the quenched CLT for RWρ on IMGWR trees:

Proof of Thm. 1.5. If t ≤ n then |t− τn(j)| ≤ bnδc for some j, so

max
t≤n
|εt| ≤ max

r,s≤n,|r−s|≤bnδc

∣∣∣∣
Mr

η
− Ms

η

∣∣∣∣+ max
jbnδc≤n

|ετn(j)|+ max
r,s≤n,|r−s|≤bnδc

|h(Yr)− h(Ys)|.

M satisfies a CLT by Propn. 3.2, and it follows from (3.4) and (3.5) that

lim
n→∞

P(T,ξ)

(
max
t≤n
|εt| ≥ ε

√
n
)

= 0, IMGWR-a.s.,

which gives the result.

The remainder of this section is devoted to the proof of Propn. 3.4.

3.2.1 Tightness

We begin by proving (3.5), using some a priori (annealed) estimates for RWρ coming
from the Carne–Varopoulos bound.

Lemma 3.5. There exists a constant C <∞ such that

MGW
(

max
t≤n
|Xt| ≥ m

)
≤ Cne−(m+1)2/(2n) ∀m,n ≥ 1.
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Proof. We modify the proof of [32, Lem. 5]. Take the finite tree with vertices {w ∈ T :

|w| ≤ m}, and make this into a wired tree T? by adding a new vertex o? which is joined
by an edge to each vertex in Dm. Define the modified random walk X? on T? which
follows the law of RWρ except at o? where it moves to a vertex chosen uniformly at
random from Dm. Then

PT(max
t≤n
|Xt| ≥ m) ≤ 2

n+1∑

t=1

PT?(Xt = o?).

By the Carne–Varopoulos inequality (see [29, Thm. 13.4]),

PT?(X?
t = o?) ≤ 2

√
|Dm|
ρm−1

e−(m+1)2/(2t).

Taking expectations gives

MGW(|X?
t | = o?) ≤ Ce−(m+1)2/(2t),

and summing over 1 ≤ t ≤ n+ 1 gives the result.

Corollary 3.6. There exists a constant C <∞ such that for any m,n ≥ 1,

C−1 IMGW0

(
max
t≤n
|h(Yt)| ≥ m

)
≤ IMGWR

(
max
t≤n
|h(Yt)| ≥ m

)
≤ Cn2e−m

2/(2n).

Proof. We argue as in the proof of [32, Cor. 2]. By decomposing into at most n
excursions away from height zero and using the stationarity of IMGWR, we find

IMGWR
(

max
t≤n

h(Yt) ≥ m
)

≤ n IMGWR
(
∃t ≤ n : h(Yt) ≥ m,h(Ys) > 0 ∀0 ≤ s ≤ t

)

≤ CnMGW
(

max
t≤n
|Xt| ≥ m− 1

)
≤ Cn2e−m

2/(2n),

by Lem. 3.5. The same bound holds for IMGWR(mint≤n h(Yt) ≤ −m) by the reversibility
of IMGWR. The result follows by noting that dIMGW0/dIMGWR is uniformly bounded by
a deterministic constant.

Proof of Propn. 3.4, (3.5). By stationarity of IMGWR and Cor. 3.6, for any fixed s

IMGWR
(

max
0≤u≤nδ

|h(Ys+u)− h(Ys)| ≥ n1/2−ε′
)
≤ Cn2δe−n

1−2ε′−δ/2,

and summing over s ≤ n gives

IMGWR
(

max
r,s≤t,|r−s|≤nδ

|h(Yr)− h(Ys)| ≥ n1/2−ε′
)
≤ Cn2δ+1e−n

1−2ε′−δ/2,

which is summable in n provided 2ε′ + δ < 1. The result then follows from Markov’s
inequality and Borel–Cantelli.

3.2.2 Control of corrector

In the remainder of this section we prove (3.4). We will make use of the following
classical result:
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Lemma 3.7 ([34, p. 60]). If z1, . . . , zn are independent random variables with Ezi = 0

and E|zi|p <∞, then

E

[∣∣∣∣
n∑

i=1

zi

∣∣∣∣
p]
≤
{

2
∑n
i=1E[|zi|p] if 1 ≤ p ≤ 2,

C(p)np/2−1
∑n
i=1E[|zi|p] if p ≥ 2.

Recalling (1.1) and (3.3), we decompose

1√
n

max
jbnδc≤n

∣∣ετn(j)

∣∣ ≤ E1 + E2 (3.6)

where, with Rt ≡ RYt denoting the nearest ancestor of Yt on ξ,

E1 ≡
1√
n

max
t≤2n

∣∣∣∣
SRt
η
− h(Rt)

∣∣∣∣ , E2 ≡
1√
n

max
jbnδc≤n

∣∣∣∣∣
SξYτn(j)

η
− d(Yτn(j), ξ)

∣∣∣∣∣ .

The following lemma says that the harmonic coordinates (Sv)v∈T of (3.2), rescaled by
η of (3.1), are a good approximation to the actual coordinates |v| on the MGW rooted
trees. Let

Aεn ≡ Aεn(T) ≡
{
v ∈ Dn :

∣∣∣∣
Sv
n
− η
∣∣∣∣ > ε

}
, ε > 0, n ≥ 1. (3.7)

Let τ	 ≡ min{t > 0 : Xt = o} denote the first return time to the starting point X0 = o

by the walk X.

Lemma 3.8. Assume (H1), (H2), and (H3p) with p ≥ 2. For any ε > 0, the expected
number of visits to Aεk during a single excursion away from the root is

EMGW

[ τ	∑

t=0

1{Xt∈Aεk}

]
≤ C

ρk
EMGW

[ ∑

v∈Aεk

(1 + dv)

]
≤ C(p, ε)

kp/2
.

Proof. If v ∈ T with |v| = k ≥ 1, a simple conductance calculation (see [29, Ch. 2]) gives

ET

[ τ	∑

t=0

1{Xt=v}

]
=
PT(o→ v)

PT(v → o)
=
ρ+ dv
doρk

, (3.8)

so the first inequality follows. For the second we follow the proof of [32, Lem. 3] (in
particular the estimate [32, (20)]) and of [13, Lem. 4.2]. Recall from §2.3 the definition
(2.7) of the probability measure Qak on rooted trees T given by a size-biasing of MGWa,
and further the probability Qak? on rooted trees T with a marked path (o = v0, . . . , vk)

from the root to level k:

EMGWa

[ ∑

v∈Aεk

(1 + dv)

]
≤ CEMGWa

[ ∑

v∈Aεk

eχv (1 + dv)

]

≤ CρkEQa

[∑
v∈Aεk

eχv (1 + dv)

〈Zk, e〉

]
= CρkEQak?

[(1 + dvk)1{vk∈Aεk}],

so it suffices to show

EQak?
[(1 + dvk)1{vk∈Aεk}] ≤ C(p, ε)k−p/2.

To this end, writing Wi ≡ Wvi , for i < k we decompose Wi ≡ Wi+1/ρ+W 8i where W 8i is
the normalized population size of T(vi)\T(vi+1). Then

Wi =

k−1∑

j=i

W 8j
ρj−i

+
Wk

ρk−i
,
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so
Svk
k
− η =

1

k
CkWk +

1

k

k−1∑

i=1

CiW
8
i − η, Ci ≡

i−1∑

j=0

ρ−j ≤ C∞ ≡
ρ

ρ− 1
.

Conditional on the types (χi ≡ χvi)
k
i=1, the random variables W 81, . . . ,W

8
k−1 are

independent of one another and of the pair (Wk, dvk), and all these random variables
have finite moments of order p by Propn. 3.1. Therefore

EQak?
[(1 + dvk)1{vk∈Aεk}] ≤ CQ

a
k?

(∣∣∣∣
1

k

k−1∑

i=1

CiW
8
i − η

∣∣∣∣ ≥ ε/2
)

+ EQak?
[(1 + dvk)1{CkWk/k≥ε/2}]

By (H3p), Markov’s inequality, and Hölder’s inequality, the second term is

≤
(

2Ck
kε

)p−1

EQak?
[(1 + dvk)W p−1

k ] ≤ C(p, ε)

kp−1
≤ C(p, ε)

kp/2

(since p ≥ 2). As for the first term, by Lem. 3.7 and Markov’s inequality,

Qak?

(∣∣∣∣
1

k

k−1∑

i=1

CiW
8
i − EQak?

[
1

k

k−1∑

i=1

CiW
8
i

∣∣∣∣ (χi)ki=1

]∣∣∣∣ > ε/4

)

≤ C(p)
kp/2−1

(kε)p

{ k−1∑

i=1

EQak?
[|Ci(W 8i − E[W 8i |χi])|p]

}
≤ C(p, ε)k−p/2.

On the other hand,

EQak?

[
1

k

k−1∑

i=1

CiW
8
i

]
→ C∞EQ∞ [W 8o] = EQ∞ [Wo] = η,

and so

Qak?

(∣∣∣∣EQak?

[
1

k

k−1∑

i=1

CiW
8
i

∣∣∣∣ (χi)ki=1

]
− η
∣∣∣∣ > ε/4

)

decays exponentially in k by [10, Thm. 3.1.2]. Combining these estimates completes the
proof.

Recalling the definition (3.3) of the harmonic coordinates on the IMGWR trees, the
next step is to use Lem. 3.8 to show that on these trees Sξv/η is a good approximation to
d(v, ξ). In analogy with (3.7) set

Bεk =

{
w ∈ T : d(w, ξ) = k,

∣∣∣∣
Sξw
k
− η
∣∣∣∣ > ε

}
, Bε =

⋃

k≥1

Bεk(T, ξ). (3.9)

Lemma 3.9. Assume (H1), (H2), and (H3p) with p > 2. There exists δ0 ≡ δ0(p) ∈ (1/2, 1)

such that for δ0 ≤ δ < 1 and ε > 0,

lim
n→∞

P(T,ξ)

(
∃j ∈ Z≥0, jbnδc ≤ n : Yτn(j) ∈ Bε

)
= 0, IMGWR-a.s.

Proof. We modify the proof of [13, (22)]. If we define

τhit
n,ε ≡ inf{t ≥ 0 : |h(Yt)| = bn1/2+εc},

then Cor. 3.6 together with Markov’s inequality gives

IMGWR[P(T,ξ)(τ
hit
n,ε ≤ n) ≥ c] ≤ c−1IMGWR(τhit

n,ε ≤ n) ≤ c−1Cn2e−n
2ε/2,
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so by Borel–Cantelli we have P(T,ξ)(τ
hit
n,ε ≤ n)→ 0, IMGWR-a.s.

On the event {τhit
n,ε > n}, we decompose the walk into excursions from ξ started at

vi, 0 ≤ i < bn1/2+εc (with each step of the walk along the ray contributing an empty
excursion) and apply Wald’s identity (see e.g. [4, Exercise 22.8]) to find

P(T,ξ)

({
∃jbnδc ≤ n : Yτn(j) ∈ Bε

}
∩ {τhit

n,ε > n}
)

≤ 1

bnδc

bn1/2+εc−1∑

i=0

E(T,ξ)[Li(τ
hit
n,ε)]E

i
(T,ξ)[L(Bε; τ exc)]. (3.10)

In the above, LA(n) ≡ L(A;n) denotes the number of visits to set A by time n and
Li(n) ≡ L(vi;n). Ei(T,ξ) denotes expectation with respect to the law of a ρ-biased random

walk Y started from Y0 = vi, and τ exc ≡ inf{t > 0 : Yt = vi or Yt /∈ T(vi)} denotes the
excursion end time.

By a conductance calculation,

E(T,ξ)[Li(τ
hit
n,ε)] =

1

P(vi → vbn1+εc)
≤ 1 + di/ρ

1− ρ ≤ Cdi. (3.11)

During a single excursion away from ξ the walk can visit only one of the T(w) for
w ∈ ∂+v\vi−1, so to bound the second factor of each summand in (3.10) it suffices
to consider an MGW rooted tree T′ (without ray): letting

Ãεk ≡ Ãεk(T′) ≡
{
v ∈ Dk :

∣∣∣∣
Wo + Sv
k + 1

− η
∣∣∣∣ > ε

}
, Ãε ≡

⋃

k≥0

Ãεk,

it follows from a (very slight) modification of Lem. 3.8 that

EIMGW0
[L(Bε; τ exc) | i ∪ ∂+i] ≤ CEMGW

[ τ	∑

t=0

1{Xt∈Ãε}

]
≤ C(p, ε)

∑

k≥1

k−p/2 ≤ C(p, ε)

(using p > 2). It follows that the quantity in (3.10) converges to zero IMGWR-a.s., which
concludes the proof.

Proof of Propn. 3.4, (3.4). Recall the decomposition (3.6). For any k0,

E1 ≤
1√
n

max
i≤k0

∣∣∣∣
Svi
η
− h(vi)

∣∣∣∣+
1√
n

max
t≤2n,h(Rt)>k0

∣∣∣∣
SRt
η
− h(Rt)

∣∣∣∣ .

The first term clearly tends to zero as n→∞ with k0 fixed. The second term is bounded
above by (

1√
n

max
t≤2n

|Mt|
)

sup
i>k0

∣∣∣∣
1

η
− h(vi)

Svi

∣∣∣∣ . (3.12)

Now recall from the proof of Propn. 2.1 that if (T, ξ) ∼ IMGW0 then (T(k), o) ∼ Qk?. Thus
a consequence of the proof of Lem. 3.8 is that for sufficiently small ε,

IMGW0(|Svk/k + η| ≥ ε) ≤ C(p, ε)k−p/2.

Therefore the supremum in (3.12) can be made arbitrarily small by taking k0 large. We
also have

E2 ≤
(

1√
n

max
t≤2n

|Mt|
)

max
jbnδc≤n

∣∣∣∣∣
1

η
− d(Yτn(j), ξ)

SξYτn(j)

∣∣∣∣∣ ,

and in view of Lem. 3.9 the second factor tends to zero in probability. By the invariance
principle for M proved in Propn. 3.2, maxt≤2n |Mt|/

√
n stays bounded in probability as

n→∞, so the result follows.
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4 From IMGWR-CLT to MGW-CLT by shifted coupling

In this section we prove our main result Thm. 1.1. In §4.1 we review (a slight
modification of) the “shifted coupling” procedure of [32, §6], which we use in §4.2 to
transfer the IMGWR-CLT to an annealed MGW-CLT. In §4.3 we prove a variance estimate
which allows to go from the annealed to the quenched MGW-CLT.

4.1 The shifted coupling construction

We begin by reviewing the shifted coupling construction of [32, §6], with the
modification needed to handle the multi-type case. The basic observation underlying
the construction is that the law of the random walk X ∼ RWρ(T) up to time t depends
only on

Et ≡ o ∪ (∂Xs)0≤s<t

(“the subtree explored by time t”), so that one can construct the tree at the same time
as the random walk.

For any tree T (with or without marked ray) and U any subset of the vertices of T,
we also use U to indicated the subgraph of T induced by U . Let LT denote the set of
leaves of T, and write T◦ ≡ T\LT.

Let a0 ∈ Q be fixed, and suppose (T, (Xt)t≥0) ∼ MGW ⊗ RWρ. For each fixed n ≥ 1

we give a decomposition of X into “fresh excursions” marked by time intervals [τi, ηi),
i ≥ 1 (all depending on n), as follows. Set η0 ≡ 0 and define

`(n) ≡ 4b(log(1 + n))3/2c. (4.1)

For i ≥ 1, let

τi ≡ min{t > ηi−1 : Xt ∈ LEt, |Xt| > `(n)/2, χXt = a0}, excursion start,

ηi ≡ min{t > τi : Xt ∈ E◦τi}, excursion end,

Vi ≡ Xτi ∪ Eηi\Eτi , excursion exploration.

We take the convention min∅ ≡ ∞, and let τX ≡ max {i : ηi <∞} be the total number
of excursions (so

{
τX <∞

}
= X). The key point of the above definition is that even

after X reaches a leaf vertex and it is necessary to grow the tree to continue sampling
the random walk, we do not consider a fresh excursion (Xs)τi≤s<ηi to have begun until
X reaches a leaf vertex of the fixed type a0. Without this restriction the sequence of
types (χXτi )i≥1 has a possibly complicated dependency structure making it unclear how
to define a valid coupling.

Next we construct a coupled realization ((T�, ξ), (Yt)t≥0) ∼ IMGW0 ⊗ RWρ as follows:
first construct the backbone E�0 of the tree (ξ and ∂+vi for i ≥ 1, together with types)
in the manner described in §2.1. Set η�0 ≡ 0, and start a ρ-biased random walk Y on E�0
with Y0 = o. As in the MGW setting we will construct a growing sequence (E�t )t≥0 such
that E�t = E�0 ∪ (∂Ys)0≤s<t, and we will define (for i ≥ 1)

τ�i ≡ min{t > η�i−1 : Yt ∈ LE�t , d(Yt, ξ) > `(n)/2, χYt = a0}, excursion start,

η�i ≡ min{t > τ�i : Yt ∈ (E�τ�i )◦}, excursion end,

V�i ≡ Yτ�i ∪ E�η�i \E
�
τ�i
, excursion exploration.

The difference is that we grow the sequence E�t in a manner dependent on (T, X),
such that excursions of Y into unexplored territory (and started from a0) match the
excursions of X defined above: formally, we couple (Ys)τ�i ≤s<η�i with (Xs)τi≤s<ηi such
that there is a (type-preserving) isomorphism fi : Vi → V�i with fi(Xτi+s) = Yτ�i +s, and
then we set Yη�i to be the ancestor of Yτ�i (not necessarily of the same type as Xηi).
Then, on the inter-excursion intervals η�i−1 ≤ t < τ�i (for i ≥ 1),
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• If Yt ∈ (E�t )
◦ then generate Yt+1 according to the transition kernel of RWρ on

E�t+1 = E�t ;

• If Yt ∈ LE�t with χYt 6= a0, let E�t+1 be the enlargement of E�t obtained by attaching
random offspring to Yt according to law qχYt , and generate Yt+1 according to the
transition kernel of RWρ on E�t+1.

Again, a fresh excursion (Ys)τ�i ≤s<η�i does not begin until Y reaches a leaf vertex of the
correct type a0. Finally, with E�∞ ≡ limt→∞ E�t , we define T� by attaching to each vertex
v ∈ LE�∞ an independent MGWχv tree. We thus obtain the following extension of [32,
Lem. 8]:

Lemma 4.1. If (T, (Xt)t≥0) ∼ MGW ⊗ RWρ then the marginal law of ((T�, ξ), (Yt)t≥0)

arising from the above construction is IMGW0 ⊗ RWρ.

Remark 4.2. Although we suppress the parameter n from the notation, we emphasize
that each n ≥ 1 gives rise to a different excursion decomposition, hence a different
coupling between (T, X) and ((T�, ξ), Y ).

4.2 Annealed MGW-CLT

We now transfer the quenched IMGWR-CLT to the following annealed MGW-CLT:

Proposition 4.3. Assume (H1), (H2) and (H3p) with p > 4. If (T, X) has law MGW⊗RWρ

conditioned on Xc, then the processes (|Xbntc|/(σ
√
n))t≥0 converge in law to the

absolute value of a standard Brownian motion.

Recall that Rt ≡ RYt denotes the nearest ancestor of Yt on ξ. By Thm. 1.5, for
IMGW0-a.e. (T, ξ), the process

Hbntc/(σ
√
n), Ht ≡ h(Yt)− min

0≤s≤t
h(Ys) = h(Yt)− min

0≤s≤t
h(Rs) ≥ 0 (4.2)

converges to a Brownian motion minus its running minimum, which is the same in law
as the absolute value of a Brownian motion (see e.g. [19, Thm. 3.6.17]). Thus to deduce
Propn. 4.3 we need to estimate the relation between the processes |Xn| and Hn. To this
end, let t, t� be the monotone increasing bijections

t : Z≥0 →
⋃

i≥1

[ηi−1, τi), t� : Z≥0 →
⋃

i≥1

[η�i−1, τ
�
i ),

parametrizing the inter-excursion times of Xn and Yn respectively. We make the
following notations (the left column refers to the MGW tree, while the right column
refers to the IMGW0 tree):

X int
s ≡ Xt(s), Y int

s ≡ Yt�(s)
Hs ≡ σ(Xt : t ≤ t(s)) H�s ≡ σ(Yt : t ≤ t�(s)),

Ji ≡ t−1[ηi−1, τi), J�i ≡ (t�)−1[η�i−1, τ
�
i );

In ≡ max {i : ηi−1 ≤ n} , I�n ≡ max
{
i : η�i−1 ≤ n

}
;

∆n ≡
∑In
i=1 |Ji|, ∆�n ≡

∑I�n
i=1 |J�i |;

∆n(α) ≡∑In
i=1 |{s ∈ Ji : |X int

s | ≤ nα}|, ∆�n(α) ≡∑I�n
i=1 |{s ∈ J�i : d(Y int

s , ξ) ≤ nα}|.

In words, given the walk X on the MGW tree, X int
s is the “inter-excursion process”

adapted to the filtration Hs, Ji is the i-th inter-excursion interval, In is the number of
such intervals intersecting [0, n], ∆n is the total length of these intervals, and ∆n(α) is
the length of these intervals except for times spent at distance more than nα from the
root. The right column defines the analogous objects for the walk on the IMGW0 tree.
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Lemma 4.4. Assume (H1), (H2), and (H3p) with p > 4. There exists α0(p) < 1/2 such
that for α > α0(p),

MGW(∆n(α) 6= ∆n |Xc)

IMGW0(∆�n(α) 6= ∆�n)

}
≤ n−c, c ≡ c(p, α) > 0.

We will obtain the corollary below as a relatively straightforward consequence of
Lem. 4.4. Let

Dn ≡ max
0≤r≤s≤n

{h(Rs)− h(Rr)}

denote the maximum displacement by time n against the backward drift on ξ.

Corollary 4.5. Assume (H1), (H2), and (H3p) with p > 4. Then

(a) There exists α0(p) < 1/2 such that for α ≥ α0(p),

MGW(∆n ≥ n1/2+α+ε |Xc)

IMGW0(∆�n ≤ n1/2+α+ε)

}
≤ n−c, c ≡ c(p, α, ε) > 0

(b) On IMGW0-a.e. (T, ξ), Dn/
√
n converges P(T,ξ)-a.s. to zero.

Assuming these results we can prove the annealed MGW-CLT:

Proof of Propn. 4.3. Let b : Z≥0 → Z≥0 be any nondecreasing map which maps [τ�i , η
�
i )

bijectively onto [τi, ηi), and J�i into Ji, for each i. Then for t ∈ [τ�i , η
�
i ) we have

|Xb(t)| − |Xτi | = d(Yt, ξ)− d(Yτ�i , ξ), so, recalling (1.1) and (4.2), we have

||Xb(t)| −Ht| =
∣∣∣∣|Xb(t)| − d(Yt, ξ)− h(Rt) + min

s≤t
h(Rs)

∣∣∣∣ ≤ |Xτi |+ d(Yτ�i , ξ) +Dt.

If instead t ∈ J�i then

||Xb(t)| −Ht| ≤ |Xb(t)|+ |Ht| ≤ |Xb(t)|+Dt + d(Yt, ξ).

It follows that on the event {∆n(α) = ∆n} ∩ {∆�n(α) = ∆�n},
1√
n

max
0≤t≤n

||Xb(t)| −Ht| ≤
2nα +Dn√

n
,

so by Thm. 1.5, Lem. 4.1, Lem. 4.4, and Cor. 4.5 (b), the processes (|Xb(bntc)|/(σ
√
n))t≥0

converge in law to a reflected Brownian motion. On the other hand, Cor. 4.5 (a) implies
that n−1 max0≤t≤1(b(bntc) − bntc) → 0 in probability, so we obtain the CLT for the
processes (|Xbntc|/(σ

√
n))t≥0 from the a.s. uniform continuity of Brownian motion on

compact intervals.

In the remainder of this subsection we prove Lem. 4.4 and Cor. 4.5. Let Co,` ≡
C(o↔ `) denote the conductance between o and D` in T, with respect to the stationary
measure $ for RWρ(T) with the normalization $(o) = do. We will make use of the
following conductance lower bound:

Lemma 4.6. Under (H1), (H2), and (H32), there exist 0 < r,C < ∞ such that for all
ε > 0, MGW(C−1

o,k ≥ k1+ε |Xc) ≤ Ck−rε.
The proof of the lemma is deferred to §6.3 where we also provide a quenched

conductance lower bound (see Propn. 6.5) which is not needed in the proof of the main
theorem. Lem. 4.6 readily implies an upper bound on the amount of time

Nα(n) ≡
n∑

t=0

1{|Xt|≤nα}, N�α(n) ≡
n∑

t=0

1{d(Yt,ξ)≤nα}

spent by X (resp. Y ) within distance nα of the root (resp. marked ray) by time n:
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Corollary 4.7. Assume (H1), (H2), and (H32). Then

MGW(Nα(n) ≥ n1/2+α+ε |Xc)

IMGW0(N�α(n) ≥ n1/2+α+ε)

}
≤ Cn−cε.

Proof. By iterated expectations, Markov’s inequality, and Lem. 3.5,

MGW(Nα(n) ≥ n1/2+α+2ε |Xc) ≤ n−ε + MGW(ET[Nα(n)] ≥ n1/2+α+ε |Xc)

≤ n−ε + Ce−n
2ε/3 + MGW({τhit

n,ε > n} ∩ {ET[Nα(τhit
n,ε)] ≥ n1/2+α+ε} |Xc)

where τhit
n,ε ≡ inf{t ≥ 0 : |Xt| = bn1/2+εc}. Wald’s identity gives

ET[Nα(τhit
n,ε)] ≤ ET[Lo(τ

hit
n,ε)]ET[Nα(τ	)]

with LA(n) the number of visits the walk makes to set A by time n. Recalling (3.8), we
have

ET[Lo(τ)] ≤ do
C(o↔ bn1/2+εc) , ET[Nτ	(α)] ≤ C

bnαc+1∑

k=0

|Dk|,

so the MGW bound follows from Lem. 4.6 with a few more applications of Markov’s
inequality.

For the IMGW0 bound we argue as in the proof of Lem. 3.9: by Markov’s inequality
and Cor. 3.6,

IMGW0(N�α(n) ≥ n1/2+α+2ε) ≤ n−ε + IMGW0(E(T,ξ)[N
�
α(n)] ≥ n1/2+α+ε)

≤ n−ε + Ce−n
4ε/3 + IMGW0(N�α(τhit

n,ε) ≥ n1/2+α+2ε),

so it suffices to bound the last term. By Wald’s identity and (3.11),

E(T,ξ)[N
�
α(τhit

n,ε)] ≤
bn1/2+εc−1∑

i=0

E(T,ξ)[Li(τ
hit
n,ε)]E

i
(T,ξ)[N

�
α(τ exc)]

≤ C
bn1/2+εc−1∑

i=0

diE
i
(T,ξ)[N

�
α(τ exc)],

so again the bound follows by using Markov’s inequality.

Most of the technical estimates required for the proof of Lem. 4.4 are contained
in the following auxiliary lemma (cf. [13, Lem. 7.3]). For `(n) as in (4.1), define the
sequence of (Hs)-stopping times

Θ0 ≡ 0, Θj+1 ≡ min{s > Θj : ||X int
s | − |X int

Θj | = `(n)|}

and similarly the sequence of (H�s)-stopping times

Θ�0 ≡ 0, Θ�j+1 ≡ min{s > Θ�j : |d(Y int
s , ξ)− d(Y int

Θ�j
, ξ)| = `(n)}.

Lemma 4.8. Assume (H1) and (H2).

(a) Assume (H3p) and let

C ≡ C(n, ε) ≡ {v ∈ T : Wv > n1/4−ε}

(well-defined for trees with and without ray). Then

MGW(τhit(C) ≤ n)

IMGW0(τhit(C\ξ) ≤ n)

}
≤ C(p, ε)n1−p(1/4−ε).

For p > 4 the right-hand side can be made ≤ n−c for c ≡ c(p, ε) > 0.
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(b) Assuming (H3p) with p > 2, for any ε > 0 there exists c ≡ c(p, ε) such that

MGW(In ≥ n1/2+ε |Xc)

IMGW0(I�n ≥ n1/2+ε)

}
≤ e−cnε/2 .

(c) With Θj ,Θ
�
j defined as above,

MGW(t(Θ3In) ≤ n)

IMGW0(t�(Θ�3I�n) ≤ n)

}
≤ e−c`(n).

(d) Recalling the notation of (3.7) and (3.9), define

A ≡ A(n, α, ε) ≡
b(logn)2c⋃

k=0

Aεbnαc−k, B ≡ B(n, α, ε) ≡
b(logn)2c⋃

k=0

Bεbnαc−k.

Assuming (H3p) with p > 2, there exists α0(p) ∈ (0, 1/2) such that for all α ≥ α0(p)

and all ε < ε0(p, α) (with ε0(p, α) > 0),

MGW(τhit
A ≤ n)

IMGW0(τhit
B ≤ n)

}
≤ n−c (4.3)

for some c ≡ c(p, α, ε) > 0. If further p > 4 then α0, ε0 can be chosen such that

MGW(τhit
A+
≤ n) ≤ n−c, A+ ≡ A+(n, α, ε) ≡

⋃

k≥bnαc

Aεk. (4.4)

Proof. (a) See proof of [32, (63)].

(b) We will show that with probability ≥ 1 − e−cn
ε/2

conditioned on Xc, one of the
first bn1/2+ε/2c excursions has length ηi − τi > n which certainly implies the result.
Conditioning on Xc is needed simply to ensure τX = ∞; for the purpose of proving the
claim we may artificially define ηi − τi =∞ for i > τX.

Then, conditioned on (ηj − τj)i−1
j=1, the probability that ηi − τi > n is bounded below

by a constant times MGW(τ	 > n). Further

PT(τ	 > n) ≥ PT(τ	 > τhit
n,ε/2 > n) ≥ PT(τ	 > τhit

n,ε/2)− PT(τhit
n,ε/2 ≤ n),

so Lem. 3.5 and Lem. 4.6 imply MGW(τ	 > n) ≥ c/n1/2+ε/2 for c ≡ c(p, ε). Thus the
probability that none of the first bn1/2+εc excursions has length > n is

≤
(

1− c

n1/2+ε/2

)bn1/2+ε/2c
≤ e−cnε/2 ,

which proves the result.

(c) We follow the proof of [32, Lem. 11]. On the IMGW0 tree, since d(Y0, ξ) = 0, d(Y int, ξ)

must increase by `(n) going from Θ�j−1 to Θ�j for at least half of the indices j ≤ 3I�n so
{t(Θ3In) ≤ n} implies the event

G� ≡ {∃i ≤ I�n,Θ�j−1,Θ
�
j ∈ J�j , d(Y int

Θ�j
, ξ) > d(Y int

Θ�j−1
, ξ)}.

This in turn implies one of two possibilities:

1. there exist times t0 < t1 < t2 ≤ n with Yt0 = Yt2 and d(Yt0 , ξ) = d(Yt1 , ξ) + `(n)/4,
or
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2. there exist times t1 < t2 ≤ n with d(Yt2 , ξ) = d(Yt1 , ξ) + `(n)/4 such that a0 does
not appear on the geodesic between the Yti .

By a random walk estimate (cf. (3.8)) summed over at most n2 possibilities for (Yt0 , Yt1),
the first event has probability ≤ Cn2ρ−`(n)/4. The second event has probability ≤ e−c`(n)

by the construction of IMGW0 and the irreducibility of the Markov chain, and combining
these estimates gives the bound for IMGW0. The bound for MGW follows by a similar
argument.

(d) We first prove the bounds for MGW; the argument is similar to that of Cor. 4.7: again
it suffices to bound MGW(τhit

A ≤ τhit
n,ε), and Wald’s identity gives

PT(τhit
A ≤ τhit

n,ε) ≤ ET[Lo(τ
hit
n,ε)]PT[τhit

A < τ	].

By (3.8) and Markov’s inequality, ET[Lo(τ
hit
n,ε)] ≤ n1/2+2ε except with probability at most

n−c for c ≡ c(p, ε) > 0. By Lem. 3.8,

MGW(τhit
A < τ	) ≤ C(α, p, ε)(log n)2(nα)−p/2.

Since p > 2, we can choose α sufficiently close to 1/2 and ε sufficiently small such that
Markov’s inequality gives MGW(PT(τhit

A < τ	) ≥ n−(1/2+3ε)) ≤ n−c, from which (4.3)
follows for MGW. (4.4) follows similarly by noting

MGW(τhit
A+

< τ	) ≤ C(α, p, ε)(nα)1−p/2.

The bound (4.3) for MGW together with the argument of Cor. 4.7 gives

IMGW0(τhit
B ≤ τhit

n,ε) ≤ C(p, ε)(log n)2n1/2+ε−αp/2,

and the bound (4.3) for IMGW0 follows by choosing α close to 1/2 and ε small.

Proof of Lem. 4.4. We modify the proof of [32, (55)] (see also [13, (28)]; our Lem. 4.8
plays the role of [13, Lem. 5.1]).

On the MGW tree write E ≡ {∆n(α) 6= ∆n} = {maxs≤∆n
|X int

s | ≥ nα}. If we define

Υ ≡ {In ≥ n1/2+ε} ∪ {t(Θ3In ≤ n)} ∪ {τhit
A ≤ n} ∪ {τhit

C ≤ n}

and consider the process M(j) ≡ SXint(Θj), we have

MGW(E) ≤ MGW(Υ) + MGW
(
Υc ∩

{
max

j≤3n1/2+ε
M(j) ≥ (η − ε)(nα − `(n))

})
. (4.5)

By Lem. 4.8 it suffices to bound the second term. To this end let τ	i denote the i-
th return of (X int

Θj
)j to the root (with τ	0 ≡ 0): then for each i ≥ 0 the process

Mi(j) ≡M(j ∧ τ	i+1) is a supermartingale for j ≥ τ	i + 1, and the second term of (4.5) is

≤ MGW
(
Υc ∩

{
max

i:τ	
i ≤3n1/2+ε

max
j≤3n1/2+ε

[Mi(τ
	
i + j)−Mi(τ

	
i + 1)] ≥ ηnα

2

})

(for n large and suitable α, ε). If we define the (HΘj )j-stopping time

Ψ ≡ inf{j : t(Θj) > τhit
C },

then

Mi(j) ≡Mi(j ∧Ψ)− [Mi(Ψ)−Mi(Ψ− 1)]1{Ψ≤j}, j ≥ τ	i + 1
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is a supermartingale with differences ≤ `(n)n1/4−ε, so the Azuma–Hoeffding inequality
gives

PT

(
max

j≤3n1/2+ε
[Mi(τ

	
i + j)−Mi(τ

	
i + 1)] ≥ ηnα

2

)
≤ exp

{
− (ηnα/2)2

2(3n1/2+ε)`(n)2n2(1/4−ε)

}
.

Choosing α, ε appropriately and summing over at most 3n1/2+ε return times τ	i gives
the desired bound on the second term of (4.5), from which the MGW bound follows.

The bound for the IMGW0-probability of E� ≡ {∆�n(α) 6= ∆�n} is similar, indeed
simpler since M�(j) ≡ SY int(Θ�j ) is always a supermartingale. With

Υ� ≡ {I�n ≥ n1/2+ε} ∪ {t�(Θ�3I�n) ≤ n} ∪ {τhit
B ≤ n} ∪ {τhit

C ≤ n},

we have from Lem. 4.8 that IMGW0(E�) is

≤ n−c + IMGW0

(
(Υ�)c ∩

{
max

j≤3n1/2+ε
M�(j) ≥ ηnα

2

})
,

and applying the Azuma–Hoeffding bound gives the result.

Proof of Cor. 4.5. (a) We have the set inclusions

{∆n ≥ n1/2+α+ε} ⊆ {∆n 6= ∆n(α)} ∪ {Nα(n) ≥ n1/2+α+ε},
{∆�n ≤ n1/2+α+ε} ⊆ {∆�n 6= ∆�n(α)} ∪ {N�α(n) ≥ n1/2+α+ε},

so the result follows from Lem. 4.4 and Cor. 4.7.

(b) Let (hs)s≥0 denote the height process for the walk Y restricted to ξ, i.e. erasing all
excursions away from ξ; clearly Dn ≤ D′n ≡ max{hs − hr : 0 ≤ r ≤ s ≤ n}. But hs is
simply a random walk on Z≤0 with a ρ-bias in the negative direction. Set σ0 ≡ 0,

σj ≡ inf{s > σj−1 : hs = hσj−1
− 1}, j ≥ 1.

Now the processes (h̄
(j)
s ≡ hs − hσj )σj≤s≤σj+1

are i.i.d., and clearly σn ≥ n, so

D′n ≤ max
0≤j<n

(
max
s
h̄(j)
s

)
.

The probability of maxs h̄
(j)
s ≥ m is at most the probability that a random walk on Z

started at 0 with a ρ-bias in the negative direction will reach m before −1, which is
(1 − ρ−1)/(ρm − ρ−1) ≤ ρ−m. Summing over j gives P(T,ξ)(D

′
n ≥ m) ≤ nρ−m, IMGW0-

a.s.

4.3 Quenched MGW-CLT

We now describe how to move from the annealed to the quenched CLT; the proof is
motivated by ideas in [32, §6-7] and [6, Lem. 4.1]. For given n ≥ 1, let s denote the
unique increasing bijection

s : Z≥0 →
⋃

i≥1

[τi, ηi),

and let Xexc
t ≡ Xs(t), the excursion process of X with parameter n (recalling Rmk. 4.2).

For s(t) ∈ [τi, ηi) write Xcent
t ≡ |Xexc

t | − |Xτi |.
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Proof of Thm. 1.1. We show the quenched CLT for X through a quenched CLT for Xcent

along geometrically increasing subsequences bk ≡ bbkc (k ≥ 0) with b > 1.

Step 1: annealed CLT for Xcent.
The time killed during the first n steps of X is n − s−1(n) ≤ ∆n, so Cor. 4.5 (a) gives
n−1 sup0≤t≤T |s(bntc)− bntc| → 0 in MGW-probability. It follows from Propn. 4.3 and the
continuity of Brownian motion that the processes Xcent

bntc/(σ
√
n) also satisfy the annealed

MGW-CLT.

Step 2: quenched CLT for Xcent along geometrically increasing subsequences.
Recalling Rmk. 1.2, let Bn(X) ≡ (Bnt (X))t≥0 denote the polygonal interpolation of
j/n 7→ Xcent

j /(σ
√
n), and regard Bn(X) as an element of C[0, T ] with the norm

dT (u, u′) ≡
(

sup
0≤t≤T

|ut − u′t|
)
∧ 1.

We will show that for all Lipschitz functions F : C[0, T ]→ [−1, 1] with Lipschitz constant
≤ 1, ∑

k≥0

VarMGW[ET[F [Bbb
kc(X)]]] <∞. (4.6)

The Borel–Cantelli lemma then implies (cf. [6, Lem. 4.1]) that for MGW-a.e. T, the
processes Xcent

bntc/(σ
√
n) converge in law to the absolute value of a standard Brownian

motion along the subsequence bk.
To see (4.6), let T ∼ MGW, let (Xi, si) (i = 1, 2) be two independent realizations of

(X, s) conditioned on T, and write Bn,i ≡ Bn(Xi). Then

VarMGW[ET[F [Bn(X)]]] = EMGW[F (Bn,1)F (Bn,2)]− EMGW[F (Bn,1)]2.

Let Ein denote the subtree explored by Xi up to time n, and write Xi ≡ (T, Xi, si,Ein).
Now let X́i ≡ (T́i, X́i, śi, Éin) (i = 1, 2) be two new realizations, each with the same
marginal law as X1, but independent of the Xi and of one another conditioned on the
event that both T́i agree with T to depth `(n)/2. With this definition the processes
(X́i)cent are exactly independent with law not depending on the first `(n)/2 levels of T.
Moreover, if An denotes the event that the paths of X́1 and X́2 up to time maxi(ś

i)−1(n)

have no common vertices at distance more than `(n)/2 from the root, then the explored
trees É1

n and É2
n are compatible with one another: in other words, it is possible to couple

(Ein, X
i|[0,n])i=1,2 with (Éin, X́

i|[0,n])i=1,2 such that the processes agree on the event An.
Therefore

VarMGW[ET[F [Bn(X)]]] ≤ EMGW[F (B́n,1)F (B́n,2)] + MGW(An)− EMGW[F (Bn,1)]2

= EMGW[F (B́n,1)]2 + MGW(An)− EMGW[F (Bn,1)]2 = MGW(An)

We claim MGW(An) ≤ n−c: since Cor. 4.7 and Cor. 4.5 (a) imply MGW(2n − s−1(2n) ≥
n) ≤ n−c, it suffices to bound the probability that the paths of X1 and X2 up to time 2n

intersect at distance > `(n)/2 from the root. But the chance that X2 hits a given vertex
v with |v| > `(n)/2 by time 2n is ≤ Cnρ−`(n)/2, and summing over the vertices visited by
X1 proves the claim. The variance condition (4.6) now follows by summing over (bk)k≥0.

Step 3: quenched CLT for X along geometrically increasing subsequences. Extend s−1

to a nondecreasing map Z≥0 → Z≥0 by setting s−1(t) = s−1(τi) for t ∈ [ηi−1, τi): then

||Xt| −Xcent
s−1(t)| =

{
|Xτi |, t ∈ [τi, ηi),

|Xt|, t ∈ [ηi−1, τi).
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It follows from Lem. 4.4 and Cor. 4.5 (a) that for any b > 1,

b−1
k sup0≤t≤bkT {s−1(t)− s−1(t)}

b
−1/2
k sup0≤t≤bkT ||Xt| − |Xcent

s−1(t)||

}
k→∞−→ 0, MGW-a.s.

It follows that the processes |Xnt|/(σ
√
n) satisfy the quenched CLT along the

subsequence (bk)k≥0 for any b > 1.

Step 4: quenched CLT for X along full sequence. For the processes (|Xbntc|/(σ
√
n))t≥0,

MGW-a.s. tightness and convergence of finite-dimensional distributions both follow from
the scaling relation

Bnt (X) =

√
bk
n
Bbk

(
t
n

bk

)
,

(cf. proof of [6, Lem. 4.1]).

Proof of Cor. 1.3. Given (T, X) ∼ MGW ⊗ RWρ we can obtain (T, Xcts) ∼ MGW ⊗ RWcts
ρ

by taking (Ei)i≥1 i.i.d. exponential random variables with unit mean independent of X,
and setting

Xcts
t = Xθ(t), θ(t) = max



i :

i∑

j=1

Ej
ρ+ dXj−1

≤ t



 ;

similarly we can obtain ((T�, ξ), Y cts) ∼ IMGW0⊗RWcts
ρ from ((T�, ξ), Y ) ∼ IMGW0⊗RWρ.

Thus a shifted coupling of (T, X) with ((T�, ξ), Y ) (as constructed in §4) naturally gives
rise to a shifted coupling of (T, Xcts) ∼ MGW⊗RWcts

ρ with ((T�, ξ), Y cts) ∼ IMGW0⊗RWcts
ρ

by using sequences (Ei)i≥1 for Xcts and (E�i )i≥1 for Y cts which are marginally i.i.d.
exponential but such that the jump times match during the coupled excursions.

By Thm. 1.4 (b) and the exponential decay of the E�i , it holds IMGWR-a.s. that

1

n

n∑

i=1

E�i
ρ+ dYi

→ EIMGWR

[ 1

ρ+ do

]
=

1

2ρ
.

From this it is easy to see that n−1 sup0≤t≤T [θ(nt)−2ρnt]→ 0 IMGWR-a.s., so on IMGWR-
a.e. (T, ξ) the processes (h(Y cts

bntc)/(σ
√

2ρn))t≥0 converge in law to standard Brownian

motion. The quenched MGW-CLT for Xcts follows from the proof of Thm. 1.1.

5 Transience-recurrence boundary for RWREλ

We now prove Thm. 1.6. Our proof is a straightforward adaptation of that of [26,
Thm. 1] or [13, Propn. 1.1] once we supply the needed large deviations estimate
(Lem. 5.2) on the conductances at the n-th level of the tree, extending the estimates
of [26, p. 129] and [13, p. 7] to our setting of Markovian dependency.

Let D ≡ {γ : maxa,b Ā
(γ)(a, b) < ∞}, where Ā(γ) is as defined in (1.3). Recall that

ρ̄(γ) denotes the Perron–Frobenius eigenvalue of Ā(γ) with ρ̄(γ) ≡ ∞ for γ /∈ D. The
following lemma collects some basic properties of ρ̄.

Lemma 5.1. Under the hypotheses of Thm. 1.6, ρ̄ is lower semi-continuous and log-
convex on R, and differentiable on D.

Proof. Lower semi-continuity of ρ̄ in D follows from Fatou’s lemma, and lower semi-
continuity outside the closure of D is trivial, so it remains to consider the boundary of
D: we must show that if γ → γ∞ with maxa,b Ā

(γ)(a, b) → ∞ then ρ̄(γ) → ∞. Recall the
min-max characterization (see e.g. [16, Cor. 8.3.3])

ρ̄(γ) = max
x≥0,x 6=0

min
a:xa 6=0

(Ā(γ)x)a
xa

.
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Since ρ[(A(γ))k] = ρ(A(γ))k (k ∈ N), and Ā(0) is positive regular which implies Ā(γ) is
also for all γ ∈ D, we may assume without loss that mina,b Ā

(γ)(a, b) ≥ ε for all γ in a
neighborhood of γ∞. Applying the min-max characterization to the vectors x = 1a gives
ρ̄(γ) ≥ maxa Ā

(γ)(a, a). Applying it to the vectors

x =
(
1{c=a} + 1{c=b}

√
ε√

A(γ)(a, b)

)
c∈Q

, a 6= b

gives

ρ̄(γ) ≥
(
A(γ)(a, a) +

√
εA(γ)(a, b)

)
∧
(
A(γ)(b, a)

√
A(γ)(a, b)√

ε
+A(γ)(b, b)

)

≥
√
εA(γ)(a,b).

Combining gives ρ̄(γ)2 ≥ εmaxa,b∈QA
(γ)(a, b) which proves lower semi-continuity.

The entries of Ā(γ) are log-convex in γ by Hölder’s inequality, so ρ̄ is log-convex by
monotonicity and log-convexity of the Perron–Frobenius eigenvalue in the entries of the
matrix (see e.g. [16, Cor. 8.1.19] and [7, Exercise 4.34]). For differentiability of ρ̄ in D

see [10, p. 75].

For γ ∈ D let ē(γ) and ḡ(γ) denote the associated left and right Perron–Frobenius
eigenvectors; we use the shorthand

e ≡ ē(0), g ≡ ḡ(0).

For T ∼ MGW and v ∈ T, let

Cv ≡
∏

o<u≤v

αu,

the conductance of the edge leading to v. The natural generalization of the martingale
introduced in §2.3 is

Z(γ)
n =

1

ρ̄(γ)n

∑

v∈Dn

ē(γ)
χv C

γ
v ; (5.1)

this is a multi-type Mandelbrot’s martingale and has been studied in various contexts,
for example as the Laplace transform of the branching random walk with increments
logαv [8, 23]. Using this martingale we can make a change of measure and control the
conductances at the n-th level by controlling the conductance of the edge leading to a
random vertex: recalling (2.7), for each a ∈ Q define the size-biased measure Q

a
n on Ω

by

dQ
a
n

dMGW
a =

Z
(0)
n

ea
.

We then let Q
a
n? denote the measure on pairs (T, vn) obtained by letting T ∼ Q

a
n and

choosing vn ∈ Dn according to weights eχv .

Lemma 5.2. Under the hypotheses of Thm. 1.6, for each a ∈ Q, under Q
a
n? the

random variables n−1 logCvn satisfy a large deviation principle with good rate function
Λ∗(x) ≡ supγ(γx−Λ(γ)), where Λ(γ) ≡ log ρ̄(γ)−log ρ̄(0). In particular, for any 0 < z < y,

lim inf
n→∞

1

n
logQ

a
n?(Cvn > zn) ≥ − sup

γ≥0
(γ log y − Λ(γ)). (5.2)
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Proof. Fixing a ∈ Q, let Λn ≡ Λan denote the cumulant generating function of n−1 logCvn
with respect to Q

a
n?, that is,

Λn(γ) = logEQ
a
n?

[Cγ/nvn ].

Then

eΛn(nγ) = EQ
a
n?

[Cγvn ] = EQ
a
n

[∑
v∈Dn eχvC

γ
v∑

v∈Dn eχv

]
=

1

eaρ̄(0)n
EMGW

a

[ ∑

v∈Dn

eχvC
γ
v

]

� ρ̄(γ)n

ρ̄(0)n
EMGW

a [Z(γ)
n ] � ρ̄(γ)n

ρ̄(0)n
,

where� indicates equivalence up to constant factors depending only on e and ē(γ). Thus

lim
n→∞

1

n
Λn(nγ) = log ρ̄(γ)− log ρ̄(0) = Λ(γ).

By Lem. 5.1 this is an essentially smooth convex function in the sense of [10,
Defn. 2.3.5], so the large deviation principle follows from the Gärtner-Ellis theorem
(see [10, Thm. 2.3.6]). In particular, for any 0 < z < y, [10, (2.3.8)] implies

lim inf
n→∞

1

n
logQ

a
n?(Cvn > zn) ≥ − inf

x>log z
Λ∗(x) ≥ −Λ∗(log y)

(making use of [10, Lem. 2.3.9]). The result (5.2) follows immediately if log y = Λ′(γ)

for some γ ≥ 0, or if log y ≥ supγ≥0 Λ′(γ) in which case supγ(γ log y − Λ(y)) =

limγ→∞(γ log y−Λ(y)). Next, the assumption that Λ <∞ in a neighborhood of 0 implies,
via the relation Λ(γ) = supx(xγ − Λ∗(x)), that lim|x|→∞ Λ∗(x) =∞, therefore Λ∗ attains
its global infimum at x0 = Λ′(0) with Λ∗(x0) = −Λ(0). Therefore (5.2) again holds in the
remaining case log y ≤ infγ≥0 Λ′(γ) = x0.

Thm. 1.6 now follows by adapting the proof of [26, Thm. 1]:

Proof of Thm. 1.6. Since the bias λ can always be absorbed into the environment
variables αv (v ∈ T), we may take λ = 1 from now on, and write p ≡ p1 = min0≤γ≤1 ρ̄(γ).

(a) Suppose p < 1. We will use the fact that the random walk is positive recurrent if
and only if the conductances have finite sum [20, Propn. 9-131]. If ρ̄(γ) < 1 for some
γ ∈ [0, 1] then

E
[∑

v∈T

Cγv

]
�
∑

n≥0

ρ̄(γ)n <∞,

so
∑
v∈T C

γ
v < ∞ a.s. In particular Cv ≤ Cγv < 1 for all but finitely many v ∈ T so∑

v∈T Cv <∞ a.s.

(b) Suppose p > 1. We will show that on the event of non-extinction there exists w < 1

such that
lim inf
n→∞

wn
∑

v∈Dn

Cv > 0; (5.3)

transience then follows from [25, Cor. 4.2]. By the proof on [26, p. 129],

p = max
0<y≤1

{
y inf
γ≥0

y−γ ρ̄(γ)
}
,

and we fix y ∈ (0, 1] achieving this maximum. Then Lem. 5.2 implies that

lim inf
n→∞

1

n
logQ

a
n?(Cvn > zn) ≥ − log[yρ̄(0)/p] ∀z < y, ∀a ∈ Q.
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Therefore we can choose z < y, ` ∈ N, and ε, w ∈ (0, 1) such that

min
a∈Q

Q
a
`?({Cv` > z`} ∩ {αw ≥ ε ∀o < w ≤ v`}) ≥ q > (wzρ̄(0))−`.

Now consider the following percolation process (same as on [26, p. 130]): let T ∼
MGW(· |Xc), and let T[`] be the tree with vertices {v ∈ T : |v| ≡ 0 mod `}, with an edge
v → w if and only if |w| = |v|+` in T. Form a random subgraph T[`]perc ⊆ T[`] by keeping
the edge v → w if and only if

∏

v<u≤w

αu > z` and min
v<u≤w

αu ≥ ε,

in which case we write v  w. The subtree of T[`]perc descended from any vertex v has
the law of a multi-type Galton–Watson tree with mean offspring numbers

Aperc(a, b) = EMGW
a

[ ∑

v∈D`

1{χv=b}1{o v}

]
=
eaρ̄(0)`

eb
EQ

a
`?

[1{χv`=b}1{o v`}].

We calculate ∑

b

Aperc(a, b)eb ≥ eaρ̄(0)`q > ea(wz)−`,

so Aperc has Perron–Frobenius eigenvalue larger than (wz)−`, and consequently T[`]perc

a.s. has a connected component which is an infinite tree T[`]? of branching number
larger than (wz)−`, rooted at some o? ∈ T[`]perc. It follows that the left-hand side of
(5.3) is

≥ Co?w|o
?|`ε`−1 lim inf

n→∞

∑

v∈Dn(T[`]?)

(wz)n` > 0

which concludes the proof.

6 Appendix: general properties of MGW trees

In this section we prove some basic facts about MGW trees which were used in the
proof of the main theorem. In §6.2 we prove Propn. 3.1 which states that (H3p) implies
EMGW[W p

o ] < ∞. In §6.3 we prove a conductance lower bound (Propn. 6.5) which gives
Lem. 4.6. We begin in §6.1 by collecting some preliminary observations.

6.1 Generating function and subtree of infinite descent

Let
F (s) ≡ (F a(s))a∈Q ≡

(
Eqa

[∏

b∈Q

sxbb

])
a∈Q

, s ∈ [0, 1]Q;

we refer to F as the generating function of the MGW tree. If F (n) denotes the n-fold
composition of F , then for all a ∈ Q

EMGWa

[∏

b∈Q

s
Zn(b)
b

]
= (F (n)(s))a, MGWa(|Zn| = 0) = (F (n)(0))a.

Next let
Φ(s) ≡ (Φa(s))a∈Q ≡

(
EMGWa [e−sWo ]

)
a∈Q

, s ≥ 0,

and let φ(s) ≡ 〈g,Φ(s)〉 = EMGW[e−sWo ]. Since

Φ(s) = lim
n→∞

F (n)((exp{−seb/ρn})b∈Q),
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we have the functional relation Φ(s) = F [Φ(s/ρ)].
For many purposes the case of MGW(X) ∈ (0, 1) can be reduced to the simpler case

of an a.s. infinite tree without leaves by the following transformation which is discussed
in [2, §I.12] for the single-type case. For T ∼ MGW, consider the subtree T∞ consisting
of those vertices v of infinite descent, i.e. with |T(v)| =∞. Conditioned on Xc, T∞ is an
a.s. infinite tree without leaves, following a transformation of the original MGW given
by generating function F́ (s) = (F́ a(s))a∈Q, where, with xa ≡ MGWa(X),

F́ a(s) ≡ 1

1− xa

∑

x

qa(x)
∏

b∈Q

∑

yb≤xb

(
xb
yb

)
xxb−ybb (1− xb)

ybsybb

=
Fa((xb + (1− xb)sb)b∈Q)

1− xa
.

The transformed law has mean matrix

Á = D−1AD, D = diag((1− xa)a∈Q),

so in particular it has the same Perron–Frobenius eigenvalue as A. Finally, it is clear
that if the original law satisfies (H3p) then so does the transformed law.

6.2 Positive moments of the normalized population size

In this section we show that moment conditions on the MGW offspring distribution
translate directly to moment conditions on the normalized population size of the entire
tree. We begin by recalling an easy fact concerning Laplace transforms (see e.g. [14,
§XIII]).

Lemma 6.1. Let ϕ(s) ≡ E[e−sW ] be the Laplace transform of a non-negative random
variableW . For any integer n ≥ 0, E[Wn] <∞ if and only if there exist finite coefficients
m0, . . . ,mn such that

n∑

r=0

mr

r!
sr = ϕ(s) + o(sn), s ↓ 0. (6.1)

In this case mr = E[(−W )r] = lims↓0 ϕ
(r)(s), and the left-hand side of (6.1) is the n-th

order (one-sided) Taylor expansion Pn,0ϕ of ϕ at 0.

Proof. (⇒) The function ϕ is infinitely differentiable on (0,∞) with n-th derivative given
by (−1)nϕ(n)(s) = E[e−sWWn], and by the monotone convergence theorem

ϕ(n)(0) ≡ lim
s↓0

ϕ(n)(s) = E[Wn] ∈ [0,∞].

Writing e(x) ≡ e−x, by Taylor’s theorem

Rn,0e(x) ≡ (−1)n+1[e−x − Pn,0e(x)] =
xn

n!
(1− e−ζ), 0 ≤ ζ ≤ x.

If E[Wn] <∞ then

E[Rn,0e(sW )] =
sn

n!
E[Wn(1− e−ζW )], 0 ≤ ζ ≤ s.

The right-hand side is o(sn) so (6.1) holds with

ϕ(s)−
n∑

r=0

mr

r!
sr = ϕ(s)− Pn,0ϕ(s) = (−1)n+1E[Rn,0e(sW )]. (6.2)
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(⇐) Assuming (6.1), suppose inductively that mr = ϕ(r)(0) for 0 ≤ r ≤ k with k < n. For
0 < s0 ≤ s we have

ϕ(s) = Pk,s0ϕ(s) +
ϕ(k+1)(ζ)

(k + 1)!
(s− s0)k+1, s0 ≤ ζ ≤ s,

so by (6.1) and the inductive hypothesis

o(sk+1) = ϕ(s)−
k+1∑

r=0

mr

r!
sr =

k∑

r=0

o(s0)

r!
+
ϕ(k+1)(ζ)(s− s0)k+1 −mk+1s

k+1

(k + 1)!
.

Taking s0 � sk+1 we find a contradiction unless limζ↓0 ϕ
(k+1)(ζ) = mk+1.

Lemma 6.2. If (H1), (H2) and (H3n) hold with n ∈ Z≥2, then EMGW[Wn
o ] <∞.

Proof. Following the proof of [5, Thm. 0], we will show EMGW[Wn
o ] < ∞ using the

characterization Lem. 6.1 of the derivatives at zero of the Laplace transform φ(s) =

EMGW[e−sWo ]. Write SQ ≡ {v ∈ [0,∞)Q :
∑
a∈Q va = 1}, and define

f(t; v) ≡ 〈g, F (e−tv)〉 = EMGW[e−t〈v,Z1〉], t ≥ 0, v ∈ SQ.

By (6.2),

f(t; v) = Pn,0f(t; v) + (−1)n+1Rn,0f(t; v), lim
t↓0

(
t−n sup

v∈SQ
Rn,0f(t; v)

)
= 0,

where Pn,0f(t; v) is a polynomial of degree at most n in the entries of tv satisfying

Pn,0f(t; v) = 1− t〈v,EMGW[Z1]〉+O(t2) = 1− ρt〈v, g〉+O(t2). (6.3)

If we let t ≡ t(s) ≥ 0 and v ≡ v(s) ∈ SQ be defined by Φ(s/ρ) = e−tv, then

φ(s) = 〈g,Φ(s)〉 = 〈g, F [Φ(s/ρ)]〉 = f(t; v) = Pn,0f(t; v) + o(tn) (6.4)

(using that Rn,0f(t; v) = o(tn) uniformly over v ∈ SQ).
We next expand tv in powers of s. Note that φ(s) −m0 −m1s = o(s) where m0 = 1,

m1 = −EMGW[Wo], so suppose inductively that EMGW[W k
o ] < ∞ for some 1 < k < n.

Lem. 6.1 implies the existence of polynomials qak(s) = ea +O(s) such that

tva = − log Φa(s/ρ) = s qak(s) + o(sk), s ↓ 0. (6.5)

By recalling (6.4) and comparing (6.3) against the Taylor expansion of ρ〈g, e−tv〉, we find

[φ(s)− 1]− ρ[φ(s/ρ)− 1] = Qn(tv) + o(tn), t ↓ 0.

for Qn : RQ → R polynomial with Qn(tv) = O(t2). But squaring (6.5) gives (tva)2 =

s2qak(s)2 + o(sk+1), and substituting into the above and dividing through by s gives that

ψ(s)− ψ(s/ρ) ≡ φ(s)− 1

s
− φ(s/ρ)− 1

s/ρ
= sPk(s) + o(sk)

for Pk polynomial in s. Since ρ > 1 and lims↓0 ψ(s) = φ′(0),

ψ(s) = ψ′(0) +
∑

j≥0

(s/ρj)Pn(s/ρ) + o(sk) = P̃n(s) + o(sk)

for P̃n another polynomial in s. This verifies the inductive hypothesis by the definition
of ψ together with another application of Lem. 6.1.
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If (H3n) holds with n ∈ Z≥2 then we write φ(s) = Pn,0φ(s) + (−1)n+1Rn,0φ(s) with
Pn,0φ polynomial of degree at most n and Rn,0φ(s) = o(sn). An easy consequence of the
proof of the Lem. 6.2 is the following

Corollary 6.3. If (H3n) holds with n ∈ Z≥2 then

Rn,0φ(s)− ρRn,0φ(s/ρ) = Rn,0f(t, v) +O(tn+1)

for Φ(s/ρ) ≡ e−tv.

Proof. Summing (6.5) over a ∈ Q gives the existence of b2, . . . , bn finite such that

t = s+

n∑

r=2

brs
r + o(sn).

It follows easily that s has a similar expansion in terms of t: indeed s = t + o(t), so
suppose inductively that for some 1 ≤ k < n there exist c2, . . . , ck finite such that
s = t+

∑k
r=2 crt

r + o(tk). Then

s = t−
n∑

r=2

br

(
t+

k∑

r=2

crt
r + o(tk)

)2

+ o(sn),

which is a polynomial in t plus o(tk+1). This verifies the inductive hypothesis so we
conclude that s = t+

∑n
r=2 crt

r + o(tn) as claimed. From the proof of Lem. 6.2 we have

o(sn) = (−1)n+1[Rn,0φ(s)− ρRn,0φ(s/ρ)]

= f(t; v)− ρ〈g, e−tv〉 − [Pn,0φ(s)− ρPn,0φ(s/ρ)]

= f(t; v)−Q8n(tv)− s2q(s) +O(tn+1)

for Q8n and q polynomial. But by the above s2 can be expressed as a polynomial in t up
to o(tn+1) error, so in fact

o(tn) = (−1)n+1[Rn,0φ(s)− ρRn,0φ(s/ρ)] = f(t; v)−Q88n(tv) +O(tn+1)

for Q88n : RQ → R polynomial in tv of degree at most n in t, whence necessarily
Q88n(tv) = Pn,0f(t; v) as claimed.

If Φ(s/ρ) = e−tv with t ≡ t(s) ≥ 0, v ≡ v(s) ∈ SQ as above, then

t = −
∑

a∈Q

logEMGWa [e−sWo ].

In particular t′(s) is finite and positive for all s > 0 with lims↓0 t
′(s) = 1, so s 7→ t(s) is

an increasing bijection from [0,∞) to [0, tmax) where tmax = −∑a∈Q logMGWa(X). For
t < tmax we therefore write vt ≡ v(s) with s defined by t = t(s).

Proof of Propn. 3.1. Since the subtree of infinite descent described in §6.1 has the same
normalized population size as the original tree, we may reduce to the case MGW(X) = 0

so that tmax =∞.
By Lem. 6.2 we may take p = n+β for β ∈ (0, 1), and by [5, Thm. B] the result follows

upon showing ∫ 1

0

Rn,0φ(s) s−(1+p) ds <∞.
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By the proof of [5, Propn. 5], this in turn follows upon showing

∫ 1

0

Rn,0f(t; vt) t
−(1+p) dt <∞. (6.6)

(replacing [5, (3.13)] with (6.6) and [5, (3.9)] with Cor. 6.3). Recalling (6.2),

∫ 1

0

Rn,0f(t; vt)

tp
dt

t
≤ 1

n!

∫ 1

0

EMGW[|Z1|n(1− e−t|Z1|)]

tβ
dt

t
.

Applying Fubini’s theorem and making the change of variable t 7→ |Z1|t gives that the
above is

=
1

n!
EMGW

[
|Z1|p

∫ |Z1|

0

1− e−t
tβ

dt

t

]
<∞,

which concludes the proof.

6.3 Harmonic moments and conductance estimates

In this section we prove the existence of harmonic moments for the normalized
population size, extending part of [30, Thm. 1] to the multi-type setting (using a
similar proof). Using this result we adapt the methods of [31, Lem. 2.2] to prove the
conductance estimates used in the proofs of Cor. 4.7 and Lem. 4.8.

Lemma 6.4. Assume (H1) and (H2). There exists some r > 0 for which

EMGW[W−ro |Xc] ≤ lim sup
n→∞

EMGW[Z−rn |Xc] <∞.

Proof. Since the subtree of infinite descent described in §6.1 has the same normalized
population size as the original tree, we may reduce to the case MGW(X) = 0. Expanding
F (n)(s) as a power series in s we find

(F (n)(s))a ≤ MGWa(|Zn| = 1) ‖s‖∞ + MGWa(|Zn| > 1) ‖s‖2∞.

By (H1), there exists n0 such that mina∈QMGWa(|Zn| > 1) > 0 for all n ≥ n0, so that
F (n0) is a contraction on [0, s0]Q for any s0 < 1. By iterating this estimate, for any s0 < 1

there exist constants C <∞ and γ < 1 such that

‖F (n)(s)‖∞ ≤ Cγn‖s‖∞.

By Fubini’s theorem,

EMGW[Z−rn ] =
ρnr

Γ(r)

∫ ∞

0

fn(u)ur−1 du, fn(u) ≡ EMGW[e−u〈Zn,e〉].

We break up the integral into three parts, writing Ia,b for the integral over [a, b]: By a
change of variables,

Γ(r) I0,ρ−n =

∫ 1

0

EMGW[e−uZn ]ur−1 du ≤ 1

r
.

Next, we have

fn(u) = 〈g, F (n)(e−ueb)〉 ≤ ‖F (n)(e−ueb)‖∞ ≤ Cγn‖(e−ueb)b∈Q‖∞ ≤ Cγne−uemin ,

where for any u0 > 0 we may choose constants C < ∞ and γ < 1 uniformly over all
u ≥ u0. Therefore

Γ(r) I1,∞ ≤ C(ρrγ)n
∫ ∞

1

e−uemin ur−1 du.
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For r > 0 small enough so that γρr < 1, we have limn→∞ I1,∞ = 0. It remains to consider

Γ(r) Iρ−n,1 = ρnr
n∑

i=1

∫ 1/ρi−1

1/ρi
fn(u)ur−1 du

=

n∑

i=1

ρr(n−i)
∫ ρ

1

EMGW[e−u〈Zn,e〉/ρ
i

]ur−1 du.

By conditioning on the first n− i levels of the tree,

EMGW[e−u〈Zn,e〉/ρ
i

] = EMGW

[ ∏

v∈Dn−i

EMGW[e−u〈Z
v
i ,e〉/ρ

i |χv]
]

= EMGW

[ ∏

a∈Q

Φai (u)Zn−i(a)
]

= 〈g, F (n−i)[(Φai (u))a∈Q]〉,

where Φai (u) ≡ EMGWa [e−uZi ]. But

sup
i≥1

sup
u≥1

Φai (u) = sup
i≥1

Φai (1) < 1,

since Φai (1) < 1 for all a, i and Φai (1)→ EMGWa [e−uWo ] which is less than 1 by the Kesten–
Stigum theorem as noted in §2.3 (using (H2)). Therefore

Γ(r) Iρ−n,1 ≤ C
n∑

i=1

(γρr)n−i
∫ ρ

1

ur−1 du,

which is bounded in n for small enough r. Putting the estimates together concludes the
proof.

We conclude with the following conductance lower bound, a version of [31,
Lem. 2.2]. This clearly implies Lem. 4.6 which was used in the proof of the annealed
MGW-CLT Propn. 4.3.

Proposition 6.5. (a) Under (H1), (H2), and (H32), there exist 0 < r,C < ∞ such that
for all ε > 0, MGW(C−1

o,k ≥ k1+ε |Xc) ≤ Ck−rε.

(b) If further (H3p) holds with p > 2, then for MGW-a.e. T /∈ X there exists a random
constant CT <∞ such that C−1

o,k ≤ CTk for all k.

Proof. (a) Recall that a unit flow is a non-negative function U on the vertices of T such
that for all v ∈ T, U(v) =

∑
w∈∂+v U(w). For v ∈ D` define

U(v) =
Wv∑

u∈D`Wu
=

Wv

ρ`Wo
;

it is easily seen that U is a well-defined unit flow on Xc. It gives positive flow only
to vertices of infinite descent, so by the discussion of §6.1 we may reduce to the case
MGW(X) = 0. By Thomson’s principle [29, §2.4]

C−1
o,k ≤

k∑

`=1

ρ`
∑

v∈D`

U(v)2 =
1

W 2
o

k∑

`=1

1

ρ`

∑

v∈D`

W 2
v .

By Hölder’s inequality,

EMGW[C−ro,k] ≤ EMGW

[ k∑

`=1

1

ρ`

∑

v∈D`

W 2
v

]r
E[W−2r/(1−r)

o ]1−r ≤ Ckr
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for r sufficiently small, using Lem. 6.4 and p ≥ 2. It follows from Markov’s inequality
that MGW(C−1

o,k ≥ k1+ε) ≤ Ck−rε.
(b) We claim there exist 0 < c, c′ <∞ deterministic such that

MGW

(
1

|Dk|
∑

v∈Dk

W 2
v ≥ c′

)
≤ ρ−ck (6.7)

Assuming the claim, we have

ρk
∑

v∈Dk

U(v)2 =
1

ρk

∑
v∈DkW

2
v

W 2
o

≤ CZk
W 2
o

(
1

|Dk|
∑

v∈Dk

W 2
v

)
,

so by Borel–Cantelli

lim sup
k→∞

ρk
∑

v∈Dk

U(v)2 ≤ Cc′

Wo
<∞,

which by Thomson’s principle implies C−1
o,k ≤ CTk.

It remains to prove (6.7). For any 1 ≤ 1 + r ≤ 2 ∧ (p/2), Lem. 3.7 and Markov’s
inequality give

MGW

(∣∣∣∣
1

|Dk|
∑

v∈Dk

(W 2
v − EMGWχv [W 2

v ])

∣∣∣∣ ≥ ε
∣∣∣∣Fk

)

≤ 2

(ε|Dk|)1+r

∑

v∈Dk

EMGWχv [|W 2
v − EMGWχv [W 2

v ]|1+r] ≤ C(ε, r)|Dk|−r.

Taking expectations and applying Lem. 6.4 then gives

MGW

(∣∣∣∣
1

|Dk|
∑

v∈Dk

W 2
v −

1

|Dk|
∑

v∈Dk

EMGWχv [W 2
v ]

∣∣∣∣ ≥ ε
)
≤ C(ε, r)ρ−rk

for r sufficiently small. But
1

|Dk|
∑

v∈Dk

EMGWχv [W 2
v ]

is clearly bounded uniformly in k by a deterministic constant, so (6.7) is proved.
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