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Abstract

We study the maximal displacement of branching random walks in a class of time in-
homogeneous environments. Specifically, binary branching random walks with Gaus-
sian increments will be considered, where the variances of the increments change
over time macroscopically. We find the asymptotics of the maximum up to an OP (1)
(stochastically bounded) error, and focus on the following phenomena: the profile of
the variance matters, both to the leading (velocity) term and to the logarithmic cor-
rection term, and the latter exhibits a phase transition.
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1 Introduction

One dimensional branching random walks and their maxima have been studied
mostly in space-time homogeneous environments (deterministic or random). For work
on the deterministic homogeneous case of relevance to our study we refer to [6] and
the recent [1], [2] and [29]. For the random environment case, a sample of relevant
papers is [15, 17, 21, 22, 25, 26, 27]. As is well documented in these references, under
reasonable hypotheses, in the homogeneous case the maximum grows linearly, with a
logarithmic correction, and is tight around its median.

Branching random walks are also studied under some space inhomogeneous envi-
ronments. A sample of those papers are [4, 10, 12, 16, 18, 20, 23].

Recently, Bramson and Zeitouni [8] and Fang [13] showed that the maxima of branch-
ing random walks, recentered around their median, are still tight in time inhomoge-
neous environments satisfying certain uniform regularity assumptions, in particular,
the laws of the increments can vary with respect to time and the walks may have some
local dependence. A natural question is to ask, in that situation, what is the asymptotic
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Branching random walks in time inhomogeneous environments

behavior of the maxima. Similar questions were discussed in the context of branching
Brownian motion using PDE techniques, see e.g. Nolen and Ryzhik [28], using the fact
that the distributions of the maxima satisfy the KPP equation whose solution exhibits a
traveling wave phenomenon.

In all these models, while the linear traveling speed of the maxima is a relatively
easy consequence of the large deviation principle, the evaluation of the second order
correction term, like the ones in Bramson [6] and Addario-Berry and Reed [1], is more
involved and requires a detailed analysis of the walks; to our knowledge, it has so far
only been performed in the time homogeneous case.

Our goal is to start exploring the time inhomogeneous setup. As we will detail be-
low, the situation, even in the simplest setting, is complex and, for example, the order in
which inhomogeneity presents itself matters, both in the leading term and in the correc-
tion term. In order to best describe this phenomenon without the burden of inessential
technical details, we focus on the simplest case of binary Gaussian branching random
walks where the diffusivity of the particles takes two distinct values as a function of
time.

We now describe the setup in detail. For σ > 0, let N(0, σ2) denote the normal
distributions with mean zero and variance σ2. Let n be an integer, and let σ2

1 , σ
2
2 > 0 be

given. We start the system with one particle at location 0 at time 0. Suppose that v is a
particle at location Sv at time k. Then v dies at time k+1 and gives birth to two particles
v1 and v2, and each of the two offspring ({vi, i = 1, 2}) moves independently to a new
location Svi with the increment Svi − Sv independent of Sv and distributed as N(0, σ2

1)

if k < n/2 and as N(0, σ2
2) if n/2 ≤ k < n. Let Dn denote the collection of all particles

at time n. For a particle v ∈ Dn and i < n, we let vi denote the ith level ancestor of v,
that is the unique element of Di on the geodesic connecting v and the root. We study
the maximal displacement Mn = maxv∈Dn Sv at time n, for n large.1

The analysis we present should extend in a straightforward manner to a wide class
of walks with non-Gaussian increments and to more general branching mechanisms.
Concerning the former, some of the Gaussian computations need to be replaced by fine
asymptotics in the large deviation regime; these require assumptions on the increments
(examples where the correction term is not logarithmic are known even in the homoge-
neous bounded case, see [7]) and a fair amount of technical work, especially in argu-
ments involving conditioning. Concerning other branching mechanisms, the analysis in
the k-ary and Galton-Watson setups proceeds as in the binary case. More complicated
is the situation where either spatially inhomogeneous branching mechanisms or incre-
ment distributions are present, see e.g. [5]; estimating the correction term in the latter
setup is challenging and outside the scope of our methods.

In order to describe the results in a concise way, we recall the notation OP (1) for
stochastic boundedness. That is, a sequence of random variables {Rn}n is said to satisfy
Rn = OP (1) if it is tight, i.e. if for any ε > 0 there exists an M = M(ε) such that
P (|Rn| > M) < ε for all n.

An interesting feature of Mn is that the asymptotic behavior depends on the order
relation between σ2

1 and σ2
2 . That is, while

Mn =
(√

2 log 2 σeff

)
n− β

σeff√
2 log 2

log n+OP (1) (1.1)

is true for some choice of σeff and β, σeff and β take different expressions for different
orderings of σ1 and σ2. Note that (1.1) is equivalent to saying that the sequence {Mn −

1Since one can understand a branching random walk as a ‘competition’ between branching and random
walk, one may get similar results by fixing the variance and changing the branching rate with respect to time.
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Med(Mn)}n is tight and

Med(Mn) =
(√

2 log 2 σeff

)
n− β

σeff√
2 log 2

log n+O(1),

where Med(X) = sup{x : P (X ≤ x) ≤ 1
2} is the median of the random variable X. In

the following, we will use superscripts to distinguish different cases, see (1.2), (1.3) and
(1.4) below.

A special and well-known case is when σ1 = σ2 = σ, i.e., all the increments are i.i.d..
In that case, the maximal displacement is described as follows:

M=
n =

(√
2 log 2 σ

)
n− 3

2

σ√
2 log 2

log n+OP (1); (1.2)

the proof can be found in [1], and its analog for branching Brownian motion can be
found in [6] using probabilistic techniques (see also [29] for a modern streamlined
proof) and [24] using PDE techniques. This homogeneous case corresponds to (1.1)
with σeff = σ=

eff := σ and β = β= := 3
2 . In this paper, we deal with the extension to the

inhomogeneous case. The main results are the following two theorems.

Theorem 1.1. When σ2
1 < σ2

2 (increasing variances), the maximal displacement is

M↑n =

(√
(σ2

1 + σ2
2) log 2

)
n−

√
σ2
1 + σ2

2

4
√

log 2
log n+OP (1), (1.3)

which is of the form (1.1) with σeff = σ↑eff :=

√
σ2
1+σ

2
2

2 and β = β↑ := 1
2 .

Theorem 1.2. When σ2
1 > σ2

2 (decreasing variances), the maximal displacement is

M↓n =

√
2 log 2(σ1 + σ2)

2
n− 3(σ1 + σ2)

2
√

2 log 2
log n+OP (1), (1.4)

which is of the form (1.1) with σeff = σ↓eff := σ1+σ2

2 and β = β↓ := 3.

For comparison purpose, it is useful to introduce the model of 2n independent (in-
homogeneous) random walks with centered independent Gaussian variables, with vari-
ance profile as above. Denote by M ind

n the maximal displacement at time n in this model.
Because of the complete independence, it can be easily shown that

M ind
n =

(√
(σ2

1 + σ2
2) log 2

)
n−

√
σ2
1 + σ2

2

4
√

log 2
log n+OP (1) (1.5)

for all choices of σ2
1 and σ2

2 . Thus, in this case, σeff = σind
eff :=

√
(σ2

1 + σ2
2)/2 and β =

βind := 1/2. Thus, the difference between M=
n and M ind

n when σ2
1 = σ2

2 lies in the
logarithmic correction. As commented (for branching Brownian motion) in [6], the
different correction is due to the intrinsic dependence between particles coming from
the branching structure in branching random walks.

Another related quantity is the sub-maximum obtained by a greedy algorithm, which
only considers the maximum over all descendants of the maximal particle at time n/2.
Applying (1.2), we find that the output of such algorithm is(√

2 log 2σ1
n

2
− 3

2

σ1√
2 log 2

log
n

2

)
+

(√
2 log 2σ2

n

2
− 3

2

σ2√
2 log 2

log
n

2

)
+OP (1)

=

√
2 log 2(σ1 + σ2)

2
n− 3(σ1 + σ2)

2
√

2 log 2
log n+OP (1). (1.6)
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Comparing (1.6) with the theorems, we see that the greedy algorithm has σeff = σgr

eff =

σ↓eff and β = βgr = β↓. That is, in the case of decreasing variances, the greedy algorithm
yields the maximum up to an OP (1) error; this is not the case when variances are either
constant or increasing (compare with (1.2) and (1.3)).

A few remarks are now in order.

1. When the variances are increasing, M↑n is asymptotically (up to OP (1) error) the
same as M ind

n , which is exactly the same as the maximum of independent homoge-

neous random walks with effective variance σ2
1+σ

2
2

2 .
2. When the variances are decreasing, M↓n shares the same asymptotic behavior with

the sub-maximum (1.6). In this case, a greedy strategy yields the approximate
maximum.

3. With the same set of diffusivity constants {σ2
1 , σ

2
2} but different order,M↑n is greater

than M↓n.
4. While the leading order terms in (1.2), (1.3) and (1.4) are continuous in σ1 and σ2

(they coincide upon setting σ1 = σ2), the logarithmic corrections exhibit a phase
transition phenomenon (they are not the same when we let σ1 = σ2).

We will prove Theorem 1.1 in Section 2 and Theorem 1.2 in Section 3. Before proving
the theorems, we state a tightness result.

Lemma 1.3. The sequences {M↑n −Med(M↑n)}n and {M↓n −Med(M↓n)}n are tight.

This lemma follows from either [8] or [13]. We sketch the proof at the end of the
paper.

A remark on notation: throughout, we use C to denote a generic positive constant,
possibly depending on σ1 and σ2, that may change from line to line.

2 Increasing Variances: σ2
1 < σ2

2

In this section, we prove Theorem 1.1. We begin in Subsection 2.1 with a result
on the fluctuation of an inhomogeneous random walk. In the short Subsection 2.2 we
provide large-deviations based heuristics for our results. While these are not used in the
actual proof, these heuristics explain the leading term of the maximal displacement and
hint at the derivation of the logarithmic correction term. The actual proof of Theorem
1.1 is provided in subsection 2.3.

2.1 Fluctuation of an Inhomogeneous Random Walk

For each n ∈ N, let

Sn(k) =



k∑
i=1

Xi, k ≤ n/2,

n/2∑
i=1

Xi +

k∑
i=n/2+1

Yi, n/2 < k ≤ n.

(2.1)

define an inhomogeneous random walk path up to time n, where Xi ∼ N(0, σ2
1), Yi ∼

N(0, σ2
2), and Xi and Yi are independent. We use the shorthand notation Sn = Sn(n) for

the endpoint of such an inhomogeneous random walk. Define

sk,n(x) =


σ2
1k

(σ2
1 + σ2

2)n2
x, 0 ≤ k ≤ n

2
,

σ2
1
n
2 + σ2

2(k − n
2 )

(σ2
1 + σ2

2)n2
x,

n

2
≤ k ≤ n,

(2.2)
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and

fk,n =

{
cfk

2/3, k ≤ n/2,

cf (n− k)2/3, n/2 < k ≤ n,
(2.3)

where cf is some large constant (chosen in Lemma 2.1 below). The following lemma
states that conditioned on {Sn = x}, the path of the walk Sn follows sk,n(x) with fluctu-
ations bounded by fk,n at level k ≤ n.

Lemma 2.1. There exist constants C > 0 and cf > 0 (independent of n) such that

P (Sn(k) ∈ [sk,n(Sn)− fk,n, sk,n(Sn) + fk,n] for all 0 ≤ k ≤ n|Sn) ≥ C a.s..

Proof. Let S̃k,n = Sn(k)− sk,n(Sn). Then, similar to the continuous time setup of Brow-
nian bridges, one can check that S̃k,n are independent of Sn. To see this, first note that
the covariance between S̃k,n and Sn is

Cov(S̃k,n, Sn) = ES̃k,nSn − ES̃k,nESn = ES̃k,nSn,

since ESn = 0 and ES̃k,n = 0. Now, for k ≤ n/2,

S̃k,n =

(
1− σ2

1k

(σ2
1 + σ2

2)n2

) k∑
i=1

Xi −
σ2
1k

(σ2
1 + σ2

2)n2

n/2∑
i=k+1

Xi −
σ2
1k

(σ2
1 + σ2

2)n2

n∑
i=n/2+1

Yi.

Expand S̃k,nSn, take expectation, and then all terms vanish except for those containing
X2
i and Y 2

i . Taking into account that EX2
i = σ2

1 and EY 2
i = σ2

2 , one has

Cov(S̃k,n, Sn) = ES̃k,nSn

=

(
1− σ2

1k

(σ2
1 + σ2

2)n2

) k∑
i=1

EX2
i −

σ2
1k

(σ2
1 + σ2

2)n2

n/2∑
i=k+1

EX2
i −

σ2
1k

(σ2
1 + σ2

2)n2

n∑
i=n/2+1

EY 2
i

=

(
1− σ2

1k

(σ2
1 + σ2

2)n2

)
kσ2

1 −
σ2
1k

(σ2
1 + σ2

2)n2
(n/2− k)σ2

1 −
σ2
1k

(σ2
1 + σ2

2)n2
(n/2)σ2

2

= 0. (2.4)

For n/2 < k ≤ n, one can calculate Cov(S̃k,n, Sn) = 0 similarly as follows. First,

S̃k,n =
σ2
2(n− k)

(σ2
1 + σ2

2)n2

n/2∑
i=1

Xi +
σ2
2(n− k)

(σ2
1 + σ2

2)n2

k∑
i=n/2+1

Yi −
(

1− σ2
2(n− k)

(σ2
1 + σ2

2)n2

) n∑
i=k+1

Yi.

Then, expanding S̃k,nSn and taking expectation, one has

Cov(S̃k,n, Sn) = ES̃k,nSn

=
σ2
2(n− k)

(σ2
1 + σ2

2)n2

n/2∑
i=1

EX2
i +

σ2
2(n− k)

(σ2
1 + σ2

2)n2

k∑
i=n/2+1

EY 2
i −

(
1− σ2

2(n− k)

(σ2
1 + σ2

2)n2

) n∑
i=k+1

EY 2
i

=
σ2
2(n− k)

(σ2
1 + σ2

2)n2
(n/2)σ2

1 +
σ2
2(n− k)

(σ2
1 + σ2

2)n2
(k − n/2)σ2

2 −
(

1− σ2
2(n− k)

(σ2
1 + σ2

2)n2

)
(n− k)σ2

2

= 0

Therefore, S̃k,n are independent of Sn since they are Gaussian. Using this indepen-
dence,

P (Sn(k) ∈ [sk,n(Sn)− fk,n, sk,n(Sn) + fk,n] for all 0 ≤ k ≤ n|Sn)

= P (S̃k,n ∈ [−fk,n, fk,n] for all 0 ≤ k ≤ n|Sn)

= P (S̃k,n ∈ [−fk,n, fk,n] for all 0 ≤ k ≤ n).
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By a calculation similar to (2.4), S̃k,n is a Gaussian sequence with mean zero and vari-

ance kσ2
1

((σ2
1+σ

2
2)n−2σ

2
1k)

(σ2
1+σ

2
2)n

for k ≤ n/2 and (n − k)σ2
2

((σ2
1+σ2)n−2σ2

2(n−k))
(σ2

1+σ
2
2)n

for n/2 < k ≤ n.

The above quantity is

1− P (|S̃k,n| > fk,n, for some 0 ≤ k ≤ n) ≥ 1−
n∑
k=1

P (|S̃k,n| > fk,n).

Using a standard Gaussian estimate, e.g. [11, Theorem 1.4], the above quantity is at
least,

1−
n∑
k=1

c0√
k
e−

f2k,n
k c1 ≥ 1− 2

∞∑
k=1

c0√
k
e−c

2
f c1k

1/3

:= C > 0

where c0, c1 are constants depending on σ1 and σ2, and C > 0 can be realized by choos-
ing the constant cf large enough. This proves the lemma.

2.2 Sample Path Large Deviation Heuristics

We explain (without giving a proof) what we expect for the order n term of M↑n, by
means of large deviation heuristics. Note that these heuristics apply also to the non-
Gaussian setup. The actual proof of Theorem 1.1 is postponed to the next subsection.

Consider the inhomogeneous random walk Sn(k) as defined in (2.1) and a function
φ(t) defined on [0, 1] with φ(0) = 0. Let s ∈ [0, 1]. A sample path large deviation result,
see [9, Theorem 5.1.2], tells us that the probability for Sbrnc to be roughly φ(r)n for all
r ∈ [0, s] is roughly exp{−nIs(φ)}, where

Is(φ) =

∫ s

0

Λ∗r(φ̇(r))dr, (2.5)

φ̇(r) = d
drφ(r), and

Λ∗r(x) =


x2

2σ2
1

, 0 ≤ r ≤ 1/2,

x2

2σ2
2

, 1/2 < r ≤ 1.

A first moment argument would yield a necessary condition for a particle that roughly
follows the path φ(r)n to exist in the branching random walks,

Is(φ) ≤ s log 2, for all 0 ≤ s ≤ 1. (2.6)

This is equivalent to
∫ s

0

φ̇2(r)

2σ2
1

dr ≤ s log 2, 0 ≤ s ≤ 1

2
,∫ 1

2

0

φ̇2(r)

2σ2
1

dr +

∫ s

1
2

φ̇2(r)

2σ2
2

dr ≤ s log 2,
1

2
≤ s ≤ 1.

(2.7)

Otherwise, if (2.6) is violated for some s0, i.e., Is0(φ) > s0 log 2, there will be no path
seen in the n limit following φ(r)n to φ(s0)n, since the expected number of such paths
is 2sne−nIs(φ) = e−(Is(φ)−s log 2)n, which decreases exponentially.

Our goal is then to maximize φ(1) under the constraints (2.7). By Jensen’s inequality
and convexity, one sees that this problem is equivalent to maximizing φ(1) subject to

φ2(1/2)

σ2
1

≤ 1

2
log 2,

φ2(1/2)

σ2
1

+
(φ(1)− φ(1/2))2

σ2
2

≤ log 2. (2.8)
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Note that the above argument does not necessarily require σ2
1 < σ2

2 .
Under the assumption that σ2

1 < σ2
2 , the solution to the optimization problem is the

optimal curve

φ(s) =


2σ2

1

√
log 2√

(σ2
1 + σ2

2)
s, 0 ≤ s ≤ 1

2
,

2σ2
1

√
log 2√

(σ2
1 + σ2

2)

1

2
+

2σ2
2

√
log 2√

(σ2
1 + σ2

2)
(s− 1

2
),

1

2
≤ s ≤ 1.

(2.9)

If we plot this optimal curve and the suboptimal curve leading to (1.6) as in Figure
1, it is easy to see that the ancestor at time n/2 of the actual maximum at time n is not

a maximum at time n/2, since 2σ2
1

√
log 2√

(σ2
1+σ

2
2)
<
√

2σ2
1 log 2. A further rigorous calculation as

in the next subsection shows that, along the optimal curve (2.9), the branching random
walks have an exponential decay of correlation. Thus a fluctuation between n1/2 and
n that is larger than the typical fluctuation of a random walk is admissible. This is
consistent with the naive observation from Figure 1. This kind of behavior also occurs
in the independent random walks model, explaining why M↑n and M ind

n have the same
asymptotic expansion up to an OP (1) error, see (1.3) and (1.5).

Space

Time

n

2

n

Figure 1: σ2
1 < σ2

2. Dashed: path leading to maximum at time n of BRW starting from
maximum at time n/2 (the greedy algorithm). Solid: path leading to maximum at time
n of BRW starting from time 0. Arrows show the displacement of the optimal path from
the greedy algorithm.

2.3 Proof of Theorem 1.1

With Lemma 2.1 and the observation from Section 2.2, we can now provide a proof
of Theorem 1.1, applying the standard first and second moment methods (see e.g. [3])
to the appropriate sets. In our setup, this essentially coincides with using the so called
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many-to-one and many-to-two lemmas, see [19, 29], and goes back to Bramson’s original
work [6]. Recall Sn(k) and Sn as defined in (2.1).

Proof of Theorem 1.1. Upper bound. Let an =
(√

(σ2
1 + σ2

2) log 2
)
n −

√
σ2
1+σ

2
2

4
√
log 2

log n.

Let N1,n =
∑
v∈Dn 1{Sv>an+y} be the number of particles in Dn whose displacements

are greater than an + y. Then

EN1,n = 2nP (Sn ≥ an + y) ≤ c2e−c3y

where c2 and c3 are constants independent of n and the last inequality is due to the fact

that Sn ∼ N(0,
σ2
1+σ

2
2

2 n). So we have, by Chebyshev’s inequality,

P (M↑n > an + y) = P (N1 ≥ 1) ≤ EN1,n ≤ c2e−c3y. (2.10)

Therefore, this probability can be made as small as we wish by choosing a large y.

Lower bound. Consider the walks which are at sn ∈ In = [an, an + 1] at time n and
follow sk,n(sn), defined by (2.2), at intermediate times with fluctuation bounded by fk,n,
defined by (2.3). Let Ik,n(x) = [sk,n(x)− fk,n, sk,n(x) + fk,n] be the ‘admissible’ interval
at time k given Sn = x, and let

N2,n =
∑
v∈Dn

1{Sv∈In,Svk∈Ik,n(Sv) for all 0≤k≤n}

be the number of such walks. By Lemma 2.1,

EN2,n = 2nP (Sn ∈ In, Sn(k) ∈ Ik,n(Sn) for all 0 ≤ k ≤ n)

= 2nE(1{Sn∈In}P (Sn(k) ∈ Ik,n(Sn) for all 0 ≤ k ≤ n|Sn))

≥ 2nCP (Sn ∈ In) ≥ c4. (2.11)

Next, we bound the second moment EN2
2,n. By considering the location of any pair

v1, v2 ∈ Dn of particles at time n and at their common ancestor v1 ∧ v2, we have

EN2
2,n = E

∑
v1,v2∈Dn

1{Svi∈In, S(vi)
j∈Ij,n(S(vi)

j ) for all 0≤j≤n,i=1,2}

=

n∑
k=0

∑
v1,v2∈Dn
v1∧v2∈Dk

E1{Svi∈In, S(vi)
j∈Ij,n(S(vi)

j ) for all 0≤j≤n,i=1,2}

≤
n∑
k=0

∑
v1,v2∈Dn
v1∧v2∈Dk

P (Sv1 ∈ In, S(v1)j ∈ Ij,n(S(v1)j ) for all 0 ≤ j ≤ n)

·P (Sv2 − Sv1∧v2 ∈ [x− sk,n(x)− fk,n, x− sk,n(x) + fk,n], x ∈ In),

where we use the independence between Sv2 − Sv1∧v2 and S(v1)j in the last inequality.
The last expression (double sum) in the above display equals

n∑
k=0

22n−kP (Sn ∈ In, Sn(j) ∈ Ij,n(Sn) for all 0 ≤ j ≤ n)

·P (Sn − Sn(k) ∈ [x− sk,n(x)− fk,n, x− sk,n(x) + fk,n], x ∈ In)

≤ EN2,n

n∑
k=0

2n−kP (Sn − Sn(k) ∈ [x− sk,n(x)− fk,n, x− sk,n(x) + fk,n], x ∈ In).
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The above probabilities can be estimated separately when k ≤ n/2 and n/2 < k ≤ n.
For k ≤ n/2, Sn − Sn(k) ∼ N(0, n2 (σ2

1 + σ2
2)− kσ2

1). Thus,

P (Sn − Sn(k) ∈ [x− sk,n(x)− fk,n, x− sk,n(x) + fk,n], x ∈ In)

≤ 2fk,n
1√

π((σ2
1 + σ2

2)n− 2kσ2
1)

exp

−
(

(1− 2σ2
1k

(σ2
1+σ

2
2)n

)an − fk,n
)2

(σ2
1 + σ2

2)n− 2kσ2
1


≤ 2

−n+ 2σ21
σ21+σ22

k+o(k)
.

For n/2 < k ≤ n, Sn − Sn(k) ∼ N(0, (n− k)σ2
2). Thus,

P (Sn − Sn(k) ∈ [x− sk,n(x)− fk,n, x− sk,n(x) + fk,n], x ∈ In)

≤ 2fk,n
1√

2π(n− k)σ2
2

exp

−
(

2σ2
2(n−k)

(σ2
1+σ

2
2)n

an − fk,n
)2

2(n− k)σ2
2


≤ 2

− 2σ22
σ21+σ22

(n−k)+o(n−k)
.

Therefore,

EN2
2,n ≤ EN2,n

n/2∑
k=0

2
σ21−σ

2
2

σ21+σ22
k+o(k)

+

n∑
k=n/2+1

2
σ21−σ

2
2

σ21+σ22
(n−k)+o(n−k)

 ≤ c5EN2,n, (2.12)

where c5 = 2
∑∞
k=0 2

σ21−σ
2
2

σ21+σ22
k+o(k)

. By the Cauchy-Schwarz inequality,

P (M↑n ≥ an) ≥ P (N2,n > 0) ≥ (EN2,n)2

EN2
2,n

≥ c4/c5 > 0. (2.13)

The upper bound (2.10) and lower bound (2.13) imply that there exists a large
enough constant y0 such that

P (M↑n ∈ [an, an + y0]) ≥ c4
2c5

> 0.

Lemma 1.3 tells us that the sequence {M↑n −Med(M↑n)}n is tight, so M↑n = an + OP (1)

a.s.. That completes the proof.

3 Decreasing Variances: σ2
1 > σ2

2

We will again separate the proof of Theorem 1.2 into two parts, the lower bound
and the upper bound. Fortunately, we can apply (1.2) directly to get a lower bound
so that we can avoid repeating the second moment argument. However, we do need
to reproduce (the first moment argument) part of the proof of (1.2) in order to get an
upper bound.

3.1 An Estimate for Brownian Bridge

We need the following analog of Bramson [6, Proposition 1’]. The original proof
in Bramson’s used the Gaussian density and reflection principle of continuous time
Brownian motion, which also hold for the discrete time version. The proof extends
without much effort to yield the following estimate for the Brownian bridge Bk − k

nBn,
where Bn is a random walk with standard normal increments.
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Lemma 3.1. Let

L(k) =


0 if s = 0, n,

100 log k if k = 1, . . . , n/2,

100 log(n− k) if k = n/2, . . . , n− 1.

Then, there exists a constant C such that, for all y > 0,

P (Bk −
k

n
Bn ≤ L(k) + y for 0 ≤ k ≤ n) ≤ C(1 + y)2

n
.

The coefficient 100 before log is chosen large enough to be suitable for later use, and
is not crucial in Lemma 3.1.

3.2 Proof of Theorem 1.2

Before proving the theorem, we discuss the equivalent optimization problems (2.7)
and (2.8) under our current setting σ2

1 > σ2
2 . It can be solved by employing the optimal

curve

φ(s) =


√

2 log 2σ1s, 0 ≤ s ≤ 1

2
,√

2 log 2σ1
1

2
+
√

2 log 2σ2(s− 1

2
),

1

2
≤ s ≤ 1.

(3.1)

If we plot the curve φ(s) and the suboptimal curve leading to (1.6) as in Figure 2,
these two curves coincide with each other up to order n. Figure 2 seems to indicate
that the maximum at time n for the branching random walk starting from time 0 comes
from the maximum at time n/2. As will be shown rigorously, if a particle at time n/2

is left significantly behind the maximum, its descendants will not be able to catch up
by time n. The difference between Figure 1 and Figure 2 explains the difference in the
logarithmic correction between M↑n and M↓n.

Proof of Theorem 1.2. Lower bound. For each i = 1, 2, the formula (1.2) implies that
there exist yi (possibly negative) such that, for branching random walk at time n/2 with
variance σ2

i ,

P

(
Mn/2 >

(√
2 log 2σi

2

)
n− 3σi

2
√

2 log 2
log
(n

2

)
+ yi

)
≥ 1

2
.

By considering a branching random walk starting from a particle at time n/2, whose
location is greater than

√
2 log 2σ1n/2 − 3σ1

2
√
2 log 2

log(n/2) + y1, and applying the above
inequality with i = 1 and 2, we get that

P

(
M↓n >

(√
2 log 2(σ1 + σ2)

2

)
n− 3(σ1 + σ2)

2
√

2 log 2
log
(n

2

)
+ y1 + y2

)
≥ 1

4
. (3.2)

Upper bound. We will use a first moment argument to prove that there exists a
constant y (large enough) such that

P

(
M↓n >

(√
2 log 2(σ1 + σ2)

2

)
n− 3(σ1 + σ2)

2
√

2 log 2
log
(n

2

)
+ y

)
<

1

10
. (3.3)

Similarly to the last argument in the proof of Theorem 1.1, the upper bound (3.3) and the
lower bound (3.2), together with the tightness result from Lemma 1.3, prove Theorem
1.2. So it remains to show (3.3).

Toward this end, we define a polygonal line (piecewise linear curve) leading to√
2 log 2(σ1 + σ2)n/2− 3(σ1+σ2)

2
√
2 log 2

log
(
n
2

)
as follows: for 1 ≤ k ≤ n/2,

M(k) =
k

n/2

(√
2 log 2σ1

2
n− 3σ1

2
√

2 log 2
log
(n

2

))
;
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Space

Time

n

2

n

Figure 2: σ2
1 > σ2

2. Dashed: the optimal path leading to the maximum at time n which
coincides with the greedy algorithm. Solid: the path to the maximal (rightmost) descen-
dant of particles at time n/2 that are significantly (of order log n) behind the maximum
then, as marked by arrows.
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and for n/2 + 1 ≤ k ≤ n,

M(k) = M(n/2) +
k − n/2
n/2

(√
2 log 2σ2

2
n− 3σ2

2
√

2 log 2
log
(n

2

))
.

Note that k
n log n ≤ log k for k ≤ n. Also define

f(k) =



y k = 0, n2 , n,

y + 5σ1

2
√
2 log 2

log k 1 ≤ k ≤ n/4,
y + 5σ1

2
√
2 log 2

log(n2 − k) n
4 ≤ k ≤

n
2 − 1,

y + 5σ2

2
√
2 log 2

log(k − n
2 ) n

2 + 1 ≤ k ≤ 3n
4 ,

y + 5σ2

2
√
2 log 2

log(n− k) 3n
4 ≤ k ≤ n− 1.

We will use f(k) to denote the allowed offset (deviation) from M(k) in the following
argument.

The probability on the left side of (3.3) is equal to

P (∃v ∈ Dn such that Sv > M(n) + y).

For each v ∈ Dn, we define τv = inf{k : Svk > M(k) + f(k)}; then (3.3) is implied by

n∑
k=1

P (∃v ∈ Dn such that Sv > M(n) + y, τv = k) < 1/10. (3.4)

We will split the sum into four regimes: [1, n/4], [n/4, n/2], [n/2, 3n/4] and [3n/4, n],
corresponding to the four parts of the definition of f(k). The sum over each regime,
corresponding to the events in the four pictures in Figure 3, can be made small. The
first two are the discrete analog of the upper bound argument in Bramson [6]. We will
present a complete proof for the first two cases, since the argument is not too long and
the argument (not only the result) is used in the latter two cases.

(a) 1 to n/4 (b) n/4 to n/2

(c) n/2 to 3n/4 (d) 3n/4 to n

Figure 3: Four small probability events. Dashed line: M(k). Solid line: M(k) + f(k).
Polygonal line: a random walk.

(i). When 1 ≤ k ≤ n/4, we have, by Chebyshev’s inequality,

P (∃v ∈ Dn such that Sv > M(n) + y, τv = k)

≤ P (∃v ∈ Dk, such that Sv > M(k) + f(k)) ≤ E

(∑
v∈Dk

1{Sv>M(k)+f(k)}

)
.

EJP 17 (2012), paper 67.
Page 12/18

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v17-2253
http://ejp.ejpecp.org/


Branching random walks in time inhomogeneous environments

The above expectation is less than or equal to

C2k√
k
e
− (M(k)+f(k))2

2σ21 ≤ C2k√
k

exp

−
(√

2 log 2σ1k + σ1√
2 log 2

log k + y
)2

2kσ2
1


≤ Ck−3/2e−

√
2 log 2
σ1

y. (3.5)

Summing these upper bounds over k ∈ [1, n/4], we obtain that

n/4∑
k=1

P (∃v ∈ Dn such that Sv > M(n) + y, τv = k) ≤ Ce−
√

2 log 2
σ1

y
∞∑
k=1

k−3/2. (3.6)

The right side of the above inequality can be made as small as we wish, say at most 1
100 ,

by choosing y large enough.
(ii). When n/4 ≤ k ≤ n/2, we again have, by Chebyshev’s inequality,

P (∃v ∈ Dn such that Sv > M(n) + y, τv = k)

≤ P (∃v ∈ Dk, such that Sv > M(k) + f(k), and Svi ≤M(i) + f(i) for 1 ≤ i ≤ k)

≤ E

(∑
v∈Dk

1{Sv>M(k)+f(k), and Svi≤M(i)+f(i) for 1≤i<k}

)
.

Letting Sk be a copy of the random walks before time n/2, then the above expectation
is equal to

2kP (Sk > M(k) + f(k), and Si ≤M(i) + f(i) for 1 ≤ i < k)

≤ 2kP (Sk > M(k) + f(k), and
1

σ1
(Si −

i

k
Sk) ≤ 1

σ1
(f(i)− i

k
f(k)) for 1 ≤ i ≤ k).

(3.7)

1
σ1

(Si − i
kSk) is a discrete Brownian bridge and is independent of Sk. Because of this

independence, the above quantity is less than or equal to

2kP (Sk > M(k) + f(k)) · P (
1

σ1
(Si −

i

k
Sk) ≤ 1

σ1
(f(i)− i

k
f(k)) for 1 ≤ i < k).

The first probability can be estimated similarly to (3.5),

P (Sk > M(k) + f(k))

≤ C√
k

exp

−
(√

2 log 2σ1k − 3σ1

2
√
2 log 2

log k + 5σ1

2
√
2 log 2

log(n2 − k) + y
)2

2kσ2
1


≤ C2−kk(

n

2
− k)−5/2e−

√
2 log 2
σ1

y. (3.8)

To estimate the second probability, we first estimate 1
σ1

(f(i)− i
kf(k)). It is less than

or equal to 1
σ1
f(i) = y

σ1
+ 5

2
√
2 log 2

log i for i ≤ k/2 < n/4, and, for k/2 ≤ i < k, it is less
than or equal to

5

2
√

2 log 2
log(n/2− i)− i

k

5

2
√

2 log 2
log(n/2− k) +

y

σ1
(1− i

k
)

=
5

2
√

2 log 2

(
log(n/2− i)− log(n/2− k) +

k − i
k

log(n/2− k)

)
+

y

σ1
(1− i

k
)

≤ 5

2
√

2 log 2

(
log(k − i) +

k − i
k

log k

)
+

y

σ1
≤ 100 log(k − i) +

y

σ1
.
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Therefore, applying Lemma 3.1, we have

P

(
1

σ1
(Si −

i

k
Sk) ≤ 1

σ1
(f(i)− i

k
f(k)) for 1 ≤ i ≤ k

)
≤ P

(
1

σ1
(Si −

i

k
Sk) ≤ 100 log i+

y

σ1
for 1 ≤ i ≤ k/2, and

1

σ1
(Si −

i

k
Sk) ≤

100 log(k − i) +
y

σ1
for k/2 ≤ i ≤ k

)
≤ C(1 + y)2/k, (3.9)

where C is independent of n, k and y.
By all the above estimates (3.7), (3.8) and (3.9),

n/2∑
k=n/4

P (∃v ∈ Dn such that Sv > M(n)+y, τv = k) ≤ C(1+y)2e−
√

2 log 2
σ1

y
∞∑
k=1

k−5/2. (3.10)

This can again be made as small as we wish, say at most 1
100 , by choosing y large

enough.
(iii). When n/2 ≤ k ≤ 3n/4, we have

P (∃v ∈ Dn such that Sv > M(n) + y, τv = k)

≤ P (∃v ∈ Dk such that Sv > M(k) + f(k) and Svi ≤M(i) + f(i) for 1 ≤ i ≤ n/2)

≤ E

(∑
v∈Dk

1{Sv>M(k)+f(k), and Svi≤M(i)+f(i) for 1≤i<n/2}

)
.

The above expectation is, by conditioning on {Svn/2 = M(n) + x},

2k
∫ y

−∞
P (S′k−n/2 > M(k)−M(n/2) + f(k)− x) ·

·P (Si −
i

n/2
Sn/2 ≤ f(i)− i

k
x for 1 ≤ i < n/2) ·

·pSn/2(M(n/2) + x)dx, (3.11)

where S and S′ are two copies of the random walks before and after time n/2, respec-

tively, and pSn/2(x) is the density of Sn/2 ∼ N(0,
σ2
1n
2 ).

We then estimate the three factors of the integrand separately. The first one, which
is similar to (3.5), is bounded above by

P (S′k−n/2 > M(k)−M(n/2) + f(k)− x) ≤ C√
k − n/2

e
− (M(k)−M(n/2)+f(k)−x)2

2(k−n/2)σ22

≤ C2−(k−n/2)(k − n

2
)−3/2e−

√
2 log 2
σ2

(y−x).

The second one, which is similar to (3.9), is estimated using Lemma 3.1,

P (Si −
i

n/2
Sn/2 ≤ f(i)− i

k
x for 1 ≤ i < n/2) ≤ C(1 + 2y − x)2/n. (3.12)

The third one is simply the normal density

pSn/2(M(n/2) + x) =
C√
n
e
− (M(n/2)+x)2

nσ21 ≤ C2−n/2ne−
√

2 log 2
σ1

x. (3.13)

Therefore, the integral term (3.11) is no more than

C(k − n/2)−3/2e−
√

2 log 2
σ2

y
∫ y

−∞
(1 + 2y − x)2e(

√
2 log 2
σ2

−
√

2 log 2
σ1

)xdx,
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which is less than or equal to C(1 + y)2e−
√

2 log 2
σ1

y(k − n/2)−3/2 since σ2 < σ1.
Summing these upper bounds together, we obtain that

3n/4∑
k=n/2

P (∃v ∈ Dn such that Sv > M(n)+y, τv = k) ≤ C(1+y)2e−
√

2 log 2
σ1

y
∞∑
k=1

k−3/2. (3.14)

This can again be made as small as we wish, say at most 1
100 , by choosing y large

enough.
(iv). When 3n/4 < k ≤ n, we have

P (∃v ∈ Dn such that Sv > M(n) + y, τv = k)

≤ P (∃v ∈ Dk such that Sv > M(k) + f(k), and Svi ≤M(i) + f(i) for 1 ≤ i < k)

≤ E

(∑
v∈Dk

1{Sv>M(k)+f(k), and Svi≤M(i)+f(i), for 1≤i<k}

)
.

The above expectation is, by conditioning on {Svn/2 = M(n) + x},

2k
∫ y

−∞
P (S′k−n/2 > M(k)−M(n/2) + f(k)− x,

S′i < M(i)−M(n/2) + f(i)− x, for n/2 < i ≤ k)

·P (Si −
i

n/2
Sn/2 ≤ f(i)− i

k
x for 1 ≤ i < n/2) · pSn/2(M(n/2) + x)dx

where S and S′ are copies of the random walks before and after time n/2, respectively.
The second and third probabilities in the integral are already estimated in (3.12) and

(3.13). It remains to bound the first probability. Similar to (3.7), it is bounded above by

P
(
S′k−n/2 > M(k)−M(n/2) + f(k)− x, S′i < M(i)−M(n/2) + f(i)− x,

for n/2 < i ≤ k
)
≤ C(1 + 2y − x)2e−

√
2 log 2
σ2

(2y−x)(n− k)−5/2.

With these estimates, we obtain in this case, in the same way as in (iii), that

n∑
k=3n/4

P (∃v ∈ Dn such that Sv > M(n) + y, τv = k) ≤ C(1 + y)2e−
√

2 log 2
σ1

y
∞∑
k=1

k−5/2.

(3.15)
This can again be made as small as we wish, say at most 1

100 , by choosing y large
enough.

Summing (3.6), (3.10), (3.14) and (3.15), then (3.4) and thus (3.3) follow. This con-
cludes the proof of Theorem 1.2.

4 Further Remarks

We state several immediate generalization and open questions related to binary
branching random walks in time inhomogeneous environments where the diffusivity
of the particles takes more than two distinct values as a function of time and changes
macroscopically.

Extensions to monotone profiles involving a finite number of variances can be ob-
tained similarly to the results on two variances in the previous sections. Specifically, let
k ≥ 2 (constant) be the number of inhomogeneities, let 0 = s0 < s1 < · · · < sk−1 < sk = 1

be given, and set ti = si − si−1 for i = 1, . . . , k. With {σ2
i > 0 : i = 1, . . . , k}, we consider
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binary branching random walk up to time n, where, for i = 1, . . . , k, the increments
during the time interval [si−1n, sin) are N(0, σ2

i ). That is, during the ith interval, whose
duration is tin, the variances of the increments are σ2

i . The analogue of Theorems 1.1
and 1.2 is the following.

Theorem 4.1. a. In the strictly increasing setup σ2
1 < σ2

2 < · · · < σ2
k,

Mn =

√√√√2(log 2)

k∑
i=1

tiσ2
i n−

1

2

√∑k
i=1 tiσ

2
i√

2 log 2
log n+OP (1).

b. In the strictly decreasing setup σ2
1 > σ2

2 > · · · > σ2
k,

Mn =
√

2 log 2(

k∑
i=1

tiσi)n−
3

2
(

k∑
i=1

σi√
2 log 2

) log n+OP (1).

The proof in the strictly increasing setup is similar to the case k = 2 described in
Section 2, and Mn behaves asymptotically like the maximum of independent random
walks with effective variance

∑k
i=1 tiσ

2
i . In the strictly decreasing setup, the proof

follows the argument detailed in Section 3, and Mn behaves asymptotically like the
outcome of a greedy algorithm. We omit further details.

Results on other inhomogeneous environments are open and are subjects of further
study. We only discuss some of the non rigorous intuition in the rest of this section.

In the general case of finitely many variances, when {σ2
i : i = 1, . . . , k} are not

monotone in i, the variational problem consisting of maximizing φ(1) subject to the
constraint (2.6) will give the leading order (velocity) term in Mn. However, the solution
to this variational problem may have several intervals along which the constraint is
satisfied with equality, and the number of such intervals is expected to influence the
second order correction term. An analysis of this general case is not covered by our
arguments.

One may also consider situations where the variance profile changes continuously,
in a macroscopic way. A general description of the correction term is a challenge. After
the current paper was completed, the current authors studied the particular case of a
strictly monotone decreasing variance, and described a rather surprising n1/3 correc-
tion term, see [14]. The general setting remains open and intriguing.

Appendix: Sketch of the Proof of Lemma 1.3

Proof of Lemma 1.3 (sketch). We describe how to fit our model into the framework of
[8] and [13], by deriving appropriate recursions for the distribution of the maximum
of a branching random walk that, at time n, will coincide with the distribution of Mn.
Once this is done, the tightness result in Lemma 1.3 follows directly from the argument
in those two papers.

We begin by writing the variance profile for each n ∈ N as

σ2
n,i =

{
σ2
1 , when i ≤ n/2,
σ2
2 , when n/2 < i ≤ n.

With this profile, we consider a sequence of branching random walks in a leaves-to-
root perspective. That is, for each n ∈ N and each 0 ≤ i ≤ n, we consider a branching
random walk up to time i, with increments at the jth level (0 ≤ j < i) distributed as
N(0, σ2

n,n−i+j). Denote such a branching random walk by BRW(n)
i and its maximum at

level i by M (n)
i with a distribution function F

(n)
i . Note that BRW(n)

n is equivalent to the
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model we introduced in the beginning of the paper (and to which Lemma 1.3 refers)
and that M (n)

n = Mn.
For each fixed n, we have the recursions in i

F
(n)
i+1(x) =

(
G

(n)
i ∗ F (n)

i (x)
)2
, i = 0, 1, . . . , n− 1,

where G(n)
i is the distribution function of N(0, σ2

n−i). The initial conditions are F (n)
0 (x) =

1x≥0. Let H(n)
i (x) = G

(n)
i ∗ F (n)

i (x) and H̄
(n)
i (x) = 1 −H(n)

i (x). Then the recursions for

H̄
(n)
i are

H̄
(n)
i+1 = Ḡ

(n)
i+1 ∗

(
Q(H̄

(n)
i )

)
, i = 0, 1, . . . , n− 1, (4.1)

where Q(x) = 2x− x2, and H̄(n)
0 = 1−G(n)

0 .

The above recursions on H̄
(n)
i are exactly the recursions [8, (2.3)], except for the

superscript (n). The argument from [8] will apply here, since G(n)
i is either N(0, σ2

1) or
N(0, σ2

2) and thus satisfies the uniform (in both n and i) tail assumptions in [8].
The tightness of {Mn −Med(Mn)}n is derived as an immediate consequence of the

tightness of {H̄(n)
n −Med(H̄

(n)
n )}n. The latter tightness is a consequence of the estimate

sup
n
L(H̄(n)

n ) <∞ (4.2)

with the Lyapunov function L(·) defined in [8, (2.12)], due to [8, Proposition 2.9]. Thus,
one only has to prove (4.2). This follows from the recursions (4.1) in i and the fact that
L0 := L(H̄

(n)
0 ) is finite and independent of n (since H̄(n)

0 is one minus the distribution

of N(0, σ2
2)), as in the proof of [8, Theorem 2.7]. Indeed, if supn L(H̄

(n)
n ) = ∞, then we

can find one large constant C > L0 and L(H̄
(n0)
n0 ) > C for some n0. The uniform tail

conditions of G(n)
i and [8, Theorem 3.1] then imply that L0 = L(H̄

(n0)
0 ) > C, which is a

contradiction.
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