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Convergence of clock process in random environments
and aging in Bouchaud’s asymmetric trap model on
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Abstract

In this paper the celebrated arcsine aging scheme of Ben Arous and Černý is taken
up. Using a brand new approach based on point processes and weak convergence
techniques, this scheme is implemented in a broad class of Markov jump processes
in random environments that includes Glauber dynamics of discrete disordered sys-
tems. More specifically, conditions are given for the underlying clock process (a par-
tial sum process that measures the total time elapsed along paths of a given length)
to converge to a subordinator, and consequences for certain time correlation func-
tions are drawn. This approach is applied to Bouchaud’s asymmetric trap model on
the complete graph for which aging is for the first time proved, and the full, optimal
picture, obtained. Application to spin glasses are carried out in follow up papers.
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1 Introduction

The term aging qualifies dynamics whose transients towards equilibrium become
increasingly slower as time elapses. This phenomenon is measured in the anomalous
behavior of certain time correlation functions. Discovered in the physics of spin glasses,
aging was successfully accounted for, on a theoretical level, using simple phenomeno-
logical models – the so called trap models of Bouchaud [15, 18, 33, 17, 16]. These are
Markov jump processes that describe the behavior of spin glass dynamics on long time
scales in terms of thermally activated barrier crossing in landscapes made of random
’traps’.

The first rigorous connection between the microscopic dynamics of a spin system
and a trap model was established in [3, 4] where it is proved that a particular Glauber
dynamics of the REM, known as the Random Hopping Dynamics (hereafter RHD), has
the same aging behavior as Bouchaud’s symmetric trap model on the complete graph.
Meanwhile, in another direction of research, trap models on Zd with i.i.d. heavy tailed
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Convergence of clock process

landscapes where studied in depth [7, 8, 10, 25]. From this it emerged that aging in Zd,
d ≥ 2, also is the same as in Bouchaud’s symmetric trap model on the complete graph.
In all these situations a common arcsine law governs the relevant time correlation func-
tions

In a landmark paper [9], Ben Arous and Černý proposed a scheme that explains this
apparent universality by linking aging to the arcsine law for subordinators through the
(asymptotic) nature of a partial sum process called the clock process. In the present
paper we take a new look at this scheme and extend it to a general framework that
covers Glauber dynamics of general disordered systems. As a first, simple but impor-
tant application we study Bouchaud’s asymmetric trap model on the complete graph.
Applications to spin glasses and general Glauber dynamics, that are not of RHD type,
are carried out in follow up papers [19, 20, 27, 28].

1.1 Setting.

Let us describe the Markov jump processes in random environments that we are
interested in. Let Gn(Vn, En), n ∈ N, be a sequence of connected graphs with set of
vertices Vn and set of edges En. We assume that |Vn| ↑ ∞ as n ↑ ∞ (possibly, Vn = V∞).
A random landscape on Vn, or random environment, is a family (τn(x), x ∈ Vn) of non-
negative random variables defined on some common probability space (Ωτ ,Fτ ,P). Note
that we do not assume independence.

On Vn we consider a continuous time Markov chain (Xn(t), t ≥ 0) with graphGn(Vn, En),
whose infinitesimal generator Λn ≡ (λn(x, y))x,y∈Vn is a random matrix on (Ωτ ,Fτ ,P).
Of course, setting λn(x, x) ≡ −λn(x), we must have

λn(x) ≡
∑

y∈Vn,y 6=x

λn(x, y) , ∀x ∈ Vn . (1.1)

We will assume that supx∈Vn λn(x) < C P-a.s. for some 0 < C <∞. A specially important
class of such matrices is obtained by choosing the λn(y, x)’s such that

τn(x)λn(x, y) = τn(y)λn(y, x) , ∀ (x, y) ∈ En , x 6= y , (1.2)

and λn(y, x) = 0 for all (x, y) /∈ En , x 6= y. This implies that Xn(t) is reversible w.r.t. the
random measure on Vn that assigns to x the mass τn(x). Glauber dynamics in particular
belong to this class.

Given a family (en,i , n ∈ N, i ∈ N) of independent mean one exponential r.v.’s the
clock process is the partial sum process defined by

S̃n(k) =

k∑
i=0

λ−1
n (Jn(i))en,i , k ∈ N . (1.3)

Here (Jn(k) , k ∈ N) is the jump chain of Xn, namely, the discrete time Markov chain
with one-step transition probabilities

pn(x, y) =

{
λn(x, y)/λn(x) if (x, y) ∈ En , x 6= y,

0, otherwise.
(1.4)

Note that S̃n(k) gives the total time spent by Xn along the first k steps of Jn. Thus, if
Xn has initial distribution µn, Jn has initial distribution µn and

Xn(t) = Jn(S̃←n (t)) , t > 0. (1.5)

(Here S̃←n denotes the right continuous inverse of S̃n.)
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Convergence of clock process

The last expression places the clock process in the limelight. The idea behind the
arcsine aging scheme is that if, after appropriate rescaling, the clock process converges
to a stable subordinator, then anomalous slowdown of the long term dynamics can be
explained in terms of the arcsine law for stable subordinators. To put this scheme
into practice one faces two difficulties: the clock process is a random process on the
probability space of the environment, and, for fixed realization of the environment, it is
a partial sum process whose summands are made dependent through the chain Jn.

In [9] this problem is solved for dynamics of RHD type, that is, denoting by dx the
degree of x in the graph Gn(Vn, En), for the rates

λn(y, x) = (dxτn(x))
−1 if (x, y) ∈ En . (1.6)

Using a detailed knowledge of the potential theory of the chain Jn (reduced here to
the symmetric random walk on Gn(Vn, En)) and properties of the environments, a set of
abstract conditions is derived that ensure that the clock process converges to a stable
subordinator for P-almost all environments. Although independence of the τn(x)′s is not
assumed a priori, this approach was only applied to such environments. In particular,
it did not allow to deal with the p-spin SK spin glass model. This was done in [2]
where, using approximations techniques for Gaussian processes, it is proved that on a
certain range of times scales and temperature, and for the rates (1.6), the clock process
converges to a stable subordinator, but in P-law only.

In the present paper we adopt yet another approach that allows to both implement
the arcsine aging scheme in the general setting of Markov jump processes in random
environments described above, and obtain results in the strongest possible convergence
mode with respect to the law P of the environment. Our approach is based on a powerful
and illuminating method developed by Durrett and Resnick [21] to prove functional limit
theorems for dependent variables. By extending the framework of [21] to our random
setting, and specializing it to processes of the form (1.3), we give simple sufficient
conditions for the properly rescaled sequence Sn to converge to a subordinator. This is
the content of Subsection 1.2 below. Consequences for aging are drawn in Subsection
1.3

For later reference we denote by Pµn the law of Xn and by Pµn the law of Jn with
initial distribution µn. In view of taking n ↑ ∞ limits we assume that the sequences of
chains Xn, resp. Jn, can be constructed on a common probability space (ΩX ,FX ,P),
resp. (ΩJ ,FJ , P ). Expectation with respect to P, P , and P will be denoted respectively
by E, E, and E

1.2 Convergence of the clock process to a subordinator.

The first increment of the clock process plays a special role. For this reason we
define

σn = c−1
n S̃n(0) , Sn(k) =

{∑k
i=1 λ

−1
n (Jn(i))en,i if k ≥ 1,

0, otherwise.
(1.7)

Given a positive sequences cn and an we then set, for t ≥ 0,

Sn(t) = c−1
n Sn(bantc) , (1.8)

and
Ŝn(t) = σn + Sn(t) . (1.9)

The re-scaled clock processes Sn(t) and Ŝn(t) will be called pure and delayed, respec-
tively.

We now state three conditions, (A1)-(A3), that ensure that the sequence of pure pro-
cesses Sn converges to a subordinator. Because this process is a random variable on
the probability space (Ωτ ,Fτ ,P) of the landscape (our random environment) we must
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first decide in which sense to seek convergence on that space. The relevant conver-
gence modes (those that convey the most useful information in applications) are almost
sure convergence and convergence in probability. This means that one of the following
statements should be in force:

Almost sure convergence: There exists a subset Ω̃τ ⊂ Ωτ such that P(Ω̃τ ) = 1 and such
that, for all ω ∈ Ω̃τ , for all large enough n, (A1)-(A3) are verified.

Convergence in probability: There exists a sequence Ω̃τn ⊂ Ωτ such that limn→∞ P(Ω̃τn) =

1 and such that, for all large enough n, (A1)-(A3) are verified for all ω ∈ Ω̃τn.

We now state our three conditions for fixed ω and make this explicit by adding the
superscript ω to landscape dependent quantities. These conditions depend on the initial
distribution µn, and on the sequences an and cn. We suppose them fixed.

Condition (A1). There exists a σ-finite measure ν on (0,∞) satisfying
∫

(0,∞)
(1 ∧

u)ν(du) <∞ such that, for all t > 0 and all u > 0,1

Pω

∣∣∣∣∣∣
bantc∑
j=1

∑
x∈Vn

pωn(Jωn (j − 1), x)e−ucnλ
ω
n(x) − tν(u,∞)

∣∣∣∣∣∣ < ε

 = 1− o(1) , ∀ε > 0 . (1.10)

Condition (A2). For all u > 0 and all t > 0,

Pω

bantc∑
j=1

[∑
x∈Vn

pωn(Jωn (j − 1), x)e−ucnλ
ω
n(x)

]2

< ε

 = 1− o(1) , ∀ε > 0 . (1.11)

Condition (A3). There exists a sequence of functions εn ≥ 0 satisfying lim
δ→0

lim sup
n→∞

εn(δ) =

0 such that for some 0 < δ0 ≤ 1, for all 0 < δ ≤ δ0 and all t > 0,

Eω

∫ δ

0

du

bantc∑
j=1

∑
x∈Vn

pωn(Jωn (j − 1), x)e−ucnλ
ω
n(x)

 ≤ tεn(δ) . (1.12)

Theorem 1.1. For all sequences of initial distributions µn and all sequences an and
cn for which Conditions (A1), (A2), and (A3) are verified, either P-almost surely or in
P-probability, the following holds w.r.t. the same convergence mode: let {(tk, ξk)} be the
points of a Poisson random measure of intensity measure dt× dν; then,

Sn(·)⇒ S(·) ≡
∑
tk≤·

ξk , (1.13)

where convergence holds weakly in the space D([0,∞)) of càdlàg functions on [0,∞)

equipped with the Skorohod J1-topology 2.

Remark 1.2. Although we do not make this explicit in the notation, note that the Lévy
measure ν of the limiting subordinator S may remain a random variable on the proba-
bility space (Ωτ ,Fτ ,P) of the random landscape. We will see an example of this in the
context of the asymmetric trap model on the complete graph (cf. Proposition 3.9).

To obtain convergence of the delayed re-scaled clock process Ŝn of (1.9), we still
need to control the initial increment σn. For this we introduce a separate condition.

1 The set Ω̃τ (respectively the sequence of sets Ω̃τn) for which convergence w. r. t. the environment holds
almost surely (respectively in probability) is (are) the same for all t > 0 and u > 0.

2see e. g. [36] p. 83 for the definition of convergence in D([0,∞)).
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Condition (A0). There exists a continuous distribution function Fω on [0,∞) such that,
for all v ≥ 0, ∣∣∣∣∣ ∑

x∈Vn

µωn(x)e−vcnλ
ω
n(x) − (1− Fω(v))

∣∣∣∣∣ = o(1) . (1.14)

Theorem 1.3. For all sequences of initial distributions µn and all sequences an and
cn for which Conditions (A0), (A1), (A2), and (A3) are verified, either P-almost surely
or in P-probability, the following holds w.r.t. the same convergence mode: let σ denote
the random variable of (possibly random) distribution function F ; then, for S defined in
(1.13),

Ŝn ⇒ Ŝ = σ + S , (1.15)

where⇒ has the same meaning as in (1.13).

1.3 Aging.

We now show how the clock process convergence obtained in Theorem (1.3) is useful
for deriving aging information, and in particular, for proving the existence of an arcsine
aging regime.

We begin with a few definitions. The aging behavior of Xn is quantified using a time
correlation function, namely, a two-time function Cn(t, s), t, s ≥ 0, that measures the
dependence of Xn(cn(t+ s)) and Xn(cnt). We then say that:

Definition 1.4. A time correlation function Cn exhibits normal aging on time scale cn
if one of the following three relations is verified:

lim
t→0

lim
n→∞

Cn(t, ρt) = C∞(ρ) , (1.16)

lim
n→∞

Cn(t, ρt) = C∞(ρ) , t > 0 arbitrary, (1.17)

lim
t→∞

lim
n→∞

Cn(t, ρt) = C∞(ρ) , (1.18)

for all ρ ≥ 0, some non trivial limiting function C∞ : [0,∞) 7→ [0, 1], and for some
convergence mode w.r.t. the probability law P of the random landscape.

In virtually all situations where normal aging was proved so far, the limiting time
correlation function is the distribution function of the generalized arcsine law with pa-
rameter 0 < α < 1,

Aslα(u) =
sinαπ

π

∫ u

0

(1− x)−αxα−1dx , 0 ≤ u ≤ 1 . (1.19)

This motivates the next definition.

Definition 1.5. The process Xn has an arcsine aging regime of parameter α whenever
one can find a time correlation function Cn that exhibits normal aging with

C∞(ρ) = Aslα(1/1 + ρ) . (1.20)

While the choice of Cn(t, s) is model dependent it turns out that the most commonly
used time correlation functions (see e.g. [9], [19]) can be approximated, up to error
terms that vanish as n→∞, by the following one

Cn(t, s) = Pµn
({
Ŝn(u) , u > 0

}
∩ (t, t+ s) = ∅

)
, 0 ≤ t < t+ s . (1.21)

This is the probability that the range of the re-scaled clock process Ŝn does not intersect
the time interval (t, t+ s). For this choice we have,
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Theorem 1.6. Let the assumptions and the notation be as in Theorem 1.3. Set

C∞(t, s) = P ({S(u) , u > 0} ∩ (t, t+ s) = ∅) , 0 ≤ t < t+ s . (1.22)

If, for each ω ∈ Ωτ , σ and S in (1.15) are independent random variables on (ΩX ,FX ,P),
then, for all 0 ≤ t < t+ s, w.r.t. the same convergence mode as in (1.15),

lim
n→∞

Cn(t, s) = 1− F (t+ s) +

∫ t

0

C∞(t− v, s)dF (v) . (1.23)

In particular, if σ = 0,

lim
n→∞

Cn(t, s) = C∞(t, s) . (1.24)

Remark 1.7. In line with the remark following Theorem 1.1, σ and/or S may be random
variables on (Ωτ ,Fτ ,P). Thus both the limiting functions in (1.23) and (1.24) may be
random variables on that space. (We will see an instance of this in Theorem 3.5.)

By (1.13) of Theorem 1.1 S is a subordinator with Lévy measure ν and zero drift, and
for such processes (1.22) is well understood. The theorem below, that can be seen as
Dynkin-Lamperti Theorem in continuous time, is classical (see page 81 of [11] for the
first half and Theorem 1 of [12] for the second half).

Theorem 1.8.

(i) [Arcsine law] C∞(t, ρt) converges as t→∞ (respectively t→ 0+) if and only if ν(x,∞)

is regularly varying at 0+ (respectively at ∞) with index α ∈ [0, 1]. When 0 < α < 1 the
limiting function is given by Aslα(1/1 + ρ). If ν(x,∞) = κx−α for some constant κ > 0

and 0 < α < 13 then

C∞(t, ρt) = Aslα(1/1 + ρ)for allt > 0 . (1.25)

(ii) [Finite mean life time renewal] If
∫∞

0
ν(x,∞)dx = m < ∞ and S is not a compound

Poisson process then, for each fixed s > 0,

lim
t→∞

C∞(t, s) =
1

m

∫ ∞
s

ν(x,∞)dx . (1.26)

Combing Theorem 1.3, Theorem 1.6 and Theorem 1.8 gives sufficient conditions
for the process Xn to have, or not to have, an arcsine aging regime. This extends
the arcsine aging scheme of [9] to situations where the limiting clock process is not
necessarily a stable subordinator. This happens for instance in Bouchaud’s asymmetric
trap model on the complete graph (see Proposition 3.9 and Lemma 3.10) and in the
REM [27], when Xn is observed on time scales that are of the order of the time scale
of stationarity. Let us finally stress that the form of the relation (1.23), where the role
of the initial distribution µn is made explicit, is new. The effect of µn on the aging
phenomenon will be studied elsewhere.

The remainder of the paper is organized as follows. Section 2 contains the proofs
of the results of Section 1 and their specialization to asymmetric trap model on the
complete graph. Section 3 begins the investigation of Bouchaud’s asymmetric trap
model on the complete graph proper: there we define the model and state the results.
Their proofs occupy the rest of the paper (Section 4-6) up to a short appendix on regular
variations and renewal theory.

3Equivalently, if S is a stable subordinator with index α ∈ (0, 1).
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2 Convergence of the clock process and related results

This section is divided in four parts. In Subsection 2.1 we state a result by Durrett
and Resnick [21] that is central to the proofs of Theorem 1.1 and Theorem 1.3. The
latter are done in Subsection 2.2, and the proof of Theorem 1.6 is done in Subsection
2.3. In Subsection 2.4 we specialize Theorem 1.1 and Theorem 1.3 to the asymmetric
trap model on the complete graph. We also give sufficient conditions for convergence
of the re-scaled clock process to a partial-sum process in the case, not covered by the
theorems of Section 1, where the auxiliary time scale an is a constant (see Theorem 2.4
and Theorem 2.5).

2.1 A result by Durrett and Resnick.

In [21] a method is developed for proving convergence of partial sums processes
with dependent increments to Lévy processes. This method consists of two steps. In
the first step, one shows that a sequence of point processes associated with the incre-
ments converges weakly to a two dimensional Poisson process. Then, applying appro-
priate functionals (to ‘sum up the points’) and continuity arguments, one obtains weak
convergence of the sum to a limiting Lévy process.

In this section we specialize this result, namely Theorem 4.1 of [21], to the case of
processes with non-negative increments. Our framework is the following. Let {Zn,i, n ≥
1, i ≥ 1}, Zn,i ≥ 0, be an array of random variables defined on a probability space
(Ω,F ,P) and let {Fn,i, n ≥ 1, i ≥ 0} be an array of sub-sigma fields of F such that for
each n and i ≥ 1, Zn,i is Fn,i measurable and Fn,i−1 ⊂ Fn,i. Let kn(t) be a nondecreasing
right continuous function with range {0, 1, 2, . . . } and assume that for each t > 0 kn(t)

is a stopping time. Set

S̃n,k =

k∑
i=1

Zn,i , (2.1)

for k ≥ 1, S̃n,0 = 0, and define

Sn(t) = S̃n,kn(t) . (2.2)

The next theorem gives conditions for Sn to converge to a subordinator. To state it we
will need the following extra notation: for δ ≥ 0 set Zδn,i = Zn,i1{Zn,i≤δ}; further set

S̃δn,k =

k∑
i=1

Zδn,i (2.3)

for k ≥ 1, S̃δn,0 = 0, and define

Sδn(t) = S̃δn,kn(t) . (2.4)

Theorem 2.1. (Durrett and Resnick) Let ν be a σ-finite measure on (0,∞) satisfying∫
(0,∞)

(1 ∧ x)ν(dx) < ∞, and let {S(t), t ≥ 0} be the subordinator of Laplace exponent

Φ(θ) =
∫

(0,∞)

(
1− e−θx

)
ν(dx), θ ≥ 0. If, as n→∞,

(D1) For all t > 0 and for x > 0 such that ν({x}) = 0,

kn(t)∑
i=1

P (Zn,i > x | Fn,i−1)
proba−→ tν(x,∞) , (2.5)

(D2) For all t > 0 and and all ε > 0,

kn(t)∑
i=1

[P (Zn,i > ε | Fn,i−1)]
2 proba−→ 0, (2.6)

and
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(D3) For all t > 0 and all ε > 0,

lim
δ→0

lim sup
n→∞

P
(
Sδn(t) > ε

)
= 0 , (2.7)

then Sn ⇒ S in the space D([0,∞)) of càdlàg functions on [0,∞) equipped with the
Skorohod topology.

Remark 2.2. In [21], Conditions (D2) and (D3) are stated for t fixed and equal to one.
This does not seem to be correct.

2.2 Convergence to subordinators.

In this subsection we prove Theorem 1.1 and the first assertion of Theorem 1.3, and
give an alternative to Condition (A3).

Proof of Theorem 1.1. Our aim is to apply Theorem 2.1 to the sum

Sn(t) = c−1
n

bantc∑
i=1

λ−1
n (Jn(i))en,i . (2.8)

Let us first do this for a fixed realization ω ∈ Ωτ of the environment. Set kn(t) = bantc,
Zn,i = (cnλn(Jn(i)))−1en,i , and define Fn,i = B(Jn(0), . . . , Jn(i), en,0, . . . , en,i) . Clearly,
for each n and i ≥ 1, Zn,i is Fn,i measurable and Fn,i−1 ⊂ Fn,i. Next observe that

Pµn (Jn(i) = x, Zn,i > z | Fn,i−1) = Pµn (Jn(i) = x, Zn,i > z | Jn(i− 1))

= pn(Jn(i− 1), x)Pµn
(
(λn(x))−1en,i > z

)
= pn(Jn(i− 1), x) exp{−zcnλn(x)} . (2.9)

From this it follows that

kn(t)∑
i=1

Pµn (Zn,i > z | Fn,i−1) =

bantc∑
i=1

∑
x∈Vn

pn(Jn(i− 1), x) exp{−zcnλn(x)} , (2.10)

and

kn(t)∑
i=1

[Pµn (Zn,i > ε | Fn,i−1)]
2

=

bantc∑
i=1

[∑
x∈Vn

pn(Jn(i− 1), x) exp{−ucnλn(x)}

]2

, (2.11)

so Condition (A2) and (A1) of Theorem 1.1 are, respectively, Conditions (D2) and condi-
tion (D1) of Theorem 2.1.

We will now show that Condition (A1) together with Condition (A3) imply Condition
(D3). To simplify the notation in Conditions (A1)-(A3) we write ν̄(u) ≡ ν(u,∞), and set

ν̄J,tn (u) =

bantc∑
j=1

∑
x∈Vn

pn(Jn(j − 1), x) exp{−ucnλn(x)} . (2.12)

Consider now Condition (D3). By Tchebychev inequality Pµn
(
Sδn(t) > ε

)
≤ ε−1EµnSδn(t).

Expressed in terms of the truncated variables Zδn,i = Zn,i1{Zn,i<δ}, δ ≥ 0, the latter
expectation becomes,

EµnSδn(t) = Eµn
bantc∑
j=1

Zδn,i = Eµn

bantc∑
j=1

Eµn
(
Zδn,j

∣∣∣ Jn(j − 1)
)
. (2.13)

EJP 17 (2012), paper 58.
Page 8/33

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v17-2211
http://ejp.ejpecp.org/


Convergence of clock process

Integrating by parts,

Eµn
(
Zδn,i

∣∣∣ Jn(i− 1)
)

=

∫ ∞
0

Pµn
(
Zδn,i(Jn(i)) > y | Jn(i− 1)

)
dy

=

∫ δ

0

Pµn (Zn,i ≥ z | Jn(i− 1)) dz − δPµn (Zn,i > δ | Jn(i− 1)) ,

and since
∑bantc
i=1 P (Zn,i > z | Jn(i− 1)) = ν̄J,tn (u), as follows from (2.10) and (2.12), we

arrive at

EµnSδn(t) = Eµn

(∫ δ

0

duν̄J,tn (u)− δν̄J,tn (δ)

)
. (2.14)

Now by Condition (A1), Eµnδν̄
J,t
n (δ) ≤ tδν̄(δ) + o(1) and limδ→0 δν̄(δ) = 0, whereas Con-

dition (A3) states that Eµn

(∫ δ
0
duν̄J,tn (u)

)
≤ tεn(δ), where limδ→0 lim supn→∞ εn(δ) = 0.

Hence, if both these conditions are satisfied, limδ→0 lim supn→∞ EµnSδn(t) = 0, so that
Condition (D3) also is satisfied.

We may now conclude the proof of Theorem 1.1. We established that (A1) ⇒ (D1),
(D2) ⇔ (A2), and (A1) & (A3) ⇒ (D3). Therefore, by Theorem 2.1, Sn ⇒ S in D([0,∞))

where S is the subordinator (1.13).
So far we kept ω ∈ Ωτ fixed, i.e. we worked with a fixed realization of the environ-

ment. Let us now introduce the subsets Ωτn,1,Ω
τ
n,2 ⊂ Ωτ (with the notation of (2.12))

Ωτn,1 =
{
∀t > 0,∀u > 0,∀ε > 0, P

(∣∣ν̄J,t,ωn (u)− tν̄(u)
∣∣ < ε

)
= 1− o(1)

}
, (2.15)

Ωτn,2 =

∀t > 0,∀ε > 0, P

bantc∑
j=1

[∑
x∈Vn

pωn(Jωn (j − 1), x)e−ucnλ
ω
n(x)

]2

< ε

 = 1− o(1)

 ,

and set Ω̃τn = Ωτn,1 ∩ Ωτn,2. By definition of weak convergence what we have just estab-

lished is that for each ω ∈ Ω̃τn, and large enough n,

|E (f(Sn))− E (f(S))| = o(1) , (2.16)

for each continuous bounded function f on the space D([0,∞)) equipped with Skorohod

metric ρ∞. If it holds true that P
(⋃

m

⋂
n>m Ω̃τn

)
= 1, then Sn ⇒ S P-almost surely. If

instead we have limn→∞ P(Ω̃τn) = 1, then Sn ⇒ S in P-probability. Theorem 1.1 is thus
proved.

Proof of Theorem 1.3. As in the proof of Theorem 1.1 we first establish (1.15) for a
fixed realization ω ∈ Ωτ of the environment. Note that the additional Condition (A0)
is designed to guarantee that σn converges in distribution to σ. Indeed, since σn =

c−1
n S̃n(0) = c−1

n λ−1
n (Jn(0))en,0, we have 1 − Pµn(σn < v) =

∑
x∈Vn µn(x)e−vcnλn(x), so

that (1.14) becomes |Pµn(σn < v)− F (v)| = o(1). Thus, supplementing Conditions (A1)
and (A2) with Condition (A0), it follows from Theorem 1.1 that, viewing σn as a constant
function in D([0,∞)), the pairs (σn, Sn) jointly converge, weakly, to the pair (σ, S), in
D2([0,∞)). It next follows from the continuous mapping theorem, upon adding σn and
Sn, that σn+Sn ⇒ Ŝ = σ+S in D([0,∞)) (see [36], p. 84, last paragraph of Section 3.3,
for the continuity of the addition of an arbitrary element of D([0,∞)) and the constant
function). Eq. (1.15) being established for a fixed realization ω ∈ Ωτ , we conclude the
proof proceeding exactly as in the proof of Theorem 1.1 4, introducing the extra subsets
Ωτn,3 =

{∣∣∑
x∈Vn µn(x)e−vcnλn(x) − (1− F (v))

∣∣ = o(1)
}

, and setting Ω̃τn = Ωτn,1 ∩ Ωτn,2 ∩
Ωτn,3.

4 see the paragraph beginning above (2.15).
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Condition (A3) may not always be easy to handle. Here is an alternative:
Condition (A3’). There exists a sequence of functions εn ≥ 0 satisfying lim

δ→0
lim sup
n→∞

εn(δ) =

0 such that, for some 0 < δ0 ≤ 1, for all 0 < δ ≤ δ0 and all t > 0,

Eµn

bantc∑
j=1

∑
x∈Vn

pωn(Jωn (j − 1), x)
1{(cnλωn(x))−1≤δ}

cnλωn(x)

 ≤ tεn(δ) . (2.17)

Lemma 2.3. A sufficient condition for (A3) is (A3’).

Proof. We will show that if Condition (A1) and Condition (A3’) then so is Condition (A3).
As in the proof of Theorem 1.1 we write ν̄(u) ≡ ν(u,∞) and let ν̄J,tn (u) be defined through

(2.12). Then (1.12) of Condition (A3) becomes Eµn
(∫ δ

0
duν̄J,tn (u)

)
≤ tεn(δ). Clearly,∫ δ

0
duν̄J,tn (u) =

∑bantc
j=1

∑
x∈Vn p

ω
n(Jωn (j − 1), x) 1−e−δcnλ

ω
n(x)

cnλωn(x) . (2.18)

Now on the one hand, since 1−e−y
y ≤ eρe−y, 0 ≤ y ≤ ρ,

1−e−δcnλ
ω
n(x)

cnλωn(x) 1{cnλωn(x)≤δ} ≤ δeρe−δcnλ
ω
n(x)1{δcnλωn(x)≤ρ} ≤ δeρe−δcnλ

ω
n(x) , (2.19)

for all ρ > 0, while on the other hand 1−e−δcnλ
ω
n(x)

cnλωn(x) 1{δcnλωn(x)≥ρ} ≤
1{(cnλωn(x))−1≤δ/ρ}

cnλωn(x) . In-
serting these two bounds in (2.18) yields∫ δ

0
duν̄J,tn (u) ≤ δeρν̄J,tn (δ) +

∑bantc
j=1

∑
x∈Vn p

ω
n(Jωn (j − 1), x)

1{(cnλωn(x))−1≤δ/ρ}

cnλωn(x) . (2.20)

Recall that by Condition (A1), Eµnδν̄
J,t
n (δ) ≤ tδν̄(δ) + o(1) where limδ→0 δν̄(δ) = 0. Thus,

averaging out (2.20) and using Condition (A1) together with (2.17) of Condition (A3’)
to bound the resulting right hand side, we get that, for all ρ > 0, Eµn

(∫ δ
0
duν̄J,tn (u)

)
≤

tεn(δ/ρ) + δeρ(tδν̄(δ) + o(1)). Finally, taking e.g. ρ =
√
δ, limδ→0 lim supn→∞{tεn(δ/ρ) +

δeρ(tδν̄(δ) + o(1))} = 0. Condition (A3) is therefore satisfied.

2.3 Convergence of the time-time correlation function.

We will now exploit the convergence of Ŝn established above to prove convergence
of the time-time correlation function, using the continuous-mapping theorem.

Proof of Theorem 1.6. This pattern of proof is classical (see [36] section 9.7.2) and re-
lies on the continuity property of a certain function of the inverse mapping on D([0,∞)),
the so-called overshoot, which we now define. Let η ∈ D([0,∞)). For t > 0 let Lt be the
time of the first passage to a level beyond t; i.e.,

Lt(η) ≡ η−1(t) ≡ {inf u ≥ 0 | η(u) > t} (2.21)

(with Lt(η) = ∞ if η(u) ≤ t for all u). Let Dt(η) = η(Lt(η)) be the first visit to the
set {η(u) , u > 0} after time t. The associated overshoot is the function θt(η) defined
through

θt(η) = Dt(η)− t . (2.22)

With this definition the time-time correlation function (1.21) may be rewritten as

Cn(t, s) = Pµn
({
Ŝn(u) , u > 0

}
∩ (t, t+ s) = ∅

)
= Pµn

(
θt
(
Ŝn
)
≥ s
)
. (2.23)

Similarly, (1.22) can be rewritten as

C∞(t, s) = P ({S(u) , u > 0} ∩ (t, t+ s) = ∅) = P (θt(S) ≥ s) . (2.24)
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The point of doing this is that the overshoot function is an almost surely continuous
function on D([0,∞)) with respect to Lévy motions having almost surely diverging paths
(see [36], Theorem 13.6.5 p.447). Hence, if (1.15) holds true P-almost surely, the contin-
uous mapping theorem (applied for each fixed ω that belongs to the set of full measure
for which Sn ⇒ S obtains) yields that P-almost surely, uniformly in 0 ≤ t < t + s,
limn→∞ Pµn

(
θt(Ŝn) ≥ s

)
= P

(
θt(Ŝ) ≥ s

)
. Assume now that Ŝn ⇒ Ŝ in P-probability.

Note that for each continuous bounded function g on [0,∞) the function g ◦ θt is a con-
tinuous bounded function on D([0,∞)). Thus, by (2.16), for each ω ∈ Ω̃τn and large
enough n, ∣∣E(g ◦ θt(Ŝn)

)
− E

(
g ◦ θt(Ŝ)

)∣∣ = o(1) . (2.25)

From this and the definition of weak convergence it follows that limn→∞ Pµn
(
θt(Ŝn) ≥

s
)

= P
(
θt(Ŝ) ≥ s

)
in P-probability. Since the sequence of subsets Ω̃τn does not depend

on t and s, convergence holds uniformly in 0 ≤ t < t+ s, in P-probability.
It remains to express P

(
θt(Ŝ) ≥ s

)
in terms of C∞(t, s) and F . If σ = 0 then Ŝ =

S, and by (2.24), P
(
θt(Ŝ) ≥ s

)
= C∞(t, s), which proves (1.24). Otherwise, from the

assumption that σ and S in (1.15) are independent r.v.’s on (ΩX ,FX ,P) for each fixed
ω ∈ Ωτ , we get, conditioning on σ, that

P
(
θt(Ŝ) ≥ s

)
= 1−F (t+s)+

∫ t

0

P
(
θt−v(S) ≥ s

)
dF (v) = 1−F (t+s)+

∫ t

0

C∞(t−v, s)dF (v) .

(2.26)
Since (2.26) holds true for each ω ∈ Ωτ uniformly in 0 ≤ t < t + s, (1.23) obtains
uniformly in 0 ≤ t < t + s, and inherits the convergence mode of Pµn

(
θt(Ŝn) ≥ s

)
, that

is to say, the convergence mode of Ŝn. The proof of Theorem 1.6 is now complete.

2.4 The special case of the asymmetric trap model on the complete graph
(Convergence to renewal processes).

Our aim in this section is twofold: specialize the results of Theorems 1.1, 1.3 and 1.6
to the asymmetric trap model on the complete graph defined through (3.2)-(3.3) (we do
not however specify the distribution of the landscape variables, i.e. we do not assume
(3.1)), and give sufficient conditions for convergence of the re-scaled clock processes
to a renewal process in the case where the auxiliary time scale an of the re-scaled clock
process (1.8) is a constant. For such time scales the sample paths of Sn are increasing
functions on [0,∞) that have discontinuities at all integer time points. The natural
topological space in which to interpret weak convergence of Sn is, here, the space R∞
of infinite sequences equipped with the usual Euclidean topology (see e.g. [13] section
3). We will use the arrow V to denote weak convergence in that space. As in Theorem
1.1, weak convergence in Skorohod topology on D([0,∞)) will be denoted by ⇒. Set

rn = c
1/(1−a)
n and define

νn(u,∞) = an

∑
x∈Vn τ

a(x) exp{−u(rn/τ(x))(1−a)}∑
x∈Vn τ

a(x)
, u ≥ 0 . (2.27)

Theorem 2.4. Consider the asymmetric trap model on the complete graph on time
scale cn. The following holds for any choice of the initial distribution µn.

(i) If there exists a sequence an satisfying an ↑ ∞ as n ↑ ∞, a σ-finite measure ν on
(0,∞) satisfying

∫
(0,∞)

(1 ∧ u)ν(du) < ∞, and a function ε ≥ 0 satisfying lim
δ→0

ε(δ) = 0,

such that, either P-almost surely or in P-probability,

lim
n→∞

νn(u,∞) = ν(u,∞) ∀u > 0 , (2.28)
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and, for all 0 < δ ≤ δ0, for some 0 < δ0 ≤ 1,

lim sup
n→∞

∫ δ

0

νn(u,∞)du ≤ ε(δ) , (2.29)

then, w.r.t. the same convergence mode,

Sn(·)⇒ S(·) =
∑
tk≤·

ξk , (2.30)

where {(tk, ξk)} are the marks of a Poisson process on [0,∞)×(0,∞) with mean measure
dt× dν.

(ii) If, taking an = 1, there exists a probability distribution ν on (0,∞) such that, either
P-almost surely or in P-probability, (2.28) is verified for all u ≥ 0, then, w.r.t. the same
convergence mode,

Sn(·) V R(·) =
∑
k≤·

ξk , (2.31)

where {ξk, k ≥ 1} are independent r.v.’s with identical distribution ν.

In the sequel we will adopt the terminology used in [24] and call the sequence
{R(k) , k ∈ N} a renewal process of inter-arrival distribution ν (equivalently, of inter-
arrival times ξk). As in Theorem 1.3 the extra Condition (A0) on the convergence of the
initial increment σn enables us to deduce convergence of the full clock process Ŝn from
that of Sn.

Theorem 2.5.

(i) If, in addition to the assumptions of assertion (i) of Theorem 2.4, Condition (A0)
is satisfied w.r.t. the same convergence mode as in (2.28), then, in this convergence
mode, denoting by σ the random variable of (possibly random) distribution function F ,
the following holds: For S defined in (2.30),

Ŝn ⇒ Ŝ = σ + S , (2.32)

where σ and S are independent. Moreover for C∞(t, s) defined in (1.22), for all 0 ≤ t <

t+ s,

lim
n→∞

Cn(t, s) = 1− F (t+ s) +

∫ t

0

C∞(t− v, s)dF (v) . (2.33)

In particular, if σ = 0,

lim
n→∞

Cn(t, s) = C∞(t, s) . (2.34)

(ii) Substituting the assumptions of assertion (ii) of Theorem 2.4 to those of assertion (i)
in the statement of assertion (i’) above, and leaving the definition of σ unchanged, the
following holds: For R defined in (2.31),

Ŝn V R̂ = σ +R , (2.35)

where σ and R are independent. Moreover, (2.33)-(2.34) hold true with C∞(t, s) defined
through

C∞(t, s) = P ({R(k) , k ∈ N} ∩ (t, t+ s) = ∅) , 0 ≤ t < t+ s . (2.36)

Thus, when an diverges, Ŝn converges to a delayed subordinator, and it converges
to a delayed renewal process otherwise.
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Remark 2.6. As in Theorem 1.6, the statement that σ and S are independent in (2.32)
has the precise meaning that for each fixed ω ∈ Ωτ , σ and S are independent random
variables on the probability space (ΩX ,FX ,P). The same remark applies to the state-
ment that σ and R in (2.35) are independent.

Specializing the previous theorem to the case where the initial distribution µn is the
invariant measure πn of the jump chain (see (3.5)) yields the following:

Corollary 2.7. Let µn = πn. Under the assumptions of assertion (i) (respectively, asser-
tion (ii)) of Theorem 2.4, w.r.t. the same convergence mode as in (2.28) (equivalently,
(2.30), respectively, (2.31)),

lim
n→∞

Cn(t, s) = C∞(t, s) , 0 ≤ t < t+ s , (2.37)

where C∞(t, s) is defined in (1.22) (respectively, (2.36)).

Proof of Theorem 2.4. The first assertion of Theorem 2.4 is an elementary specializa-
tion of Theorem 1.1 to the asymmetric trap model on the complete graph. Simply note
that

bantc∑
j=1

∑
x∈Vn

pn(Jn(j − 1), x) exp{−ucnλn(x)} =
bantc
an

νn(u,∞) , (2.38)

where the r.h.s. is chain independent. Thus, if an is a diverging sequence, (1.10) and
(1.11) of Conditions (A1) and (A2) of Theorem 1.1 reduce, respectively, to

νn(u,∞)→ ν(u,∞) , (2.39)

1

an
[νn(u,∞)]

2 → 0 , (2.40)

as n→∞, and, clearly, (2.39) implies (2.40). Similarly, (1.10) of Condition (A3) becomes
(2.29).

Remark 2.8. Note that, setting hn(v) =
∑
x∈Vn pn(v, x)e−ucnλn(x), (2.38) can be written

as

bantc−1
bantc∑
j=1

hn(Jn(j − 1)) =
∑
y∈Vn

πn(y)hn(y) = Eπnhn(Jn(j − 1)) . (2.41)

In other words the sum appearing in Condition (A1) of Theorem 1.1 is ‘ergodic’. A
similar observation holds for Condition (A2).

The new part of Theorem 2.4 is assertion (ii), whose elementary proof we now give.
Assume first that there exists a probability distribution ν such that, for all u ≥ 0, (2.28)
holds in P-probability. Set ξn,i = c−1

n λ−1
n (Jn(i))en,i, i ≥ 0. Putting an = 1 in (1.8), Sn(t) =

Sn(btc) =
∑btc
i=1 ξn,i. Notice that for each ω ∈ Ωτ , {ξn,i, i ≥ 1} is an i.i.d. sequence on

the probability space (ΩX ,FX ,P) since, by (3.8), the chain variables (Jn(i), i ∈ N) form
an i.i.d. sequence, and since Pµn(ξn,i > u) = νn(u,∞) does not depend on i. This means
that Sn has stationary positive increments. To prove (2.31) it thus suffices to prove that,

in P-probability, for each integer k (finite and independent of n), Sn(k)
d→ R(k) (see e.g.

[13] p. 30). To this end consider the Laplace transforms Λn(k, θ) = Eµne−θSn(k) and
Λ(k, θ) = Ee−θR(k), θ > 0. From the assumption that, for all u ≥ 0, (2.28) holds in P-
probability, it follows that there exists a sequence Ω̃τn ⊂ Ωτ satisfying limn→∞ P(Ω̃τn) = 1,
and such that, for all large enough n,

sup
u≥0
|Pµn(ξn,i > u)− ν(u,∞)| = o(1) , 1 ≤ i ≤ n , (2.42)
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for all ω ∈ Ω̃τn. Let now ω ∈ Ω̃τn be fixed, where n will be taken as large as needed. By in-

dependence, Λn(k, θ) =
(
Ee−θξn,i

)k
. From the integration by parts formula Eµne−θξn,i =

1− θ
∫∞

0
e−θuPµn(ξn,i > u)du, it follows that∣∣Eµne−θξn,i − Ee−θξi∣∣ ≤ sup

u≥0
|Pµn(ξn,i > u)− ν(u,∞)| . (2.43)

Thus, by (2.42), for all n large enough, for each k, supθ>0 |Λn(k, θ)− Λ(k, θ)| = o(1).
Now, by Feller’s continuity theorem (see e.g. [24], XIII.1, Theorem 2a), this implies
that, for all n large enough, for each k, supu>0 |Pµn(ξn,i > u)− P(ξi > u)| = o(1). Since

this holds true for each fixed ω ∈ Ω̃τn, it is tantamount to the statement that, for each

k, Sn(k)
d→ R(k) in P-probability. The proof of assertion (ii) when (2.28) holds in P-

probability is now complete. The proof in the case of P-almost sure convergence is an
elementary adaptation whose details we skip. The proof of Theorem 2.4 is now done.

Proof of Theorem 2.5. We first deal with assertion (i’). Eq. (2.32) is proved just as (1.15)
of Theorem 1.3. Assuming that for each ω ∈ Ωτ , σ and S in (2.32) are independent
random variables on the probability space (ΩX ,FX ,P), (2.33) is proved in the same
way as (1.23) of Theorem 1.6, and the special case σ = 0 of (2.34) is nothing but (1.24).

Let us show that the above independence assumption is verified. For this let ω ∈ Ωτ

be fixed. Note that by (3.8) the jump chain (Jn(i), i ∈ N) becomes stationary in exactly
one step. Namely, for any initial distribution µn, for all i ≥ 1, Pµn(Jn(i) = x) = πn(x),
x ∈ Vn. Thus, for each n, σn and {Sn(k) , k ≥ 1} in (1.7) are independent r.v.’s on
(ΩX ,FX ,P). This in turn implies that, for each n, σn and {Sn(t) , t > 0} in the r.h.s. of
(1.9) are independent r.v.’s on (ΩX ,FX ,P). Thus σ and S(·) are independent, and since
this is true for each ω ∈ Ωτ , the claim follows.

We skip the proof of assertion (i”), which is a re-run of the proof of assertion (i’)
(and, upstream from it, of Theorems 1.3 and 1.6) in the simpler setting of discrete time
process.

Proof of Corollary 2.7. Since 1 − Pµn(σn < v) =
∑
x∈Vn µn(x)e−vcnλn(x) (see e.g. the

proof of assertion (i) of Theorem 1.3) it follows from (2.27) and the choice µn = πn that

1− Pµn(σn < v) =
1

an
νn(u,∞) . (2.44)

Suppose first that the assumptions of assertion (i) of Theorem 2.4 are verified. In view
of (2.28) and (2.44), 1−Pµn(σn < v)→ 0 for all v ≥ 0, so that Condition (A0) is satisfied
with F (v) = 1, v ≥ 0, w.r.t. the same convergence mode as in (2.28). Eq. (2.37) then
follows from (2.34). Suppose next that the assumptions of assertion (ii) of Theorem 2.4
are verified. Reasoning as above we readily see that Condition (A0) is satisfied with
F (v) = ν(u,∞), v ≥ 0, w.r.t. the same convergence mode as in (2.28). Thus, by (2.35),
the first increment σ of the limiting renewal process R̂ has the same distribution as the
inter-arrival times ξk of R. Hence, for all 0 ≤ t < t+ s,

P ({σ +R(k) , k ∈ N} ∩ (t, t+ s) = ∅) = P ({R(k) , k ∈ N} ∩ (t, t+ s) = ∅) = C∞(t, s) ,

(2.45)
where the last equality is (2.36). Since σ and R in (2.35) are independent, we also have,
conditioning on σ and using (2.33), that, for all 0 ≤ t < t+ s,

P ({σ +R(k) , k ∈ N} ∩ (t, t+ s) = ∅) = 1−F (t+s)+

∫ t

0

C∞(t−v, s)dF (v) = lim
n→∞

Cn(t, s) .

(2.46)
Equating the r.h.s. of (2.44) with the r.h.s. of (2.45) gives (2.37). The proof of Corollary
2.7 is done. The proof of Corollary 2.7 is done.
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3 Bouchaud’s asymmetric trap model on the complete graph.

We now begin the investigation of Bouchaud’s asymmetric trap model on the com-
plete graph, which will occupy the rest of the paper. The results we present are the first
aging results for a trap model of mean field type which is not a time change of a simple
random walk.

This section is organized as follows. In Subsection 3.1 we describe the model and
some of its static properties. We then state our main results, first, on the convergence
of the time correlation function (Subsection 3.2), and next, on the clock process (Sub-
section 3.3).

3.1 The model.

This model appeared in [16] where it was proposed and studied on various graphs
Gn(Vn, En). The random landscape (τ(x), x ∈ Vn) is a sequence of i.i.d. random variables
that represent the depths of traps, and whose distribution belongs to the domain of
attraction of a positive stable law with parameter α ∈ (0, 1). This means that there
exists a function L, slowly varying at infinity, such that

P(τ(x) > u) = u−αL(u) , u ≥ 0 . (3.1)

Given a parameter 0 ≤ a < 1, the Markov jump process Xn has holding time parameters

λn(x) = (τn(x))−(1−a) , ∀x ∈ Vn , (3.2)

and its jump chain, Jn, has one-step transition probabilities

pn(x, y) =
τan(y)∑

y:(x,y)∈En τ
a
n(y)

, if(x, y) ∈ En , (3.3)

pn(x, y) = 0 otherwise. When a = 0, Jn simply is the homogeneous random walk on Gn,
whereas when a > 0, Jn favors jumps to the neighboring traps of largest depths. Models
with a > 0 are called asymmetric as opposed to the symmetric ones where a = 0.

The first rigorous results for the asymmetric trap model were obtained for the graph
Z in [?]. There, it is shown that the time-time correlation function (1.21) does not exhibit
an arcsine aging regime but is sub-aging, and has the same (a-dependent) aging regime
for all a ∈ [0, 1]. The recent work [1] suggests that on the contrary, on the graphs Zd,
d ≥ 3, the asymmetry parameter, a, has no relevance on the aging phenomenon. These
results contrast with the case of the complete graph where the asymmetry parameter
triggers a dynamical phase transition. More precisely, we show that there exists a
positive threshold value in a below which the model exhibits an (a-dependent) arcsine
aging regime, whereas above it arcsine aging is interrupted. This phenomenon occurs
“on all time scales”, i.e. from time scale one up to, and including, the time scale of
stationarity. We also show how, on the time scale of stationarity, the model can be
driven from an arcsine aging regime to its stationary regime.

From now on we focus on the model where Gn(Vn, En) is the complete graph on
Vn ≡ {1, . . . , n} that has a loop at each vertex. Clearly Xn has a unique reversible
invariant measure, denoted by Gα,n, which is the Gibbs measure of the model, i.e.

Gα,n(x) =
τ(x)∑

x∈Vn τ(x)
, x ∈ Vn . (3.4)

Clearly also, the jump chain Jn has a unique reversible invariant measure, πn, given by

πn(x) =
τa(x)∑

x∈Vn τ
a(x)

, x ∈ Vn . (3.5)
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Thus πn is nothing but the Gibbs measure with parameter α/a; more precisely, πn =d

Gβ,n, β ≡ α/a ∈ (0,∞), where =d denotes equality in distribution.
Let us thus take a closer look at the asymptotics of the Gibbs measure. Its behavior

changes at the critical value α = 1. When α < 1 the order statistics of the Gibbs weights
converges in distribution to Poisson-Dirichlet distribution with parameter α. Namely, let
PRM(µ) be Poisson random measure with intensity measure

µ(x,∞) = x−α , x > 0 , (3.6)

and denote by {γk} its marks. Next denote by γ̄1 ≥ γ̄2 ≥ . . . the ranked Poisson marks.
Then Poisson-Dirichlet distribution with parameter α can be represented as the distri-
bution of the sequence

w̄1 ≥ w̄2 ≥ . . . where w̄k =
γ̄k∑
l γ̄l

. (3.7)

If we now label τn(x(1)) ≥ · · · ≥ τn(x(n)) the landscape variables arranged in decreasing

order of magnitude, then
(
Gα,n(x(k))

)
k≥1

d−→ (w̄k)k≥1 , as n→∞, (see [34], Proposition
10). This readily implies that most of the mass of the Gibbs measure is supported by the
points x(k) with largest weights (i.e. with deepest traps). In contrast, when α > 1, no
single point carries a positive mass asymptotically. In particular, it is not hard to show
that limn→∞ supx∈Vn Gα,n(x) = 0 in P-probability. Here the Gibbs measure “resembles a
uniform measure”.

It is now easy to see why the chain Xn should undergo a dynamical phase transition
at the value a = α. By (3.3) and (3.5),

pn(x, y) = πn(y) , ∀(x, y) ∈ En , (3.8)

where, because πn =d Gα/a,n, πn undergoes a transition at the value a = α. Thus, when
a > α the jump chain should resemble a symmetric random walk, and may explore the
entire landscape. In contrast, when a < α the jump chain will quickly go and visit a trap
of extreme depth from which it will not be able to escape, unless time is measured on
the scale of stationarity.

3.2 Aging of Cn(t, s).

We now state our main results on the asymptotic behavior of the time-time correla-
tion function Cn(t, s) of (1.21). We cover all choices of a and α with 0 < α < 1, 0 ≤ a < 1,
and a 6= α, and any choice of the time scale cn up to and including the time scale of
stationarity. All these results are obtained for a special choice of the initial distribution
µn, namely, µn = πn .

By (3.2), (cnλn(x))−1/(1−a) = τ(x)/cn
1/(1−a). This relation prompts us to call rn ≡

c
1/(1−a)
n a space scale. We will distinguish three types of space scales: the constant

scales (which simply are constant sequences), the intermediate, and the extreme scales.

Definition 3.1. We say that a positive and diverging sequence rn is:

(i) an intermediate space scale if there exists an increasing and diverging sequence
bn > 0 such that

bn
n

= o(1) and bnP(τ(x) ≥ rn) ∼ 1 , (3.9)

(ii) an extreme space scale if there exists an increasing and diverging sequence 0 <

bn ≤ n such that
bn
n
∼ 1 and bnP(τ(x) ≥ rn) ∼ 1 . (3.10)
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Remark 3.2. These scales are well separated. Namely, if rcstn , rintn and rextn denote,
respectively, a constant, an intermediate and an extreme space scale, then rcstn � rintn �
rextn .

Our first theorem establishes that if a < α then Cn(t, ρt) ages on all time scales.

Theorem 3.3 (Arcsine aging regime). Assume that a < α and take µn = πn.

(i) If rn is a constant space scale then, P-almost surely, for all ρ > 0,

lim
t→∞

lim
n→∞

Cn(t, ρt) = Aslα−a
1−a

(1/1 + ρ) . (3.11)

(ii) If rn is an intermediate space scale then for all t ≥ 0 and all ρ > 0,

lim
n→∞

Cn(t, ρt) = Aslα−a
1−a

(1/1 + ρ) . (3.12)

This holds P-a.s. if bn is regularly varying at infinity with index ζ < 1, and in P-probability
otherwise.

(iii) If rn is an extreme space scale then, for all ρ > 0, in P-probability,

lim
t→0+

lim
n→∞

Cn(t, ρt) = Aslα−a
1−a

(1/1 + ρ) . (3.13)

When a > α, none of the time scale and limiting procedures of Theorem 3.3 yields
aging:

Theorem 3.4 (Stranded in deep traps). Assume that a > α and take µn = πn.

(i) If rn is a constant or intermediate space scale then, for all 0 ≤ t < t+ s,

lim
n→∞

Cn(t, s) = 1 in P− probability. (3.14)

(ii) If rn is an extreme space scale then, for all ρ > 0,

lim
t→0

lim
n→∞

Cn(t, ρt) = 1 in P− probability. (3.15)

At a heuristic level Theorem 3.4 is easy to understand. For a > α the initial dis-
tribution µn behaves like a “low temperature” Gibbs measure, namely µn =d Gβ,n,
β = α/a < 1. This means that almost all its mass is carried by traps whose size is
of the order of extreme space scales. Now the mean waiting time in such deep traps
diverges with n whenever time is measured on a scale which is small compared to ex-
treme scales: the chain gets stranded.

The last theorem below is valid for all 0 ≤ a < 1. It states that, as expected, on ex-
treme time scales, taking the infinite volume limit first, the process reaches stationarity
as t→∞. As before let {γk} denote the marks of PRM(µ) on (0,∞), and define

Csta∞ (s) =
∑
k

γk∑
l γl

e−sγ
−(1−a)
k , s ≥ 0 . (3.16)

Theorem 3.5 (Crossover to stationarity). Let cn = r1−a
n where rn is an extreme space

scale. The following holds for all 0 ≤ a < 1, a 6= α:

(i) If µn = Gα,n then, for all s ≤ t < t+ s,

lim
n→∞

Cn(t, s)
d
= Csta∞ (s) , (3.17)

where
d
= denotes equality in distribution.
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(ii) If µn = πn, for all s > 0,

lim
t→∞

lim
n→∞

Cn(t, s)
d
= Csta∞ (s) . (3.18)

Comparing (3.13) and (3.18) we see that when time goes from 0 to∞, for a < α, the
chain moves out of an arcsine aging regime and crosses over to its stationary regime.
Aging is then interrupted.

3.3 Convergence of the clock process.

This section contains the ingredients needed in the proofs of Theorem 3.3, 3.4 and
3.5. Consider the pure clock process Sn of (1.8). For a < α let an be any sequence
such that anran/(bnEτa) ∼ 1, and for a > α, take an ∼ 1. As before µn = πn. . We show
below that Sn has different limits depending on the choice of space scales (constant,
intermediate, and extremal) and the value of a. The proofs of these results rely on
Theorem 2.4 whose notations we now use.

Proposition 3.6. Let rn be a constant space scale. For a < α and τ ≡ τ(1), let νcst,−

be the measure defined through

νcst,−(u,∞) = Eτae−u/τ
(1−a)

, u > 0 . (3.19)

(i) If a < α then Sn V Rcst,− P-a.s., where Rcst,− is the renewal process of inter-arrival
distribution νcst,−.

(ii) If a > α then, Sn V Rcst,+ in P-probability, where Rcst,+ is the degenerate renewal
process of inter-arrival distribution νcst,+ = δ∞.

The lemma below shows that νcst,−(u,∞) is regularly varying at infinity with index
α−a
1−a .

Lemma 3.7. As u→∞, νcst,−(u,∞) ∼ u−
α−a
1−a `(u)Γ

(
α−a
1−a

)
for some function `(u) slowly

varying at infinity.

Proposition 3.8. Let rn be an intermediate space scale. For a < α, let νint,− be the
measure on (0,∞) defined through

νint,−(u,∞) = u−
α−a
1−a α

1−aΓ
(
α−a
1−a

)
, u > 0 . (3.20)

(i) If a < α then, Sn ⇒ Sint,− where Sint,− is the stable subordinator of Lévy measure
νint,−. Convergence holds P-a.s. if bn = nζ for some 0 < ζ < 1, and in P-probability
otherwise.

(ii) If a > α then, Sn V Rint,+ in P-probability, where Rint,+ is the degenerate renewal
process of inter-arrival distribution νint,+ = δ∞.

To formulate the results on extreme scales recall that for µ defined in (3.6), {γk}
denote the marks of PRM(µ) on (0,∞), and introduce the re-scaled landscape variables:

γn(x) = r−1
n τ(x) x ∈ Vn . (3.21)

Proposition 3.9. If rn is an extreme space scale then both the sequence of re-scaled
landscapes (γn(x), x ∈ Vn), n ≥ 1, and the marks of PRM(µ) can be represented on a
common probability space (Ω,F ,P) such that, in this representation, denoting by Sn
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the process (1.8), the following holds. For a < α, resp. a > α, let νext,−, resp. νext,+ be
the random measures on (0,∞) defined on (Ω,F ,P) through

νext,−(u,∞) =
∑
k

γake
−uγ−(1−a)

k , u > 0 ,

νext,+(u,∞) =
∑
k

γak∑
l γ
a
l

e−uγ
−(1−a)
k , u > 0 . (3.22)

Then, P-almost surely,

Sn ⇒ Sext,− if a < α ,

Sn V Rext,+ if a > α , (3.23)

where Sext,− is the subordinator of Lévy measure νext,−, and Rext,+ is the renewal
process of inter-arrival distribution νext,+.

Here the subordinator Sext,− is not stable. However νext,−(u,∞) is regularly varying
at 0+ with index α−a

1−a :

Lemma 3.10. P-a.s., νext,−(u,∞) ∼ u−
α−a
1−a α

1−aΓ
(
α−a
1−a

)
as u→ 0+.

By Corollary 2.7, Theorem 3.3, Theorem 3.4 and Theorem 3.5 are direct conse-
quences of the above results and Theorem 1.8 (see also Theorem 7.2 of Appendix 7.1 on
renewal theory for the discrete time version of Theorem 1.8; for the proof of Theorem
3.5, (i), see Theorem 7.3). Similarly, Proposition 3.6, (ii), and Proposition 3.8, (ii), are
simple consequences of Theorem 2.4, (ii). We omit their proofs. Details can be found in
[26].

The rest of the paper is devoted to the proofs of Proposition 3.6, (i), Proposition
3.8, (i), and Proposition 3.9. As they rely on very different tools, we give them in three
separate sections (Section 4, 5, and 6 respectively).

4 Constant scales.

Proof of Proposition 3.6, (i). It suffices to check that the conditions of Theorem 2.4, (ii),
are satisfied P-almost surely. For all a < α Eτa < ∞ so that Eτae−u/τ(1−a) ≤ Eτa < ∞
for all u ≥ 0. Thus, for all u ≥ 0, the strong law of large numbers applies to both the
numerator and denominator of (2.27), yielding limn→∞ νn(u,∞) = νcst,−(u,∞) P-almost
surely. Together with the monotonicity of νn(u,∞) and the continuity of the limiting
function νcst,−(u,∞), this implies that there exists of a subset Ωτ1 ⊂ Ωτ of the sample
space Ωτ of the τ ’s with the property that P(Ωτ1) = 1, and such that, on Ωτ1 ,

lim
n→∞

νn(u,∞) = νcst,−(u,∞) , ∀u > 0 . (4.1)

The proof of Proposition 3.6 is done.

Proof of Lemma 3.7. Let a < α. For u ≥ 0 and y ≥ 0 set ϕu(y) = yae−u/y
(1−a)

. Integrat-
ing by parts, Eϕu(τ) =

∫∞
0
ϕ′u(x)P(τ > x)dx. By the change of variable x = u1/(1−a)y,

noting that ϕ′u
(
u1/(1−a)y

)
= u−1ϕ′1(y), we get Eϕu(τ) = u

a
1−a

∫∞
0
ϕ′1(y)P

(
τ > u

1
1−a y

)
dy.

By (3.1) u
α

1−aP
(
τ > u

1
1−a
)

= `(u) for some function ` slowly varying at infinity. Thus

u
α−a
1−a Eϕu(τ) = `(u)

∫ ∞
0

ϕ′1(y)
[
P
(
τ > u

1
1−a y

)
/P
(
τ > u

1
1−a
)]
dy , (4.2)
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where P
(
τ > u

1
1−a y

)
/P
(
τ > u

1
1−a
)
→ y−α as u → ∞. Because of the monotonicity the

approach is uniform, and so∫ ∞
0

ϕ′1(y)
[
P
(
τ > u

1
1−a y

)
/P
(
τ > u

1
1−a
)]
dy →

∫ ∞
0

ϕ′1(y)y−αdy = Γ
(
α−a
1−a

)
, (4.3)

as u→∞. Combining (4.2) and (4.3) proves the lemma.

5 Intermediate scales.

In this section we prove Proposition 3.8, (i), in the case where bn = nζ for some
0 < ζ < 1. (The case where convergence holds in probability only can be found in [26].)
The proof hinges on Proposition (5.1) below, that will enable us to establish control on
the quantity νn(u,∞) from (2.27).

For fixed u ≥ 0 set ϕu(y) = yae−u/y
(1−a)

, y ≥ 0. Consider the array {Zun,i, i ≥ 1, n ≥ 1},
Zun,i ≡ bnϕu(τ(i)/rn), and set Sun = 1

n

∑n
i=1 Z

u
n,i.

Proposition 5.1. Assume that a < α. Let rn be an intermediate space scale and assume
that bn = nζ for some 0 < ζ < 1. Then, for all u > 0, limn→∞

1
nS

u
n = νint,−(u,∞) P-a.s..

Proof of Proposition 5.1. The cases a = 0 and a > 0 are very different. When a = 0

the Zun,i’s have finite moments of all order and Proposition 5.1 immediately follows a
classical exponential inequality. When a > 0 they only have a finite first moment. Our
proof here is inspired from the strong law of large number of Etemadi [23], and relies
on the next three lemmata. Introduce the truncated variables Z

u

n,i = Zun,i1{Zun,i<i} and

set 1
nS

u

n = 1
n

∑n
i=1 Z

u

n,i.

Lemma 5.2. For each u > 0, P
(
Z
u

n,i 6= Zun,i, i.o.
)

= 0.

To prove Proposition 5.1 it thus suffices to prove that limn→∞
1
nS

u

n = νint,−(u,∞)

P-a.s., for all u > 0. The next two lemmata will allow to prove this along subsequences
of the form kn = bβnc, β > 1.

Lemma 5.3. For each u > 0,
∑∞
n=1 P

(∣∣Sukn − ESukn
∣∣ ≥ εkn) <∞.

Lemma 5.4. For each u > 0, limn→∞
1
nES

u

n = νint,−(u,∞).

By Lemma 5.3, the Borel-Cantelli Lemma, and Lemma 5.4, limn→∞
1
kn
S
u

kn = νint,−(u,∞)

P-a.s., for all u > 0. It will then only remain to handle the intermediate values kn ≤ m ≤
kn+1.

Before doing this let us prove Lemmata 5.3, 5.4 and 5.2. The information on the slow
variation properties of the function ϕu and its inverse that is needed in their proofs is
collected below. (We use the notations of Appendix 7.2 on regular variations.) Assume
that a > 0. Clearly ϕu is strictly increasing and ϕu ∈ Ra. Thus ϕ−1

u is well defined,
strictly increasing, and, by Lemma 7.6, ϕ−1

u ∈ R1/a. Let the functions φu be defined
through

ϕ−1
u (y) = y1/aφu(y) . (5.1)

Then φu ∈ R0. The following elementary lemma, stated without proof, gives its explicit
form for small u.

Lemma 5.5. Let 0 < a < 1. Then, for all u > 0, (i) φu(y) ≥ 1 for all y ≥ 0, and (ii)
φu(y) ≤ e1/a for all y ≥ u1/(1−a). Moreover, (iii) if u ≥ v then φu(y) ≤ φv(y) for all y ≥ 0.

In what follows, ci, i ≥ 1, are finite positive constants that may depend on the
parameters a and α, but not on u, and whose value may change from line to line. We
sometimes write ϕ, φ instead ϕu, φu if no confusion may arise.
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Proof of Lemma 5.3. Let mn be any increasing sequence such that bkn � mn � kn and∑∞
n=1(mn/kn)2 <∞. By Tchebychev inequality it is enough to prove that

∞∑
n=1

1

k2
n

n∑
i=mn

E(Z
u

kn,i)
2 <∞. (5.2)

Set

hn(z) =
P(τ(x) > rknz)

P(τ(x) > rkn)
. (5.3)

By integration by parts,

n∑
i=mn

E(Z
u

n,i)
2 ≤ 2

n∑
i=mn

b2kn

∫ i/bkn

0

yP(ϕu(τ(i)/rkn) > y)dy

= 2bkn [bknP(τ(x) > rkn)]

n∑
i=mn

∫ ϕ−1
u (i/bkn )

0

ϕu(z)ϕ′u(z)hn(z)dz . (5.4)

Note that by definition of intermediate scales bknP(τ(x) ≥ rkn) ∼ 1 and bkn/kn = o(1),
whereas i/bkn ≥ mn/bkn ↑ ∞ by assumption on mn. To further express the last integral
in (5.4) we decompose it into In(u) = I ′n(u)+I ′′n(u), where I ′n(u) = 2

∫ 1

0
ϕu(z)ϕ′u(z)hn(z)dz

and I ′′n(u) = 2
∫ ϕ−1

u (i/bkn )

1
ϕu(z)ϕ′u(z)hn(z)dz .

To deal with I ′n(u) we use that hn(z) → z−α, n → ∞, where the convergence is
uniform in 0 ≤ z ≤ 1, since for each n, hn(z) is a monotone function, and since the limit,
zα, is continuous. Thus for all ε > 0 there exists n(ε) such that for all n ≥ n(ε)∣∣∣∣I ′n(u)− 2

∫ 1

0

ϕu(z)ϕ′u(z)

zα
dz

∣∣∣∣ ≤ ε2∫ 1

0

ϕu(z)ϕ′u(z)dz ≤ ε

(2a+ 1)
, ∀u > 0 . (5.5)

Integrating by parts, 2
∫ 1

0
ϕu(z)ϕ′u(z)

zα dz = ϕ2
u(1) + α

∫ 1

0
ϕ2
u(z)

z1+α−εn dz. Performing the change
of variable z = y−1/(1−a), the last integral may be written as, j(u) = α

1−a
∫∞

1/2
z%−1e−2uzdz

where we set % := α−2a
1−a . Now, if % > 0, j(u) ≤ α

1−a
∫∞

0
z%−1e−uzdz = (2u)−% α

1−aΓ(%)

where −% + 1 > 0, whereas if % ≤ 0, j(u) ≤ α
1−a

∫∞
1/2

z−|%|−1dz = α
%(1−a)2|%|. Combining

these observations with (5.5) we conclude that for all u > 0 and all large enough n there
exist constants 0 ≤ c0, c4 < ∞ and 0 < c2 ≤ 1, that depend only on α and a, such that
I ′n(u) ≤ c0 + c4u

−1+c2 .

To bound I ′′n(u) we note that hn(z) = x−α(L(rknz)/L(rkn)) and use that by Lemma
7.5, for each x > 1 and large enough n, (1 − δn)z−α−εn ≤ hn(z) ≤ (1 + δn)z−α+εn , for
some positive sequences εn and δn satisfying εn ↓ 0, δn ↓ 0 as n ↑ ∞. Thus

I ′′n(u) ≤ 2(1 + δn)

∫ ϕ−1
u (i/bkn )

1

ϕu(z)ϕ′u(z)

zα−εn
dz , (5.6)

Integrating by parts I ′′n(u) ≤ (1+δn)
ϕ2
u(z)

zα−εn

∣∣∣∣ϕ−1
u (i/bkn )

1

+(1+δn)
∫ ϕ−1

u (i/bkn )

1
(α−εn)

ϕ2
u(z)

z1+α−εn dz.

Using Lemma 5.5, (i), we easily see that for all u > 0, ϕ2
u(z)

xα−εn

∣∣ϕ−1
u (i/bkn )

1
≤ ( i

bkn
)2−α−εna .

Next,∫ ϕ−1
u (i/bkn )

1

ϕ2
u(x)

x1+α−εn
dx =

1

1− a

∫ 1

(ϕ−1
u (i/bkn ))−(1−a)

x
α−2a−εn

1−a −1e−2uxdx

≤ α−εn
|α−2a−εn|

[
1 +

(
ϕ−1
u

(
i
bkn

))2a−α+εn
]
≤ 2 α−εn

|α−2a−εn|
(
e i
bkn

)2−α−εna(5.7)
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which is valid for all u > 0. Indeed, if u ≤ v := ( i
bkn

)1−a, then the last ineqality follows

from Lemma 5.5, (ii); if on the contrary u > v, then, by Lemma 5.5, (iii), ϕ−1
u (i/bkn) ≤

ϕ−1
v ( i

bkn
), whereas by Lemma 5.5, (ii), for all y ≥ i

bkn
, ϕ−1

v (y) ≤ (e i
bkn

)1/a. Collecting our

bounds we get that for all large enough n, bknI
′′
n(u) ≤ c5bkn + c6bkn

(
i
bkn

)2−α−εna for all
u > 0.

Inserting our bounds on I ′n(u) and I ′′n(u) in (5.4) and (5.2) successively yields

∞∑
n=1

1

k2
n

n∑
i=mn

E(Z
u

kn,i)
2 ≤ c1

∞∑
n=1

bkn
k2
n

n∑
i=mn

[
(1 + u−1+c2) +

(
i
bkn

)2−α−εna ]

≤ c0(1 + u−1+c2)

∞∑
n=1

bkn
kn

<∞ ,

where 0 < c2 ≤ 1 and 0 ≤ c0, c1 <∞. The proof of Lemma 5.3 is done.

Proof of Lemma 5.4. It suffices to prove that 1
n

∑n
i=mn

EZun,i = νint,−(u,∞) where mn is
an increasing sequence such that bn � mn � n. To this end write

1

n
ESun =

1

n

n∑
i=mn

EZun,i −
1

n

n∑
i=mn

EZun,i1{Zun,i≥i} . (5.8)

Consider the first sum in the right hand side of (5.8). Integration by parts yields

1

n

n∑
i=mn

EZun,i =
n−mn + 1

n
[bnP(τ(x) > rnz)]

∫ ∞
0

ϕ′u(z)hn(z)dz := (1 + o(1))Jn(u) , (5.9)

where hn is given in (5.3). Write Jn(u) = J ′n(u) + J ′′n(u), where J ′n(u) =
∫ 1

0
ϕ′u(x)hn(x)dx

and J ′′n(u) =
∫∞

1
ϕ′u(x)hn(x)dx. On the one hand, proceeding as we did to establish (5.6),

we obtain that limn→∞ J ′n(u) =
∫ 1

0
ϕ′u(x)
xα dx for all u > 0. On the other hand, using the

bounds on hn from the paragraph above (5.6),

(1− δn)

∫ ∞
1

ϕ′u(x)

xα+εn
dx ≤ J ′′n(u) ≤ (1 + δn)

∫ ∞
1

ϕ′u(x)

xα−εn
dx , (5.10)

where 0 < εn, δn ↓ 0 as n ↑ ∞. Since
∫∞

0
ϕ′u(x)
xα dx = u−

α−a
1−a α

1−aΓ
(
α−a
1−a

)
= νint,−(u,∞),

which is finite for u > 0, dominated convergence applies and yields, limn→∞ J ′′n(u) =∫∞
1

ϕ′u(x)
xα dx. Collecting our results we get

lim
n→∞

1

n

n∑
i=mn

EZun,i =

∫ ∞
0

ϕ′u(x)

xα
dx = νint,−(u,∞) , u > 0 . (5.11)

It remains to prove that limn→∞
1
n

∑n
i=mn

EZun,i1{Zun,i≥i} = 0. Integration by parts
and the change of variable y = ϕu(z) yields

EZun,i1{Zun,i≥i} = [bnP(τ(x) > rn)]J ′′n
(
ϕ−1
u (i/bn)

)
+ iP

(
Zun,i ≥ i

)
. (5.12)

To bound J ′′n(ϕ−1
u (i/bn)) we use the upper bound (5.10) (which is valid for all n large

enough) and, proceeding as in the paragraph below (5.6) (but replacing ϕ2
u by ϕu), we

readily obtain that J ′′n(ϕ−1
u (i/bn)) ≤ (1 + o(1))(i/bn)1−α−εna . Thus

1

n

n∑
i=mn

J ′′n(ϕ−1
u (i/bn)) ≤ c0

(
bn
n

)α−εn
a −1

. (5.13)
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Turning to the last term in the right hand side of (5.12), we have

iP(Zun,i > i) = i
(
rn(i/bn)

1
aφ(i/bn)

)−α
L
(
rn(i/bn)

1
aφ(i/bn)

)
, (5.14)

where φ(y) is defined in (5.1). Using furthermore that rαnP(τ(x) > rn) = L(rn), we
obtain

iP(Zun,i > i) =

(
bn
i

)α
a−1

[bnP(τ(x) > rn)]
L
(
rn(i/bn)

1
aφ(i/bn)

)
φ(i/bn)αL(rn)

. (5.15)

Consider the last quotient in the r.h.s. of (5.14). The bound φu
(
i
bn

)
≥ 1 of Lemma 5.5

(valid for all u ≥ 0) together with Lemma 7.5 imply that there exist positive sequences
εn and δn that verify εn ↓ 0, δn ↓ 0 as n ↑ ∞ and such that, for all n large enough, this
quotient is bounded above by (1 + δn)(i/bn)

εn
a . Inserting this in (5.15) we obtain,

1

n

n∑
i=mn

iP(Zun,i > i) ≤ 2

n

n∑
i=mn

(
bn
i

)α−εn
a −1

≤ 2

(
bn
mn

)α−εn
a −1

. (5.16)

Finally, by (5.12), (5.13), and (5.16), since α/a > 1 and bn � mn � n, we conclude that
for all n large enough, limn→∞

1
n

∑n
i=mn

EZun,i1{Zun,i≥i} = 0. The proof of Lemma 5.4 is
done.

Proof of Lemma 5.2. It suffices to show that for some n0 <∞,

lim
i0→∞

P
(
∃n≥n0∃i0≤i≤n{Z

u

n,i 6= Zun,i}
)

= 0. (5.17)

Note that {Zun,i 6= Zun,i} = {bnϕu(τ(i)/rn) > i} = {bnϕu(τ(i)/rn) > i, τ(i) > 1}. Indeed
if τ(i) ≤ 1 then there exists n′0 < ∞ such that for all n ≥ n′0, bnϕu(τ(i)/rkn) < 1. Also
note that for all fixed y > 1, bnϕu(y/rkn) is an increasing function of n for all n ≥ n′′0 and
some n′′0 <∞. Therefore, taking n0 = max(n′0, n

′′
0),

P
(
∃n≥n0

∃i0≤i≤n{Z
u

n,i 6= Zun,i}
)
≤ P

(
∃n≥n0

∃i0≤i≤n{bnϕu(τ(i)/rn) > i}
)

≤ P
(
∃i≥i0{biϕu(τ(i)/ri) > i}

)
≤

∑
i≥i0

P
(
biϕu(τ(i)/ri) > i

)
. (5.18)

Proceeding as in (5.14)-(5.16) to bound the last probability we get that, for some εn ↓ 0,

∑
i≥i0

P
(
biϕu(τ(i)/ri) > i

)
≤ 2

∑
i≥i0

1

bi

(
bi
i

)α−εn
a

, (5.19)

where α−εn
a > 1 for all n large enough. From this and the assumption that bn < nζ ,

ζ > 0, it follows that the r.h.s. of (5.19) is bounded above by

2
∑
i≥i0

(1/i)
1+(1−ζ)(α−εna −1) ≤ c0 (1/i0)

(1−ζ)(α−εna −1)
, (5.20)

which tends to zero as i0 →∞, proving (5.17). The proof of Lemma 5.2 is done.

To conclude the proof of Proposition 5.1 it remains to handle the intermediate values
kn ≤ m ≤ kn+1. Observe that for such values of m, we have:

1

m
S
u

m ≤
(
rkn+1

rkn

)a(
kn+1

kn

)
1

kn
S
un
kn , un ≡ u

rkn
rkn+1

,

1

m
S
u

m ≥
(
rkn
rkn+1

)a(
kn
kn+1

)
1

kn+1
S
un
kn+1

, un ≡ u
rkn+1

rkn
. (5.21)
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We now claim that,

β−(1−ε)(ζ/α)−1 ≤
rkn+1

rkn
≤ β(1−ε)(ζ/α)+1, (5.22)

for some 0 < ε < 1, and β−1 ≤ kn+1

kn
≤ β. The latter bounds are immediate. To prove

(5.22) note that G−1 in (6.1) belongs to R−1/α(0+). It thus follows from Definition 3.1
that

rkn+1
/rkn =

G−1
(
b−1
kn+1

(1 + o(1))
)

G−1
(
b−1
kn

(1 + o(1))
) = (1 + o(1))

(
bkn+1

bkn

)1/α `
(
b−1
kn+1

(1 + o(1))
)

`
(
b−1
kn

(1 + o(1))
) , (5.23)

for some function ` slowly varying at 0+. Furthermore, by assumtion, bn is regularly

varying at infinity with index ζ < 1. Hence, by Lemma 7.5, (1− δn)
(
bkn+1

/bkn
)ζ/α−εn ≤

rkn+1
/rkn ≤ (1 + δn)

(
bkn+1

/bkn
)ζ/α+εn , where εn ↓ 0, δn ↓ 0 as n ↑ ∞. Since β > 1,

β−1(1 − δn) ≤ (1 − δn) ≤ (1 + δn) ≤ β, for all n large enough. Combining our bounds
proves (5.22).

Therefore, there exist strictly positive constants ε−, ε+, δ− and δ+ such that, P-a.s.,

β−δ
−
νint,−(u/βε

−
,∞) ≤ lim inf

m→∞

1

m
S
u

m

≤ lim sup
m→∞

1

m
S
u

m ≤ βδ
+

νint,−(uβε
+

,∞). (5.24)

Since this is true for every β > 1, the proof of Proposition 5.1 is done.

We are now ready to prove Proposition 3.8.

Proof of Proposition 3.8, (i). With the notation of Proposition 5.1, (2.27) becomes

νn(u,∞) =
anr

a
n

bn

1
nS

u
n

1
n

∑n
i=1 τ

a(i)
. (5.25)

Reasoning as in the proof of (4.1) it follows from Proposition 5.1 that, P-a.s.,

lim
n→∞

1

n
Sun = νint,−(u,∞) , ∀u > 0 . (5.26)

By the strong law of large numbers, limn→∞
1
n

∑n
i=1 τ

a(i) = Eτa P-a.s., and by as-
sumption on an, anran/(bnEτa) ∼ 1. Therefore Condition (2.28) of Theorem 2.4, (i),
is satisfied P-a.s. with ν = νint,−. To see that Condition (2.29) also is satisfied we
use that since convergence in (5.26) is uniform then, for each 0 < δ ≤ 1, P-a.s.,

limn→∞
∫ δ

0
νint,−n (u,∞)du =

∫ δ
0
νint,−(u,∞)du = δ

1−α
1−a α

1−αΓ
(
α−a
1−a

)
. Now

∫ δ
0
νint,−n (u,∞)du

is a monotone increasing sequence having a continuous limit so that P-a.s.,

lim
n→∞

∫ δ

0

νint,−n (u,∞)du =

∫ δ

0

νint(u,∞)du , ∀ 0 < δ ≤ 1 . (5.27)

Both conditions of Theorem 2.4, (i), being satisfied in P-a.s., the proof of Proposition
3.8, (i), is done.

6 Extreme scales.

Consider the re-scaled sequence γn(x) = r−1
n τ(x), x ∈ Vn. For each n form the

point process Υn =
∑
x∈Vn 1γn(x), and let Υ =

∑∞
k=1 1γk be PRM(µ) with µ given by

(3.6). It is well known that when (τ(x), x ∈ Vn) are i.i.d. r.v.’s equi-distributed with
τ ∈ D(α), Υn converges weakly to Υ if and only if rn is an extreme space scale. By
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the Continuous Mapping Theorem, appropriate continuous functionals of Υn converge
to the corresponding functionals of Υ. This convergence however is in distribution
only, and this is not enough for our purposes. The usual way out of this difficulty is to
think of weak convergence from Skorohod’s representation Theorem and replace the
sequence (γn(x), x ∈ Vn) by a new sequence with identical distribution, but almost sure
convergence properties. This strategy was first implemented in the context of an aging
system by Fontes et al. [25], and often used since. We in turn adopt it using, however, an
explicit representation of the re-scaled landscape. The latter is given in Subsection 6.1.
In Subsection 6.2 we consider the model obtained by substituting the representation
for the original landscape and prove Proposition 3.9. The final Subsection 6.3 contains
the proof of Lemma 3.10.

6.1 A representation of the re-scaled landscape.

The representation we now introduce is due to Lepage et al. [32] and relies on an
elementary property of order statistics. Let τ̄n(1) ≥ · · · ≥ τ̄n(n) and γ̄n(1) ≥ · · · ≥ γ̄n(n)

denote, respectively, the landscape and re-scaled landscape variables, (τ(x), x ∈ Vn)

and (γn(x), x ∈ Vn), arranged in decreasing order of magnitude. For u ≥ 0 set G(u) =

P(τ(x) > u) and
G−1(u) := inf{y ≥ 0 : G(y) ≤ u} . (6.1)

Let (Ei, i ≥ 1) be a sequence of i.i.d. mean one exponential random variables defined
on a common probability space (ΩE ,FE ,P). We will now see that both the ordered
landscape variables and the limiting point process Υ can be expressed in terms of this
sequence. Set, for k ≥ 1,

Γk =

k∑
i=1

Ei ,

γk = Γ
−1/α
k , (6.2)

and, for 1 ≤ k ≤ n, n ≥ 1,
γnk = r−1

n G−1(Γk/Γn+1) . (6.3)

Lemma 6.1. For each n ≥ 1, (γ̄n(1), . . . , γ̄n(n))
d
= (γn1, . . . , γnn) .

Proof. Note that G is non-increasing and right-continuous so that G−1 is non-increasing
and right-continuous. It is well known that if the random variable U is a uniformly dis-

tributed on [0, 1] we may write τ(0)
d
= G−1(U). In turn it is well known (see [24],

Section III.3) that if (U(k), 1 ≤ k ≤ n) are independent random variables uniformly
distributed on [0, 1] then, denoting by Ūn(1) ≤ · · · ≤ Ūn(n) their ordered statistics,

(Ūn(1), . . . , Ūn(n))
d
= (Γ1/Γn+1, . . . ,Γn/Γn+1). Combining these two facts yields the

claim of the lemma.

Next, let Υ be the point process in MP (R+) which has counting function

Υ([a, b]) =

∞∑
i=1

1{γk∈[a,b]} . (6.4)

Lemma 6.2. Υ is a Poisson random measure on (0,∞) with mean measure µ given by
(3.6).

Proof. The point process Γ =
∑∞
i=1 1{Γk} defines a homogeneous Poisson random mea-

sure on [0,∞) and thus, by the mapping theorem ([35], Proposition 3.7), setting T (x) =

x−1/α for x > 0, Υ =
∑∞
i=1 1{T (Γk)} is Poisson random measure on (0,∞) with mean

measure µ(x,∞) = T−1(x).
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Then, on the fixed probability space (ΩE ,FE ,P), all random variables of interest will
have an almost sure limit.

Proposition 6.3. Let rn be an extreme space scale. Let f : (0,∞) → [0,∞) be a
continuous function that obeys∫

(0,∞)

min(f(u), 1)dµ(u) <∞ . (6.5)

Then, P-almost surely,

lim
n→∞

n∑
k=1

f(γnk) =

∞∑
k=1

f(γk) <∞ . (6.6)

The proof of Proposition 6.3 closely follows the proof of Proposition 3.1 of [25]. We
leave the details to the interested reader.

6.2 Proof of Proposition 3.9.

In this subsection we consider the model obtained by substituting the new landscape
(γnk, 1 ≤ k ≤ n) for the original (re-scaled) landscape (γn(x), x ∈ Vn). We assume
throughout that rn is an extreme space scale. As for short and intermediate space
scales, the proof of Proposition 3.9 relies on Theorem 2.4. To distinguish the quantity
νn(u,∞), expressed in (2.27) in the original landscape variable, from its expression in
the new landscape variables, we call the latter vn(u,∞). Therefore

vn(u,∞) = an

∑n
k=1(rnγnk)ae−u/γ

(1−a)
nk∑n

k=1(rnγnk)a
, u ≥ 0 . (6.7)

We first treat the numerator in (6.7). For u ≥ 0 set

ϕu(y) = yae−u/y
(1−a)

, y ≥ 0 . (6.8)

We want to apply Proposition 6.3 to the sum
∑n
k=1 ϕu(γnk). For this let x∗ be defined

through ϕu(x∗) = 1. Noting that 0 < x∗ ≤ 1 for 0 ≤ a < 1 and u ≥ 0, a simple calculation

yields
∫

(0,∞)
min(ϕu(y), 1)dµ(y) = α

1−a
∫∞

1/x∗
y−

1−α
1−a e−uydy+ (x∗)−α, which is always finite

if u > 0, regardless of the respective size of a and α. Thus, for all u > 0, P-almost surely,

lim
n→∞

n∑
k=1

ϕu(γnk) =

∞∑
k=1

ϕu(γk) <∞ . (6.9)

In contrast, the behavior of the denominator in (6.7) will depend on whether a is larger
or smaller than α.
The case a > α. Here we have

∫
(0,∞)

min(xa, 1)dµ(x) <∞, so that P-almost surely,

lim
n→∞

n∑
k=1

γank =

∞∑
k=1

γak <∞ . (6.10)

In that case, choosing an = 1 in (6.7), we get, collecting (6.9) and (6.10), that for all
u > 0, P-almost surely,

lim
n→∞

vn(u,∞) = lim
n→∞

∑n
k=1 ϕu(γnk)∑n
k=1 γ

a
nk

=

∑∞
k=1 ϕu(γnk)∑∞
k=1 γ

a
nk

= νext,+(u,∞) . (6.11)

It is plain that νext,+ is a probability measure with continuous density: indeed it is an in-
finite mixture of exponential densities, the coefficients of the mixture being the weights
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γak/
∑
l γ
a
l of Poisson-Dirichlet random probability measure with parameter α/a. From

the monotonicity of vn(u,∞) and the continuity of the limiting function νext,+(u,∞) we
conclude that there exists a subset ΩE1 ⊂ ΩE of the sample space ΩE of the γ’s with the
property that P(ΩE1 ) = 1, and such that, on ΩE1 ,

lim
n→∞

vn(u,∞) = νext,+(u,∞) , ∀u ≥ 0 . (6.12)

Condition 2.28 of assertion (i) of Theorem 2.4 is thus satisfied P-almost surely. To see
that Condition 2.29 also is satisfied on a set of full measure we use that on ΩE1 , by (6.12),

for all 0 < δ ≤ δ0 and some 0 < δ0 ≤ 1, limn→∞
∫ δ

0
vn(u,∞)du =

∫ δ
0
νext,+(u,∞)du. Again

the monotonicity of
∫ δ

0
vn(u,∞)du and the continuity of the limiting function allow us

to conclude that there exists of a subset ΩE2 ⊂ ΩE with the property that P(ΩE2 ) =

1, and such that, on ΩE2 , limn→∞
∫ δ

0
vn(u,∞)du =

∫ δ
0
νext,+(u,∞)du for all 0 < δ ≤

δ0. We may thus pass to the limit δ → 0 and write limδ→0 limn→∞
∫ δ

0
vn(u,∞)du =

limδ→0

∫ δ
0
νext,+(u,∞)du. Now by (3.22),∫ δ

0

νext,+(u,∞)du =
∑
k

γk∑
l γ
a
l

(
1−e−δγ

−(1−a)
k

)
≤ δe

√
δνext,+(δ,∞)+

∑
k

γk∑
l γ
a
l

1{γk≤δ1/2(1−a)} ,

(6.13)
where we proceeded as in (2.18)-(2.20) to derive the upper bound. Now from this bound
and Lemma 3.10 it follows that limδ→0

∫ δ
0
νext,+(u,∞)du = 0 P-a.s.. All the assumptions

of assertion (i) of Theorem 2.4 are thus satisfied P-a.s. The proof of Proposition 3.9 in
the case a > α is complete.
The case a < α. Here E(rnγnk)a < ∞ and limn→∞

1
n

∑n
k=1(rnγnk)a = Eτa < ∞ P-a.s..

Thus, choosing an such that anran/(bnEτa) ∼ 1, we get that for all u > 0, P-a.s,

lim
n→∞

vn(u,∞) = lim
n→∞

∑n
k=1 ϕu(γnk)

1
n

∑n
k=1(rnγnk)a

=

∞∑
k=1

ϕu(γnk) = νext,−(u,∞) <∞ . (6.14)

Now using Lemma 3.10 one easily checks that
∫

(0,∞)
(1 ∧ u)νext,−(du) < ∞ and that

νext,−(u,∞) is continuous on a subset of full measure. Again we conclude that there
exists a subset ΩE2 ⊂ ΩE of the sample space ΩE of the γ’s with the property that
P(ΩE2 ) = 1, and such that, on ΩE2 ,

lim
n→∞

vn(u,∞) = νext,−(u,∞) , ∀u ≥ 0 . (6.15)

The conditions of assertion (ii) of Theorem 2.4 are thus satisfied P-almost surely. Propo-
sition 3.9 is proved in the case a < α. Of course, taking the intersection ΩE1 ∩ ΩE2 , the
two convergence results of (3.23) can be stated simultaneous on a common full measure
set.

6.3 Proof of Lemma 3.10.

Recall (6.8) and write ϕ ≡ ϕ1. Set u−
α−a
1−a = m. By (3.22) we may write

u
α−a
1−a νext,−(u,∞) =

1

m

∞∑
k=1

ϕ(m1/αγk) . (6.16)

Assertion (i) of the lemma will thus be proven if we can prove that

lim
m→∞

1

m

∞∑
k=1

ϕ(m1/αγk) = α
1−aΓ

(
α−a
1−a

)
P-almost surely. (6.17)
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Note that for this it is enough to take the limit along the integers since, ϕ(m1/αγk) being
a strictly increasing function of m,

bmc
m

1

bmc

∞∑
k=1

ϕ(bmc1/αγk) ≤ 1

m

∞∑
k=1

ϕ(m1/αγk) ≤ dme
m

1

dme

∞∑
k=1

ϕ(dme1/αγk) . (6.18)

The proof now proceeds as follows. Given a threshold function M ≡ M(m) (to be
chosen later) let PRM(µ+

M ) and PRM(µ−M ) be the Poisson point processes with points
{γ±k } whose intensity measures are defined through

µ−M (A) = µ(A ∩ (0,M/m1/α))andµ+
M (A) = µ(A ∩ [M/m1/α,∞)) (6.19)

for any Borel set A ⊆ (0,∞). (In other words PRM(µ+
M ) and PRM(µ−M ) are PRM(µ)

restricted to the sets (0,M/m1/α) and [M/m1/α,∞) respectively). Using these two pro-
cesses we break the middle sum in (6.18) into 1

m

∑∞
k=1 ϕ(m1/αγ−k )+ 1

m

∑∞
k=1 ϕ(m1/αγ+

k ).

We will show that if M is of the form M = ε
(

m
logm

) 1
α , for some small enough 0 < ε < 1,

then, P-almost surely,

lim
m→∞

1

m

∞∑
k=1

ϕ(m1/αγ−k ) = α
1−aΓ

(
α−a
1−a

)
, (6.20)

and lim
m→∞

1

m

∞∑
k=1

ϕ(m1/αγ+
k ) = 0 . (6.21)

We first prove (6.20). The boundedness of the Poisson points γ−k enables us to use a
classical large deviation upper bound. Set

Am =

{∣∣∣∣∣ 1

m

∞∑
k=1

ϕ(m1/αγ−k )−E
1

m

∞∑
k=1

ϕ(m1/αγ−k )

∣∣∣∣∣ ≥ δm
}
, (6.22)

where δm = 2
(

logm
m

)1− aα . By Tchebychev exponential inequality, for all λ > 0,

P (Am) ≤ 2 exp

{
−λδm −E(λ/m)

∞∑
k=1

ϕ(m1/αγ−k ) + logE exp

{
(λ/m)

∞∑
k=1

ϕ(m1/αγ−k )

}}
.

(6.23)
Simple Poisson point process calculations yield E 1

m

∑∞
k=1 ϕ(m1/αγ−k ) = σ

(1)
M , where

σ
(1)
M = α

1−a

∫ ∞
1/M1−a

y
α−a
1−a−1

e−ydy = (1− o(1)) α
1−aΓ

(
α−a
1−a

)
, (6.24)

and

logE exp

{
(λ/m)

∞∑
k=1

ϕ(m1/αγ−k )

}
= −

∫ ∞
0

(1− e λmϕ(m1/αx))dµ−M (x) . (6.25)

Furthermore, for all l > 1,
∫∞

0
ϕk(m1/αx))dµ−M (x) := mσ

(k)
M , where

σ
(l)
M = α

1−a

∫ ∞
1/M1−a

y
α−la
1−a −1

e−ydy . (6.26)

In the worst situation α < la for all l > 1 (indeed if α ≥ la, then σ(l)
M ≤

α
1−aΓ

(
α−la
1−a

)
<∞).

Let us thus assume that α < la for all l > 1. In this case, σ(l)
M ≤ σ̄

(l)
M := α

(1−a)(2a−α)M
al−α,

and so,

−
∫ ∞

0

(1− e λm f(m1/αx))dµ(x) ≤ σ(1)
M λ+ σ̄

(2)
M

λ2

4m
e
λMa

2m . (6.27)
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Inserting this bound in (6.25), plugging the result in (6.23), and choosing λ = δm2m/σ̄
(2)
M ,

we obtain
P (Am) ≤ 2 exp

{
−δ2

mm/σ̄
(2)
M

(
2− e2δmM

a/σ̄
(2)
M

)}
. (6.28)

If we now take δ2
m = 4

(
logm
m

)2(1− aα )
and M = ε

(
m

logm

) 1
α , 0 < ε < 1, then

δ2
mm/σ̄

(2)
M = 4 (1−a)(2a−α)

α (1/ε)
2a−α

logm,

2δmM
a/σ̄

(2)
M = 4 (1−a)(2a−α)

α εα−a , (6.29)

(recall that by assumption 2a > α and a < α). Choosing ε sufficiently small so as to
guarantee that

δ2
mm/σ̄

(2)
M ≥ 6and2δmM

a/σ̄
(2)
M ≤ log(4/3) , (6.30)

the bound (6.28) becomes P (Am) ≤ 2
m2 . Thus

∑
mP (Am) ≤ ∞ which, invoking the

first Borel-Cantelli Lemma, proves (6.20).

From now on we take M = ε
(

m
logm

)1/α
and assume that ε satisfies (6.30). It remains

to prove (6.21). Using that ϕ(x) ≤ xa, x ≥ 0, we have

1

m

∞∑
k=1

ϕ(m1/αγ+
k ) =

1

m

∞∑
k=1

ϕ(m1/αγk)1{γk>M/m1/α} ≤ m−(1−a/α)
∞∑
k=1

γak1{γk>ε/(logm)
1
α }
.

(6.31)
We further decompose the last sum in the r.h.s. above into S−(m) + S+(m), where

S−(m) = m−(1−a/α)
∞∑
k=1

γak1{ε/(logm)1/α<γk≤1} ,

S+(m) = m−(1−a/α)
∞∑
k=1

γak1{γk>1} . (6.32)

To deal with S−(m) we write

S−(m) ≤ ma/α

m

∞∑
k=1

1{ε/(logm)1/α<γk≤1} =
ma/αµ((logm)1/α, 1]

m

∑∞
k=1 1{ε/(logm)1/α<γk≤1}

µ((logm)1/α, 1]
.

(6.33)
Since µ((logm)1/α, 1] = logm/εα − 1 ↑ ∞ as m ↑ ∞, it follows from the strong law of
large numbers for non-homogeneous Poisson processes (see [30] p. 51) that

lim
m→∞

∑∞
k=1 1{ε/(logm)1/α<γk≤1}

µ((logm)1/α, 1]
= 1P-almost surely. (6.34)

and since ma/α−1µ((logm)1/α, 1] = o(1), as follows from the assumption that a < α, we
get that limm→∞ S−(m) P-a.s.. To treat S+(m) note that

∫
(0,∞)

min(ua1u>1, 1)dµ(u) <

∞. Thus, by Campbell’s Theorem,
∑∞
k=1 γ

a
k1{γk>1} < ∞ P-a.s.. From this and the fact

that ma/α−1 = o(1), we get that limm→∞ S+(m) P-a.s.. Collecting our results yields that
limm→∞

1
m

∑∞
k=1 ϕ(m1/αγ+

k ) = 0 P-a.s., and establishes (6.21).
The proof of Lemma 3.10 is complete.

7 Appendix

7.1 Renewal theory.

We summarize here what we need to know about renewal theory for subordinators
and renewal processes. Recall first that:
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Definition 7.1. A renewal process {R(n) , n ∈ N} is a partial sum process with identical
and independent increments taking values in [0,∞). R(n) is represented as

R(n) =
∑
k≤n ξk , (7.1)

where {ξk, k ≥ 1} are independent r.v.’s with identical distribution ν. The ξk’s, which
stand for the life-time of items, are called inter-arrival times; their law, ν, is called the
inter-arrival distribution.

7.1.1 The Dynkin-Lamperti Theorem.

The continuous time version of the Dynkin-Lamperti Theorem was stated as Theorem
1.8. We now give the “classical” discrete time version. Set

C∞(t, s) = P ({R(k) , k ∈ N} ∩ (t, t+ s) = ∅) , 0 ≤ t < t+ s , (7.2)

where R is a renewal process of inter-arrival distribution ν. Let θt(·) denote the over-
shoot function (2.22) in discrete time. In this setting θt(R) is usually called the residual
waiting time. Clearly, C∞(t, s) = P (θt(R) ≥ s). One has (see [22] or [14], section 8.6):

Theorem 7.2 (Dynkin, 55(61) and Lamperti, 58).

(i) [Arcsine law.] A necessary an sufficient condition for θt(R)/t to have a non-degenerate
limit law is that ν is regularly varying at infinity with index 0 < α < 1. In that case,

lim
t→∞

C∞(t, ρt) = Aslα(1/1 + ρ) . (7.3)

(ii) [Finite mean life time renewal.] If
∫∞

0
ν(x,∞)dx = m < ∞ and if ν is non-latticed

then, for each fixed s > 0,

lim
t→∞

C∞(t, s) =
1

m

∫ ∞
s

ν(x,∞)dx . (7.4)

7.1.2 Stationarity of delayed processes with “finite mean life time”.

A delayed renewal process corresponding to a renewal process R is the process R̂

defined by R̂ = σ + R where σ is a nonnegative random variable independent of S.
Similarly the delayed subordinator corresponding to a subordinator S is the process Ŝ
defined by Ŝ = σ + S where σ is a nonnegative random variable independent of S. We
will say that a renewal process or subordinator pure when we want to emphasize that
σ = 0.

It is well known (see e.g. [24]), and not difficult to prove, that when
∫∞

0
ν(x,∞)dx =

m <∞, the delayed renewal process R̂ = σ+R, whose initial jump is sampled from the
limit law of the residual waiting time θt(R), is stationary. A similar statement holds for
the delayed subordinator Ŝ := σ + S (see [29]). These results are summarized in the
theorem below.

Theorem 7.3. Let F denote the distribution function of σ.

(i) [Delayed renewal process] Under the assumptions and with the notations of Theorem
7.2, (ii), if F (s) = limt→∞ C∞(t, s), then, denoting by R̂ the delayed renewal process
R̂ = σ +R,

R̂
d
= R . (7.5)

(ii) [Delayed subordinator] Under the assumptions and with the notations of Theorem
1.8, (ii), if F (s) limt→∞ C∞(t, s), then, denoting by Ŝ the delayed subordinator Ŝ = σ+S,

Ŝ
d
= S . (7.6)
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7.2 Regular variations.

We assume as known the elementary properties of regularly and slowly varying func-
tions as described in Section 1 of [14] and, in particular, the Uniform Convergence The-
orem ([14], Theorem 1.2.1) for slowly varying functions ([14], Theorem 1.3.1). In the
sequel we denote by R0 the class of functions that are slowly varying at infinity, by Rρ
the class of functions that are regularly varying at infinity with index ρ, by Rρ(0+) the
class of functions that are regularly varying at 0+, and we set R = ∪ρ∈RRρ ([14], Section
1.4.2). The results below are stated in the setting of slow variations at infinity. They can
easily be adapted to that of slow variations at the origin by using that a function f(x)

is slowly (regularly) varying at zero if and only if f(x−1) is slowly (regularly) varying at
infinity. The next two lemmas contain bounds on slowly varying functions that will often
be needed in Section 5 and 6.

Lemma 7.4 ([24],VIII.8, Lemma 2). If ` ∈ R0 then x−ε ≤ `(x) ≤ xε for any fixed ε > 0

and all x sufficiently large.

We will also frequently use the following bounds of Potter’s type.

Lemma 7.5. Let ` ∈ R0 and let un and vn be positive non decreasing sequences such
that vn ↑ ∞, un ↑ ∞ as n ↑ ∞. For any given x > 0 there exist positive sequences εn and
δn that verify εn ↓ 0, δn ↓ 0 as n ↑ ∞ and such that, for all n large enough,

(1− δn) min

{(
vn
un
x
)εn

,
(
vn
un
x
)−εn}

≤ `(vnx)

`(un)
≤ (1 + δn) max

{(
vn
un
x
)εn

,
(
vn
un
x
)−εn}

.

(7.7)

Both these lemmata are immediate consequences of the Representation Theorem
for slowly varying functions (see e.g. [14], I.3.1, Theorem 1.3.1). Finally we state
an important result about inverse of regularly varying functions. Let f be a function
defined and locally bounded on [0,∞), and that tends to zero as x→∞. Its generalized
inverse

f−1(x) := inf{y ≥ 0 : f(y) ≤ x} , (7.8)

is defined on [f(0),∞). The following result is an (easy) adaptation to the case of func-
tions f in Rρ with ρ < 0 of a theorem of [14] stated for ρ > 0.

Lemma 7.6 ([14], I.5.7, Theorem 1.5.12 ). If f ∈ Rρ with ρ < 0, there exists g ∈
R1/ρ(0+) with

f(g(x)) ∼ g(f(x)) ∼ x , x→ 0 . (7.9)

Here g (an ‘asymptotic inverse’ of f ) is determined to within asymptotic equivalence,
and one version of g is f−1.
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[2] Ben Arous, G., Bovier, A. and Černý, J.: Universality of the REM for dynamics of mean-field
spin glasses. Comm. Math. Phys. 282, (2008), 663–695. MR-2426140

[3] Ben Arous, G., Bovier, A. and Gayrard, V.: Glauber dynamics of the random energy model.
I. Metastable motion on the extreme states. Comm. Math. Phys. 235, (2003), 379–425. MR-
1974509

[4] Ben Arous, G., Bovier, A. and Gayrard, V.: Glauber dynamics of the random energy model. II.
Aging below the critical temperature. Comm. Math. Phys. 236, (2003), 1–54. MR-1977880

EJP 17 (2012), paper 58.
Page 31/33

ejp.ejpecp.org

http://www.ams.org/mathscinet-getitem?mr=2776627
http://www.ams.org/mathscinet-getitem?mr=2776627
http://www.ams.org/mathscinet-getitem?mr=2426140
http://www.ams.org/mathscinet-getitem?mr=1974509
http://www.ams.org/mathscinet-getitem?mr=1974509
http://www.ams.org/mathscinet-getitem?mr=1977880
http://dx.doi.org/10.1214/EJP.v17-2211
http://ejp.ejpecp.org/


Convergence of clock process

[5] Ben Arous, G., Bovier, A. and Gayrard, V.: Aging in the Random Energy Model. Phys. Rev.
Letts. 88, (2002), 87201–87204.
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