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Abstract

A distribution is tractable if it is possible to approximately sample from the distri-
bution in polynomial time. Here the ferromagnetic Ising model with unidrectional
magnetic field is shown to be reducible to a standard distribution on matchings that
is tractable. This provides an alternate method to the original Jerrum and Sinclair
approach to show that the Ising distribution itself is tractable. Previous reductions
of the Ising model to perfect matchings on different graphs exist, but these older
distributions are not tractable. Also, the older reductions did not consider an ex-
ternal magnetic field, while the new reduction explictly includes such a field. The
new reduction also helps to explain why the idea of canonical paths is so useful in
approximately sampling from both problems. In addition, the reduction allows any
algorithm for matchings to immediately be applied to the Ising model. For instance,
this immediately yields a fully polynomial time approximation scheme for the Ising
model on a bounded degree graph with magnetization bounded away from 0, merely
by invoking an existing algorithm for matchings.
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1 Introduction

All problems in NP are reducible in polynomial time to an NP-complete problem,
illustrating the difficulty of the NP-complete problem. In a similar fashion, it is often
possible to reduce the problem of sampling from a distribution to sampling from a
different distribution.

Given a set of problem instances Σ∗, a simulation problem is a map from a ∈ Σ∗ to a
finite state space Ωa and probability measure πa where all subsets of Ωa are measurable.
A simulation algorithm is a randomized algorithm G that takes instances a ∈ Σ∗ and has
output X ∼ πa.

Informally, a simulation reduction is an algorithm that takes a draw for one simula-
tion problem, and uses it to construct a draw for a different simulation problem.
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Reducing Ising to general matchings

To be more precise, consider two simulation problems, f with instance space Σ∗f ,
and g with instance space Σ∗g. Then a simulation reduction from f to g is a map A that
takes problem instance b ∈ Σ∗f and returns a ∈ Σ∗g and φ : Ωa → Ωb with the property
that if Y ∼ πa, then φ(Y ) ∼ πb. Write f ≤SR g if such a simulation reduction exists. Of
course, such a simulation reduction is only useful if φ is a quickly computable function,
and if it is easy to simulate Y from πa.

In many cases it is not possible to draw Y exactly from πa, often only an approximate
sampling method is available. This is the case when dealing with Markov chain Monte
Carlo algorithms. One way of measuring how close the distribution of Y is to πa (and
the method used throughout this paper) is by total variation distance, defined as follows
for finite Ω:

dTV(τ, π) = max
A⊆Ω
|τ(A)− π(A)|. (1.1)

The next lemma states that a simulation reduction applied to an approximate sample
(as measured by total variation distance) returns samples that are approximate to the
target distribution at the same level of approximation.

Lemma 1.1. Let φ : Ωa → Ωb be a map such that for Y ∼ πa, φ(Y ) ∼ πb. Now let Y ′ ∼
π′a, where dTV(πa, π

′
a) ≤ ε, and let π′b be the distribution of φ(Y ′). Then dTV(π′b, πb) ≤ ε as

well.

Proof. Let B ⊆ Ωb, Y ′ ∼ π′a, Y ∼ πa and let π′b be the distribution of φ(Y ′). Then

π′b(B) = P(φ(Y ′) ∈ B) = P(Y ′ ∈ φ−1(B)) = π′a(φ−1(B)),

where φ−1 is the usual preimage operator defined as φ−1(B) = {y : φ(y) ∈ B}. Also,

πb(B) = P(φ(Y ) ∈ B) = P(Y ∈ φ−1(B)) = πa(φ−1(B)).

Hence
|πb(B)− π′b(B)| = |πa(φ−1(B))− π′a(φ−1(B))| ≤ ε.

The main result of this paper states that the subgraphs version of the Ising model is
simulation reducible to the simulation problem of drawing matchings in a graph in such
a way as to give a new polynomial time algorithm for approximately sampling from the
Ising model. This links work of Jerrum and Sinclair on Markov chains for matchings [6]
and the Ising model [7]. The problems considered here are defined as follows.

Name. SPINS (Spins version of Ising model.)
Instance. A graph G = (V,E) together with weights V : E → (−∞,∞) and B : V →
(−∞,∞).
Distribution. The state space is {−1, 1}V with probability distribution

πspins(x) =

 ∏
{i,j}∈E

exp(V (i, j)x(i)x(j))

[∏
v∈V

exp(B(i)x(i))

]/
Zspins.

The V (i, j) measure the strength of interaction between nodes, while the B(i) mea-
sures the external magnetic field of the problem. When B(i) ≥ 0, say that the magnetic
field is unidirectional. When V (i, j) ≥ 0, say that the model is ferromagnetic. The
problem of a ferromagnetic unidirectional Ising model shall be denoted FUIS. The high
temperature expansion of the ferromagnetic unidirectional Ising model was originally
suggested by van der Waerden [16]. The state space of this problem is {0, 1}E , so each
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Reducing Ising to general matchings

edge is assigned either a 1 or a 0 in a configuration. The following notation will be
useful:

deg(i) = #{j : {i, j} ∈ E}, degx(i) =
∑

j:{i,j}∈E

x({i, j})

so deg(i) is the number of edges adjacent to i in the graph, and for a configuration
x, degx(i) is the number of edges adjacent to i that are assigned the value 1 in the
configuration. The form given here for the high temperature expansion follows [7]:

Name. HTEIS (High temperature expansion of ferromagnetic Ising model with unidi-
rectional magnetic field.)
Instance. A graph G = (V,E) together with edge weights λ : E → [0, 1] and node
weights µ :→ [0,∞).
Distribution. The state space is {0, 1}E with probability distribution

πhte(x) =

 ∏
e:x(e)=1

λ(e)

 ∏
i:degx(i) is odd

µ(i)

/Zhte. (1.2)

Several subproblems of HTEIS will be given their own names. In the special case that
the input graph G = (V,E) has maximum degree 3, refer to the problem as HTEISDEG3.
In the case that µ(i) = 0 for all i (no external magnetic field) the problem is HTEISNO-
MAG. And if both the maximum degree of the graph is 3 and there is no magnetic field,
call the problem HTEISDEG3NOMAG.

Suppose that HTEIS has as input the same graph as FUIS, for all e ∈ E, λ(e) =

tanhV (e), and for all i ∈ V , µ(i) = tanhB(i). Then Newell and Montroll [13] showed
that

Zspins = Zhte2#V

[∏
e∈E

coshV (e)

][∏
i∈V

coshB(i))

]
. (1.3)

The high temperature expansion was the form of the Ising model used by Jerrum and
Sinclair [7] in their approximation algorithm for Zspins. In [5], simulation reductions from
HTEIS to FUIS and from FUIS to HTEIS are presented. These are linear time reductions.

The state space {0, 1}E can be viewed as encoding a subset of edges of the graph
where x(e) = 1 denotes membership in the subset, and x(e) = 0 means it is out. An edge
e with x(e) = 1 will be referred to as on, while an edge e with x(e) = 0 is off. The next
problem of perfect matchings is similar in that the state space is essentially a subset
of edges of the graph–here chosen so that every node is adjacent to exactly one edge.
That is, every node is adjacent to exactly one on edge. As with HTEIS, the weight of the
edges is the product of the weights of the individual edges in the set.

Name. PMATCH (Perfect matchings of a graph.)
Instance. A graph G = (V,E) together with edge weights λ : E → [0,∞) where there
exists E′ ⊆ E such that

∏
e∈E′ λ(e) > 0 and every node in V is adjacent to exactly one

edge of E′.
Distribution. The state space is {0, 1}E with probability distribution

πhte(x) =

 ∏
e:x(e)=1

λ(e)

[∏
i∈V

1(degx(i) = 1)

]/
Zpmatch.

where 1(expression) is the indicator function that evaluates to 1 if the expression is
true and evaluates to 0 otherwise. As usual, the product over an empty set is taken to
be 1.
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Reducing Ising to general matchings

Given a nonnegative symmetric matrix A with an even number of rows, the value of
Zpmatch for the graph with A as its adjacency matrix is called the hafnian of A, a term
introduced by Caianiello [2]. PMATCH is known in the physics literature as the dimer
problem. In the monomer-dimer problem, the subset of edges has at most one edge
adjacent to each edge, yielding the following distribution on matchings.

Name. MATCH (Matchings of a graph.)
Instance. A graph G = (V,E) together with edge weights λ : E → [0,∞) where there
exists E′ ⊆ E such that

∏
e∈E′ λ(e) > 0 and every node in V is adjacent to at most one

edge of E′.
Distribution. The state space is {0, 1}E with probability distribution

πhte(x) =

 ∏
e:x(e)=1

λ(e)

[∏
i∈V

1(degx(i) ≤ 1)

]/
Zpmatch.

Earlier work A reduction from HTEIS to PMATCH in the special case where µ(i) = 0

for all i appears in [3]. This reduction built upon an earlier reduction in [12] (pp. 125–
147), and shows how the Ising model with no external magnetic field can be reduced to
sampling from perfect matchings on a graph linear in size of the original. Unfortunately,
the edge weights for the new distribution could be very large, and it is unknown how
to sample effectively from PMATCH for such weights. The goal in the work in [3] was
not a simulation reduction, but rather to use knowledge of the combinatorics of perfect
matchings to better understand the Ising model on planar graphs. Therefore, the key
issue in [3] was that the new graph be planar whenever the original was. The issue
for the new work presented here is how quickly the new distribution can be used to
generate samples from the old.

In [7], Jerrum and Sinclair showed that a particular Markov chain on HTEIS was
rapidly mixing, thereby yielding the first method for approximately sampling from this
distribution in polynomial time. However, to this date no one has discovered a poly-
nomial time method for sampling from the perfect matchings distribution on general
graphs with large weights. Therefore, in an algorithmic sense the reduction in [3] is
unhelpful, as the problem the Ising model was reduced to is more difficult.

In this work we present algorithms that reduce HTEIS to PMATCH and HTEIS to MATCH
The HTEIS to MATCH reduction takes advantage of the unidirectional external magnetic
field, and the weights associated with edges are polynomial in the weights assigned the
original problem. The result is that the new distribution can be approximately sampled
from in polynomial time, that is, it provides an alternate means of showing that the
ferromagnetic Ising model is tractable.

The chain of Jerrum and Sinclair was the first method for showing the Ising model
is tractable [7] and they also presented a chain for the matchings problem that shows
it is tractable for small edge weights [6]. Both analyses relied on using the idea of
conductance to find the mixing time. The reductions presented here give some idea
of why conductance should work well for both the matchings problem and the Ising
model, since the high temperature Ising expansion can be effectively viewed as a special
instance of the matchings distribution.

Our main result reduces the ferromagnetic Ising model with unidirectional external
magnetic field simulation problem to the matchings simulation problem. That is,

Theorem 1.2. HTEIS≤SRMATCH. Using algorithms for approximate sampling from MATCH
together with the reduction gives an

O((#E)2 max
i

[(deg(i)− 2)/µ(i)]4[#E + ln(ε−1)]
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Reducing Ising to general matchings

algorithm for sampling within total variation distance ε from HTEIS.

The proof is given at the end of Section 4. An algorithm that generates output within
total variation distance ε of the target in time polynomial in the problem instance size
and ln(ε−1) is called a fully polynomial approximate sampling scheme, or FPASS [10].
The reduction presented here gives an alternate FPASS for HTEIS than the original given
by Jerrum and Sinclair in [7].

For families of distributions of the form π(x) = w(x)/Z, where the w(x) are easily
computable functions and the normalizing constant Z is often difficult to find exactly,
it is well known that the ability to approximately sample from a family of distributions
that are self-reducible gives a means to approximate Z (see [9, 15].) On the other hand,
the ability to approximate Z across problem instances also gives the ability to approxi-
mately sample from π. The result is that a simulation reduction such as given above not
only links the ability to generate samples, but also links the ability to approximate the
partition function for HTEIS with that of MATCH.

The remainder of the paper is organized as follows. In the next section results on the
time to stationary for Markov chain approaches to approximately sampling from HTEIS,
PMATCH, and MATCH are discussed. Section 3 shows how HTEIS can be reduced to
HTEISDEG3. Section 4 then gives our reduction from HTEISDEG3NOMAG to PMATCH and
from HTEISDEG3 to MATCH. Section 5 then shows some applications of the reductions.

2 Approximately sampling HTEIS and MATCH with Markov chains

In this section, work on approximately sampling from HTEIS and MATCH using Markov
chains is presented. Defining the total variation distance between two distributions as
in equation (1.1), the mixing time of a finite state space ergodic Markov chain can be
defined as, starting in state x, the number of steps necessary for the total variation
distance from the stationary distribution to be at most ε. That is, for ergodic Markov
chainM with state space Ω and stationary distribution π, the mixing time starting from
state x is

τM(x, ε) := min{t : dTV(L(Xt|X0 = x)), π) ≤ ε},

where L(Xt|X0 = x) is the distribution of Xt given that the chain began in state x.
In [8] is is shown that a Markov chain for MATCH satisfies:

τmatch(x, ε) ≤ 4(#E)(#V )λ′2
[
(ln #E)#E + ln

(
ε−1
)]
, λ′ = max

{
1,max

e∈E
λ(e)

}
. (2.1)

[Equation (2.1) is a slight modification of Proposition 12.4 of [8]. The λ′ has been
replaced with λ′2, since the argument in [8] which reduced the λ′2 in [6] to λ′ is flawed.]

In fact, by choosing the starting state to be x∗, the matching of maximum weight
(accomplished in O(#V 3) time with Hungarian algorithm variants [14]), the mixing
time can be slightly improved to

τmatch(x∗, ε) ≤ 4(#E)(#V )λ′2
[
(ln 2)#E + ln

(
ε−1
)]
, λ′ = max

{
1,max

e∈E
λ(e)

}
. (2.2)

In [7], Jerrum and Sinclair created a Markov chain for HTEIS and bounded the mixing
time analytically when µ > 0. Using results from the proof of Theorem 7 of [7] together
with Proposition 12.1 of [8], the mixing time for the Jerrum-Sinclair Markov chain for
HTEIS starting at x∗, the state where every edge is 0, satisfies

τhte(x∗, ε) ≤ 2(#E)2 max
i
µ(i)−4

[
#E ln 2 + ln

(
ε−1
)]
. (2.3)
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Reducing Ising to general matchings

3 Reducing HTEIS to maximum degree 3

All of the reductions presented here have the same form. Given distribution π on
Ω and π′ on Ω′, present a function φ (not necessarily 1-1) such that X ′ ∼ π′ implies
φ(X ′) ∼ π. The following easy lemma gives a simple condition for φ that guarantees
this result.

Lemma 3.1. Suppose that π(x) = w(x)/Z is a distribution over Ω while π′(x) = w′(x)/Z ′

is a distribution over Ω′. Here Z =
∑
x∈Ω w(x) and Z ′ =

∑
x∈Ω′ w

′(x) are the appropriate
normalizing constants. Suppose φ : Ω′ → Ω is a function that satisfies for all x ∈ Ω,∑

x′:φ(x′)=x

w′(x′) = Cw(x), (3.1)

where C is a constant. Then if X ′ ∼ π′ and X = φ(X ′), then X ∼ π.

Proof. Fix x ∈ Ω, and note

P(X = x) =
∑

x′∈φ−1({x})

P(X ′ = x′) =
∑

x′:φ(x′)=x

w′(x′)/Z ′ = Cw(x)/Z ′.

Note
∑
x∈ΩP(X = x) = 1, so

∑
x∈Ω Cw(x)/Z ′ = CZ/Z ′ = 1. Hence C/Z ′ = 1/Z, and

P(X = x) = w(x)/Z as desired.

The important feature of the condition in (3.1) is that it only relies on the weight
function w(x) (which are typically easy to compute) and not on the partition functions
(which are usually difficult to compute.)

Throughout the rest of this work assume that the graph G is connected: otherwise
the weight functions for all our problems factor into the weights over connected com-
ponents. This means that each connected component could be treated separately.

Reduction for subgraphs to maximum degree 3 with no magnetic field As an
example of how to apply this lemma, consider a reduction from [3] where it is shown
how to reduce subgraph Ising from a graph with degree at least three to a graph where
every degree is at most 3 when the µ(i) are identically 0.

Lemma 3.2. [3] HTEISNOMAG≤SRHTEISDEG3NOMAG. If the input to HTEISNOMAG is
G = (V,E), then the input G′ = (V ′, E′) to HTEISDEG3NOMAG satisfies #V ′ ≤ 2#E and
#E′ ≤ 3#E −#V .

Proof. The construction is as follows. Consider a graph G = (V,E) with node i adjacent
to j1, . . . , jk, where k = deg(i) > 3. Build a new graph G′ = (V ′, E′) with the same
nodes and edges as the original, except the node i is split into 2 nodes i1 and i2. For all
a ∈ {1, . . . , k − 2}, connect i1 to ja, and set λ({i1, ja}) = λ({i, ja}). Then connect i2 to
jk−1 and jk, and set λ({i2, ja}) = λ({i, ja}) for a ∈ {k − 1, k}.

Finally, add edge {i1, i2} with edge weight 1. See Figure 1 for an illustration.
Then φ maps as follows. For any edge e that is in both G and G′, let [φ(x′)](e) = x′(e).

Otherwise, let [φ(x′)]({i, ja}) = x′({ib, ja}) where b is either 1 or 2 as appropriate. Now
to check the conditions of Lemma 3.1.

Fix x ∈ {0, 1}E , and consider which x′ ∈ {0, 1}E′ map into x under φ. Since i has
even degree, then either both i1 and i2 have even degree or both have odd degree
before edge {i1, i2} is considered. If both i1 and i2 have even degree then x′({i1, i2})
must be 0, and if both have odd degree then x′({i1, i2}) must be 1. So for any x, there
is exactly one x′ such that φ(x′) = x.
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j1 j2 j3

i

j4 j5 j6

j1 j2 j3

i1

j4 j5 j6

i2
1

Figure 1: Splitting a node

The weights of all the edges E are the same in E′, and the weights of the extra edge
in E′ is 1, so w′(x′) = w(φ(x′)) = w(x), and Lemma 3.1 is trivially satisfied. Note that
the degree of i1 is k−1, and the degree of i2 = 3. The node i1 can be split over and over
again, continuing until the maximum degree of the graph is 3.

Now look at how many nodes and edges are in the new graph G′. Suppose that in
one splitting operation we move from G to G1 which has exactly one more node and
edge than G′. This means∑

i∈G1

max{deg(i)− 3, 0} = −1 +
∑
i∈G

max{deg(i)− 3, 0}.

Repeating this step
∑
i∈G max{deg(i)−3, 0} times yields a graphG′ with

∑
i∈G max{deg(i)−

3, 0} = 0, so every node must have maximum degree 3.
This sum can be written as:∑

i∈G:deg(i)≥3

(deg(i)− 3) ≤
∑

i∈G:deg(i)≥1

(deg(i)− 1) = 2#E −#V.

Hence the number of nodes in G′ is at most #V + 2#E −#V = 2#E, and the number
of edges is at most #E + 2#E −#V = 3#E −#V.

Reduction for subgraphs to maximum degree 3 with magnetic field Now we
extend the reduction in [3] to nodes with an external magnetic field.

Lemma 3.3. HTEIS≤SRHTEISDEG3. If the input to HTEIS is G = (V,E), then the input
G′ = (V ′, E′) to HTEISDEG3 satisfies #V ′ ≤ 2#E and #E′ ≤ 3#E −#V .

Proof. For graph G = (V,E), split node i of degree k into two nodes i1 and i2 as in
HTEISNOMAG≤SRHTEISDEG3NOMAG, and consider the same map φ.

Let x be a configuration in G. Then there are two configurations x′ that map to x

under φ: one with x′({i1, i2}) = 1, and one with x′({i1, i2}) = 0. To check Lemma 3.1,
it is necessary to consider different cases, based on the number of edges adjacent to i1
and i2.

To deal with these cases, observe that

degx′(i1) + degx′(i2) + x′({i1, i2}) = degx(i) mod 2.

So if degx(i) is odd, then one choice of x′({i1, i2}) makes degx′(i1) odd and degx′(i2) even,
and the other choice of x′({i1, i2}) makes degx′(i1) even and degx′(i2) odd. Hence∑

x′:φ(x′)=x

w(x′)

w(x)
=
µ(i1)

µ(i)
+
µ(i2)

µ(i)
.
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If degx(i) is even, then one value of x′({i1, i2}) makes both degx′(i1) and degx′(i2) odd,
and the other value makes both degx′(i1) and degx′(i2) even. In this case∑

x′:φ(x′)=x

w(x′)

w(x)
=
µ(i1)µ(i2)

1
+

1

1
.

To apply Lemma 3.1, these must equal the same constant, that is:

1 + µ(i1)µ(i2) =
µ(i2) + µ(i1)

µ(i)
= C. (3.2)

There are an infinite number of solutions to this equation for nonzero µ(i). Since µ(i) =

tanh(B(i) ∈ [0, 1), setting α = (1 +µ)/(1−µ) means that µ(i) = [α− 1]/[α+ 1]. Note that
if α1α2 = α, then

µ(i2) =
α2 − 1

α2 + 1
µ(i1) =

α1 − 1

α1 + 1

is a solution to (3.2) where C = 2[α1α2 + 1][(α1 + 1)(α2 + 1)]−1.
Now repeat the process for i2, breaking it into i2 with degree 3 and i3. Continue

until you have nodes i1, . . . , ideg(i)−2. Then to have a valid set of µ(i`), use

µ(i`) =
α` − 1

α` + 1
,where

∏
`

α` = α.

The simplest choice is to make α` = α(deg(i)−2)−1

for all `. The bound on the number of
nodes and edges in the new graph is the same as the no magnetic field case.

The downside of this construction is that the magnetic field is smaller at each of the
duplicated nodes (unless µ(i) was 0 or 1 to begin with.) The next lemma shows that the
new µ vector is not too much smaller than the old.

Lemma 3.4. In the construction for an HTEISDEG3 problem given in the proof of the
previous lemma, the magnetic field of a new node i` in G′ coming from node i in G is
bounded below by µ(i)/(deg(i)− 2).

Proof. Let f−1(a) = (1 + a)/(1− a). Then f(b) = (b− 1)/(b+ 1), α = f−1(µ) and the new
value of µ(i`) is f(α1/(deg(i)−2)). Therefore, to show the result it suffices to show that

(∀α ≥ 1)(∀γ ∈ [0, 1])(f(αγ) ≥ f(α)γ), (3.3)

an unsurprising property to have since 2f(b) is a good approximation to ln(b) near b = 1.
Since f(1) = 0, property (3.3) holds at γ = 0. So by the Fundamental Theorem of

Calculus, for all γ ≥ 0 and α ≥ 1:

f(αγ) ≥ f(α)γ ⇐ df(αγ)

dα
≥ df(α)

dα
γ

⇔ γαγ−1f ′(αγ) ≥ γf ′(α)

⇔ αγ−1 · 2

(αγ + 1)2
≥ 2

(α+ 1)2

⇔ α1−γ(α2γ + 2αγ + 1) ≤ α2 + 2α+ 1

⇔ 0 ≤ α2 − α1+γ − α1−γ + 1

⇔ 0 ≤ (α1+γ − 1)(α1−γ − 1).

Both factors in the right hand side of the last inequality are nonnegative for α ≥ 1 and
γ ∈ [0, 1], which completes the proof.
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This means that the µ(i) have not been reduced too much. Furthermore, if µ(i)

becomes too small by falling below #V −1 it can be replaced by #V −1 without drastically
changing the distribution. The following procedure makes this notion precise.

For all i ∈ V , set µ′(i) = max{µ(i),#V −1}. Let X be a draw from HTEIS with external
magnetic field µ′. Then with probability

∏
i:degX(i) is odd(µ(i)/µ′(i)), accept X as a draw

from HTEIS with input µ. Otherwise, reject and draw X again. Repeat until acceptance
occurs.

The expected number of draws needed by the algorithm will be Zspins(µ
′)/Zspins(µ)

(see for instance [4]) which is bounded by the following Lemma.

Lemma 3.5. For #V ≥ 2, the above acceptance rejection algorithm accepts with prob-
ability at least 1/4.

Proof. Recall that µ(i) = tanhB(i), and define B′(i) so that tanhB′(i) = µ′(i) = #V −1.
Then from (1.3)

Zhte(µ)

Zhte(µ′)
=

Zspins(B)

Zspins(B′)

∏
i∈V

cosh(B(i))

cosh(B′(i))

Now cosh(B(i)) ≥ 1, and each term in Zspins(B
′) is larger than each term in Zspins(B) by

a factor of at most
∏
i∈V exp(B′(i)). Hence

Zhte(µ)

Zhte(µ′)
≥
∏
i∈V

1

exp(B′(i)) cosh(B′(i))
=
∏
i∈V

(1− tanh(B′(i))) = (1−#V −1)#V ≥ 1/4.

Therefore, an upper bound on the expected number of draws needed from HTEIS
with external magnetic field µ′ to obtain one draw from HTEIS with µ is 4.

4 Reduction of Ising to matchings and perfect matchings

We begin by reviewing the reduction of Fisher [3] showing HTEISNOMAG≤SRPMATCH.
Since this reduction is for no external magnetic field, nodes of degree 1 must have
their adjacent edge be off, and so can be removed. Each remaining edge {i, j} in the
original graph is turned into a pair of nodes {ij , ji} in the new graph, with λ({ij , ji}) =

1/λ({i, j}).
For nodes i of degree 3 with neighbors j, k and `, add edges {ij , ik}, {ik, i`} and

{i`, ij}, each with weight 1. For nodes i of degree 2 with neighbors j and k, add edge
{ij , ji} with weight 1. Figure 2 illustrates this procedure on a six node example.

a b c

d e f

ad

ab ba

be

bc cb

cf

da

de ed

eb

ef fe

fc

Figure 2: Fisher’s reduction (1966)

Consider a perfect matching x′ in the new graph and the map [φ1(x′)]({i, j}) =

x′({ij , ji}). It is straightforward to verify that since every node is adjacent to an edge
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Reducing Ising to general matchings

in the perfect matching, under φ1(x′), nodes with deg(i) = 3 In G have either 1 or 3
neighbors. Therefore the result is not a subgraphs configuration. To ensure each node
had even degree, Fisher used the map [φ2(x′)]({i, j}) = 1− x′({ij , ji}).

Now fix a subgraphs state x. There is exactly one state x′ with φ2(x′) = x. Moreover,

w′(x′) =
∏
{ij ,ji}

λ({ij , ji})x
′({ij ,ji}) =

∏
{i,j}

[1/λ({i, j})]1−x({i,j}) = w(x)
∏
{i,j}

λ({i, j})−1

Therefore Lemma 3.1 is satisfied, and the reduction is valid.
Unfortunately, λ({i, j}) can be arbitrarily close to zero, making the edge weights in

the new graph λ({ij , ji}) = λ({i, j})−1 arbitrarily large.

Reduction to perfect matchings for no external magnetic field Here we show
that HTEISDEG3NOMAG≤SRPMATCH using a new reduction that keeps edge weights
smaller than Fisher. This appeared in its general form as part of the second author’s
thesis [11]. As in the previous section, with magnetic field 0 nodes of degree 1 can be
removed without changing the distribution.

As in [3], each edge {i, j} in the original graph is changed to two new nodes ij and
ji, but now set λ({ij , ji}) = λ({i, j}) so that the new weights stay in [0, 1].

A node i of degree two with neighbors j and k is split into two nodes ij and ik.
Connect these two nodes with an edge {ij , ik} of weight 1.

A node i of degree three with neighbors j, k, and ` is split into four nodes: ij , ik, i`,
and i′. Connect each pair of {ij , ik, i`} with an edge of weight 1/3. Connect i′ to each of
ij , ik and i` by an edge of weight 1. Figure 3 illustrates this procedure.

i

j

`

k

i′

ij

i`

ikji

`i

ki

1 1

1

1/3 1/3

1/3

Figure 3: New graph for degree 3 nodes

Call edges of the form {ij , ji} in G′, where {i, j} is an edge in G, an exterior edge.
Say that {i, j} in G corresponds to edges {ij , ji} in G′. All other edges of G′ are interior
edges. When deg(i) = 3, break the interior edges into two sets. Call {i′, ij}, {i′, ik},
and {i′, i`} spoke edges and {ij , ik}, {ik, i`} and {i`, ij} wheel edges All the spoke edges
receive weight 1, while all the wheel edges receive weight 1/3.

Let x′ be a perfect matching in the new graph. Then [φ(x′)]({i, j}) = x′({ij , ji}). That
is, an exterior edge gives the corresponding edge in the original graph the same value,
while the values of interior edges are ignored. Note that at most one wheel and one
spoke edge can be part of a perfect matching on the interior edges.

Since i′ must be matched to one of {i`, ij , ik}, the maximum degree of φ(x′) is 2. Also,
the remaining two of {i`, ij , ik} are either matched to each other (making the degree of
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i under φ(x′) equal to 0) or they are not (making the degree of i under φ(x′) equal to 2).
Hence for any perfect matching x′ in G′ and node i, degφ(x′)(i) must be even. A similar
argument shows that nodes with degree 2 in G also have even degree under φ(x′).

The next lemma shows that the conditions of Lemma 3.1 are satisfied.

Lemma 4.1. Under the reduction above of subgraphs Ising with maximum degree 3
and no external magnetic field to perfect matchings,∑

x′:φ(x′)=x

w(x′) = w(x).

Proof. Let x be a subgraphs configuration. Unlike Fisher’s reduction, there is more
than one x′ such that φ(x′) = x. Consider a node i such that deg(i) = 3. Let the
neighbors of i be j, k, and `. Since degx(i) is even, either degx(i) = 2 or degx(i) = 0.
Begin by supposing degx(i) = 2. Without loss of generality x({i, j}) = x({i, k}) = 1

and x({i, `}) = 0. The only way that x′ maps to x while being a perfect matching is if
x′({ij , ji}) = x′({ik, ki}) = x′({i′, i`}) = 1, while x′({i′, ij}) = x′({i′, ik}) = 0.

Now suppose that degx(i) = 0. Then there are three x′ such that φ(x′) = x. It
could be that x′({i′, ij}) = 1 and x′({ik, i`}) = 1, or x′({i′, ik}) = x′({ij , i`}) = 1 or
x′({i′, i`}) = x′({ij , ik}) = 1. These three configurations all contribute an edge of weight
1 and one of weight 1/3 to the weight of x′. So if n3(x) is the number of degree 3 nodes
under x, there are 3n3(x) different x′ that map to x, but each has edge weight factors of
(1/3)n3(x).

Degree 2 nodes are easier: given x, there is exactly one choice for the edges in x′

that map to x, and this configuration always contributes a factor of 1.
Combining the degree 2 and degree 3 nodes then:∑

x′:φ(x′)=x

w′(x′) = 3n3(x)(1/3)n3(x)w(x) = w(x).

Now consider the size of the new graph. Each original node splits into at most 4 new
nodes and creates at most 6 new edges. The previous reduction to maximum degree
3 yielded a graph with at most 2#E nodes and at most 3#E edges. Therefore after
splitting the result has at most 8#E nodes and at most 3#E + 6(2#E) = 15#E edges.

Reduction to matchings for nonzero magnetic field Here it is shown that
HTEISDEG3≤SRMATCH. Begin by setting µ′(i) = max{µ(i),#V −1} for each i ∈ V so that
µ′ > 0. (Note we can use acceptance rejection as before to use samples from HTEISDEG3
with input µ′ to obtain samples from HTEISDEG3 with input µ.)

For degree 3 nodes, the splitting of the node into 4 nodes and 6 edges proceeds as
in the previous section. For degree 2 nodes, the split is into 2 nodes with one extra
edge, and degree 1 nodes stay as one node with no extra edges. The edge weights are
as follows.

• Node i of degree 1: α(i) = µ(i),
• Node i of degree 2: α(i) = µ(i)−1, λ({ij , ik}) = µ(i)−2 − 1,
• Node i of degree 3: Let r(i) be the smallest nonnegative solution to the cubic

equation
µ(i)2(1 + r(i))3 = 1 + 3r(i) + 3r(i)2. (4.1)

The spoke edges all receive weight r(i). The wheel edges receive weight r(i)2/(1+

r(i)), and α(i) = µ(i)(1 + r(i)). (When r(i) = 0 the left hand side of (4.1) is at least
the right hand side, but as r(i) goes to infinity the left hand side grows faster than
the right since µ(i) > 0. Hence (4.1) has a smallest nonnegative solution.)
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As in the no magnetic field case, the map is just [φ(x′)]({i, j}) = x′({ij , ji}).

Lemma 4.2. Under the reduction above of subgraphs Ising with maximum degree 3
and positive external magnetic field to matchings,

∑
x′:φ(x′)=x

w′(x′) = w(x)

 ∏
i:deg(i)=2

µ(i)−2

 ∏
i:deg(i)=3

µ(i)(1 + r(i))2

 .
Proof. Suppose x′ maps to x, so that all the exterior edges receive the same value. Let
Eint(i) = ∪w:{i,w}∈E{{i′, iw}} be the interior edges associated with node i. Then

w(x′) =

 ∏
{ij ,ji} exterior

λ({ij , ji})x
′({ij ,ji})

[ ∏
e interior

λ(e)x
′(e)

]

=

 ∏
{i,j}∈E

λ(i, j)x({i,j})α(i)α(j)

∏
i∈V

∏
e∈Eint(i)

λ(e)x
′(e)


= w(x)

∏
i∈V

µ(i)−1(degx(i) is odd)α(i)degx(i)
∏

e∈Eint(i)

λ(e)x
′(e)

 .

Since w(x) does not depend on x′∑
x′:φ(x′)=x

w(x′) = w(x)
∑

{x′:φ(x′)=x}

∏
i∈V

µ(i)−1(degx(i) is odd)α(i)degx(i)
∏

e∈Eint(i)

λ(e)x
′(e).

Given x, let A(i) denote all the possible choices of x′(Eint(i)) that do not violate the
matching constraint on the interior edges for i. With this notation, the sum in the last
equation can be factored as∑

x′:φ(x′)=x

w(x′) = w(x)
∏
i∈V

µ(i)−1(degx(i) is odd)α(i)degx(i)
∑

x′(Eint(i))∈A(i)

∏
e∈Eint(i)

λ(e)x
′(e).

So to finish the proof, it is necessary to show

deg(i) = 2⇒ µ(i)−1(degx(i) is odd )α(i)degx(i)
∑

x′(Eint(i)∈A(i)

∏
e∈Eint(i)

λ(e)x
′(e) = µ(i)−2 (4.2)

deg(i) = 3⇒ µ(i)−1(degx(i) is odd )α(i)degx(i)
∑

x′(Eint(i)∈A(i)

∏
e∈Eint(i)

λ(e)x
′(e) = µ(i)(1 + r(i))2,

(4.3)

where r(i) is chosen to satisfy (4.1).
To show (4.2), begin by letting i be a node with deg(i) = 2. That means α(i) = µ(i)−1

and the weight of the single interior edge is µ(i)−2 − 1. When degx(i) ∈ {1, 2} the
interior edge for i must have value 0, and if degx(i) = 0, then there are two choices for
the interior edge. That gives two terms in the sum. the following table summarizes the
possibilities.

degx(i) µ(i)−1(degx(i) is odd )α(i)degx(i)
∑
x′(Eint(i))∈A(i)

∏
e∈Eint(i)

λ(e)x
′(e)

0 1 1 + (µ(i)−2 − 1)

1 µ(i)−1µ(i)−1 1
2 (µ(i)−1)2 1
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Reducing Ising to general matchings

In all cases, the product of the last two columns is µ(i)−2, showing (4.2).
To show (4.3), let i be a node with deg(i) = 3. Then degx(i) ∈ {0, 1, 2, 3}. Suppose

degx(i) = 3. Then every interior edge must be off in a valid matching, so A(i) is a single
element, which makes

∑
x′(Eint(i))∈A(i)

∏
e∈Eint(i)

λ(e)x
′(e) = 1.

Now suppose degx(i) = 2. Then let j and k denote the neighbors of i with x(i, j) =

x(i, k) = 1, and ` the neighbor of i with x(i, `) = 0. Most interior edges must be off, but
x′(i′, i`) could be either off or on. Therefore there are two elements in A(i), and since
λ(i′, i`) = r(i),

∏
e∈Eint(i)

λ(e)x
′(e) ∈ {1, λ(i′, i`)} ∈ {1, r(i)}. Hence∑

x′(Eint(i))∈A(i)

∏
e∈Eint(i)

λ(e)x
′(e) = 1 + r(i).

in this case.
Continuing, consider when degx(i) = 1. Let j be the neighbor of i with x(i, j) = 1,

and k and ` be the neighbors of i with x(i, k) = x(i, `) = 0. For the set A(i), either
no interior edges are on or exactly one interior edge is on. (If two interior edges are
on, the result cannot be a matching.) If one interior edge is on, either x′(i, ij) = 1,
or x′(i, ij) = 1, or x′(ij , ik) = 1. Therefore there are four configurations in A(i) (See
Figure 4.) From the weights on the spoke and wheel edges, this gives four terms in the

Figure 4: Node i degree 3 in G, degree 1 in configuration x

sum:∑
A(i)

∏
Eint(i)

λ(e)x
′(e) = 1 +

r(i)2

1 + r(i)
+ r(i) + r(i) =

1 + 3r(i) + 3r(i)3

1 + r(i)
= µ(i)2(1 + r(i))2,

where the last equality follows from our choice of r(i) in (4.1).
When degx(i) = 0, there are ten different choices for the interior edges. One choice

is for every interior edge to be off. Three more choices set a single spoke edge to be on,
with all other edges off. Three more have a single wheel edge on, with all others off.
The last three have exactly one spoke and one wheel edge on, and the rest off. Since any
matching in the interior edges can have at most 1 spoke or wheel edge on, this exhausts
A(i). Spoke edges have weight r(i), while wheel edges have weight r(i)2/(1 + r(i)), so

∑
A(i)

∏
Eint(i)

λ(e) = 1 + 3r(i) + 3
r(i)2

1 + r(i)
+ 3

r(i)2r(i)

1 + r(i)
= 1 + 3r(i) + 3r(i)2 = µ(i)2(1 + r(i))3.

These results are summarized in the following table:

degx(i) µ(i)−1(degx(i) is odd )α(i)degx(i)
∑
x′(Eint(i))∈A(i)

∏
e∈Eint(i)

λ(e)x
′(e)

0 1 µ(i)2(1 + r(i))3

1 µ(i)−1µ(i)(1 + r(i)) µ(i)2(1 + r(i))2

2 (µ(i)(1 + r(i)))2 1 + r(i)

3 µ(i)−1(µ(i)(1 + r(i)))3 1

In all cases, the product of the second and third columns is µ(i)2(1 + r(i))3, which
completes the proof.

EJP 17 (2012), paper 33.
Page 13/15

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v17-1998
http://ejp.ejpecp.org/
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The next lemma shows the new edge weights are bounded by the product of the old
weights and the inverse of the magnetic field up to a constant factor.

Lemma 4.3. Let {i, j} ∈ E. Then

λ({ij , ji}) ≤ 16µ(i)−1µ(j)−1λ({i, j}).

All added edges in E′ associated with node i have weight at most 3µ(i)−2.

Proof. For degree 1 and 2 nodes, it is immediate that α(i) ≤ µ(i)−2, and the extra edge
for degree 2 nodes has weight µ(i)−2 − 1. For degree 3 nodes, consider equation (4.1)
defining r(i). For µ(i) ∈ (0, 1), the left hand side is smaller than the right hand side when
r(i) = 0, and the reverse is true when r(i) = 3µ(i)−2 − 1, hence the single nonnegative
solution guaranteed by Descartes’ rule of signs is in [0, 3µ(i)−2].

Spoke edges receive weight r(i) ≤ 3µ(i)−2. Wheel edges receive weight r(i)2/(1 +

r(i)) ≤ r(i) ≤ 3µ(i)−2. Finally, consider an edge {i, j} of the original graph with
λ({ij , ji}) = α(i)α(j)λ({i, j}).

For these nodes, α(i) = µ(i)(1 + r(i)) ≤ 4µ(i)−1. Using λ({ij , ji} = α(i)α(j)λ({i, j})
completes the proof.

The main result can now be shown.

Proof of Theorem 1.2. Begin by modifying G = (V,E) to G′ = (V ′, E′) by splitting nodes
until the maximum degree is 3. Then #V ′ and #E′ are both Θ(#E). The original
magnetic field at node i was µ(i), after splitting the field it is at least µ(i)/(deg(i)− 2).

The mixing time of the chain for matchings is O((#E′)2#V ′λ′2[(ln 2)#E + ln(ε−1)]

(see (2.2).) From Lemma 4.3, λ′ ≤ 9 maxi[(deg(i) − 2)/µ(i)]2. Hence the mixing time is
just O((#E)3 maxi[(deg(i)− 2)/µ(i)]4 ln(ε−1)) as desired.

5 Consequences of the Ising reduction

The purpose of any reduction is so that existing methods for one problem can be
immediately applied to the other. Recall the Jerrum and Sinclair chain for HTEIS on
graph G = (V,E) has mixing time upper bounded by 2(#E)2(#V )4[(ln 2)#E + ln ε−1]

using the fact that µ(i) < #V −1 can be replaced by #V −1 at little cost.
Combining the HTEIS≤SRHTEISDEG3 and HTEIS sd≤SRMATCH reductions created a

graph G′ = (V ′, E′), where #V ′ ≤ 8#E and #E′ ≤ 15#E. That means µ(i) can be taken
to be at least 1/#V ′ ≥ 1/(8#E).

Then Lemma 4.3 gives an upper bound on the edge weight for the matching prob-
lem of 16(8#E)2. Putting µ(i) ≥ 1/(8#E), #V ′ ≤ 8#E and #E′ ≤ 15#E into (2.2)
means the mixing time for the matchings distribution on the new graph is at most
7.6 · 109(#E)6[15(ln 2)#E + ln ε−1]. Naturally this is not intended to be a substitute for
the Ising Markov chain, as direct analysis is almost always tighter than the analysis of
a reduction. However, it is notable that the order of the time using the reduction to
matchings is the same as that of a direct analysis of Ising for bounded degree graphs.

With the reduction, any improvements or new algorithms for simulating matchings
will automatically translate into new algorithms for the subgraphs world. The reduction
also provides insight into why methods such as canonical paths work for both problems:
because in the reduction sense they are the same problem.

Bayati et. al. [1] have shown that for matchings in graphs of bounded degree and
bounded edge weights it is possible to construct a deterministic fully polynomial time
approximation scheme for computing the partition function for the set of matchings. To
be precise, their result states:
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Theorem 5.1 (Theorem 2.1 of [1]). For a graphG = (V,E) with edge weights λ, and ε >
0, there exists an exp(ε) approximation algorithm for Z =

∑
x∈{0,1}E :x a matching

∏
e:x(e)=1 λ(e)

that runs in time O(n/ε)κ log ∆+1, where ∆ is the maximum degree of the graph, λ =

maxe λ(e) and κ = −2/ log(1− 2/[(1 + λ∆)1/2 + 1]).

For Ising, let ∆G be the maximum degree of G and µlo the minimum magnetic field.
After the reduction ∆G′ = 3, the minimum magnetic field is at least µlo/(∆G − 2), and
λ ≤ 9 maxi(∆G − 2)2µ−2

lo . This makes κ approximately 3
√

3(∆G − 2) maxi µ(i)−1.
Given the relationship between the partition function for subgraphs and matchings

implied by the simulation reduction and the well-known relationship between the sub-
graphs world partition function and the Ising partition function (see [7]), this imme-
diately gives a deterministic fully polynomial approximation scheme for the partition
function of the Ising model for bounded degree graphs with magnetic field bounded
away from 0. (Note that the Jerrum and Sinclair method only gives a randomized ap-
proximation scheme.)
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