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Abstract

We consider a subordinate Brownian motion X in Rd, d ≥ 1, where the Laplace ex-
ponent φ of the corresponding subordinator satisfies some mild conditions. The scale
invariant Harnack inequality is proved for X. We first give new forms of asymptotical
properties of the Lévy and potential density of the subordinator near zero. Using
these results we find asymptotics of the Lévy density and potential density of X near
the origin, which is essential to our approach. The examples which are covered by
our results include geometric stable processes and relativistic geometric stable pro-
cesses, i.e. the cases when the subordinator has the Laplace exponent

φ(λ) = log(1 + λα/2) (0 < α ≤ 2)

and
φ(λ) = log(1 + (λ+mα/2)2/α −m) (0 < α < 2, m > 0) .
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1 Introduction

Consider a Brownian motion B = (Bt,Px) in Rd, d ≥ 1, and an independent subordi-
nator S = (St : t ≥ 0). It is known that the stochastic process X = (Xt,Px) defined by
Xt = B(St) is a Lévy process. The process X is called a subordinate Brownian motion.

A non-negative function h : Rd → [0,∞) is said to be harmonic with respect to X in
an open set D ⊂ Rd if for all open sets B ⊂ Rd whose closure is compact and contained
in D the following mean value property holds

h(x) = Ex[h(XτB )] for all x ∈ B ,
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Harnack inequalities for SBM

where τB = inf{t > 0: Xt 6∈ B} denotes the first exit time from the set B .
We say that the Harnack inequality holds for the process X if there exists a constant

c > 0 such that for any r ∈ (0, 1) and any non-negative function h on Rd which is
harmonic in the ball B(0, r) = {z ∈ Rd : |z| < r} the following inequality is true

h(x) ≤ c h(y) for all x, y ∈ B(0, r2 ) . (1.1)

Space homogeneity of Lévy processes implies that the same inequality is true on
any ball B(x0, r) = {z ∈ Rd : |z − x0| < r}. This type of Harnack inequality is sometimes
called a scale invariant (or geometric) Harnack inequality, since the constant c in (1.1)
stays the same for any r ∈ (0, 1).

The main goal of this paper is to prove the scale invariant Harnack inequality for a
class of subordinate Brownian motions. Our most important contribution is that within
our framework we can treat subordinate Brownian motions with subordinators whose
Laplace exponent

φ(λ) := − logEe−λSt

varies slowly at infinity. In particular, we are able to give a positive answer for many
processes for which only the non-scaling version of the Harnack inequality was known
so far.

Here are a few examples of such processes.
Example 1 (Geometric stable processes)

φ(λ) = log(1 + λβ/2), (0 < β ≤ 2).

Example 2 (Iterated geometric stable processes)

φ1(λ) = log(1 + λβ/2) (0 < β ≤ 2)

φn+1 = φ1 ◦ φn n ∈ N.

Example 3 (Relativistic geometric stable processes)

φ(λ) = log

(
1 +

(
λ+mβ/2

)2/β
−m

)
(m > 0, 0 < β < 2).

Remark 1.1. The non-scaling version of the Harnack inequality for geometric stable
and iterated geometric stable processes was proved in [17]. It was not known whether
scale invariant version of this inequality held. Recently this turned out to be the case
in dimension d = 1 (see [8]). In [8] the authors used the theory of fluctuation of one-
dimensional Lévy processes and it was not clear how to generalize this technique to
higher dimensions. Nevertheles, this result suggests that the scale invariant version of
the Harnack inequality may hold in higher dimensions.

Another feature of our approach is that it is unifying in the sense that it covers
many classes of subordinate Brownian motions for which the scale invariant Harnack
inequality was recently proved. For example we can treat many subordinators whose
Laplace exponent varies regularly at infinity. As a special example, rotationally invariant
α-stable processes (α ∈ (0, 2)) are included in our framework.

Let us be more precise now. In this paper we consider subordinate Brownian motions
X in Rd (d ≥ 1), for which the Laplace exponent φ of the corresponding subordinator S
satisfies (see Sections 2 and 3 for details concerning these conditions):

(A-1) the potential measure of S has a decreasing density;

(A-2) the Lévy measure of S is infinite and has a decreasing density;
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Harnack inequalities for SBM

(A-3) there exist constants σ > 0, λ0 > 0 and δ ∈ (0, 1] such that

φ′(λx)

φ′(λ)
≤ σ x−δ for all x ≥ 1 and λ ≥ λ0 ;

Our main result is the following scale invariant Harnack inequality.

Theorem 1.2 (Harnack inequality). Suppose d ≥ 1 and Xt = BSt is a subordinate
Brownian motion where Bt is a Brownian motion in Rd and St is an independent sub-
ordinator whose Laplace exponent is φ. We assume that the subordinator St satisfies
(A-1)–(A-3) and that the Lévy density J(x) = j(|x|) of X satisfies

j(r + 1) ≤ j(r) ≤ c′j(r + 1), r > 1, (1.2)

for some constant c′ ≥ 1.
Then there exists a constant c > 0 such that for all x0 ∈ Rd and r ∈ (0, 1)

h(x1) ≤ c h(x2) for all x1, x2 ∈ B(x0,
r
2 )

and for every non-negative function h : Rd → [0,∞) which is harmonic in B(x0, r).

As already mentioned at the beginning, this theorem is a new result for Examples
1–3 above. The condition (0.2) in Theorem 1.2 is implied by the following two conditions
on the Lévy measure of the subordinator (see the proof of Proposition 3.5 [12]);
(a) For any K > 0, there exists c1 = c1(K) > 1 such that

µ(r) ≤ c1 µ(2r), ∀r ∈ (0,K). (1.3)

(b) There exists c2 > 1 such that

µ(r) ≤ c2 µ(r + 1), ∀r > 1. (1.4)

Note that, when φ is a complete Bernstein function, by Lemma 2.1 in [12], (1.4) holds.
On the other hand, by Proposition 3.3, under the assumption (A-2) and (A-3), (1.3)
holds (also see Remark 4.3).

The condition (A-3) is implied by the following stronger condition

∀x > 0 lim
λ→∞

φ′(λx)

φ′(λ)
= x

α
2−1 (0 ≤ α < 2) . (1.5)

In other words, (1.5) says that φ′ varies regularly at infinity with index α
2 −1. Examples

1–3 satisfy this condition with α = 0.
The following example is also covered by our approach.

Example 4 Assume that φ satisfies (A-1), (A-2) and

φ(λ) � λα/2`(λ), λ→∞ (0 < α < 2)

where ` varies slowly at infinity, i.e.

∀x > 0 lim
λ→∞

`(λx)

`(λ)
= 1

(f(λ) � g(λ), λ → ∞ means that f(λ)/g(λ) stays bounded between two positive con-
stants as λ→∞ ). We can take, for example,

`(λ) = [log(1 + λ)]1−α/2 or `(λ) = [log(1 + log(1 + λ))]1−α/2 .
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Harnack inequalities for SBM

The Harnack inequality in this case has been known before (see [12, 14, 15]).
The main ingredient in our proof of the Harnack inequality is a good estimate of

the Green function GB(0,r)(x, y) of the ball B(0, r) when y is near its boundary. To be
more precise, we will prove that there are a function ξ : (0, 1) → (0,∞) and constants
c1, c2 > 0 and 0 < κ1 < κ2 < 1 such that for every r ∈ (0, 1),

c1ξ(r)r
−dEyτB(0,r) ≤ GB(0,r)(x, y) ≤ c2ξ(r)r−dEyτB(0,r), (1.6)

for x ∈ B(0, κ1r) and y ∈ B(0, r) \B(0, κ2r) (see Corollary 5.9) .
Depending on considered processes, the function r 7→ ξ(r) can have two different

types of behavior. For example, it turns out that in Example 1

ξ(r) � 1
log(r−1) as r → 0+ ,

while in Example 4
ξ(r) � 1 as r → 0 + .

To obtain the mentioned estimates of the Green function we use asymptotical prop-
erties of Lévy density µ(t) and potential density u(t) of the underlying subordinator
near zero. It turns out that it is not possible to use Tauberian theorems in each case.
In Section 3 we obtain needed asymptotical properties without use of such theorems.
More precisely, we show that the asymptotical behavior can be expressed in terms of
the Laplace exponent (see Proposition 3.3 and Proposition 3.4):

µ(t) � t−2φ′(t−1) and u(t) � t−2 φ
′(t−2)

φ(t−2)2
as t→ 0 + .

Harnack inequalities for symmetric stable Lévy processes were obtained in [5, 4]. A
new technique on Harnack inequalities for stable like jump processes was developed in
[3] and generalized in [19]. Similar technique was used for various jump processes in
[2, 6, 7]. In [11] the Harnack inequality was proved for truncated stable processes and
it was generalized in [14]. Harnack inequality for some classes subordinate Brownian
motions was also considered in [12].

Let us comment what happens when one applies techniques developed for jump
processes (as in [3]) to our situation. The proof in this case relied on an estimate of
Krylov-Safonov type: there exists a constant c > 0 such that

Px(TA < τB(0,r)) ≥ c
|A|

|B(0, r)|

for any r ∈ (0, 1), x ∈ B(0, r2 ) and A ⊂ Rd closed, where TA = τAc denotes the first
hitting time of the set A and |A| denotes its Lebesgue measure.

Although this technique is quite general and can be applied to a much larger class
of Markov jump processes, there are some situations in our setting which show that
it is not applicable even to a rotationally invariant Lévy process. A good example is
the proof of the Harnack inequality in [17], where the mentioned Krylov-Safonov type
estimate was indispensable. Contrary to the case of stable-like processes, this estimate
is not uniform in r ∈ (0, 1).

For example, for a geometric stable process it is possible to find a sequence of radii
(rn) and closed sets An ⊂ B(0, rn) such that rn → 0, |An|

|B(0,rn)| ≥
1
4 and

P0(TAn < τB(0,rn))→ 0, as n→∞ .

This non-uniformity does not allow to obtain the scale-invariant Harnack inequality us-
ing this technique. In this sense, the investigation of Harnack inequality becomes inter-
esting even in the case of a Lévy process. We have not encountered a technique so far
that would cover cases of a more general jump process in this direction.
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The paper is organized as follows. In Section 2 we give basic notions which we
use in sections that follow. New forms of asymptotical properties of the Lévy and the
potential densities of subordinators are obtained in Section 3. Technical lemmas con-
cerning asymptotic inversion of the Laplace transform used in this section are deferred
to Appendix A. These results in Appendix A can be also of independent interest, since
they represent an alternative to the Tauberian theorems, which were mainly used in
previous works.

Using results of the Section 3 we obtain the behavior of the Lévy measure and the
Green function (potential) of the process X in Section 4. In Section 5 we obtain point-
wise estimates of the Green functions of small balls needed to prove the main result,
which is proved in Section 6.

Notation. Throughout the paper we use the notation f(r) � g(r), r → a to denote
that f(r)/g(r) stays between two positive constants as r → a. Simply, f � g means that
the quotient f(r)/g(r) stays bounded between two positive numbers on their common
domain of definition. We say that f : R → R is increasing if s ≤ t implies f(s) ≤ f(t)

and analogously for a decreasing function. For a Borel set A ⊂ Rd, we also use |A| to
denote its Lebesgue measure. We will use “:=" to denote a definition, which is read
as “is defined to be". For any a, b ∈ R, we use the notations a ∧ b := min{a, b} and
a ∨ b := max{a, b}. The values of the constants c1, c2, · · · stand for constants whose
values are unimportant and which may change from location to location. The labeling
of the constants c1, c2, . . . starts anew in the proof of each result.

2 Preliminaries

A stochastic process X = (Xt,Px) in Rd is said to be a pure jump Lévy process if
it has stationary and independent increments, its trajectories are right-continuous with
left limits and the characteristic exponent Φ in

Ex [exp {i〈ξ,Xt −X0〉}] = exp {−tΦ(ξ)}, ξ ∈ Rd

is of the form

Φ(ξ) =

∫
Rd

(
1− exp {i〈ξ, x〉}+ i〈ξ, x〉 1{|x|<1}

)
Π(dx). (2.1)

The measure Π in (2.1) is called the Lévy measure of X and it satisfies Π({0}) = 0 and∫
Rd

(1 ∧ |x|2)Π(dx) <∞ .

Let S = (St : t ≥ 0) be a subordinator, i.e. a Lévy process taking values in [0,∞) and
starting at 0. It is more convenient to consider the Laplace transform in this case

E exp {−λSt} = exp {−tφ(λ)}. (2.2)

The function φ in (2.2) is called the Laplace exponent of S and it is of the form

φ(λ) = γt+

∫
(0,∞)

(1− e−λt)µ(dt) , (2.3)

where γ ≥ 0 and the Lévy measure µ of S is now a measure on (0,∞) satisfying
∫
(0,∞)

(1∧
t)µ(dt) <∞ (see p. 72 in [1]). The function φ is an example of a Bernstein function, i.e.
φ ∈ C∞(0,∞) and (−1)nφ(n) ≤ 0 for all n ∈ N (see p. 15 in [18]). Here φ(n) denotes the
n-th derivative of φ. Conversely, every Bernstein function φ satisfying φ(0+) = 0 has a
representation (2.3) and there exists a subordinator with the Laplace exponent φ .

The potential measure of the subordinator S is defined by

U(A) =

∫ ∞
0

P(St ∈ A) dt. (2.4)
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The Laplace transform of U is then

LU(λ) = E

∫
(0,∞)

e−λSt dt =
1

φ(λ)
, λ > 0 . (2.5)

A Bernstein function φ is said to be a complete Bernstein function if the Lévy mea-
sure µ has a completely monotone density, i.e. µ(dt) = µ(t) dt with µ ∈ C∞(0,∞) satis-
fying (−1)nµ(n) ≥ 0 for all n ∈ N ∪ {0} . In this case we can control large jumps of Lévy
density µ in the following way. There exists a constant c > 0 such that

µ(t) ≤ c µ(t+ 1) for all t ≥ 1 (2.6)

(see Lemma 2.1 in [13]). If, in addition, µ(0,∞) = ∞, the potential measure U has a
decreasing density, i.e. there exists a decreasing function u : (0,∞) → (0,∞) such that
U(dt) = u(t) dt (see Corollary 10.7 in [18]).

Let B = (Bt,Px) be a Brownian motion in Rd (running with a time clock twice
as fast as the standard Brownian motion) and let S = (St : t ≥ 0) be an independent
subordinator. We define a new process X = (Xt,Px) by Xt = B(St) and call it subordi-
nate Brownian motion. This process is a Lévy process with the characteristic exponent
Φ(ξ) = φ(|ξ|2). Moreover, Φ has the Lévy measure of the form Π(dx) = j(|x|) dx and

j(r) =

∫
(0,∞)

(4πt)−d/2 exp
(
− r

2

4t

)
µ(dt), r > 0 (2.7)

(see Theorem 30.1 in [16]).
If S is not a compound Poisson process, the process X has a transition density

p(t, x, y) given by

p(t, x, y) =

∫ ∞
0

(4πt)−d/2 exp
(
− |x−y|

2

4t

)
P(St ∈ ds) . (2.8)

The process X is said to be transient if P0(limt→∞ |Xt| = ∞) = 1. Since the charac-
teristic exponent of X is symmetric we have the following Chung-Fuchs type criterion
for transience

X is transient ⇐⇒
∫
B(0,R)

dξ

φ(|ξ|2)
<∞ for some R > 0

⇐⇒
∫ R

0

λ
d
2−1

φ(λ)
dλ <∞ for some R > 0 (2.9)

⇐⇒ E0

[∫ ∞
0

1{|Xt|<R} dt

]
<∞ for every R > 0 (2.10)

(see Corollary 37.6 and Theorem 35.4 in [16]).
In this case we can define the Green function (potential) by G(x, y) =

∫∞
0
p(t, x, y) dt .

Then (2.4) and (2.8) give us a useful formula G(x, y) = G(y − x) = g(|y − x|), where

g(r) =

∫
(0,∞)

(4πt)−d/2 exp
(
− r

2

4t

)
U(dt), r > 0 . (2.11)

Note that g and j are decreasing.
Let D ⊂ Rd be a bounded open subset. We define a killed process XD by XD

t = Xt

if t < τD and XD
t = ∆ otherwise, where ∆ is some point adjoined to D (usually called

cemetery).
The transition density and the Green function of XD are given by

pD(t, x, y) = p(t, x, y)− Ex [p(t− τD, X(τD), y); τD < t]
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and GD(x, y) =
∫∞
0
pD(t, x, y) dt. In the transient case we have the following formula

GD(x, y) = G(x, y)− Ex[G(X(τD), y)] . (2.12)

Also, GD(x, y) is symmetric and, for fixed y ∈ D, GD(·, y) is harmonic in D \ {y} .
Furthermore, GD : (D × D) \ {(x, x) : x ∈ D} → [0,∞) and x 7→ ExτD are continuous
functions.

By the result of Ikeda and Watanabe (see Theorem 1 in [9])

Px(XτD ∈ F ) =

∫
F

∫
D

GD(x, y)j(|z − y|) dy dz (2.13)

for any F ⊂ Dc
. If we define the Poisson kernel of the set D by

KD(x, z) =

∫
D

GD(x, y)j(|z − y|) dy, (2.14)

then Px(XτD ∈ F ) =
∫
F
KD(x, z) dz for any F ⊂ D

c
. In other words, the Poisson kernel

is the density of the exit distribution.
Since a subordinate Brownian motion is a rotationally invariant Lévy process, it

follows that in the case of the subordinator with zero drift

Px(XτB(x0,r)
∈ ∂B(x0, r)) = 0

(see [10, 20]) and thus, for a measurable function h : Rd → [0,∞) ,

Ex[h(XτB(x0,r)
)] =

∫
B(x0,r)

c
KB(x0,r)(x, z)h(z) dz (2.15)

for any ball B(x0, r) .

3 Subordinators

Let S = (St : t ≥ 0) be a subordinator with the Laplace exponent φ satisfying the
following conditions:

(A-1) the potential measure U of S has a decreasing density u, i.e. there is a decreasing
function u : (0,∞)→ (0,∞) so that U(dt) = u(t) dt;

(A-2) the Lévy measure µ of S is infinite (i.e. µ(0,∞) = ∞) and it has a decreasing
density µ;

(A-3) there exist constants σ > 0, λ0 > 0 and δ ∈ (0, 1] such that

φ′(λx)

φ′(λ)
≤ σ x−δ for all x ≥ 1 and λ ≥ λ0 (3.1)

Remark 3.1. (i) (A-1) implies that φ is a special Bernstein function, i.e. λ 7→ λ
φ(λ) is

also a Bernstein function (see pp. 92-93 in [18]).

(ii) Since φ(λ) = γλ+
∫∞
0

(1− e−λt)µ(dt), (A-3) implies γ = 0 (by letting x→ +∞).

First we prove a simple result that holds for any Bernstein function, which will be
used in Section 5.

Lemma 3.2. Let φ be a Bernstein function.

(i) For every x ≥ 1, φ(λx) ≤ xφ(λ) for all λ > 0 .
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(ii) If (A-3) holds, then for every ε > 0 there is a constant c = c(ε) > 0 so that

φ(λx)

φ(λ)
≤ c x1−δ+ε for all λ ≥ λ0 and x ≥ 1 .

Proof. (i) Since φ′ is decreasing and x ≥ 1,

φ(λx) =

∫ λx

0

φ′(s) ds ≤
∫ λx

0

φ′( sx ) ds = xφ(λ) .

(ii) Without loss of generality we may assume that σ ≥ 2 in (A-3). Using (A-3), for
any k ≥ 2 the following recursive inequality holds

φ(λσ
k
ε )− φ(λσ

k−1
ε ) =

∫ λσ
k
ε

λσ
k−1
ε

φ′(s) ds ≤ σ1− δε
∫ λσ

k
ε

λσ
k−1
ε

φ′(sσ−
1
ε ) ds

= σ1+ 1−δ
ε

(
φ(λσ

k−1
ε )− φ(λσ

k−2
ε )
)
.

Iteration yields

φ(λσ
k
ε )− φ(λσ

k−1
ε ) ≤ σ(k−1)(1+ 1−δ

ε )
(
φ(λσ

1
ε )− φ(λ)

)
for every k ≥ 2. (3.2)

Let n ∈ N be chosen so that σ
n−1
ε ≤ x < σ

n
ε .

If n = 1, then by (i), φ(λσ
1
ε ) ≤ σ

1
εφ(λ) ≤ σ

1
ε+

2δ
ε x−δφ(λ) which, by monotonicity of φ,

implies that φ(λx)
φ(λ) ≤ σ

1+2δ
ε x−δ .

Let us consider now the case n ≥ 2. Using (3.2) and (i) we deduce

φ(λσ
n
ε )− φ(λ) ≤

(
φ(λσ

1
ε )− φ(λ)

) n∑
k=1

σ(k−1)(1+ 1−δ
ε )

≤
(
φ(λσ

1
ε )− φ(λ)

) σn(1+
1−δ
ε )

σ1+ 1−δ
ε − 1

≤ σ 1
εφ(λ)σn(1+

1−δ
ε ) .

Therefore

φ(λx) ≤ φ(λσ
n
ε ) ≤ 2σ1+ 2−δ

ε φ(λ)
(
σ
n−1
ε

)ε+1−δ
≤ 2σ1+ 2−δ

ε φ(λ)xε+1−δ .

Proposition 3.3. If (A-2) and (A-3) hold, then

µ(t) � t−2φ′(t−1), t→ 0 + .

Proof. Note that

φ(λ+ ε)− φ(ε) =

∫ ∞
0

(
e−λt − e−λ(t+ε)

)
µ(t) dt

for any λ > 0 and ε > 0 and thus the condition (A.1) in Appendix A holds with f = φ and
ν = µ. Since φ is a Bernstein function, it follows that φ′ ≥ 0 and φ′ is decreasing. Now
we can apply Lemmas A.1 and A.2.

Proposition 3.4. If (A-1) and (A-3) hold, then

u(t) � t−2 φ
′(t−1)

φ(t−1)2
, t→ 0 + .
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Proof. By (2.5), with ψ(λ) = 1
φ(λ) , we have

∫∞
0
e−λtu(t) dt = ψ(λ). Note that, for λ ≥ λ0

and x ≥ 1, (A-3) implies∣∣∣∣ψ′(λx)

ψ′(λ)

∣∣∣∣ =

(
φ(λ)

φ(λx)

)2
φ′(λx)

φ′(λ)
≤ φ′(λx)

φ′(λ)
≤ cx−δ,

since φ is increasing.
We see that (A.1) in Appendix A is satisfied with f = 1

φ and ν = u. Since φ is a

Bernstein function, φ′ ≥ 0 and φ′ is a decreasing function. Thus |f ′| = φ′

φ2 is also a
decreasing function. The result follows now from Lemmas A.1 and A.2.

4 Lévy density and potential density

In Section 3 we have established asymptotic behavior of the Lévy and potential den-
sity of S near zero. In this section we are going to use these results to give new forms of
asymptotic behavior of the Lévy density and potential density of the process X near the
origin. Throughout the remainder of the paper, X is the subordinate Brownian motion
with the characteristic exponent φ(|ξ|2) where φ is the Laplace exponent of S.

Lemma 4.1. Suppose that φ is a special Bernstein function, i.e. λ 7→ λ
φ(λ) is also a

Bernstein function. Then the functions η1, η2 : (0,∞)→ (0,∞) defined by

η1(λ) = λ2φ′(λ) and η2(λ) = λ2
φ′(λ)

φ2(λ)

are increasing.

Proof. It is enough to prove that η2 is increasing, because η1 = η2 · φ2 is then a product
of two increasing functions.

Since φ is a special Bernstein function,

λ

φ(λ)
= θ +

∫
(0,∞)

(1− e−λt)ν(dt),

for some θ ≥ 0 and a Lévy measure ν (see pp. 92-93 in [18]). Then

λ2
φ′(λ)

φ(λ)2
= λ

(
− λ

φ(λ)

)′
+

λ

φ(λ)

= θ +

∫
(0,∞)

(
1− (1 + λt)e−λt

)
ν(dt) .

Now the claim follows, since λ 7→ 1− (1 + λt)e−λt is increasing for any t > 0.

Proposition 4.2. If (A-2) and (A-3) hold, then

j(r) � r−d−2φ′(r−2), r → 0 + .

Proof. We use the formula (2.7), i.e.

j(r) =

∫ ∞
0

(4πt)−d/2 exp
(
− r

2

4t

)
µ(t) dt .

Proposition 3.3 implies that µ(t) � t−2φ′(t−1), t→ 0+.
We are going to use Proposition A.3 in Appendix A with A = 2, η = µ and ψ = φ′.

In order to do this, we need to check conditions (a), (b) and (c)-(ii). The condition (a)
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follows from the fact that φ is a Bernstein function and Lemma 4.1, while (b) follows
from ∫ ∞

1

t−d/2µ(t) dt ≤
∫ ∞
1

µ(t) dt = µ(1,∞) <∞,

since µ is a Lévy measure. Finally the condition (c)-(ii) follows from (4.1)–(4.2).

Remark 4.3. If φ is a complete Bernstein function, using Lemma 4.2 in [15], (2.6) and
Proposition 4.2, we see that (1.2) holds.

Lemma 4.4. If (A-1) hold and X is transient, then∫ ∞
1

t−d/2u(t) dt <∞ .

Proof. It follows from (2.5) and (2.9) that for any t ≥ 1 and R > 0

∞ >

∫ R

0

λ
d
2−1

φ(λ)
dλ =

∫ R

0

∫ ∞
0

λ
d
2−1e−λtu(t) dt dλ

=

∫ ∞
0

∫ tR

0

s
d
2−1t−

d
2 e−su(t) ds dt ≥

∫ ∞
1

∫ tR

0

s
d
2−1t−

d
2 e−su(t) ds dt

≥

(∫ R

0

s
d
2−1e−s ds

)
·
(∫ ∞

1

t−d/2u(t) dt

)
.

To handle the case d ≤ 2 in the next proposition and several other places, we will
add the following assumption to (A-3). Note that we do not put the next assumption in
Theorem 1.2.

(B) When d ≤ 2, we assume that d+ 2δ− 2 > 0 where δ is the constant in (A-3), and
there are σ′ > 0 and

δ′ ∈
(
1− d

2 , (1 + d
2 ) ∧ (2δ + d−2

2 )
)

(4.1)

such that
φ′(λx)

φ′(λ)
≥ σ′ x−δ

′
for all x ≥ 1 and λ ≥ λ0 ; (4.2)

Proposition 4.5. If (A-1), (A-3) and (B) hold and X is transient, then

g(r) � r−d−2 φ
′(r−2)

φ(r−2)2
, r → 0 + .

Proof. By (2.11) we have

g(r) =

∫ ∞
0

(4πt)−d/2 exp
(
− r

2

4t

)
u(t) dt .

Proposition 3.4 implies that u(t) � t−2 φ
′(t−1)

φ(t−1)2 , t→ 0+.

We are going to use Proposition A.3 in Appendix with A = 2, η = u and ψ = φ′

φ2 .
In order to use it, we need to check conditions (a), (b) and (c)-(ii). The condition (a)
follows from the fact that φ′ and 1

φ2 are decreasing, since φ is a Bernstein function. The
condition (b) follows from Lemma 4.4.

Now we check the condition (c)-(ii) when d ≤ 2; Note that by (4.1), 1 − d
2 < δ′ <

2δ − 1 + d
2 (and δ ≤ 1 < 1 + δ′

2 ). Thus 0 < δ′ + 2− 2δ < 1 + d
2 . Choose ε > 0 small so that

0 < δ′ + 2− 2δ + 2ε < 1 + d
2 , then applying (4.2) and Lemma 3.2 (ii), we get

ψ(λx)

ψ(λ)
=
φ′(λx)

φ′(λ)

φ(λ)2

φ(λx)2
≥ c1x−δ

′
c2x
−2+2δ−2ε = c1c2x

−(δ′+2−2δ+2ε),

Thus (A.7) holds.
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5 Green function estimates

The purpose of this section is to establish pointwise Green function estimates when
X is transient. More precisely, we are interested in an estimate of GB(x0,r)(x, y) for
x ∈ B(x0, b1r) and y ∈ A(x0, b2r, r) := {y ∈ Rd : b2r ≤ |y−x0| < r}, for some b1, b2 ∈ (0, 1).
As a starting point we need an estimate of GB(x0,r)(x, y) away from the boundary.

In this section, we assume that S = (St : t ≥ 0) is a subordinator with the Laplace
exponent φ satisfying (A-1)–(A-3), (B) and that X = (Xt,Px) is the transient subordi-
nate process defined by Xt = B(St), where B = (Bt,Px) is a Brownian motion in Rd

independent of S.

Recall that, since X is transient, its potential G is finite.

Lemma 5.1. There exists a ∈ (0, 13 ) and c1 > 0 such that for any x0 ∈ Rd and r ∈ (0, 1)

GB(x0,r)(x, y) ≥ c1
|x− y|−d−2φ′(|x− y|−2)

φ(|x− y|−2)2
for all x, y ∈ B(x0, ar) . (5.1)

In particular, there is a constant c2 ∈ (0, 1) so that

GB(x0,r)(x, y) ≥ c2g(|x− y|) for all x, y ∈ B(x0, ar) .

Proof. Let x, y ∈ B(x0, ar) with a ∈ (0, 1) chosen in the course of the proof. We use
(2.12), i.e.

GB(x0,r)(x, y) = g(|x− y|)− Ex[g(|X(τB(0,r))− y|)].

Since |X(τB(x0,r))− y| ≥ (1− a)r and |x− y| ≤ 2ar, we get

|X(τB(x0,r))− y| ≥ 1−a
2a |x− y|.

This together with the fact that g is decreasing yields

GB(x0,r)(x, y) ≥ g(|x− y|)− g( 1−a
2a |x− y|) . (5.2)

By Proposition 4.5 there exist constants 0 < c1 < c2 such that

c1s
−d+2ψ(s−2) ≤ g(s) ≤ c2s−d+2ψ(s−2), s ∈ (0, 1) , (5.3)

with

ψ(λ) = λ2 φ
′(λ)

φ(λ)2 , λ > 0 .

Considering only a < 1
3 it follows that 2a

1−a < 1. Combining (5.2) and (5.3) we arrive at

GB(x0,r)(x, y)

≥ c1|x− y|−d+2ψ(|x− y|−2)

1− c2c−11

(
2a
1−a

)d−2 ψ

((
2a
1−a

)2
|x− y|−2

)
ψ(|x− y|−2)

 . (5.4)

If d ≥ 3, we can choose a < 1
3 small enough so that c2c

−1
1

(
2a
1−a

)d−2
≤ 1

2 .

If d ≤ 2, by (4.1), first we can choose ε > 0 small enough so that d− 2− 2δ′+ 4δ− 4ε > 0

and then we can choose a < 1
3 small enough so that c2c

−1
1

(
2a
1−a

)d−2−2δ′+4δ−4ε
≤ 1

2 .
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Then using the fact that λ → ψ(λ) is increasing (Lemma 4.1) when d ≥ 3, and using
(3.1), (4.2) and Lemma 3.2 (ii) when d ≤ 2, we get

c2c
−1
1

(
2a
1−a

)d−2 ψ(( 2a
1−a

)2
|x− y|−2

)
ψ(|x− y|−2)

≤


c2c
−1
1

(
2a
1−a

)d−2
when d ≥ 3

c2c
−1
1

(
2a
1−a

)d+2 φ
′
((

2a
1−a

)2
|x−y|−2

)
φ(|x−y|−2)2

φ′(|x−y|−2)φ

((
2a
1−a

)2
|x−y|−2

)2 ≤
(

2a
1−a

)(d+2)−2δ′−4+4δ−4ε
when d ≤ 2

≤1

2
. (5.5)

Finally, (5.4) and (5.5) yield

GB(x0,r)(x, y) ≥ c1
2c2
|x− y|−d+2ψ(|x− y|−2) for all x, y ∈ B(x0, ar) .

Proposition 5.2. There exists a constant c > 0 such that for all x0 ∈ Rd and r ∈ (0, 1)

ExτB(x0,r) ≥
c

φ(r−2)
for all x ∈ B(x0,

ar
2 ) ,

with a ∈ (0, 13 ) as in Lemma 5.1.

Proof. Take a as in Lemma 5.1 and set b = a
2 . For any x ∈ B(x0, br) we have B(x, br) ⊂

B(x0, ar) and so it follows from Lemma 5.1 that

ExτB(x0,r) ≥
∫
B(x,br)

GB(x0,r)(x, y) dy

≥ c1
∫
B(x,br)

|x− y|−d−2φ′(|x− y|−2)

φ(|x− y|−2)2
dy =

c2
φ(b−2r−2)

≥ b2c2
φ(r−2)

.

The last inequality follows Lemma 3.2, since b < 1.

Remark 5.3. Note that, by (2.12), for any x0 ∈ Rd and r ∈ (0, 1) we have

GB(x0,r)(x, y) ≤ g(|x− y|) for all x, y ∈ B(x0, r)

and, consequently, ExτB(x0,r) ≤ c
φ(r−2) for any x ∈ B(x0, r).

Our approach in obtaining pointwise estimates of Green function of balls uses maxi-
mum principle for certain operators (in a similar way as in [4]).

To be more precise, define, for r > 0 a Dynkin-like operator Ur by

(Urf)(x) =
Ex[f(X(τB(x,r)))]− f(x)

ExτB(x,r)

for measurable functions f : Rd → R whenever it is well-defined.

Example 5.4. Let x ∈ Rd and r > 0. Define

η(z) := EzτB(x,r), z ∈ Rd .

By the strong Markov property, for any y ∈ B(x, r) and s < r − |y − x|

η(y) = Ey[τB(y,s) + τB(x,r) ◦ θτB(y,s)
] = EyτB(y,s) + Eyη(X(τB(y,s))) .

Therefore

(Usη)(y) = −1 for any y ∈ B(x, r) and s < r − |y − x|. (5.6)
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Remark 5.5. Let h : Rd → [0,∞) be a non-negative function that is harmonic in bounded
open set D ⊂ Rd. Then for x ∈ D and s < dist(x, ∂D) we have h(x) = Ex[h(X(τB(x,s)))].
Thus

(Ush)(x) = 0 for all x ∈ D.

Proposition 5.6 (Maximum principle). Assume that there exist x0 ∈ Rd and r > 0 such
that (Urf)(x0) < 0. Then

f(x0) > inf
x∈Rd

f(x) . (5.7)

Proof. If (5.7) is not true, then f(x0) ≤ f(x) for all x ∈ Rd. This implies (Urf)(x0) ≥ 0,
which is in contradiction with the assumption.

Proposition 5.7. There exists a constant c > 0 such that for all r ∈ (0, 1) and x0 ∈ Rd

GB(x0,r)(x, y) ≤ c r
−d−2φ′(r−2)

φ(r−2)
EyτB(x0,r)

for all x ∈ B(x0,
br
2 ) and y ∈ A(x0, br, r), where b = a

2 with the a ∈ (0, 13 ) from Lemma
5.1.

Proof. Take a ∈ (0, 13 ) as in Proposition 5.2 (which is the same one as in Lemma 5.1),
set b = a

2 and let x ∈ B(x0,
br
2 ) and y ∈ A(x0, br, r). Define functions

η(z) := EzτB(x0,r) and h(z) := GB(x0,r)(x, z)

and choose s < (r − |y|) ∧ br
4 . Note that h is harmonic in B(x0, r) \ {x} .

Since h(z) ≤ g( br8 ) for z ∈ B(x, br8 )c and y ∈ A(x0, br, r) ⊂ B(x, br8 )c, we can use
(2.13), (2.15) and Remark 5.5 to get

Us(h ∧ g( br8 ))(y) = Us(h ∧ g( br8 )− h)(y)

=
1

EyτB(y,s)

∫
B(y,s)

c

∫
B(y,s)

GB(y,s)(y, v)j(|z − v|)(h(z) ∧ g( br8 )− h(z)) dv dz

=
1

EyτB(y,s)

∫
B(x, br8 )

∫
B(y,s)

GB(y,s)(y, v)j(|z − v|)(h(z) ∧ g( br8 )− h(z)) dv dz

≥ − 1

EyτB(y,s)

∫
B(x, br8 )

∫
B(y,s)

GB(y,s)(y, v)j(|z − v|)h(z) dv dz.

Note that |z − v| ≥ |x − y| − |x − z| − |y − v| ≥ br
8 for z ∈ B(x, br8 ) and v ∈ B(y, s)

implies −j(|z − v|) ≥ −j( br8 ). Thus

Us(h ∧ g( br8 )− h)(y)

≥ −
j( br8 )

EyτB(y,s)

(∫
B(x, br8 )

GB(x0,r)(x, z) dz

)
·

(∫
B(y,s)

GB(y,s)(y, v) dv

)

≥ −
j( br8 )

EyτB(y,s)

(∫
B(x0,r)

GB(x0,r)(x, z) dz

)
EyτB(y,s)

= −j( br8 )η(x) ≥ −c1
(
b
8

)−d−2 r−d−2φ′(r−2)

φ(r−2)
, (5.8)

where in the last inequality we have used Proposition 4.2, Remark 5.3 and the fact that
φ′ is decreasing.
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Similarly, by Proposition 4.5 and Proposition 5.2 we see that there is a constant
c2 > 0 such that

g( br8 ) ≤ c2
(
b
8

)−d−2 r−d−2φ′(r−2)

φ(r−2)
η(z) for all z ∈ B(x0, br) .

Setting c3 := (c1 ∨ c2)
(
b
8

)−d−2
+ 1 we obtain

c3
r−d−2φ′(r−2)

φ(r−2)
η(z)− h(z) ∧ g( br8 ) ≥ c3

r−d−2φ′(r−2)

φ(r−2)
η(z)− g( br8 ) ≥ 0

for all z ∈ B(x0, br). Therefore, the function

u(·) := c3
r−d−2φ′(r−2)

φ(r−2)
η(·)− h(·) ∧ g( br8 )

is nonnegative in B(x0, br), vanishes on B(x0, r)
c and, by (5.6) and (5.8),

Usu(y) ≤ −c3
r−d−2φ′(r−2)

φ(r−2)
+ c1

(
b
8

)−d−2 r−d−2φ′(r−2)

φ(r−2)
< 0 for y ∈ A(x0, br, r) .

If it would hold infy∈Rd u(y) < 0, then by continuity of u on B(x0, r) there would exist
y0 ∈ A(x0, br, r) such that u(y0) = infy∈Rd u(y). But then Usu(y0) ≥ 0, by the maximum
principle (see Proposition 5.6), which is not true. Therefore infy∈Rd u(y) ≥ 0.

Finally, since h ≤ g( br8 ) on A(x0, br, r) it follows that

GB(x0,r)(x, y) ≤ c4
r−d−2φ′(r−2)

φ(r−2)
η(y) for all y ∈ A(x0, br, r) .

Proposition 5.8. There exist constants c > 0 and b ∈ (0, 1) such that for any r ∈ (0, 1)

and x0 ∈ Rd

GB(x0,r)(x, y) ≥ c r
−d−2φ′(r−2)

φ(r−2)
EyτB(x0,r)

for all x ∈ B(x0, br) and y ∈ B(x0, r).

Proof. Choose a ∈ (0, 13 ) as in Lemma 5.1. Then

GB(x0,r)(x, v) ≥ c1
|x− v|−d−2φ′(|x− v|−2)

φ(|x− v|−2)2
for x, v ∈ B(x0, ar) . (5.9)

By Proposition 5.7 we know that there exists a constant c2 > 0 so that

GB(x0,r)(x, v) ≤ c2
r−d−2φ′(r−2)

φ(r−2)
EvτB(x0,r) for x ∈ B(x0,

ar
4 ), v ∈ A(x0,

ar
2 , r) . (5.10)

Also, by Remark 5.3 there is a constant c3 > 0 such that

EvτB(x0,r) ≤
c3

φ(r−2)
for v ∈ B(x0, r) . (5.11)

We take

b ≤ min

{
1
4

(
c1

2c2c3

)1/d
, a8

}
and fix it. Then c2c3 ≤ c1

2 (4b)−d and so by Lemma 4.1 we deduce

c2c3
r−d−2φ′(r−2)

φ(r−2)2
≤ c1

2

(4br)−d−2φ′((4b)−2r−2)

φ((4b)−2r−2)2
.
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Now, by (5.9) and (5.11), for all x ∈ B(x0, br) and v ∈ B(x, br) we get

c2
r−d−2φ′(r−2)

φ(r−2)
EvτB(x0,r) ≤ 1

2GB(x0,r)(x, v) . (5.12)

For the rest of the proof, we fix x ∈ B(x0, br) and define a function

h(v) = GB(x0,r)(x, v) ∧
(
c2
r−d−2φ′(r−2)

φ(r−2)
EvτB(x0,r)

)
.

Let y ∈ A(x0,
ar
2 , r) and take s < (r − |y|) ∧ br

8 . Note that, by (5.12),

h(v) ≤ 1
2GB(x0,r)(x, v) for v ∈ B(x, br).

Therefore, (2.13) and Remark 5.5 yield

(Ush)(y) = Us
(
h−GB(x0,r)(x, ·)

)
(y)

=
1

EyτB(y,s)

∫
B(y,s)

c

∫
B(y,s)

GB(y,s)(y, v)j(|z − v|)
(
h(z)−GB(x0,r)(x, z)

)
dv dz

≤ − 1

2EyτB(y,s)

∫
B(x,br)

∫
B(y,s)

GB(y,s)(y, v)j(|z − v|)GB(x0,r)(x, z) dv dz .

Note that in the second equality we have used that h(y) = GB(x0,r)(x, y), which follows
from (5.10) . Since |z − v| ≤ 2r, it follows

(Ush)(y) ≤ − j(2r)

2EyτB(y,s)

(∫
B(x,br)

GB(x0,r)(x, z) dz

)
EyτB(y,s)

By Proposition 4.2, (5.9) and the fact that λ 7→ λ
φ(λ) is increasing (by Lemma 3.2) and φ′

decreasing we finally arrive at

(Ush)(y) ≤ −c4
r−d−2φ′(r−2)

φ
(

(br)
−2
) ≤ −c5

r−d−2φ′(r−2)

φ(r−2)
.

Define u = h− κη, where η(v) = EvτB(x0,r) and

κ = min

{
c5
2
,
c1
2c3

,
c2
2

}
r−d−2φ′(r−2)

φ(r−2)
.

For y ∈ A(x0,
ar
2 , r) we have by (5.6),

(Usu)(y) ≤ −c5
r−d−2φ′(r−2)

φ(r−2)
+ κ ≤ − c52

r−d−2φ′(r−2)

φ(r−2)
< 0 .

On the other hand, by (5.9) and (5.11), for all v ∈ B(x0,
ar
2 ),

u(v) ≥
(
c1
c3
∧ c2

) r−d−2φ′(r−2)

φ(r−2)
EvτB(x0,r) − κEvτB(x0,r)

≥
(
c1
2c3
∧ c2

2

) r−d−2φ′(r−2)

φ(r−2)
EvτB(x0,r) ≥ 0 .

Similarly as in Proposition 5.7, by using the maximum principle we finally obtain

u(y) ≥ 0 for all y ∈ B(x0, r) .

Combining Propositions 5.7 and 5.8 we obtain an important estimate for the Green
function.
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Corollary 5.9. There exist constants c1, c2 > 0 and b1, b2 ∈ (0, 12 ), 2b1 < b2 such that for
all x0 ∈ Rd and r ∈ (0, 1)

c1
r−d−2φ′(r−2)

φ(r−2)
EyτB(x0,r) ≤ GB(x0,r)(x, y) ≤ c2

r−d−2φ′(r−2)

φ(r−2)
EyτB(x0,r)

for all x ∈ B(x0, b1r) and y ∈ A(x0, b2r, r).

6 Poisson kernel and Harnack inequality

The first goal of this section is to estimate the Poisson kernel of X in a ball given by

KB(x0,r)(x, z) =

∫
B(x0,r)

GB(x0,r)(x, y)j(|z − y|) dy , (6.1)

where x ∈ B(x0, br) and z 6∈ B(x0, r).

Proposition 6.1. Suppose that φ satisfies (A-1)–(A-3), (B) and that the corresponding
subordinate Browninan motion X = (Xt,Px) is transient. Then there exist constants
c > 0 and b ∈ (0, 1) such that for all x0 ∈ Rd and r ∈ (0, 1)

KB(x0,r)(x1, z) ≤ cKB(x0,r)(x2, z)

for all x1, x2 ∈ B(x0, br) and z ∈ B(x0, r)
c.

Proof. Take b1, b2 ∈ (0, 12 ) as in Corollary 5.9, and let x0 ∈ Rd, x1, x2 ∈ B(x0, b1r) and
z ∈ B(x0, r)

c.
We split the integral in (6.1) into two parts

KB(x0,r)(x1, z) =

∫
B(x0,b2r)

GB(x0,r)(x1, y)j(|z − y|) dy

+

∫
A(x0,b2r,r)

GB(x0,r)(x1, y)j(|z − y|) dy =: I1 + I2 .

To estimate I2 we use Corollary 5.9 to get that for y ∈ A(x0, b2r, r)

c1
r−d−2φ′(r−2)

φ(r−2)
EyτB(x0,r) ≤ GB(x0,r)(xi, y) ≤ c2

r−d−2φ′(r−2)

φ(r−2)
EyτB(x0,r), i = 1, 2.

Therefore

I2 =

∫
A(x0,b2r,r)

GB(x0,r)(x1, y)j(|z − y|) dy

≤ c1
r−d−2φ′(r−2)

φ(r−2)

∫
A(x0,b2r,r)

Ey τB(x0,r)j(|z − y|) dy

≤ c1
c2

∫
A(x0,b2r,r)

GB(x0,r)(x2, y)j(|z − y|) dy ≤ c1
c2
KB(x0,r)(x2, z) .

To handle I1 we consider two cases. If z ∈ A(x0, r, 2), then

(1− b2)|z − x0| ≤ |z − y| ≤ (1 + b2)|z − x0| for all y ∈ B(x0, b2r) .

Since 1− b2 ≥ 1
2 and 1 + b2 ≤ 2 we obtain

j (2|z − x0|) ≤ j(|z − y|) ≤ j
(
1
2 |z − x0|

)
. (6.2)
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Using Proposition 4.2 and the fact that φ′ is decreasing we see that

j
(
1
2 |z − x0|

)
≤ c3j (2|z − x0|) . (6.3)

Then Lemma 5.1, Remark 5.3, (6.2) and (6.3) yield

I1 ≤ j
(
1
2 |z − x0|

) ∫
B(x0,b2r)

GB(x0,r)(x1, y) dy

≤ c3j (2|z − x0|)
c4

φ((b2r)−2)

≤ c5
∫
B(x0,b2r)

GB(x0,r)(x2, y)j(|z − y|) dy ≤ c5KB(x0,r)(x2, z) .

When z ∈ B(x0, 2)c we use |z − x0| − br ≤ |z − y| ≤ |z − x0|+ br for all y ∈ B(x0, br).
Since b2 ∈ (0, 12 ) and r ∈ (0, 1) we have

j(|z − x0|+ 1
2 ) ≤ j(|z − y|) ≤ j(|z − x0| − 1

2 ) . (6.4)

By (1.2) we have

j(|z − x0| − 1
2 ) ≤ c6j(|z − x0|+ 1) ≤ j(|z − x0|+ 1

2 ) . (6.5)

Similar to the previous case, by (1.2), Lemma 5.1, (6.4) and (6.5) we have I2 ≤
c7KB(x0,r)(x2, z). Therefore, I2 ≤ (c5 ∨ c7)KB(x0,r)(x2, z) which implies that

KB(x0,r)(x1, z) ≤ max{c5, c7, c1c2 }KB(x0,r)(x2, z) .

Now we are ready to prove our main result.

Proof of Theorem 1.2. Suppose d ≥ 3. Then X is always transient. Take b > 0 as in
Proposition 6.1 and set a = b

4 . Suppose that h : Rd → [0,∞) is harmonic in B(x0, r).
Using representation

h(x) = Ex[h(XτB(x0,2ar)
)] =

∫
B(x0,2ar)

c
KB(x0,2ar)(x1, z)h(z) dz

and Proposition 6.1 we have

h(x1) =

∫
B(x0,2ar)

c
KB(x0,2ar)(x1, z)h(z) dz

≤ c
∫
B(x0,2ar)

c
KB(x0,2ar)(x2, z)h(z) dz = c h(x2).

Then, using a standard Harnack chain argument, we prove the theorem for d ≥ 3.
To handle the lower dimensional case, we use the following notation: for x =

(x1, . . . , xd−1, xd) ∈ Rd we set x̃ = (x1, . . . , xd−1). Let X = ((X̃t, X
d
t ),P(x̃,xd)) be a d-

dimensional subordinate Brownian motion with the characteristic exponent

Φ(ξ) = φ(|ξ|2), ξ ∈ Rd .

By checking the characteristic functions, it follows that, for every xd ∈ R, X̃ = (X̃t,Px̃)

is a (d− 1)-dimensional subordinate Brownian motion with characteristic exponent

Φ̃(ξ̃) = φ(|ξ̃|2), ξ̃ ∈ Rd−1 .
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Suppose that the theorem is true for for some d ≥ 2. Let h : Rd−1 → [0,∞) be a
function that is harmonic in B(x̃0, r).

Since
τB(x̃0,s)×R = inf{t > 0 : X̃t /∈ B(x̃0, s)},

the strong Markov property implies that the function f : Rd → [0,∞) defined by f(x̃, xd) =

h(x̃) is harmonic in B(x̃0, r)×R.
In particular, f is harmonic in B((x̃0, 0), r). By applying the result to f , we see that

there exists a constant c > 0 such that for all x̃0 ∈ Rd−1 and r ∈ (0, 1)

h(x̃1) = f((x̃1, 0)) ≤ c f((x̃2, 0)) = c h(x̃2) for all x̃1, x̃2 ∈ B(x̃0,
r
2 ).

Applying this argument first to d = 3 and then to d = 2 we finish the proof of the
theorem.

Since KB(x0,r)(x, ·) is continuous on B(x0, r)
c

for every x ∈ B(x0, r), Theorem 1.2
implies Proposition 6.1 without the conditions (B) and X being transient.

Corollary 6.2. Suppose that φ satisfies (A-1)–(A-3). Then for every b ∈ (0, 1), there
exists a constant c = c(b) > 0 such that for all x0 ∈ Rd and r ∈ (0, 1)

KB(x0,r)(x1, z) ≤ cKB(x0,r)(x2, z)

for all x1, x2 ∈ B(x0, br) and z ∈ B(x0, r)
c.

We we omit the proof since it is the same as the proof of Proposition 1.4.11 in [12].

A Asymptotical properties

In this section we always assume that f : (0,∞)→ (0,∞) is a differentiable function
satisfying

|f(λ+ ε)− f(λ)| =
∫ ∞
0

(
e−λt − e−(λ+ε)t

)
ν(t) dt , (A.1)

for all λ > 0, ε ∈ (0, 1) and a decreasing function ν : (0,∞)→ (0,∞).

Lemma A.1. For all t > 0,

ν(t) ≤ (1− 2e−1)−1 t−2|f ′(t−1)| .

Proof. Let ε ∈ (0, 1). Then

|f(λ+ ε)− f(λ)| =
∫ ∞
0

(
e−λt − e−λt−εt

)
ν(t) dt

= λ−1
∫ ∞
0

e−z
(

1− e−ελ
−1z
)
ν(λ−1z) dz .

Since ν is decreasing, for any r > 0 we conclude

|f(λ+ ε)− f(λ)| ≥ λ−1
∫ r

0

e−z
(

1− e−ελ
−1z
)
ν(λ−1z) dz

≥ λ−1ν(λ−1r)

∫ r

0

e−z
(

1− e−ελ
−1z
)
dz.

Therefore ∣∣∣∣f(λ+ ε)− f(λ)

ε

∣∣∣∣ ≥ λ−2ν(λ−1r)

∫ r

0

z e−z
1− e−ελ−1z

ελ−1z
dz. (A.2)
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By Fatou’s lemma and (A.2) we obtain

|f ′(λ)| = lim
ε→0+

∣∣∣∣f(λ+ ε)− f(λ)

ε

∣∣∣∣ ≥ λ−2ν(λ−1r)

∫ r

0

ze−z dz

= λ−2ν(λ−1r)
(
1− e−r(r + 1)

)
.

In particular, for r = 1 we deduce

ν(t) ≤
(
1− 2e−1

)−1
t−2|f ′(t−1)|, t > 0 .

Lemma A.2. Assume that |f ′| is decreasing and there exist constants c1 > 0, λ0 > 0

and δ > 0 such that ∣∣∣∣f ′(λx)

f ′(λ)

∣∣∣∣ ≤ c1x−δ for all λ ≥ λ0 and x ≥ 1 . (A.3)

Then there is a constant c2 = c2(c1, λ0, δ) > 0 such that

ν(t) ≥ c2t−2|f ′(t−1)| for any t ≤ 1/λ0 .

Proof. Let ε ∈ (0, 1). For r ∈ (0, 1] we have

|f(λ+ ε)− f(λ)| = λ−1
∫ ∞
0

e−z
(

1− e−ελ
−1z
)
ν(λ−1z) dz

= I1(ε) + I2(ε) , (A.4)

where

I1(ε) = λ−1
∫ r

0

e−z
(

1− e−ελ
−1z
)
ν(λ−1z) dz

I2(ε) = λ−1
∫ ∞
r

e−z
(

1− e−ελ
−1z
)
ν(λ−1z) dz .

Since ν is decreasing,

I2(ε)

ε
≤ λ−2ν(λ−1r)

∫ ∞
r

ze−z
1− e−ελ−1z

ελ−1z
dz ,

and so by the dominated convergence theorem we deduce

lim sup
ε→0+

I2(ε)

ε
≤ λ−2ν(λ−1r)

∫ ∞
r

ze−z dz = (r + 1)e−rλ−2ν(λ−1r) . (A.5)

On the other hand, by Lemma A.1 and (A.3) we have

I1(ε)

ε
≤ λ−2

1− 2e−1

∫ r

0

ze−z
1− e−ελ−1z

ελ−1z

|f ′(λz−1)|
λ−2z2

dz

≤ c1
1− 2e−1

|f ′(λ)|
∫ r

0

e−z
1− e−ελ−1z

ελ−1z
zδ−1 dz .

The dominated convergence implies

lim sup
ε→0+

I1(ε)

ε
≤ c1

1− 2e−1
|f ′(λ)|

∫ r

0

e−zzδ−1 dz for any λ ≥ λ0. (A.6)
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Combining (A.4), (A.5) and (A.6) we deduce

|f ′(λ)| ≤ c1
1− 2e−1

|f ′(λ)|
∫ r

0

e−zzδ−1 dz + (r + 1)e−rλ−2ν(λ−1r)

for all λ ≥ λ0. Choosing r0 ∈ (0, 1] so that

c1
1− 2e−1

∫ r0

0

e−zzδ−1 dz ≤ 1

2
.

we have

ν(λ−1r0) ≥ er0

2(r0 + 1)
λ2|f ′(λ)| for all λ ≥ λ0.

Since |f ′| is decreasing, we see that

ν(t) ≥ er0

2(r0 + 1)

|f ′(r0/t)|
(t/r0)2

≥ r20e
r0

2(r0 + 1)
t−2|f ′(t−1)| for all t ≤ r0λ−10 .

On the other hand, for r0λ
−1
0 ≤ t ≤ λ−10 we have

ν(t) ≥ ν(λ−10 ) ≥ ν(λ−10 )t−2|f ′(t−1)| (r0/λ0)2

|f ′(λ0)|
,

since ν and |f ′| are decreasing.
Setting

c2 =
r20e

r0

2(r0 + 1)
∧ ν(λ−10 )λ−20 r20

|f ′(λ0)|
we get

ν(t) ≥ c2t−2|f ′(t−1)| for all t ≤ λ−10 .

Proposition A.3. Let A > 0 and η : (0,∞) → (0,∞) be a decreasing function satisfyng
the following conditions:

(a) there exists a decreasing function ψ : (0,∞) → (0,∞) such that λ 7→ λ2ψ(λ) is
increasing and satisfies

η(t) � t−Aψ(t−1), t→ 0+ ;

(b)
∫∞
1
t−d/2η(t) dt <∞

(c) either (i) A > 3 − d
2 or (ii) A > 3 − d

2 when d ≥ 3 and in the case d ≤ 2 there exist
δ > 0 and c > 0 such that A− δ > 1− d

2 and

ψ(λx)

ψ(λ)
≥ cx−δ for all x ≥ 1 and λ ≥ 1 . (A.7)

If

I(r) =

∫ ∞
0

(4πt)−d/2 exp

(
−r

2

4t

)
η(t) dt

exists for r ∈ (0, 1) small enough, then

I(r) � r−d−2A+2ψ(r−2), r → 0 + .
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Proof. Write for r > 0

I(r) =

∫ r2

0

(4πt)−d/2 exp
(
− r

2

4t

)
η(t) dt+

∫ ∞
r2

(4πt)−d/2 exp
(
− r

2

4t

)
η(t) dt

= I1(r) + I2(r) . (A.8)

By condition (a),

I1(r) ≤ c1
∫ r2

0

(4πt)−d/2 exp
(
− r

2

4t

)
t−Aψ(t−1) dt

≤ c2ψ(r−2)

∫ r2

0

t−
d
2−A exp

(
− r

2

4t

)
dt

= c3r
−d−2A+2ψ(r−2)

∫ ∞
1
4

tA−2+
d
2 e−t dt . (A.9)

Similarly,

I2(r) ≤ c1
∫ 1

r2
(4πt)−d/2 exp

(
− r

2

4t

)
t−Aψ(t−1) dt+

∫ ∞
1

(4πt)−d/2 exp
(
− r

2

4t

)
η(t) dt

≤ c1
∫ 1

r2
(4πt)−d/2t−Aψ(t−1) dt+

∫ ∞
1

(4πt)−d/2η(t) dt .

The following inequality holds∫ 1

r2
(4πt)−d/2t−Aψ(t−1) dt ≤ c4r−d−2A+2ψ(r−2) , (A.10)

since

(1) if condition (c)-(i) holds, then by conditions (a) and (c)-(i)∫ 1

r2
(4πt)−d/2t−Aψ(t−1) dt ≤ r−4ψ(r−2)

∫ 1

r2
(4πt)−d/2t2−A dt

≤ c5r−d−2A+2ψ(r−2) ;

(2) if condition (c)-(ii) holds and d ≤ 2, (A.7) implies∫ 1

r2
(4πt)−d/2t−Aψ(t−1) dt ≤ ψ(r−2)r−2δ

∫ 1

r2
(4πt)−

d
2 t−A+δ dt

≤ c6r−d−2A+2ψ(r−2) .

In particular, (A.10) implies

r−d−2A+2ψ(r−2) ≥ c7 > 0 for all r ∈ (0, 1)

and thus

I2(r) ≤ c6r−d−2A+2ψ(r−2) + c8 ≤ c9r−d−2A+2ψ(r−2) . (A.11)

Combining (A.8), (A.9) and (A.11) we get the upper bound

I(r) ≤ c7r−d+2−2Aψ(r−2) for all r ∈ (0, 1) .
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To get the lower bound we estimate I(r) from below by I1(r) and use (a) to get

j(r) ≥ I1(r) ≥ c8
∫ r2

0

(4πt)−d/2 exp
(
− r

2

4t

)
t−Aψ(t−1) dt

≥ c8r−4ψ(r−2)

∫ r2

0

(4πt)−d/2t2−A exp
(
− r

2

4t

)
dt

= c9r
−d−2A+2ψ(r−2)

∫ ∞
1
4

s−
d
2+A−4e−s ds

= c10r
−d−2A+2ψ(r−2) for all r ∈ (0, 1).
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