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Abstract

We study the basic preferential attachment process, which generates a sequence of
random trees, each obtained from the previous one by introducing a new vertex and
joining it to one existing vertex, chosen with probability proportional to its degree.
We investigate the number Dt(`) of vertices of each degree ` at each time t, focussing
particularly on the case where ` is a growing function of t. We show that Dt(`) is
concentrated around its mean, which is approximately 4t/`3, for all ` ≤ (t/ log t)−1/3;
this is best possible up to a logarithmic factor.
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1 Introduction

In this paper, we study the basic preferential attachment process, which is defined
as follows. We start with a (small) tree on τ0 ≥ 1 vertices. At each integer time t > τ0, a
new vertex arrives, and is joined to one existing vertex; a vertex is chosen as the other
endpoint of the new edge with probability proportional to its current degree. Thus, at
each time t, we have a tree with t vertices. The random tree obtained at any time t is
called the preferential attachment tree.

The first appearance of this process can be traced back at least to Yule [25] in 1925,
and in probability theory the model is sometimes referred to as a Yule process. Sub-
sequently, Szymański [22] studied the preferential attachment process in the guise of
plane-oriented recursive trees. He gave a formula for the expected number dt(`) of
vertices of degree ` at time t, namely

dt(`) =
4t

`(`+ 1)(`+ 2)
+O(1).
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The structure of such trees was further analysed by Mahmood, Smythe and Szymański [17],
and by Mahmood and Smythe [16]. Lu and Feng [12] proved a concentration result for
the random number Dt(`) of vertices of degree `, for fixed `.

Interest in the model surged after a paper of Barabási and Albert [2] in 1999, who
proposed preferential attachment as a model of the growth of “web graphs”, i.e., graphs
possessing many of the same properties as “real-world networks” such as the worldwide
web. Barabási and Albert studied not just the preferential attachment process as de-
fined above, but also the variant where each new vertex chooses some fixed number
m ≥ 1 of neighbours. For m > 1, the preferential attachment graphs produced are of
course not trees, but for properties such as the degree sequence, the overall pattern of
behaviour is the same for any fixed m.

Preferential attachment graphs were studied formally by Bollobás, Riordan, Spencer
and Tusnády [4], who proved that the degree sequence follows a power law with expo-
nent 3, i.e., the expected number dmt (`) of vertices of degree ` at time t is of order t/`3,
more precisely

dmt (`) ' 2m(m+ 1)

(`+m)(`+m+ 1)(`+m+ 2)
t

for all ` ≤ t1/15. They also showed that the random number Dm
t (`) of vertices of degree

` at time t is concentrated within O(
√
t log t) of its expectation dmt (`). They further

indicated how the results could be extended to somewhat larger values of `.
Szymański [23] gave a more precise estimate for d1

t (`) = dt(`). Combining this
with the concentration result of Bollobás, Riordan, Spencer and Tusnády [4] shows
that Dt(`) is concentrated within a factor (1 + o(1)) of its mean for ` up to nearly t1/6.
Szymański [23] also gave a precise estimate for the expected number ut(`) of vertices

of degree at least `, namely ut(`) =
2t

`(`+ 1)
+ O(1). Janson [11], extending a result

of Mahmoud, Smythe and Szymański [17], proved a central limit theorem for Dt(`) as
t→∞, jointly for all ` ≥ 1.

A much more general model was introduced and studied by Cooper and Frieze [6],
and Cooper [5]: in the latter paper, Cooper proved a general result that implies (weak)
concentration for Dt(`) whenever ` ≤ t1/6/ log2 t.

The maximum degree ∆t of the preferential attachment tree is known to behave as
t1/2 as t→∞. Móri [19] proved a law of large numbers and a central limit theorem for
the ∆t: in particular, he showed that ∆tt

−1/2 converges almost surely to some positive
(non-constant) random variable, as t → ∞. Further, he showed that the fluctuations of
∆tt
−1/2 around the limit, scaled by t−1/4, converge in distribution to a normal law.
Many variants of the preferential attachment process have been studied. The limit-

ing proportion of vertices of each fixed degree ` has been investigated in many differ-
ent models extending and generalising that of preferential attachment trees. See for
instance, Rudas, Toth and Valko [21], Athreya, Ghosh and Sethuraman [1], Deijfen, van
den Esker, van der Hofstad and Hooghiemstra [8], and Dereich and Mörters [9]. See
also the survey of Bollobás and Riordan [3] for a number of other results on related
models.

Our principal aim in this paper is to prove concentration of measure results for Dt(`)

for all values of ` up to the expected maximum degree. For values of ` above εt1/3, the
expectation of Dt(`) is of order at most 1, and all we show is that Dt(`) is, with high
probability, at most about log t. For values of ` at most (t/ log t)1/3, we shall prove that
Dt(`) is concentrated within about

√
t log t/`3 of its mean.

We can write Dt(`) =
∑t
s=1 I(s, t, `), where I(s, t, `) is the indicator of the event

that the vertex arriving at time s (or, for s ≤ τ0, the initial vertex labelled s) has degree
exactly ` at time t. One would expect that, for large t and ` in an appropriate range, most
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of the variables I(s, t, `) are approximately independent of each other, each with mean
bounded away from 1. This would suggest that the variance ofDt(`) is of the same order
as its mean, and that Dt(`) should be concentrated within about

√
EDt(`) '

√
t/`3 of

its mean. This is indeed the case for constant `: see Janson [11] for asymptotic formulae
for the covariances Cov(Dt(`)/t,Dt(j)/t). So our concentration result is likely to be best
possible up to logarithmic factors.

Our methods can also be used to prove similar results for the random variable Ut(`),
the number of vertices of degree at least ` at time t. The expectation of Ut(`) is approx-
imately 2t/`2 for large t: at the end of this paper, we indicate briefly how to adapt our
proof to show that Ut(`) is concentrated within about

√
t log t/`2 of its mean as long as

` ≤ t1/2/ log13/2 t.

Before stating our results, we specify our model precisely. We start at some time
τ0 ≥ 1, with an initial graph G(τ0) = (V (τ0), E(τ0)), with |V (τ0)| = τ0, |E(τ0)| = τ0 − 1;
we think of G(τ0) as a tree, although it need not be. At each step t > τ0, a new vertex
vt is created, and is joined to existing vertices by one new edge, whose other endpoint
is chosen by preferential attachment, that is, a vertex v is chosen as an endpoint with
probability proportional to its degree at time t− 1. Note that, if G(τ0) is a tree, then the
graph at all later stages is also a tree.

Our main theorem concerns the number Dt(`) of vertices of degree exactly ` at time
t, for all ` ≥ 1 and t ≥ τ0.

Theorem 1.1. Let τ0 ≥ 4 and ψ ≥ 105
√
τ0 − 1 log3 τ0 be constants. Let G(τ0) be

any graph with τ0 vertices and τ0 − 1 edges, and consider the preferential attach-
ment process with initial graph G(τ0) at time τ0, and the associated Markov chain
D = (Dt(`) : t ≥ τ0, ` ∈ N).

With probability at least 1− 4
ψ , we have∣∣∣∣Dt(`)−

4t

`(`+ 1)(`+ 2)

∣∣∣∣ ≤ 120

√
t log(ψt)

`3
+ 301ψ2 log(ψt),

for all ` ≥ 1, and all t ≥ τ0.

The parameter ψ is a constant which may be chosen arbitrarily large in order to
make the probability of failure arbitrarily small; the results are only of interest when
t is larger than some t0(ψ). All our results are stated in terms of such a parameter
(denoted ψ or ω).

We state here an analogous result about the number Ut(`) of vertices of degree at
least ` at time t, for all ` ≥ 2 and all t ≥ τ0. (Note that Ut(1) is equal to t for each t ≥ τ0.)

Theorem 1.2. Let τ0 ≥ 4 and ψ ≥ max
(
τ0, 105

√
τ0 − 1 log3 τ0

)
be constants. Let G(τ0)

be any graph with τ0 vertices and τ0−1 edges, and consider the preferential attachment
process with initial graph G(τ0) at time τ0, and the associated Markov chain U = (Ut(`) :

t ≥ τ0, ` ∈ N).
With probability at least 1− 4

ψ , we have∣∣∣∣Ut(`)− 2t

`(`+ 1)

∣∣∣∣ ≤ 45

√
t log(ψt)

`
+ 4× 109ψ log7(ψt),

for all ` ≥ 2, and all t ≥ τ0.

We do not give a detailed proof of Theorem 1.2 in this paper, but we do give an
indication of how to adapt our proof of Theorem 1.1 to give this result. The term log7(ψt)

appearing above could certainly be improved with more work.
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Theorem 1.2 seems to be the first explicit result concerning concentration of mea-
sure for Ut(`), although some weak concentration can be deduced from concentration
results for Dt(`). Moreover, Talagrand’s inequality [24] can be applied readily: to
demonstrate that Ut(`) ≥ x, a certificate of length at most O(x`) suffices (see for in-
stance [18] for details of the method). This method gives concentration for Ut(`) up to
about ` = t1/3, and indeed concentration for Dt(`) up to about ` = t1/5.

For constant values of `, Bollobás, Riordan, Spencer and Tusnády [4] showed that
Dt(`) is concentrated within about t1/2 of its mean, which is best possible; a similar re-
sult for Ut(`) follows. For larger values of `, in particular where ` is growing as a small
power of t, earlier methods (including the method based on Talagrand’s inequality that
we mentioned above) do not give the “optimal” concentration of Dt(`) or Ut(`) about
their respective means. Our results above do give what should be optimal concentra-
tion, up to logarithmic factors, for Dt(`) and Ut(`), whenever the expectations of these
random variables tend to infinity, again up to logarithmic factors.

In Section 2, we give an exposition of a method based on exponential supermartin-
gales, that is widely used in the analysis of continuous time Markov processes. We
transfer the method to the discrete time setting, and state two theorems that we shall
use, and that can be applied in other similar contexts.

In Section 3, we apply our method to describe the evolution of the degree of a
fixed vertex in the preferential attachment model. We do this partly to illustrate the
method, but mostly so that we can use the results in later sections. We prove a result
on the maximum degree ∆t that is weaker than Móri’s [19], but simple to prove, in the
interests of keeping the paper self-contained.

Sections 4 to 6 are devoted to the proof of Theorem 1.1. Section 4 contains the main
thread of the proof, and we defer some calculations to Sections 5 and 6. One difficulty
we face is that we cannot get sharp results by working directly with the natural mar-
tingale associated to the Markov chain D = (Dt(`) : t ≥ τ0, ` ∈ N), so we work instead
with a suitable transform of that martingale. Proving concentration of measure for the
transform is not straightforward, so we introduce another Markov process derived from
D, and apply our methods from Section 2 to that process.

Section 7 contains a brief sketch of the proof of Theorem 1.2.

In this paper, we deal only with the preferential attachment tree. However, our
methods will extend to more general settings, and indeed we believe we can prove re-
sults similar to those above for the general Cooper-Frieze model. We intend to address
this elsewhere; in a very brief final section, we make a few remarks on the difficulties
involved in extending our proof to other preferential attachment models.

2 Our method: exponential supermartingales

The following technique is adapted from a fairly standard method used in the anal-
ysis of continuous-time random processes; see for instance [7], [13] and [15]. We have
not been able to find a suitable account in the literature of a discrete-time, and time-
dependent, version of the method for us to quote, so we develop the theory here. We
provide results that we hope may prove useful in other settings.

LetX = (Xt : t ∈ Z+) be a discrete-time Markov chain, possibly time non-homogeneous,
with countable state space E and transition matrix Pt = (Pt(x, x

′) : x, x′ ∈ E) at time
t. (Here and in what follows, our matrices – which will normally be infinite – have rows
and columns indexed by the countable set E.) Let (Ft) be a filtration, and suppose that
(Xt) is adapted.
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Let I denote the identity matrix. Further, let us write, for a matrix A,

(Af)(x) =
∑
x′∈E

A(x, x′)f(x′).

Then we see that

[(Pt − I)f ](x) =
∑
x′∈E

[Pt(x, x
′)− I(x, x′)]f(x′) =

∑
x′∈E

Pt(x, x
′)(f(x′)− f(x)).

Further, note that

[(Pt − I)f ](x) = E[f(Xt+1)− f(x) | Xt = x], (2.1)

that is, [(Pt − I)f ](x) is the expected change in f at the t-th step given that Xt = x.

Lemma 2.1. Suppose X0 = x0 a.s. Let f : E → R be a function such that E[|f(Xt)| |
X0 = x0] is finite for each t. Then

Mf
t = f(Xt)− f(X0)−

t−1∑
s=0

[(Ps − I)f ](Xs)

= f(Xt)− f(X0)−
t−1∑
s=0

∑
x′

Ps(Xs, x
′)(f(x′)− f(Xs))

is an (Ft)-martingale.

Proof. The proof for the time homogeneous case can be found in Norris [20]. Checking
that Mf

t is a martingale in the time non-homogeneous case is just as easy. Consider

E[Mf
t+1 | Ft] = E

[
f(Xt+1)− f(X0)−

t∑
s=0

[(Ps − I)f ](Xs) | Ft

]
= E[f(Xt+1) | Xt]− f(X0)− [(Pt − I)f ](Xt)

−
t−1∑
s=0

[(Ps − I)f ](Xs)

= f(Xt)− f(X0)−
t−1∑
s=0

[(Ps − I)f ](Xs)

= Mf
t ,

where we used (2.1). Also, for each t ≥ 0,

E |Mf
t | ≤ E |f(Xt)|+ E |f(X0)|+

t−1∑
s=0

E |[(Ps − I)]f(Xs)|

≤ E |f(Xt)|+ E |f(X0)|+
t−1∑
s=0

(E |f(Xs)|+ E |f(Xs+1)|)

< ∞.

Lemma 2.2. Suppose X0 = x0 a.s. Let f : E → R+ be a function. Then

Zft =
f(Xt)

f(X0)
exp

(
−

t−1∑
s=0

[(Ps − I)f ](Xs)

f(Xs)

)
is an Ft-supermartingale, as long as EZft <∞ for all t.
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Proof. Consider

E[Zft+1 | Ft] = E[f(Xt+1) | Xt]
1

f(X0)
exp

(
−

t∑
s=0

[(Ps − I)f ](Xs)

f(Xs)

)
=

f(Xt)

f(X0)

(Ptf)(Xt)

f(Xt)
exp

(
1− (Ptf)(Xt)

f(Xt)

)
× exp

(
−

t−1∑
s=0

[(Ps − I)f ](Xs)

f(Xs)

)
≤ f(Xt)

f(X0)
exp

(
− 1 +

(Ptf)(Xt)

f(Xt)

)
exp

(
1− (Ptf)(Xt)

f(Xt)

)
× exp

(
−

t−1∑
s=0

[(Ps − I)f ](Xs)

f(Xs)

)
= Zft ,

where we have used the fact thatE[f(Xt+1) | Xt] = Ptf , and the fact that x ≤ exp(−1+x)

for all x.

Note that, for a continuous-time Markov chain, the analogue of Zft in Lemma 2.2
is in fact a martingale; see for example Lemma 3.2 in Chapter 4 of [10]. In the time-
continuous case, the matrix (Pt−I) is replaced by the generator matrix At of the Markov
chain, which is the derivative at time t of its transition semigroup Pt.

We shall show how, under certain conditions, Lemma 2.1 and Lemma 2.2 can be
used to prove a law of large numbers for a Markov chain.

Lemma 2.3. Let g : E → R be a function, and suppose that X0 = x0 a.s., for some
x0 ∈ E. For θ ∈ R, let

ϕgs(x, θ) =
∑
x′∈E

Ps(x, x
′)
(
eθ(g(x

′)−g(x)) − 1− θ(g(x′)− g(x))
)
.

Then

Zgt (θ) = exp
(
θMg

t −
t−1∑
s=0

ϕgs(Xs, θ)
)

is an Ft-supermartingale, as long as EZgt (θ) <∞ for each t.

Proof. The result is a consequence of Lemma 2.2, with f(x) = eθ(g(x)−g(x0)). That lemma
tells us that Zft is a supermartingale, and we need only verify that Zft = Zgt (θ) for this
choice of f .
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The calculation goes as follows:

Zft =
f(Xt)

f(X0)
exp

(
−

t−1∑
s=0

[(Ps − I)f ](Xs)

f(Xs)

)
= exp(θ(g(Xt)− g(X0)))

× exp
(
−

t−1∑
s=0

∑
x′ Ps(Xs, x

′)[eθ(g(x
′)−g(X0)) − eθ(g(Xs)−g(X0))]

eθ(g(Xs)−g(X0))

)
= exp

(
θ(g(Xt)− g(X0))−

t−1∑
s=0

∑
x′

Ps(Xs, x
′)[eθ(g(x

′)−g(Xs)) − 1]
)

= exp
(
θ(g(Xt)− g(X0))− θ

t−1∑
s=0

∑
x′

Ps(Xs, x
′)(g(x′)− g(Xs))

−
t−1∑
s=0

ϕgs(Xs, θ)
)

= exp
(
θMg

t −
t−1∑
s=0

ϕgs(Xs, θ)
)
.

Note that, while Xt remains in a ‘good’ set St of states x where eθ(g(x
′)−g(x)) is

bounded by some constant (possibly depending on t) over all x′ such that Pt(x, x′) > 0

and all x ∈ St, (i.e., the size of changes in g stays uniformly bounded), then the finite-
ness assumption of Lemma 2.3 holds. Furthermore, we can approximate eθ(g(x

′)−g(Xt))

using a Taylor expansion.
In many applications, in particular those in this paper, |g(x′)−g(x)| will be uniformly

bounded over the entire state space E and over all transition matrices Pt: if we work up
to some fixed time τ , then it suffices to have the bound valid for t < τ . We assume from
now on that, for every τ ≥ 0, there is some real number J = J(τ) such that g satisfies:

sup
s<τ,x

sup
x′:Ps(x,x′)6=0

|g(x′)− g(x)| ≤ J <∞. (2.2)

Now we fix some real number α > 0, and restrict attention to values of θ such that
|θ| ≤ α. We use the identity

ez − 1− z = z2

∫ 1

r=0

erz(1− r) dr

to deduce that

ϕgs(x, θ) =
∑
x′

Ps(x, x
′)θ2(g(x′)− g(x))2

∫ 1

0

erθ(g(x
′)−g(x))(1− r) dr

≤ θ2
∑
x′

Ps(x, x
′)(g(x′)− g(x))2eαJ

∫ 1

0

(1− r) dr

=
1

2
θ2eαJ

∑
x′

Ps(x, x
′)(g(x′)− g(x))2.

Suppose that X0 = x0 a.s., for some x0 ∈ E, and that we study the chain up to some
time τ > 0. Our aim is to show that Mg

t remains small over the period 0 ≤ t ≤ τ . For a
precise statement, we need a few more definitions.
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We set

Φgt (X) =

t∑
s=0

∑
x′

Ps(Xs, x
′)(g(x′)− g(Xs))

2,

so that

Zgt (θ) ≥ exp

(
θMg

t −
1

2
θ2eαJΦgt−1(X)

)
,

for all θ with |θ| ≤ α.
Now let R be a positive real number, and set

TR = inf{t ≥ 0 : Φgt (X) > R}.

Thus, for t ≤ TR, we have Φgt−1(X) ≤ R, and therefore

Zgt (θ) ≥ exp
(
θMg

t −
1

2
θ2eαJR

)
,

provided |θ| ≤ α.
Also, for δ > 0, we define

T+
g (δ) = inf{t : Mg

t > δ}, T−g (δ) = inf{t : Mg
t < −δ},

and

Tg(δ) = T+
g (δ) ∧ T−g (δ) = inf{t : |Mg

t | > δ}.

Lemma 2.4. Fix τ > 0 and R > 0, and let g : E → R be a function satisfying (2.2) for
some J ∈ R. Also, let α > 0 and δ > 0 be any constants such that δ ≤ eαJαR. Then

P
(
Tg(δ) ≤ TR ∧ τ

)
≤ 2e−δ

2/(2ReαJ ),

and hence

P
(

( sup
0≤t≤τ

|Mg
t | > δ) ∧ (TR ≥ τ)

)
≤ 2e−δ

2/(2ReαJ ).

In particular:

(i) for any ω ≤ R/J2, we obtain the following by choosing α = log 2/J and δ =
√
ωR:

P

((
sup

0≤t≤τ
|Mg

t | >
√
ωR

)
∧ (TR ≥ τ)

)
≤ P

(
Tg
(√
ωR
)
≤ TR ∧ τ

)
≤ 2e−ω/4;

(ii) for any ω ≥ R/J2, we set α = 1
J log

(
2ωJ2/R

)
and δ = ωJ , and obtain

P
(

( sup
0≤t≤τ

|Mg
t | > ωJ) ∧ (TR ≥ τ)

)
≤ P

(
Tg(ωJ) ≤ TR ∧ τ

)
≤ 2e−ω/4.

Proof. Fix any real θ with |θ| ≤ α. For ease of notation, we write T+
g for T+

g (δ) and T−g
for T−g (δ). By Lemma 2.3, (Zgt (θ))t≥0 is a supermartingale.

On the event {T+
g ≤ TR ∧ τ}, we have Mg

T+
g
> δ and

Zg
T+
g

(θ) > exp

(
θδ − 1

2
θ2eαJR

)
.
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By optional stopping,

E[Zg
T+
g

(θ)] ≤ E[Zg0 (θ)] = 1.

Hence, using the Markov inequality,

P(T+
g ≤ TR ∧ τ) ≤ P

(
Zg
T+
g

(θ) > exp

(
δθ − 1

2
θ2eαJR

))
≤ exp

(
−δθ +

1

2
θ2eαJR

)
.

Optimising in θ, we find that θ = δ/eαJR is the best choice, and note that |θ| ≤ α. This
yields

P(T+
g ≤ TR ∧ τ) ≤ exp

(
−δ2

/
2eαJR

)
.

An almost identical calculation gives

P(T−g ≤ TR ∧ τ) ≤ exp
(
−δ2

/
2eαJR

)
,

and the first part of the result follows.
The two special cases are obtained by choosing the given values of α and δ, and

verifying that

δ ≤ eαJαR and
δ2

2eαJR
≥ ω

4

in each case.

We summarise what we have proved in a theorem.

Theorem 2.5. Let X = (Xt)t∈Z+ be a discrete-time Markov chain, with countable
state space E and transition matrix Pt at time t, and suppose that (Xt) is adapted to a
filtration (Ft). Let g : E → R be any function, τ any natural number, and J any real
number, satisfying

sup
s<τ,x∈E

sup
x′∈E:Ps(x,x′)>0

|g(x′)− g(x)| ≤ J.

Set

Φgt (X) =

t∑
s=0

∑
x′∈E

Ps(Xs, x
′)
(
g(x′)− g(Xs)

)2
.

Let R > 0 be a real number, and set

TR = inf{t ≥ 0 : Φgt (X) > R}.

Then

Mg
t = g(Xt)− g(X0)−

t−1∑
s=0

∑
x′∈E

Ps(Xs, x
′)(g(x′)− g(Xs))

is an (Ft)-martingale and, for any ω > 0,

P

((
sup

0≤t≤τ
|Mg

t | > max
(√

ωR,ωJ
))
∧ (TR ≥ τ)

)
≤ 2e−ω/4.
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We have demanded that the state space be countable, so that we can express our
results in terms of sums over the state space. It suffices to assume instead that, for
any state x ∈ E, and any time s, there is a countable set E(x, s) ⊆ E such that∑
x′∈E Ps(x, x

′) = 1. Indeed, under this assumption, if X0 = x0 a.s. for some state
x0, then there is a countable set E′ ⊆ E such that, a.s., Xt ∈ E′ for all t ≥ 0.

We also remark that, in the statement above, we begin our consideration of the chain
at time 0. When applying Theorem 2.5 in the analysis of the preferential attachment
tree, we shall instead start at some fixed time τ0: of course this makes no substantive
difference.

In some instances, for example in Section 3, we will want to bound the probability
that |Mg

t | ≤ δ(t) for all t ≤ τ , where δ(t) is a suitable function growing with t. One
easy way to do this is to apply the above theorem for each value t ≤ τ , choosing an
appropriate value R(t) of R at each time. This approach has the drawback that it is
necessary to sum the probabilities of failure over t ≤ τ . Better bounds may be obtained
by applying the lemma only for a sparse sequence of values t, as we illustrate in the
proof of the following result.

The notation here is essentially as for Theorem 2.5. We again have a real-valued
function g defined on the state space E of a Markov chain X, and the change in g is
uniformly bounded by J over all possible transitions of the chain. The function Φgt (X)

is as in Theorem 2.5. Now we have a non-decreasing function R : Z+ → R+, and we set

TR = inf{t ≥ 0 : Φgt (X) > R(t)}.

Also, for any non-decreasing function δ : Z+ → R+, we define an associated stopping
time

Tg(δ) = inf{t ≥ 0 : |Mg
t | > δ(t)}.

With the notation as above, we have the following result.

Theorem 2.6. (a) Fix ω > 4, and let δ(t) = max(ωJ, 2
√
ωR(t− 1)) for t ≥ 1. Then, for

any τ > 0 such that R(τ − 1) ≥ ωJ2,

P(Tg(δ) ≤ TR ∧ τ) ≤ 2 log

(
8R(τ − 1)

ωJ2

)
e−ω/4.

(b) Fix ψ ≥ 4/J2, and suppose that R(t) tends to infinity as t → ∞. For t ≥ 1, let

δ̃(t) = 2 max
(
ψJ log(ψJ2),

√
ψR(t− 1) logR(t− 1)

)
. Then

P(Tg(δ̃) ≤ TR) ≤ 5e−ψ/4.

Proof. For (a), we define a finite sequence of times τ1, τ2, . . . as follows. Let τ1 be the
first t for which R(t) > ωJ2: by assumption τ1 ≤ τ . For j > 1, if τj < τ then we set

τj+1 = inf{t > τj : R(t) > 4R(τj)} ∧ τ.

The final term τN in the sequence is the first τj with τj = τ , and the number N of terms

in the sequence is then no greater than 2 + log4

(
R(τ−1)
ωJ2

)
≤ log

(
8R(τ−1)
ωJ2

)
.

We first apply Lemma 2.4(ii) with τ = τ1 and R = R(τ1 − 1), noting that ω ≥ R(τ1 −
1)/J2 by definition of τ1. We obtain that

P(Tg(ωJ) ≤ TR ∧ τ1) ≤ P(Tg(ωJ) ≤ TR(τ1−1) ∧ τ1) ≤ 2e−ω/4.

As δ(t) ≥ ωJ for all t ≤ τ1, this means that, with probability at least 1 − 2e−ω/4, |Mg
t | ≤

δ(t) for all times t ≤ TR ∧ τ1.
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For each of the times τ = τj (j ≥ 2), we apply Lemma 2.4(i) with R = R(τj − 1),
noting now that ω ≤ R(τj − 1)/J2 by choice of τ1. We obtain that

P

(
Tg

(√
ωR(τj − 1)

)
≤ TR ∧ τj

)
≤ 2e−ω/4.

For each t with τj−1 < t ≤ τj , we have

δ(t) ≥ δ(τj−1 + 1) ≥ 2
√
ωR(τj−1) ≥

√
ωR(τj − 1),

since R(τj − 1) ≤ 4R(τj−1) by definition of τj . We conclude that, for each j ≥ 2, with
probability at least 1− 2e−ω/4, |Mg

t | ≤ δ(t) for all times t with τj−1 < t ≤ TR ∧ τj .
It now follows that, with probability at least 1− 2Ne−ω/4, we have |Mg

t | ≤ δ(t) for all
times t ≤ TR ∧ τ , and part (a) follows.

The proof of part (b) is very similar in style. This time we let τ1 be the first t for which
R(t) > 2ψJ2 log(ψJ2). Given τj , we let τj+1 be the minimum t such that R(t) > 4R(τj).
The assumption that R(t) tends to infinity ensures that we obtain an infinite sequence
(τj)j≥1 of times.

We apply Lemma 2.4(ii) with ω = 2ψ log(ψJ2), τ = τ1, and R = R(τ1 − 1), noting that
ω ≥ R(τ1 − 1)/J2 by choice of τ1. We obtain that

P
(
Tg(2ψJ log(ψJ2)) ≤ TR ∧ τ1

)
≤ 2e−ψ/4.

Since δ̃(t) ≥ 2ψJ log(ψJ2) for all t, this implies that, with probability at least 1− 2e−ψ/4,
|Mg

t | ≤ δ̃(t) for all times t ≤ TR ∧ τ1.

Now, for each τ = τj (j ≥ 2), we apply Lemma 2.4(i) with R = R(τj − 1) and ω =

ψ logR(τj−1) for each j. We need to check that ω ≤ R(τj − 1)/J2, i.e., that R(τj −
1)/ logR(τj−1) ≥ ψJ2: we have

R(τj − 1)

logR(τj−1)
≥ R(τj−1)

logR(τj−1)
≥ 2ψJ2 log(ψJ2)

log(2ψJ2 log(ψJ2))
>

2ψJ2 log(ψJ2)

2 log(ψJ2)
= ψJ2,

as required; here we used the facts that (i) R(τj − 1) ≥ R(τj−1) ≥ 2ψJ2 log(ψJ2), by
the definition of the τj , and R(·) is increasing, (ii) ψJ2 ≥ 4 and x/ log x is an increasing
function, with minimum value e, for x ≥ e (so in particular 2 log(ψJ2) < ψJ2).

We obtain:

P

(
Tg

(√
ψR(τj − 1) logR(τj−1)

)
≤ TR ∧ τj

)
≤ 2e−ψ logR(τj−1)/4.

We have, for τj−1 < t ≤ τj ,

δ̃(t) ≥ δ̃(τj−1) ≥ 2
√
ψR(τj−1) logR(τj−1) ≥

√
ψR(τj − 1) logR(τj−1)

and so, with probability at least 1 − 2e−ψ logR(τj−1)/4, |Mg
t | ≤ δ̃(t) for all times t with

τj−1 < t ≤ TR ∧ τj .
Therefore, summing over j, and noting that R(τj−1) ≥ 2ψJ2 log(ψJ2)4j−2 > ej−1 for

each j ≥ 2,

P
(
|Mg

t | > δ̃(t) for some t ≤ TR
)
≤ 2e−ψ/4 + 2

∞∑
j=2

e−ψ(j−1)/4

= 2e−ψ/4
(

1 +
1

1− e−ψ/4

)
≤ 5e−ψ/4,

as desired.
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3 Evolution of the degree of a vertex

For the remainder of the paper, we will use the results of the previous section to
analyse various aspects of the preferential attachment process.

Our first, relatively simple, application is to the evolving degree of a single vertex;
loosely, we prove that, if a vertex has degree k at time s, its degree at a later time
t is unlikely to be far from k

√
t/s. Results of a similar flavour are in the literature

already (see for instance Cooper [5], Athreya, Ghosh and Sethuraman [1] and Dereich
and Mörters [9]); we give them here partly to illustrate our methods and partly because
we shall have need of the results from this section later on.

We assume as always that our process starts at some time τ0, with τ0 vertices and
τ0 − 1 edges. At each stage, one new vertex and one new incident edge are created, so
that at each time s ≥ τ0 there are s vertices and s− 1 edges. We identify the vertex set
at time τ0 with the set [τ0] = {1, . . . , τ0}, and label the new vertex arriving at each later
time s with s, so that the set of vertices present at time t ≥ τ0 is exactly [t].

For a vertex v, and t ∈ N with t ≥ max(τ0, v), let Xt(v) be the degree of vertex v at
time t. For τ0 ≤ t < v, we set Xt(v) = 0.

Set (Xt) = (Xt(v) : v = 1, 2, . . .); it is easily seen that (Xt) is a Markov process.
Indeed, each component Xt(v) is separately a Markov process. For v ∈ N, we take
fv(x) = x(v), the degree of vertex v in state x; the function fv is the projection of the
state onto its v-th component. In what follows, we shall assume that v ≤ τ0, so that
vertex v is present in the graph at time τ0, and we let m0 = Xτ0(v) be its degree at the
initial time.

We now want to calculate the corresponding martingale from Lemma 2.1. First we
note that

E[fv(Xt+1)− fv(Xt) | Xt = x] = [(Pt − I)fv](x)

=
x(v)

2(t− 1)
.

This is because the sum of all vertex degrees at time t is 2(t−1), and the probability that
a vertex w is chosen as the endpoint of the new edge from vertex t at time t, conditional
on Xt = x, is proportional to its degree x(w), and therefore the conditional probability
that vertex v is chosen is x(v)/2(t− 1).

By Lemma 2.1, we know that the process M(v) given by

Mt(v) = fv(Xt)− fv(Xτ0)−
t−1∑
s=τ0

[(Ps − I)fv](Xs)

= Xt(v)−m0 −
t−1∑
s=τ0

Xs(v)

2(s− 1)

is a martingale. We re-write the above as

Xt(v) = Mt(v) +m0 +

t−1∑
s=τ0

Xs(v)

2(s− 1)
. (3.1)

Let xt solve the recurrence relation

xt+1 = xt

(
1 +

1

2(t− 1)

)
,

for t ≥ τ0, with xτ0 = m0. A simple induction argument shows that, for all t ≥ τ0,

m0

√
t− 1

τ0 − 1
≤ xt ≤ m0

√
t− 2

τ0 − 2
.
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Provided τ0 ≥ 4, we have√
t− 2

τ0 − 2
≤
√

t− 1

τ0 − 1

(
1 +

1

2(τ0 − 2)

)
≤ 5

4

√
t− 1

τ0 − 1
,

and so

xt ≤
5

4
m0

√
t− 1

τ0 − 1
. (3.2)

Now fix any ω ≥ 4. For a vertex v, we define the time

Tv = inf

{
t ≥ τ0 : Xt(v) > 60ω3m0

√
t− 1

τ0 − 1

}
.

Then for τ0 ≤ t < Tv, we have Xt(v) ≤ 60ω3m0

√
t−1
τ0−1 .

Let Et = Xt(v)−xt, with Eτ0 = 0; we want to bound |Et|. Substituting Xt(v) = xt+Et
in (3.1), and using the recurrence

xt = xτ0 +

t−1∑
s=τ0

xs
2(s− 1)

,

we obtain that, for τ0 ≤ t,

|Et| ≤ |Mt(v)|+
t−1∑
s=τ0

|Es|
2(s− 1)

.

For τ0 ≤ s < Tv, Xs+1(v)−Xs(v) is either 0 or 1, and the probability that it is equal
to 1, conditional on Xs, is

Xs(v)

2(s− 1)
≤ 30ω3m0

√
1

(s− 1)(τ0 − 1)
.

So, for t < Tv, we have

Φfvt (X) =

t∑
s=τ0

∑
x′

Ps(Xs, x
′) (fv(x

′)− fv(Xs))
2

≤
t∑

s=τ0

30ω3m0

√
1

(s− 1)(τ0 − 1)

≤ 60ω3m0

√
t

τ0 − 1
.

We now apply Theorem 2.6(b) to the function fv, with R(s) = 60ω3m0

√
s

τ0−1 , J = 1,

and with ψ = ω. Thus we have

δ̃(t) = 2 max

(
ω logω,

√
60ω4m0 log

(
60ω3m0

√
(t− 1)/(τ0 − 1)

)( t− 1

τ0 − 1

)1/4
)

≤ 8ω2√m0

( t− 1

τ0 − 1

)1/4
√

log
(

60ω3m0

√
(t− 1)/(τ0 − 1)

)
,

for τ0 ≤ t. The result implies that, with probability at least 1−5e−ω/4, we have |Mt(v)| ≤
δ̃(t) for all t with τ0 ≤ t ≤ Tv.
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We thus obtain that, with probability at least 1− 5e−ω/4, for τ0 ≤ t ≤ Tv:

|Et| ≤
t−1∑
s=τ0

|Es|
2(s− 1)

+ 8ω2√m0

(
t− 1

τ0 − 1

)1/4√
log
(

60ω3m0

√
(t− 1)/(τ0 − 1)

)
.

Now log(xy) − y1/3 log x is decreasing in y for y ≥ 1 when x ≥ 20, and is zero at y = 1:
we apply this with x = 60ω3m0 and y =

√
(t− 1)/(τ0 − 1), to obtain that

log
(

60ω3m0

√
(t− 1)/(τ0 − 1)

)
≤

(
t− 1

τ0 − 1

)1/6

log(60ω3m0)

≤ ω2

(
t− 1

τ0 − 1

)1/6

log(2m0),

for any m0 ≥ 1, and so

|Et| ≤
t−1∑
s=τ0

|Es|
2(s− 1)

+ 8ω3
√
m0 log(2m0)

(
t− 1

τ0 − 1

)1/3

.

We analyse the recurrence above using the following simple lemma.

Lemma 3.1. Let A be a positive constant, and τ0 a positive integer. Suppose the se-
quence et, for t ≥ τ0, satisfies eτ0 = 0 and

et ≤
t−1∑
s=τ0

es
2(s− 1)

+A

(
t− 1

τ0 − 1

)1/3

,

for all t > τ0. Then

et ≤ e∗t = 6A

[√
t− 1

τ0 − 1
− 2

3

(
t− 1

τ0 − 1

)1/3
]
,

for all t ≥ τ0.

Of course, the conclusion that we shall use is that et < 6A
√

t−1
τ0−1 , but the bound

above is easier to establish by induction.

Proof. The proof is by induction on t, the result being true with something to spare for
t = τ0.

Suppose the result is true for all s with τ0 ≤ s < t. Then, by the induction hypothesis
and the recursive bound, we have:

et ≤
t−1∑
s=τ0

e∗s
2(s− 1)

+A

(
t− 1

τ0 − 1

)1/3

≤ 3A

t−1∑
s=τ0

1

s− 1

[√
s− 1

τ0 − 1
− 2

3

(
s− 1

τ0 − 1

)1/3
]

+A

(
t− 1

τ0 − 1

)1/3

.

Now the function g(s) = 1
s−1

[√
s−1
τ0−1 −

2
3

(
s−1
τ0−1

)1/3
]

is decreasing for all s > τ0, so

g(s) ≤ 1/3τ0 for all s ≥ τ0, and we have

t−1∑
s=τ0

g(s) ≤
∫ t

s=τ0

g(s) ds+
1

3(τ0 − 1)

=
1

3(τ0 − 1)
+

[
2

(
s− 1

τ0 − 1

)1/2

− 2

(
s− 1

τ0 − 1

)1/3
]t
τ0

=
1

3(τ0 − 1)
+ 2

[(
t− 1

τ0 − 1

)1/2

−
(
t− 1

τ0 − 1

)1/3
]
.

EJP 17 (2012), paper 14.
Page 14/43

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v17-1803
http://ejp.ejpecp.org/


Vertices of high degree in the preferential attachment tree

This gives

et ≤
A

(τ0 − 1)
+ 6A

(
t− 1

τ0 − 1

)1/2

− 5A

(
t− 1

τ0 − 1

)1/3

≤ 6A

(
t− 1

τ0 − 1

)1/2

− 4A

(
t− 1

τ0 − 1

)1/3

.

This is the desired inequality for et.

We can now deduce that, with probability at least 1− 5e−ω/4, for τ0 ≤ t ≤ Tv,

|Et| < 48ω3
√
m0 log(2m0)

√
t− 1

τ0 − 1
, (3.3)

and this bound is at most 48ω3m0

√
t− 1

τ0 − 1
. Combined with (3.2), this implies that

Xt(v) ≤ 50ω3m0

√
t− 1

τ0 − 1
for all times t ≤ Tv. We deduce that Tv = ∞, since other-

wise this would contradict the definition of Tv. This means that, with probability at
least 1− 5e−ω/4, the bound (3.3) is valid for all times t ≥ τ0.

We thus have the following theorem.

Theorem 3.2. For all ω ≥ 4, τ0 ≥ 4, and m0 ≥ 1, we have

P

(
|Xt(v)− xt| < 48ω3

√
m0 log(2m0)

√
t− 1

τ0 − 1
for all t ≥ τ0

∣∣∣Xτ0(v) = m0

)
≥ 1− e−5ω/4,

and therefore

P

(
Xt(v) ≤ 50ω3m0

√
t− 1

τ0 − 1
for all t ≥ τ0

∣∣∣Xτ0(v) = m0

)
≥ 1− e−5ω/4.

We note two consequences of the result above that we shall use later.

Corollary 3.3. For τ0 ≥ 4, ω ≥ 4 and m0 ≥ 105ω7, we have

P

(
Xt(v) ≤ 2m0

√
t− 1

τ0 − 1
for all t ≥ τ0

∣∣∣Xτ0(v) = m0

)
≥ 1− e−5ω/4.

Proof. By (3.2), we have xt ≤ 5
4m0

√
t−1
τ0−1 for all t ≥ τ0, given the initial condition

xτ0 = m0.
The result will then follow from Theorem 3.2 as long as

48ω3

√
log(2m0)

m0
≤ 3

4
.

We see that

m0

log(2m0)
≥ 105ω7

log(2× 105ω7
≥ ω6 105 × 4

log(2× 105 × 47)
≥ ω6212,

which implies the desired inequality.
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We shall also use the following result, stating that the maximum degree at time t is
unlikely to be larger than ψ

√
t− 1, where ψ is a large constant.

Theorem 3.4. Let τ0 ≥ 4 and ψ ≥ 105
√
τ0 − 1 log3 τ0 be constants. For the preferential

attachment model, with any initial graph on τ0 vertices and τ0 − 1 edges,

P
(
Xt(v) > ψ

√
t− 1 for some vertex v and some t ≥ τ0

)
≤ 2τ0 exp

(
− ψ1/3

3(τ0 − 1)1/6

)
≤ 1

ψ
.

Proof. Let P1 be the probability that Xt(v) ≥ ψ
√
t− 1 for some t ≥ τ0 and some vertex

v already present at time τ0, and P2 be the probability that Xt(v) ≥ ψ
√
t− 1 for some

t ≥ τ0 and some vertex v arriving at a time later than τ0.

We begin by bounding P1. For a fixed vertex v present at time τ0, its degree at
that time is certainly at most τ0 − 1. We apply Theorem 3.2 with m0 = τ0 − 1, and
ω = (ψ/50)1/3(τ0 − 1)−1/6 ≥ 4, so that

50ω3m0

√
t− 1

τ0 − 1
≤ 50ω3

√
τ0 − 1

√
t− 1 = ψ

√
t− 1.

We obtain that

P
(
Xt(v) > ψ

√
t− 1 for some t ≥ τ0

)
≤ e−5ω/4 ≤ exp

(
− ψ1/3

3(τ0 − 1)1/6

)
.

We therefore have

P1 ≤ τ0 exp

(
− ψ1/3

3(τ0 − 1)1/6

)
We now bound P2. For each time s > τ0, consider the new vertex v of degree 1 born

at time s. We apply Theorem 3.2 to this vertex, with m0 = 1, τ0 replaced by s, and

ω =
(
ψ
√
s− 1/50

)1/3
, so 50ω3m0

√
t−1
s−1 ≤ ψ

√
t− 1, and we have

P
(
Xt(v) > ψ

√
t− 1 for some t ≥ s

)
≤ e−5ω/4 ≤ exp

(
−ψ

1/3(s− 1)1/6

3

)
.

Summing over s, we have

P2 ≤
∞∑
s=2

exp

(
−ψ

1/3(s− 1)1/6

3

)
≤ 2 exp

(
−ψ1/3/3

)
.

The overall probability that there is, at any time t, a vertex of degree at least ψ
√
t− 1,

is thus at most P1 + P2 ≤ 2P1, as claimed.

For the final inequality, we need to show that our bounds imply that

f(ψ) = ψ1/3 − 3(τ0 − 1)1/6 log(2τ0ψ) ≥ 0.

We note that f ′(ψ) = 1
3ψ

[
ψ1/3 − 9(τ0 − 1)1/6

]
> 0, so it is enough to verify that the

inequality holds at ψ = 105
√
τ0 − 1 log3 τ0, at which point 2ψ ≤ τ12

0 for all τ0 ≥ 4. The
desired inequality is equivalent to 105/3 log(τ0) ≥ 3 log(2τ0ψ): this holds since 105/3 >

39.
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4 Concentration for Dt(`)

In this section, we again consider the basic preferential attachment model, but now
we are concerned with the number of vertices of degree exactly ` at time t.

Recall that, for t ≥ τ0 and ` ∈ N, Dt(`) denotes the number of vertices of degree
exactly ` at time t. It is easy to see that D = (Dt(`) : t ≥ τ0, ` ∈ N) is a Markov chain.

We recall our main theorem.

Theorem 1.1. Let τ0 ≥ 4 and ψ ≥ 105
√
τ0 − 1 log3 τ0 be constants. Let G(τ0) be

any graph with τ0 vertices and τ0 − 1 edges, and consider the preferential attach-
ment process with initial graph G(τ0) at time τ0, and the associated Markov chain
D = (Dt(`) : t ≥ τ0, ` ∈ N).

With probability at least 1− 4
ψ , we have∣∣∣∣Dt(`)−

4t

`(`+ 1)(`+ 2)

∣∣∣∣ ≤ 120

√
t log(ψt)

`3
+ 301ψ2 log(ψt),

for all ` ≥ 1, and all t ≥ τ0.

As is well-known (and as we shall show shortly), the expectation of Dt(`) is very
close to 4t/`(`+1)(`+2), for all ` ≥ 1 and all t ≥ τ0, so the theorem shows concentration
of measure of these random variables about their means.

For ` ≤ (t/ log(ψt))1/3/ψ2, the bound on the deviation ofDt(`) is at most 125

√
t log(ψt)

`3
,

which is, up to the log factor, on the order of
√
EDt(`). We get concentration within a

factor (1 + o(1)) of the mean as long as ` = o(t/ log t)1/3.

For all values of ` larger than (t/ log t)1/3, the bound on the deviation that we obtain
is of order log t. This result might conceivably be of interest for values of ` between
about (t/ log t)1/3 and t1/2, but for larger values of ` we already have a stronger result:
Theorem 3.4 tells us that Dt(`) = 0 when ` is larger than ψ

√
t, with probability at least

1− 1/ψ.

The proof of Theorem 1.1 takes up the rest of this section, although we defer the
bulk of the calculations until later sections.

Proof. It will shortly turn out to be convenient to truncate the range of `, so that we
consider only values of ` with 1 ≤ ` ≤ `0, for some fixed `0. We remark now that we may
freely do this, as we are proving an explicit bound on the probability of failure that is
independent of `0.

For the moment though, we consider all values ` ∈ N simultaneously, and consider
the evolution of the entire process D = (Dt(`)) for t ≥ τ0.

We have, for t ≥ τ0 + 1,

E[Dt(1)−Dt−1(1) | Dt−1] = 1− Dt−1(1)

2(t− 1)
.

Also, for ` ≥ 2,

E[Dt(`)−Dt−1(`) | Dt−1] =
(`− 1)Dt−1(`− 1)

2(t− 1)
− `Dt−1(`)

2(t− 1)
.

Then, by Lemma 2.1,

Dt(1) = Dτ0(1) +

t−1∑
s=τ0

(
1− Ds(1)

2s

)
+Mt(1)

Dt(`) = Dτ0(`) +

t−1∑
s=τ0

( (`− 1)Ds(`− 1)

2s
− `Ds(`)

2s

)
+Mt(`), (` ≥ 2),
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where Mt(`) is a martingale for each ` ≥ 1.
We want to show that, for ` ≥ 1, Dt(`) is close to dt(`), where the dt(`) satisfy

dτ0(`) = Dτ0(`) for all `, and:

dt(1) = dτ0(1) +

t−1∑
s=τ0

(
1− ds(1)

2s

)
dt(`) = dτ0(`) +

t−1∑
s=τ0

( (`− 1)ds(`− 1)

2s
− `ds(`)

2s

)
, (` ≥ 2).

Given the initial values dτ0(`) = Dτ0(`), for ` ≥ 1, the equations above are equivalent to:

dt(1) = 1 + dt−1(1)
(

1− 1

2(t− 1)

)
dt(`) = dt−1(`)

(
1− `

2(t− 1)

)
+

`− 1

2(t− 1)
dt−1(`− 1), (` ≥ 2).

These equations are known to admit the explicit solution

dt(`) =
4t

`(`+ 1)(`+ 2)
,

if the initial conditions correspond (which of course cannot happen for a concrete graph
at time τ0, since then all the Dτ0(`) are natural numbers). More generally, we have the
following result, which is very similar to results of Szymański [22, 23] and Bollobás,
Riordan, Spencer and Tusnády [4].

Lemma 4.1. Take any τ0 ≥ 1, and any sequence (Dτ0(`))`≥1 of non-negative integers
with

∑
`≥1Dτ0(`) = τ0. Then the solution dt(`) of the equations above with dτ0(`) =

Dτ0(`) for all ` satisfies ∣∣∣∣dt(`)− 4t

`(`+ 1)(`+ 2)

∣∣∣∣ ≤ τ
3/2
0

t1/2
≤ τ0,

for all ` ≥ 1 and all t ≥ τ0.

Proof. Set

zt(`) = dt(`)−
4t

`(`+ 1)(`+ 2)
,

for all t ≥ τ0 and ` ≥ 1.
Note first that Dτ0(`) ≤ τ0, for all `, and so also |zτ0(`)| ≤ τ0. Thus the lemma holds

for t = τ0.
For each t > τ0, it is straightforward to verify that

zt(1) = zt−1(1)

(
1− 1

2(t− 1)

)
,

and, for ` > 1,

zt(`) = zt−1(`)

(
1− `

2(t− 1)

)
+ zt−1(`− 1)

`− 1

2(t− 1)
.

If Z is a common upper bound on |zt−1(`)| and |zt−1(`− 1)|, we deduce that

|zt(`)| ≤ Z
(

1− `

2(t− 1)
+

`− 1

2(t− 1)

)
= Z

(
1− 1

2(t− 1)

)
.
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By induction, it now follows that

|zt(`)| ≤ τ0
t−1∏
u=τ0

(
1− 1

2u

)
≤ τ0

√
τ0
t

=
τ

3/2
0

t1/2
,

for all t ≥ τ0 and every ` ≥ 1, as claimed.

Define Et(`) = Dt(`) − dt(`), where, as above, we set dτ0(`) = Dτ0(`) for all ` ≥ 1.
Note that Dτ0(`) is an integer-valued random variable, determined by the graph at the
initial time τ0. Note also that Eτ0(`) = 0 for all ` ≥ 1. For the moment, we shall keep the
term Eτ0 in our expressions, to show how the calculation would be affected in a setting
where Eτ0 is not necessarily zero.

For t ≥ τ0 + 1, we have

Et(1) = Eτ0(1)−
t−1∑
s=τ0

Es(1)

2s
+Mt(1)

Et(`) = Eτ0(`) +

t−1∑
s=τ0

( (`− 1)Es(`− 1)

2s
− `Es(`)

2s

)
+Mt(`), (` ≥ 2).

This means that, for t ≥ τ0 + 1,

Et(1) = Et−1(1)
(

1− 1

2(t− 1)

)
+Mt(1)−Mt−1(1)

and, for ` ≥ 2,

Et(`) = Et−1(`)
(

1− `

2(t− 1)

)
+

(`− 1)Et−1(`− 1)

2(t− 1)
+Mt(`)−Mt−1(`).

At this point, we truncate the process D: we fix some `0 ≥ 1, and set D`0 = (D`0
t (`) :

t ∈ Z+, ` = 1, . . . , `0) – in other words, we restrict attention to the numbers of vertices
with degrees at most `0. The truncated process D`0 remains Markov, since the distri-
bution of Dt(`) conditioned on Dt−1 depends only on Dt−1(`) and Dt−1(` − 1), for each
` ≤ `0.

Once we have fixed `0, we may restate the previous system of equations as a matrix
equation, giving a recurrence for

Et =

Et(1)
...

Et(`0)

 .

We have, for t ≥ τ0 + 1,

Et = At−1Et−1 + ∆Mt,

where

∆Mt =

∆Mt(1)
...

∆Mt(`0)

 ,

with ∆Mt(`) = Mt(`)−Mt−1(`) for each `, and, for s ≥ τ0, the matrix As is given by
1− 1

2s 0 · · · 0
1
2s 1− 2

2s · · · 0
...

. . .
. . . 0

0 0 `0−1
2s 1− `0

2s

 .
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Hence it follows that, for t ≥ τ0 + 1,

Et =

(
t−1∏
s=τ0

As

)
Eτ0 +

t∑
s=τ0+1

(
t−1∏
u=s

Au

)
∆Ms.

Here and subsequently, the notation
∏t−1
s=τ0

As indicates the matrix product At−1 · · ·Aτ0 ,
with the indices taken in decreasing order. At this point, we recall that Eτ0 = 0, so that

Et =

t∑
s=τ0+1

(
t−1∏
u=s

Au

)
∆Ms.

We shall control the deviations of Et, although this process is not itself a martingale,
and so we cannot directly apply our martingale deviation inequalities. The process (Et)

is a transform of the martingale (Mt), in that it is a sum of its differences, multiplied by
the appropriate

∏t−1
u=sAu, which depend on t. In order to get around this difficulty, we

now introduce, for each τ > τ0, a martingale M̃τ stopped at τ , whose value at τ is the
quantity Eτ of interest.

We fix τ > τ0 and define, for t ≤ τ ,

M̃τ
t =

t∑
s=τ0+1

(
τ−1∏
u=s

Au

)
∆Ms,

and M̃τ
t = M̃τ

τ for t > τ , then it is easily checked that M̃τ = (M̃τ
t ) is a martingale, and

that M̃τ
τ = Eτ . Thus we can obtain bounds on Eτ by studying the martingale M̃τ .

From Lemma 4.1, we have that, for every τ ≥ τ0 and every ` = 1, . . . , `0,

Dτ (`) = dτ (`) + M̃τ
τ (`) ≤ 4τ

`3
+ τ0 + M̃τ

τ (`).

We now consider the transitions of the truncated process D`0 , with state space
(Z+)`0 . Recall that each transition involves the creation of one new vertex of degree 1,
and the increase of a degree of an existing vertex by 1. This means that a transition of
the truncated process involves an increase of 1 in D`0(1), and either: (i) a decrease of 1
in D`0(k) and an increase of 1 in D`0(k + 1), for some k ∈ {1, . . . , `0 − 1}, (ii) a decrease
of 1 in D`0(`0), or (iii) no further change. In other words, the vector D`0

s+1 is obtained
from D`0

s by adding one of the following vectors:
(i) yk = e1 − ek + ek+1, for some k ∈ {1, . . . , `0 − 1},
(ii) y`0 = e1 − e`0 ,
(iii) y0 = e1.
Here ej denotes the standard basis vector in Z`0 with a 1 in the jth coordinate and 0s
elsewhere: here and in what follows, we abuse notation by suppressing the dependence
on `0. The transition probabilities are then given by

Ps(Ds, Ds + yk) =
kDs(k)

2s− 2
(k = 1, . . . , `0)

Ps(Ds, Ds + y0) = 1−
`0∑
k=1

kDs(k)

2s− 2
.

Here too we have removed the superscripts `0 for clarity.
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We can write, for s ≥ τ0,

∆Ms+1 = Ds+1 −Ds −
`0∑
k=0

Ps(Ds, Ds + yk)yk

=

`0∑
k=0

yk[1Ds+1−Ds=yk − Ps(Ds, Ds + yk)].

We consider running the process up to some fixed τ > τ0: all our notation should
specify the dependence on τ , but again where possible we shall suppress this.

For τ0 ≤ s < τ , we define Bs = Bτs =
∏τ−1
u=s+1Au, so that

M̃τ
s =

s−1∑
w=τ0

Bw∆Mw+1.

We then have, for τ0 ≤ s < τ ,

∆M̃τ
s+1 = M̃τ

s+1 − M̃τ
s = Bs∆Ms+1 = Bs

`0∑
k=0

yk[1Ds+1−Ds=yk − Ps(Ds, Ds + yk)].

Now we define D̃ = D̃`0 by

D̃t =

t−1∑
s=τ0

Bs

`0∑
k=0

ykPs(Ds, Ds + yk)

+

t−1∑
s=τ0

Bs

`0∑
k=0

yk[1Ds+1−Ds=yk − Ps(Ds, Ds + yk)], (t ≤ τ),

=

t−1∑
s=τ0

`0∑
k=0

Ps(Ds, Ds + yk)[Bsyk] + M̃τ
t .

so that, for t ≤ τ ,

D̃t =

t−1∑
s=τ0

Bs

`0∑
k=0

yk1Ds+1−Ds=yk

=

t−1∑
s=τ0

Bs(Ds+1 −Ds)

and so
D̃t+1 − D̃t = Bt(Dt+1 −Dt).

The process D̃ is not in general a Markov process. However, we may define a process
Y = Y τ by setting Yt = (Dt, D̃t) for t ≤ τ , and Yt = Yτ for t ≥ τ . This extended
process Y is Markovian, with state space E = (Z+)`0 × (R+)`0 . At each time t with
τ0 ≤ t < τ , the one-step transition matrix P̃t for Y is derived from that of D. Specifically,
if Dt+1 −Dt = yk, then D̃t+1 − D̃t = Btyk, and Yt+1 − Yt = (yk, Btyk).

Our plan is to apply Theorem 2.5 to the Markov process Y , and, for ` = 1, . . . , `0,
to the projection function g = g` taking (x, x̃) ∈ E to x̃(`). For each k = 0, . . . , `0, if
Dt+1 −Dt = yk, then g(Yt+1)− g(Yt) = [Btyk](`), the `-th entry of the vector Btyk. Since
Bt is a product of non-negative sub-stochastic matrices, it too is non-negative and sub-
stochastic. The vector yk has all its entries in {0,+1,−1}, with at most two positive and
one negative entries, so each co-ordinate of the vector Btyk is a sum of at most two
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entries of Bt, minus at most one other entry. Therefore |[Btyk](`)| ≤ 1 for all t, k and `.
So, in applying Theorem 2.5, we may take J = 1.

For ` = 1, . . . , `0, and τ0 ≤ t < τ , we therefore have

Φg
`

t (Y ) =

t∑
s=τ0

∑
x′

Ps(Ds, x
′)
(
g`(x′)− g`(Ds)

)2
=

t∑
s=τ0

`0∑
k=0

Ps(Ds, Ds + yk) ([Bsyk](`))
2
.

For brevity, we set Φ`t(Y ) = Φg
`

t (Y ) from now on.

For each ` = 1, . . . , `0, we set

R` = 1600
τ − 1

`3
+ (10ψ)4 log(ψτ),

and, for ` = 1, . . . , `0, we set

T `R = inf{t ≥ τ0 : Φ`t(Y ) > R`}.

We now apply Theorem 2.5, with J = 1, R = R`, and ω = 9 log(ψτ), noting that ωJ2 ≤ R`;
we obtain that, for each τ ≥ τ0 and ` = 1, . . . , `0,

P

((
sup

τ0≤t≤τ
|M̃τ

t (`)| > 3
√

log(ψτ)R`
)
∧ (T `R ≥ τ)

)
≤ 2

ψ2τ2
.

Let T̂∆ = inf{s ≥ τ0 : Ds(k) > 0 for some k > ψ
√
s− 1}, the first time s such that

there is a vertex of degree greater than ψ
√
s− 1: by Theorem 3.4, P(T̂∆ < ∞) ≤ 1/ψ.

Also, for each k = 1, . . . , `0, let

T̂k = inf
{
s ≥ τ0 : Ds(k) > 5

s

k3
+ 400ψ2 log(ψs)

}
.

Note that, for τ0 ≤ s < min
(
(k/ψ)2 + 1, T̂∆

)
, Ds(k) = 0, and so T̂k ≥ min

(
(k/ψ)2, T̂∆

)
for

each k = 1, . . . , `0. Finally, let T̂ be the minimum of T̂1, . . . , T̂`0 .

In the next section, we shall prove the following result.

Lemma 4.2. For all t ≤ T̂ ∧ T̂∆, and all ` = 1, . . . , `0, Φ`t−1(Y ) ≤ R`.

This result can be restated as saying that T `R ≥ T̂ ∧ T̂∆ for each ` = 1, . . . , `0.

Now, for each τ ≥ τ0 and each ` = 1, . . . , `0, set

δτ (`) = 120

√
τ log(ψτ)

`3
+ 300ψ2 log(ψτ),

which is slightly less than the bound on the deviation appearing in the statement of the
theorem. Observe that, for τ ≥ τ0 and ` = 1, . . . , `0,

δτ (`)2 ≥ 14400
τ log(ψτ)

`3
+ 9× (10ψ)4 log2(ψτ) = 9 log(ψτ)R`.

Thus we have

δτ (`) ≥ 3
√

log(ψτ)R`,
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and so, using Lemma 4.2,

P

((
sup

τ0≤t≤τ
|M̃τ

t (`)| > δτ (`)

)
∧ (T̂ ∧ T̂∆ ≥ τ)

)
≤ P

((
sup

τ0≤t≤τ
|M̃τ

t (`)| > δτ (`)

)
∧ (T `R ≥ τ)

)
≤ 2

ψ2τ2
.

Recall that M̃τ
τ = Eτ for each τ ≥ τ0, so we now deduce that

P
(

(|Eτ (`)| > δτ (`)) ∧ (T̂ ∧ T̂∆ ≥ τ)
)
≤ 2

ψ2τ2
, (4.1)

for all τ ≥ τ0 and ` = 1, . . . , `0.

We now wish to bound the total probability that there is some pair (τ, `), with τ ≥ τ0
and ` = 1, . . . , `0, such that |Eτ (`)| > δτ (`) and τ < T̂ ∧ T̂∆: recall that we want a bound
independent of `0.

For those pairs (τ, `) with ` ≤ ψ
√
τ − 1, we sum the bounds from (4.1), and obtain

that

P
(

(|Eτ (`)| > δτ (`)) ∧ (T̂ ∧ T̂∆ > τ)

for some τ ≥ τ0, 1 ≤ ` ≤ min(`0, ψ
√
τ − 1)

)
≤ 2

ψ2

∞∑
τ=τ0

ψ
√
τ − 1

τ2

≤ 2

ψ

∫ ∞
3

τ−3/2 dτ

≤ 3

ψ
.

For those pairs (τ, `) with ` > ψ
√
τ − 1, we have either T̂∆ ≤ τ or Dτ (`) = 0, and in

the latter case we have

|Eτ (`)| = dτ (`) ≤ 4τ

`3
+ τ0 <

4

ψ2`
+

1

`3
+ 104ψ2 < δτ (`).

Therefore, with probability at least 1− 3/ψ, we have, for all ` = 1, . . . , `0 and all τ ≥ τ0,
that either |Eτ (`)| ≤ δτ (`) or τ ≥ T̂ ∧ T̂∆.

We now set T ∗` = inf{s ≥ τ0 : |Es(`)| > δs(`)} for each ` = 1, . . . , `0, and T ∗ =

min(T ∗` , ` = 1, . . . , `0); we obtain that

P(T ∗ <∞ and T ∗ ≤ T̂ ∧ T̂∆) ≤ 3/ψ. (4.2)

On the other hand, if T̂` < T ∗` for some ` = 1, . . . , `0, there is an s ≥ τ0 with Ds(`) >

5s/`3 + 400ψ2 log(ψs) and

Ds(`) ≤ 4s

`3
+ τ0 + δs(`)

=
4s

`3
+ τ0 + 120

√
s log(ψs)

`3
+ 300ψ2 log(ψs)

≤ 4s

`3
+ ψ2 +

( s
`3

+ 3600 log(ψs)
)

+ 300ψ2 log(ψs)

≤ 5
s

`3
+ 350ψ2 log(ψs),
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which is a contradiction.
We conclude that T ∗` ≤ T̂` for all ` = 1, . . . , `0. Recalling that T̂ is the minimum of

T̂1, . . . , T̂`0 and T ∗ is the minimum of T ∗1 , . . . , T
∗
`0

, this implies that T ∗ ≤ T̂ . Equation (4.2)

now implies that P(T ∗ < ∞ and T ∗ ≤ T̂∆) ≤ 3/ψ. However, we also have that P(T̂∆ <

∞) ≤ 1/ψ, so P(T ∗ <∞) ≤ 4/ψ.
This conclusion is equivalent to the statement that

P (|Es(`)| ≤ δs(`) for all ` ≥ 1 and s ≥ τ0) ≥ 1− 4

ψ
.

This implies the result stated, since∣∣∣∣Ds(`)−
4s

`(`+ 1)(`+ 2)

∣∣∣∣ ≤ |Es(`)|+ τ0 ≤ |Es(`)|+ ψ2.

5 Bounds for Φ`
τ−1(Y )

Our aim in this section is to prove Lemma 4.2, which states that

Φ`τ−1(Y ) =

τ−1∑
s=τ0

`0∑
k=0

Ps(Ds, Ds + yk) ([Bsyk](`))
2

is at most

R` = 1600
τ − 1

`3
+ (10ψ)4 log(ψτ),

whenever τ0 ≤ τ ≤ T̂ ∧ T̂∆ and 1 ≤ ` ≤ `0.
Recall that, for s < τ ≤ T̂ ∧ T̂∆, and 1 ≤ k ≤ `0, we have

Ds(k) ≤

{
0 k > ψ

√
s− 1

5 s
k3 + 400ψ2 log(ψs) k ≤ ψ

√
s− 1

. (5.1)

For this section, we may and shall assume that we do indeed have these bounds on the
values of Ds(k).

Recall also that, for s = τ0, . . . , τ − 1, Bs is the matrix product Aτ−1 · · ·As+1, and that

yk =


e1 k = 0

e1 − ek + ek+1 1 ≤ k < `0

e1 − e`0 k = `0.

We may now write, for 1 ≤ ` ≤ `0, and τ0 ≤ s < τ ,

[Bsy0](`) = [Bse1](`)

= Bs(`, 1)

[Bsyk](`) = [Bse1](`)− [Bsek](`) + [Bsek+1](`)

= Bs(`, 1)−Bs(`, k) +Bs(`, k + 1) (1 ≤ k < `0)

[Bsy`0 ](`) = [Bse1](`)− [Bse`0 ](`)

= Bs(`, 1)−Bs(`, `0).

where [Bs](i, j) denotes the (i, j)-entry of the matrix Bs. We then have

[Bsy0](`)2 = Bs(`, 1)2

[Bsyk](`)2 ≤ 2Bs(`, 1)2 + 2(Bs(`, k)−Bs(`, k + 1))2 (1 ≤ k < `0)

[Bsy`0 ](`)2 ≤ 2Bs(`, 1)2 + 2Bs(`, `0)2.
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Provided we interpret Bs(`0, `0 +1) as equal to zero, we can now bound the sum over
k, for any s and any ` ≤ `0, as

`0∑
k=0

Ps(Ds, Ds + yk)([Bsyk](`))
2

≤ Ps(Ds, Ds + y0)Bs(`, 1)2

+ 2

`0∑
k=1

Ps(Ds, Ds + yk)
[
Bs(`, 1)2 + (Bs(`, k)−Bs(`, k + 1))2

]
≤ 2Bs(`, 1)2 + 2

`0∑
k=1

Ps(Ds, Ds + yk)(Bs(`, k)−Bs(`, k + 1))2.

For 1 ≤ ` < `0, all terms in the sum with k > ` are zero, since the matrix Bs is
lower-triangular, and therefore we have

Φ`τ−1(Y ) ≤ 2

τ−1∑
s=τ0

Bs(`, 1)2 + 2

τ−1∑
s=τ0

∑̀
k=1

Ps(Ds, Ds + yk)(Bs(`, k)−Bs(`, k + 1))2.

The key task is thus to estimate the entriesBs(`, k) of the matrix productBs = Aτ−1 · · ·As+1,
and in particular the differences |Bs(`, k)−Bs(`, k+1)|. The recurrence satisfied by these
matrix entries is that, for 0 ≤ j < `:

Bs−1(`, `− j) = [BsAs](`, `− j)
= Bs(`, `− j)As(`− j, `− j) +Bs(`, `− j + 1)As(`− j + 1, `− j),

since the only non-zero entries of As in column (` − j) are those in rows (` − j) and
(`− j + 1). Substituting for the values of these entries yields

Bs−1(`, `− j) = Bs(`, `− j)
(

1− `− j
2s

)
+Bs(`, `− j + 1)

`− j
2s

.

For notational convenience, we fix ` ≥ 1 and write

aj(s) = a
(`)
j (s) = Bs(`, `− j),

for s = τ0, . . . , τ − 1 and j = −1, 0, . . . , `− 1.
Rewriting in terms of the aj(s) gives:

Φ`τ−1(Y ) ≤ 2

τ−1∑
s=τ0

a`−1(s)2 + 2

τ−1∑
s=τ0

∑̀
k=1

Ps(Ds, Ds + yk)(a`−k(s)− a`−k−1(s))2. (5.2)

The transition probabilities Ps(Ds, Ds + yk) can be expressed explicitly as
kDs(k)

2(s− 1)
for

each s and k.
The recurrence satisfied by the aj(s) is then:

aj(s− 1) =
`− j

2s
aj−1(s) +

(
1− `− j

2s

)
aj(s),

for 0 ≤ j ≤ `− 1, and τ0 ≤ s ≤ τ − 1. We also have Bτ−1 = I, the identity matrix, so that
a0(τ − 1) = 1, and aj(τ − 1) = 0 for j > 0. Note also that a−1(s) = 0 for all s, since the
matrix Bs is lower-triangular. These boundary conditions, together with the recurrence
relation, suffice to determine all the values aj(s).
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There is a natural interpretation of the term aj(s): it is the probability that a fixed
vertex v with degree `− j at time s will have degree ` at time τ −1. This can most easily
be seen by checking that this system of probabilities satisfies the boundary conditions
and the recurrence relation. In the notation of Section 3,

aj(s) = P(Xτ−1(v) = ` | Xs(v) = `− j).

One immediate consequence is that 0 ≤ aj(s) ≤ 1 for all j and s.

It may be of interest to note that there is a formula for the aj(s) as an alternating
sum:

aj(s) =

(
`− 1

j

) ∑̀
i=`−j

(
j

`− i

)
(−1)i−`+j

τ−1∏
u=s+1

(
1− i

2u

)
.

One may verify that this formula satisfies the recurrence. It can also be obtained by
observing that the matrices As can be simultaneously diagonalised, leading to a formula
for the matrix Bs. We also obtain

a`−k(s)− a`−k−1(s) =

(
`− 1

k

)
1

`− k
∑̀
i=k

i

(
`− k
i− k

)
(−1)i−k

τ−1∏
u=s+1

(
1− i

2u

)
.

Although these formulae are quite appealing, we have been unable to extract useful
bounds from them.

At this point, we break into three cases. The main case of interest is when 8 ≤ ` ≤
2ψ
√
τ − 1, but we also need to deal with values of ` outside this range, and we do this

first.
For ` ≤ 7, all we have to do is note that, from (5.2),

Φ`τ−1(Y ) ≤ 4(τ − 1) ≤ 1600
τ − 1

`3
.

Now suppose that ` > 2ψ
√
τ − 1. By assumption, whenever k > ψ

√
s− 1, we have

Ds(k) = 0 and so Ps(Ds, Ds + yk) = 0, and such terms contribute nothing to the double
sum. We now need to bound the contribution of terms where k ≤ ψ

√
s− 1 and ` >

2ψ
√
τ − 1. To do this, we use the inequality (a`−k(s)−a`−k−1(s))2 ≤ a`−k(s)2+a`−k−1(s)2,

and bound the size of any term a`−k(s) subject to the given conditions. For this, we
observe that

a`−k(s) ≤ P(Xτ−1(v) ≥ ` | Xs(v) = k)

≤ P
(
Xτ−1(v) ≥ 2ψ

√
τ − 1 | Xs(v) =

⌊
ψ
√
s− 1

⌋)
.

We now apply Corollary 3.3, with τ0 replaced by s, m0 replaced by bψ
√
s− 1c, and ω

replaced by (s− 1)1/14. We have bψ
√
s− 1c ≥ 105(s− 1)7/14, since ψ > 2× 105. We also

have (s− 1)1/14 ≥ 4 provided s > 228. So, for s > 228, we have

a`−k(s) ≤ e− 5
4 (s−1)1/14 .

Thus, for each s > 228,

bψ
√
s−1c∑

k=1

Ps(Ds, Ds + yk)a`−k(s)2 ≤ e− 5
2 (s−1)1/14 .

For s < 228, we have
bψ
√
s−1c∑

k=1

Ps(Ds, Ds + yk)a`−k(s)2 ≤ 1.
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Therefore

Φ`τ−1(Y ) ≤ 2

τ−1∑
s=τ0

a`−1(s)2 + 2

bψ
√
s−1c∑

k=1

Ps(Ds, Ds + yk)a`−k(s)2


≤ 6

228 +

∞∑
s=228+1

e−
5
2 (s−1)1/14


≤ 2× 109,

which, since ψ ≥ 2 × 105, is at most ψ2. This comfortably gives the required result in
the case where ` > 2ψ

√
τ − 1.

For the remainder of this section, we assume that 8 ≤ ` ≤ 2ψ
√
τ − 1.

Although our exact expression for the aj(s) proved difficult to work with, we now
give a function fj(s) which has a simple form, and which satisfies the boundary condi-
tions and an approximate version of the recurrence; our plan is to show that aj(s) is
close to fj(s) for all values of j and s.

For 0 ≤ j ≤ `− 1 and 0 ≤ s ≤ τ − 1, set

fj(s) =

(
`− 1

j

)(
1−

√
s

τ − 1

)j√
s

τ − 1

`−j

.

Throughout what follows, we shall set v = vs =
√
s/(τ − 1), so

fj(s) =

(
`− 1

j

)
(1− v)jv`−j .

We note that vτ−1 = 1, and so fj(τ − 1) = 0 for j 6= 0, while f0(τ − 1) = 1. We
could formally define the function f−1 to be identically 0: the key identity we use for

the binomial coefficients is

(
`− 1

j − 1

)
=

(
`− 1

j

)
j

`− j
, which indeed entails

(
`−1
−1

)
= 0.

However, we find ourselves having to deal with the case j = 0 as a boundary case
separately anyway, and so we need make no (further) explicit mention of the case j =

−1.
We claim that

fj(s− 1) =
`− j

2s
fj−1(s) +

(
1− `− j

2s

)
fj(s) +

[
fj(s− 1)− fj(s) + f ′j(s)

]
,

for all j ≥ 1 and 1 ≤ s ≤ τ − 1. Our aim will then be to show that the term in square
brackets is usually small, and that this is thus a good approximation to the recurrence
satisfied by the aj(s). Rearranging the claimed identity, we see that it is equivalent to

f ′j(s) =
`− j

2s
(fj(s)− fj−1(s)). (5.3)

To verify this identity, we write

f ′j(s) =

(
`− 1

j

)
v′(s)

d

dv

(
(1− v)jv`−j

) ∣∣
v=vs

=

(
`− 1

j

)
v

2s
(1− v)j−1v`−j−1 ((`− j)(1− v)− jv) (5.4)

=
`− j

2s
(1− v)j−1v`−j

((
`− 1

j

)
(1− v)− j

`− j

(
`− 1

j

)
v

)
=

`− j
2s

((
`− 1

j

)
(1− v)jv`−j −

(
`− 1

j − 1

)
(1− v)j−1v`−j+1

)
=

`− j
2s

(fj(s)− fj−1(s)).
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Equation (5.3) demonstrates that the fj(s) are the analogues to the aj(s) for a con-
tinuous time version of the preferential attachment process. In this continuous time
version, at time s, each vertex of degree k attracts a new edge (whose other endpoint
is a new vertex of degree 1) at rate k/2s, independent of the degrees of other vertices.
The degree of a given vertex is then a pure birth process with this transition rate. The
probability that a vertex with degree `− j at time s has degree ` at time τ − 1 satisfies
the differential equation (5.3), as well as the boundary condition fj(τ − 1) = δj0.

It seems intuitively plausible that the difference ej(s) = fj(s) − aj(s) between the
continuous and the discrete “solutions” will always be small. Indeed we shall prove the
following lemma, which is very crude in most ranges.

Lemma 5.1. For all ` ≥ 8 and 0 ≤ j ≤ `− 1, we have:

|ej(s)| ≤


2200`
τ−1 (τ − 1)/`2 < s ≤ τ − 1 or j ≤ `− 2

800`3/2

τ−1 (τ − 1)/`3 < s ≤ (τ − 1)/`2

1 τ0 ≤ s ≤ (τ − 1)/`3.

We shall defer the proof of Lemma 5.1 to the next section.

We set

Ψ`
τ−1(Y ) = 4

τ−1∑
s=τ0

f`−1(s)2 + 4

τ−1∑
s=τ0

∑̀
k=1

Ps(Ds, Ds + yk)(f`−k(s)− f`−k−1(s))2.

We now show that the bound in Lemma 5.1 suffices to show that Φ`τ−1(Y ) is not much
larger than Ψ`

τ−1(Y ).

Lemma 5.2. For any ` and τ , with 8 ≤ ` ≤ 2ψ
√
τ − 1,

Φ`τ−1(Y ) ≤ Ψ`
τ−1(Y ) + 5× 108ψ2 + 20

τ − 1

`3
.

Proof. Equation (5.2) tells us that Φ`τ−1(Y ) is at most

2

τ−1∑
s=τ0

a`−1(s)2 + 2

τ−1∑
s=τ0

∑̀
k=1

Ps(Ds, Ds + yk)(a`−k(s)− a`−k−1(s))2.

Using the inequalities aj(s)2 ≤ 2fj(s)
2 + 2ej(s)

2 and

(aj(s)− aj−1(s))2 ≤ 2(fj(s)− fj−1(s))2 + 4ej(s)
2 + 4ej−1(s)2,

we deduce that

Φ`τ−1(Y ) ≤ Ψ`
τ−1(Y ) + 4

τ−1∑
s=τ0

e`−1(s)2

+ 8

τ−1∑
s=τ0

∑̀
k=1

Ps(Ds, Ds + yk)
(
e`−k(s)2 + e`−k−1(s)2

)
.

Now we apply the bounds from Lemma 5.1:

τ−1∑
s=τ0

e`−1(s)2 ≤ (τ − 1)

(
2200`

τ − 1

)2

+
τ − 1

`2

(
800`3/2

τ − 1

)2

+
τ − 1

`3

≤ 5× 106`2

τ − 1
+

106`

τ − 1
+
τ − 1

`3

≤ 6× 106`2

τ − 1
+
τ − 1

`3
,
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and similarly

τ−1∑
s=τ0

∑̀
k=1

Ps(Ds, Ds + yk)
(
e`−k(s)2 + e`−k−1(s)2

)
≤ 2

(
(τ − 1)

(
2200`

τ − 1

)2

+
τ − 1

`2

(
800`3/2

τ − 1

)2

+
τ − 1

`3

)

≤ 2

(
6× 106`2

τ − 1
+
τ − 1

`3

)
.

Therefore

Φ`τ−1(Y ) ≤ Ψ`
τ−1(Y ) + 20

(
6× 106`2

τ − 1
+
τ − 1

`3

)
≤ Ψ`

τ−1(Y ) +
120× 106`2

τ − 1
+ 20

τ − 1

`3

≤ Ψ`
τ−1(Y ) + 5× 108ψ2 + 20

τ − 1

`3
,

as claimed.

For k = 1, . . . , `, we have that Ps(Ds, Ds + yk) = kDs(k)/2(s − 1), since each of the
Ds(k) vertices of degree k has probability k/2(s− 1) of receiving an extra edge at time
s+ 1. Therefore

Ψ`
τ−1(Y ) = 4

τ−1∑
s=τ0

f`−1(s)2 + 2

τ−1∑
s=τ0

∑̀
k=1

kDs(k)

s− 1
(f`−k(s)− f`−k−1(s))2.

The double sum is the main term here, and we mainly concentrate on this; we will
obtain adequate bounds on

∑
s f`−1(s)2 as a byproduct of our estimates.

Recall our assumptions (5.1) that Ds(k) = 0 for all k > ψ
√
s− 1, and that Ds(k) ≤

5
s

k3
+ 400ψ2 log(ψs) for all k = 1, . . . , `0 with k ≤ ψ

√
s− 1. Using these bounds, we find

that, for all k = 1, . . . , `0, and all s ≥ 4,

kDs(k)

s− 1
≤ 7

k2
+ 550ψ2 log(ψs)

k

s
.

Thus we have

Ψ`
τ−1(Y ) ≤ 4

τ−1∑
s=τ0

f`−1(s)2

+ 14

τ−1∑
s=τ0

∑̀
k=1

1

k2
(f`−k(s)− f`−k−1(s))2

+ 1100ψ2 log(ψτ)

τ−1∑
s=τ0

∑̀
k=1

k

s
(f`−k(s)− f`−k−1(s))2.

We define

Q1(τ, `) =

τ−1∑
s=τ0

∑̀
k=1

1

k2
(f`−k(s)− f`−k−1(s))

2

Q2(τ, `) =

τ−1∑
s=τ0

∑̀
k=1

k

s
(f`−k(s)− f`−k−1(s))

2
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so that

Ψ`
τ−1(Y ) ≤ 4

τ−1∑
s=τ0

f`−1(s)2 + 14Q1(τ, `) + 1100ψ2 log(ψτ)Q2(τ, `). (5.5)

To estimate Q1, we exchange the order of summation and substitute j = `− k:

Q1(τ, `) =

`−1∑
j=0

1

(`− j)2

τ−1∑
s=τ0

(fj(s)− fj−1(s))
2
.

From (5.3) and (5.4), we have

fj(s)− fj−1(s) =

(
`− 1

j

)
1

`− j
(1− v)j−1v`−j (`(1− v)− j) ,

where v = vs =
√
s/(τ − 1), as before. We estimate the sum over s by approximating it

by the integral ∫ τ−1

s=τ0

(
`− 1

j

)2
1

(`− j)2
(1− v)2j−2v2`−2j (`(1− v)− j)2

ds.

The integrand here is bounded above by 1, since each fj(s) is at most 1. The function
(1 − v)j−1v`−j (`(1− v)− j) has derivative which is a positive multiple of a quadratic
function of v, so the function has just two stationary points, one either side of the zero
v = (`− j)/`. Therefore the integrand, which is a positive multiple of the square of this
function, has two local maxima. The sum is then at most the value of the integral plus
the values of the integrand at the two local maxima, and so

Q1(τ, `) ≤ 2

`−1∑
j=0

1

(`− j)2

+

`−1∑
j=0

1

(`− j)4

(
`− 1

j

)2 ∫ τ−1

s=τ0

(1− v)2j−2v2`−2j (`(1− v)− j)2
ds

≤ 4 +

`−1∑
j=0

2(τ − 1)

(`− j)4

(
`− 1

j

)2 ∫ 1

v=0

(1− v)2j−2v2`−2j+1(`(1− v)− j)2 dv.

In the last line, we changed variable: recall that s = v2(τ − 1).
We write

Q1(τ, `) ≤ 4 +

`−1∑
j=0

2(τ − 1)

(`− j)4

(
`− 1

j

)2

I(`, j, 1),

where

I(`, j, α) =

∫ 1

v=0

(1− v)2j−2v2`−2j+α (`(1− v)− j)2
dv,

for positive integers ` and j, and integer α, where ` > j and α ≥ −1.
The integral above can be evaluated as a sum of Beta functions. We will be con-

fronted by a very similar integral when estimating Q2, and it is convenient to prove a
lemma covering both cases (here we need α = 1 and later we shall take α = −1).

Lemma 5.3. For integers ` and j with ` > j ≥ 0, and integer α ≥ −1,

I(`, j, α) ≤ (2`− 2j + α)!(2j − 2)!

(2`+ α+ 1)!
j` {2(`− j + 1) + α(3 + α)} (j ≥ 1)

and

I(`, 0, α) ≤ `

2
.
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Proof. For non-negative integers a and b, we have the identity∫ 1

v=0

(1− v)avb dv = B(a+ 1, b+ 1) =
a! b!

(a+ b+ 1)!
,

where B(·, ·) denotes the Beta function.

For j ≥ 1, the required integral can be written as a sum of three integrals of the
form above, and we obtain

I(`, j, α)

= (2`− 2j + α)!

(
`2

(2j)!

(2`+ α+ 1)!
− 2`j

(2j − 1)!

(2`+ α)!
+ j2 (2j − 2)!

(2`+ α− 1)!

)
= (2`− 2j + α)!

(2j − 2)!

(2`+ α+ 1)!

×
{
`2(2j − 1)(2j)− 2j`(2j − 1)(2`+ α+ 1) + j2(2`+ α+ 1)(2`+ α)

}
=

(2`− 2j + α)!(2j − 2)!

(2`+ α+ 1)!
j {2`(`− j + 1) + α(j(1 + α) + 2`)}

≤ (2`− 2j + α)!(2j − 2)!

(2`+ α+ 1)!
j` {2(`− j + 1) + α(3 + α)} ,

as claimed.

For j = 0, we have

I(`, 0, α) = `2
∫ 1

v=0

v2`+α dv =
`2

2`+ α+ 1
≤ `

2
,

for all α ≥ −1, also as claimed.

Lemma 5.3, with α = 1, tells us that

Q1(τ, `) ≤ 4 + 2
τ − 1

`4
I(`, 0, 1)

+ 2(τ − 1)

`−1∑
j=1

j`{2(`− j + 1) + 4}
(`− j)4

(
`− 1

j

)2
(2`− 2j + 1)! (2j − 2)!

(2`+ 2)!

= 4 +
τ − 1

`3
+ 4(τ − 1)

`−1∑
j=1

j`(`− j + 3)

(`− j)4

(`− 1)!2

(2`+ 2)!

(2`− 2j + 1)!

(`− j − 1)!2
(2j − 2)!

j!2

= 4 +
τ − 1

`3
+ 4(τ − 1)

`−1∑
j=1

(
2`

`

)−1
1

`(2`+ 2)(2`+ 1)(
2`− 2j

`− j

)
(`− j + 3)(2`− 2j + 1)

(`− j)2

(
2j

j

)
j

2j(2j − 1)
.

This is the first of several occasions in the paper where we use the inequalities

22x

2
√
x
≤
(

2x

x

)
≤ 22x

√
x+ 1

;

the first is valid for all integers x ≥ 1, and the second for all integers x ≥ 0. Sometimes,

as below, we use simply that

(
2x

x

)
≤ 22x

√
x

.
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We obtain

Q1(τ, `) ≤ 4 +
τ − 1

`3
+ 4(τ − 1)

`−1∑
j=1

2
√
`

22`

1

4`3
22`−2j

√
`− j

12
22j

√
j

1

2j

= 4 +
τ − 1

`3
+

12(τ − 1)

`3

`−1∑
j=1

1

j3/2

√
`

`− j
.

To estimate the sum appearing above, we use the numerical value
∑∞
j=1 j

−3/2 ≤
2.61238, and the crude bound

`−1∑
j=1

1

j3/2

√
`

`− j
≤ 2

`/2∑
j=1

1

j3/2

√
`

`− j
≤ 2
√

2

∞∑
j=1

1

j3/2
≤ 8,

and obtain

Q1(τ, `) ≤ 4 +
100(τ − 1)

`3
. (5.6)

The next step is to estimate

Q2(τ, `) =

τ−1∑
s=τ0

∑̀
k=1

k

s
(f`−k(s)− f`−k−1(s))

2

≤
`−1∑
j=0

(`− j)
τ−1∑
s=τ0

1

s
(fj(s)− fj−1(s))

2
.

As before, we shall start by fixing j, and estimating the sum over s by the integral∫ τ−1

s=τ0

1

s
(fj(s)− fj−1(s))

2
ds

≤
(
`− 1

j

)2
1

(`− j)2

∫ 1

v=0

(1− v)2j−2v2`−2j(`(1− v)− j)2

v2(τ − 1)
2(τ − 1)v dv

= 2

(
`− 1

j

)2
1

(`− j)2
I(`, j,−1).

We used the expression for fj(s) − fj−1(s) derived earlier, and made the substitution
s = v2(τ − 1).

To bound the difference between the sum
∑τ−1
s=τ0

1
s (fj(s)− fj−1(s))

2 and the corre-

sponding integral is not completely straightforward. The integrand 1
s (fj(s)− fj−1(s))

2

can be written as

Hj(v) =
hj(v)2

τ − 1
, where hj(v) =

1

`− j

(
`− 1

j

)
(1− v)j−1v`−j−1(`(1− v)− j).

The function hj(v) has stationary points at

v∗ =
`− j
`
± 1

`

√
j(`− j)
`− 1

.

Therefore Hj(v) has a global minimum at v = (` − j)/`, and local maxima at the two
points v∗, and so the global maximum of Hj(v) is attained at one of the v∗. For j ≥ 1,
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we can write

|hj(v∗)| =
`− 1

j(`− j)

[(
`− 2

j − 1

)
(1− v∗)j−1v`−j−1

∗

]
|`(1− v∗)− j|

≤ `− 1

j(`− j)

√
j(`− j)
`− 1

=

√
`− 1

j(`− j)
,

where we used the fact that the term in square brackets is the probability that a Bino-
mial random variable with parameters (`−2, v∗) takes the value `−j−1, and is therefore
at most 1. Hence we have

Hj(v) ≤ `− 1

j(`− j)
1

τ − 1
,

for all j ≥ 1 and all v. For j = 0, the maximum value of hj(v) is 1, and thus H0(v) is at
most 1

τ−1 for all v.
We have that

Q2(τ, `) ≤
`−1∑
j=0

(`− j)

[
2

(
`− 1

j

)2
1

(`− j)2
I(`, j,−1) + 2 max

v
Hj(v)

]

≤ 2

`−1∑
j=0

(
`− 1

j

)2
1

`− j
I(`, j,−1) +

2

τ − 1

`+

`−1∑
j=1

`− 1

j


≤ 2

`−1∑
j=0

(
`− 1

j

)2
1

`− j
I(`, j,−1) +

2`2

τ − 1
.

Now we use the bounds for I(`, j,−1) from Lemma 5.3. We also use that ` ≤ 2ψ
√
τ − 1,

and ψ ≥ 3, to obtain:

Q2(τ, `) ≤ 2`2

τ − 1
+

1

`

`

2

+ 2

`−1∑
j=1

(
`− 1

j

)2
1

`− j
(2`− 2j − 1)! (2j − 2)!

(2`)!
2j`(`− j)

= 8ψ2 +
1

2
+ 4

`−1∑
j=1

(`− 1)!2

j!2(`− j − 1)!2
(2`− 2j − 1)! (2j − 2)!

(2`)!
j`

= 8ψ2 +
1

2
+ 4

`−1∑
j=1

(
2`

`

)−1
1

`

(
2`− 2j − 2

`− j − 1

)
(2`− 2j − 1)

(
2j − 2

j − 1

)
1

j

≤ 8ψ2 +
1

2
+ 4

`−1∑
j=1

(
2`− 2j − 1

j`

)(
2
√
`

22`

)(
22`−2j−2

√
`− j

)(
22j−2

√
j

)

≤ 8ψ2 +
1

2
+

`−1∑
j=1

1

j3/2

√
`− j
`

≤ 8ψ2 + 5 ≤ 9ψ2. (5.7)

The next task is to bound the sum

τ−1∑
s=τ0

f`−1(s)2 =

τ−1∑
s=τ0

(1− v)2`−2v2,
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where, as before, v =
√
s/τ − 1. This sum is bounded above by the integral

∫ τ−1

s=0
(1 −

v)2`−2v2 dv, plus the maximum value of the integrand. The integral is equal to

2(τ − 1)

∫ 1

v=0

(1− v)2`−2v3 dv = 2(τ − 1)
(2`− 2)!3!

(2`+ 2)!
≤ 12(τ − 1)

(2`)4
,

which is more than small enough for our purposes, and the integrand is certainly at
most 1, so

τ−1∑
s=τ0

f`−1(s)2 ≤ 1 +
τ − 1

`4
. (5.8)

Finally, we combine all our estimates. For any ` = 1, . . . , `0 we have, by Lemma 5.2,
(5.5), (5.6), (5.7) and (5.8), that

Φ`τ−1(Y ) ≤ Ψ`
τ−1(Y ) + 5× 108ψ2 + 20

τ − 1

`3

≤ 4

τ−1∑
s=τ0

f`−1(s)2 + 14Q1(τ, `) + 1100ψ2 log(ψτ)Q2(τ, `)

+ 5× 108ψ2 + 20
τ − 1

`3

≤ 4 +
4(τ − 1)

`4
+ 56 + 1400

τ − 1

`3
+ 9900ψ4 log(ψτ)

+ 5× 108ψ2 + 20
τ − 1

`3

< 1600
τ − 1

`3
+ 104ψ4 log(ψτ).

Thus Φ`τ−1(Y ) < R`, as required. This completes the proof of Lemma 4.2, except for
the proof of Lemma 5.1, to which the next section is devoted.

6 Proof of Lemma 5.1

Our aim in this section is to prove the following upper bound on ej(s) = fj(s)−aj(s),
to be valid whenever ` ≥ 8, 0 ≤ j ≤ `− 1 and τ0 ≤ s ≤ τ − 1:

|ej(s)| ≤


2200`
τ−1 (τ − 1)/`2 < s ≤ τ − 1 or j ≤ `− 2

800`3/2

τ−1 (τ − 1)/`3 < s ≤ (τ − 1)/`2

1 τ0 ≤ s ≤ (τ − 1)/`3.

The final case is straightforward, since both aj(s) and fj(s) lie between 0 and 1 for all
0 ≤ j ≤ ` − 1 and τ0 ≤ s ≤ τ − 1. So from now on we assume that, if j = ` − 1, then
s > (τ − 1)/`3.

Recall that aj(s) and fj(s) satisfy the recurrences:

aj(s− 1) =
`− j

2s
aj−1(s) +

(
1− `− j

2s

)
aj(s),

fj(s− 1) =
`− j

2s
fj−1(s) +

(
1− `− j

2s

)
fj(s) +

[
fj(s− 1)− fj(s) + f ′j(s)

]
,

for all j ≥ 1 and all s with τ0 < s ≤ τ .
The term in square brackets is, by Taylor’s Theorem, equal to 1

2f
′′
j (w) for some w ∈

(s−1, s). We will thus estimate it by bounding the absolute value of the second derivative
of fj .
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Lemma 6.1. For all 1 ≤ j ≤ `− 2 and τ0 ≤ s ≤ τ − 1,

|f ′′j (s)| ≤ 140

s(τ − 1)

(`− 1)5/2

j3/2(`− j)1/2
. (6.1)

This bound also holds if j = `− 1 and s > (τ − 1)/`2.
For (τ − 1)/`3 ≤ s ≤ (τ − 1)/`2, we have

|f ′′`−1(s)| ≤ `3/2/s(τ − 1).

Proof. Using the expression for f ′j(s) in (5.4), as well as the identities s = v2(τ − 1) and
(`− j)(1− v)− jv = `(1− v)− j, we can write

f ′j(s) =

(
`− 1

j

)
1

2(τ − 1)
(1− v)j−1v`−j−2(`(1− v)− j),

and then we have:

f ′′j (s) =

(
`− 1

j

)
1

2(τ − 1)

v

2s
(1− v)j−2v`−j−3

×
[
(`(1− v)− j) {(`− j − 2)(1− v)− (j − 1)v} − `v(1− v)

]
=

(
`− 1

j

)
1

4s(τ − 1)
(1− v)j−2v`−j−2

×
[
{(`− 1)(1− v)− j}2 − (1− v)2 − vj

]
.

Let us first verify the result for j = 1, when we can write

4s(τ − 1)f ′′1 (s) = (`− 1)v`−3[(`− 1)(`− 3)− v`(`− 2)].

The right-hand side is increasing from v = 0 to v = (`−1)(`−3)2/`(`−2)2, and decreasing
thereafter. It is thus always at least its value at v = 1, which is −(` − 1)(2` − 3), and at
most its value at the stationary point, which is at most

(`− 1)1`−3(`− 1)(`− 3)

(
1− `− 3

`− 2

)
=

(`− 1)2(`− 3)

(`− 2)
≤ (`− 1)2,

and thus

|f ′′1 (s)| ≤ 1

2s(τ − 1)
(`− 1)2,

which is as required.
We now embark on the calculation for 2 ≤ j ≤ ` − 2. We define a parameter

ϕ = ϕ(v) by v = (` − j − 2 − ϕ)/(` − 4), so 1 − v = (j − 2 + ϕ)/(` − 4), and −(j − 2) ≤
ϕ ≤ ` − j − 2. The point is that the “main term” (1 − v)j−2v`−j−2 in our expres-
sion for the second derivative of f is maximised at ϕ = 0, whereas the other term[
{(`− 1)(1− v)− j}2 − (1− v)2 − vj

]
is small for small ϕ. We write

4s(τ − 1)f ′′j (s) = k1k2k3,

where

k1 =

(
`− 1

j

)(
j − 2

`− 4

)j−2(
`− j − 2

`− 4

)`−j−2

,

k2 =

(
1 +

ϕ

j − 2

)j−2(
1− ϕ

`− j − 2

)`−j−2

,

k3 =

(
(`− 1)

j − 2 + ϕ

`− 4
− j
)2

−
(
j − 2 + ϕ

`− 4

)2

− j `− j − 2− ϕ
`− 4

.
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If j = 2 or j = `− 2, the terms in k1 and k2 with a power of j− 2 or `− j− 2 respectively
are treated as equal to 1, and therefore absent from the products. We shall estimate k1,
k2 and k3 separately to start with, and then consider k2k3.

We have

k1 =

(
`− 1

j

)(
j − 2

`− 4

)j−2(
`− j − 2

`− 4

)`−j−2

=
(`− 1)(`− 2)(`− 3)

j(j − 1)(`− j − 1)

(
(`− 4)! e`−4

(`− 4)`−4

)(
(j − 2)j−2

(j − 2)! ej−2

)
×
(

(`− j − 2)`−j−2

(`− j − 2)! e`−j−2

)
.

Again, if j− 2 or `− j− 2 is zero, the related term is absent (i.e., the ratio is equal to 1).
We now use the inequalities

√
x+ 1

(x
e

)x
≤ x! ≤ 3

√
x
(x
e

)x
,

to obtain that

k1 ≤ 3
(`− 1)(`− 2)(`− 3)

j(j − 1)(`− j − 1)

√
`− 4

(j − 1)(`− j − 1)
.

(Note that this remains valid if j = 2 or j = `− 2.)

We next consider k2. We assume for the moment that j ≤ `/2 (the other case is
symmetric) and distinguish two ranges. First, we consider the case where |ϕ| < j − 2.

In this case, we use the bound log(1 + x) ≤ x− x2

4 , valid for all |x| < 1, and obtain:

log k2 = (j − 2) log

(
1 +

ϕ

j − 2

)
+ (`− j − 2) log

(
1− ϕ

`− j − 2

)
≤ (j − 2)

(
ϕ

j − 2
− ϕ2

4(j − 2)2

)
+ (`− j − 2)

(
−ϕ

`− j − 2
− ϕ2

4(`− j − 2)2

)
= −ϕ

2

4

(
1

j − 2
+

1

`− j − 2

)
= −ϕ

2

4

`− 4

(j − 2)(`− j − 2)
.

In the case where ϕ = α(j − 2) with α ≥ 1 and j > 2, we estimate(
1 +

ϕ

j − 2

)j−2(
1− ϕ

`− j − 2

)`−j−2

≤ (1 + α)ϕ/αe−ϕ

=
(

(1 + α)1/αe−1
)ϕ

≤ (2/e)ϕ.

If j = 2, then k2 is just (1− ϕ/(`− 4))`−4, which is at most e−ϕ ≤ (2/e)ϕ. There is a final
case where ϕ = −(j − 2), i.e., v = 1, and we may dispose of this immediately since the

second derivative is zero unless j = 2. In summary, k2 ≤ exp

(
−ϕ

2

4

`− 4

(j − 2)(`− j − 2)

)
if

|ϕ| < min(j − 2, `− j − 2), and k2 ≤ (2/e)|ϕ| otherwise.
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Let us organise k3 as a quadratic in ϕ:

k3 =
1

(`− 4)2

[
ϕ2`(`− 2)− ϕ(4`2 − 7`j − 8`+ 12j)

+
(
(2`− 3j − 2)2 − (j − 2)2 − j(`− 4)(`− j − 2)

)]
.

Using the inequality

|aϕ2 + bϕ+ c| ≤ 2aϕ2 + b2/4a+ |c|, (6.2)

valid for all positive a, and all real b, c, ϕ, we have, for all ` ≥ 8,

k3 ≤ 2`(`− 2)

(`− 4)2
ϕ2 +

(4`2 − 7`j − 8`+ 12j)2

4`(`− 2)(`− 4)2

+

∣∣(2`− 3j − 2)2 − (j − 2)2 − j(`− 4)(`− j − 2)
∣∣

(`− 4)2

≤ 6ϕ2 +
(2(`− 4)(2`− 3)− (j − 2)(7`− 12))

2

4`(`− 2)(`− 4)2

+

(
|2`− 3j − 2|

`− 4

)2

+

(
j − 2

`− 4

)2

+
j(`− j − 2)

`− 4

≤ 6ϕ2 + 4 + 4 + 1 +
j(`− j − 2)

`− 4

= 6ϕ2 + 9 +
j(`− j − 2)

`− 4
.

Now we combine our bounds to produce a single bound on k2k3. The product of

k2 with 9 +
j(`− j − 2)

`− 4
is certainly at most 9 +

j(`− j − 2)

`− 4
≤ 10

j(`− j − 1)

`− 4
, while the

product of k2 with 6ϕ2 is at most the maximum of 6ϕ2

(
2

e

)|ϕ|
≤ 35 ≤ 35

j(`− j − 1)

`− 4
and

6ϕ2 exp

(
−ϕ

2

4

`− 4

(j − 2)(`− j − 2)

)
≤ 24

e

(j − 2)(`− j − 2)

`− 4
< 35

j(`− j − 1)

`− 4
.

We can summarise by saying that, provided ` ≥ 8, for all values of ϕ,

k2k3 ≤ 45
j(`− j − 1)

`− 4
.

Therefore, overall, we have, for 2 ≤ j ≤ `− 2,

4s(τ − 1)|f ′′j (s)| ≤ 135
(`− 1)(`− 2)(`− 3)

j(j − 1)(`− j − 1)

√
`− 4

(j − 1)(`− j − 1)

j(`− j − 1)

`− 4

= 135
(`− 1)(`− 2)(`− 3)√

`− 4

1

(j − 1)3/2

1√
`− j − 1

≤ 560
(`− 1)5/2

j3/2(`− j)1/2
,

provided ` ≥ 8.

Consider now the special case j = ` − 1, when the bound (6.1) translates to 4s(τ −
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1)|f ′′j (s)| ≤ 560(`− 1). Using (6.2), we have

4s(τ − 1)|f ′′`−1(s)| =
(1− v)`−3

v

∣∣(`− 1)2v2 − (`− 1)v − (1− v)2
∣∣

≤ (1− v)`−3

v

(
2(`− 1)2v2 +

5

4

)
≤ 2(`− 1)2v(1− v)`−3 +

2(1− v)`−3

v
.

The first term above is maximised at v = 1/(`− 2), so we have

2(`− 1)2v(1− v)`−3 ≤ 2
(`− 1)2

`− 2

(
1− 1

`− 2

)`−3

≤ 2(`− 1).

If s > (τ−1)/`2, then v > 1/`, and the second term above is at most 2`(1−v)`−3 ≤ 3(`−1),
so we do have 4s(τ − 1)|f ′′j (s)| ≤ 5(`− 1), as desired.

For the range (τ − 1)/`3 < s ≤ (τ − 1)/`2, we have v > `−3/2. This gives 4s(τ −
1)|f ′′`−1(s)| ≤ 2(`− 1) + 2`3/2, and thence |f ′′`−1(s)| ≤ `3/2/s(τ − 1), as claimed.

This completes the proof.

We are now ready to bound the difference ej(s) = aj(s)− fj(s). Recall that we have,
from comparing the recurrences satisfied by the two systems:

ej(s− 1) =

(
1− `− j

2s

)
ej(s) +

`− j
2s

ej−1(s)−
[
fj(s− 1)− fj(s) + f ′j(s)

]
.

For 0 ≤ j ≤ `− 1 and τ0 ≤ s ≤ τ − 1, set

Cj = 1 + 140

j∑
i=1

(
`

i(`− i)

)3/2

.

We now use induction on j and τ − s to show that |ej(s)| ≤ Cj
`

τ−1 , for all 0 ≤ j ≤ ` − 2

and τ0 ≤ s ≤ τ − 1. (We shall return to the case j = `− 1 afterwards.)

We first check the inequality |e0(s)| ≤ `

τ − 1
for j = 0. We have that a0(τ − 1) = 1,

and, for τ0 < s ≤ τ − 1,

a0(s− 1) =

(
1− `

2s

)
a0(s),

so

a0(s) =

τ−1∏
w=s+1

(
1− `

2w

)
,

while

f0(s) =

(
s

τ − 1

)`/2
=

τ−1∏
w=s+1

(
1− 1

w

)`/2
.

Thus we have

f0(s)

a0(s)
=

τ−1∏
w=s+1

(1− 1/w)`/2

(1− `/2w)
.

Each term in the product is clearly at least 1, so f0(s) ≥ a0(s) for all s. If s ≤ `, then we
certainly have |e0(s)| ≤ f0(s) ≤ s/(τ − 1) ≤ `/(τ − 1), so we may assume that s ≥ `. Now
we have, for all w ≥ s ≥ 2`,

(1− 1/w)`/2

1− `/2w
≤

1− `
2w + `2

8w2

1− `
2w

≤ 1 +
1

1− 1/2

`2

8w2
= 1 +

`2

4w2
≤ exp

(
`2

4w2

)
.
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This means that

f0(s)

a0(s)
≤ exp

(
τ−1∑

w=s+1

`2

4w2

)
≤ exp

(
`2

4

(
1

s
− 1

τ − 1

))
= exp

(
`2(τ − 1− s)

4s(τ − 1)

)
.

Now we write

|e0(s)| = f0(s)(1− a0(s)/f0(s))

≤
(

s

τ − 1

)`/2 (
1− exp(−`2(τ − 1− s)/4s(τ − 1)

)
≤

(
s

τ − 1

)`/2
`2(τ − 1− s)

4s(τ − 1)
.

This function is maximised at s = (1− 2/`)(τ − 1), and its value there is equal to

(1− 2/`)`/2−1`2(2/`)

4(τ − 1)
≤ `

2(τ − 1)
,

as required for the case j = 0.

For j > 0, we have ej(τ −1) = aj(τ −1)−fj(τ −1) = 0−0 = 0. Now, for the induction
step, suppose that 0 < j ≤ `− 2, τ0 < s ≤ τ − 1, and that we have verified our inequality
for both |ej−1(s)| and |ej(s)|. Hence we have

|ej(s− 1)|

≤
(

1− `− j
2s

)
|ej(s)|+

`− j
2s
|ej−1(s)|+ |fj(s− 1)− fj(s) + f ′j(s)|

≤ `

τ − 1

[(
1− `− j

2s

)
Cj +

`− j
2s

Cj−1

]
+ |fj(s− 1)− fj(s) + f ′j(s)|.

We now note that fj(s− 1)− fj(s) + f ′j(s) = f ′′j (w)/2 for some w in (s− 1, s), and so

its absolute value is at most
70

s(τ − 1)

`5/2

j3/2(`− j)1/2
, by Lemma 6.1, Therefore

|ej(s− 1)| ≤ `

τ − 1

[(
1− `− j

2s

)
Cj +

`− j
2s

Cj−1 +
70

s

`3/2

j3/2(`− j)1/2

]
=

`

τ − 1

[
Cj +

`− j
2s

(
−Cj + Cj−1 + 140

`3/2

j3/2(`− j)3/2

)]
= Cj

`

τ − 1
,

where the last line is by the definition of the Cj ’s.

For j = `−1 and s−1 > (τ−1)/`2, the same calculation still gives us that |e`−1(s−1)| ≤
C`−1`/(τ − 1), since the bound (6.1) is valid for |f ′′`−1(w)| as long as w > (τ − 1)/`2. For
values of s− 1 with (τ − 1)/`3 < s− 1 ≤ (τ − 1)/`2, we replace the bound on the second

derivative by |f ′′(w)| ≤ `3/2

s(τ − 1)
, and the same calculation gives

|e`−1(s)| ≤ C`−2
`

τ − 1
+

`3/2

τ − 1
.

We now observe that the sum
`−1∑
i=1

`3/2

i3/2(`− i)3/2
is uniformly bounded, being at most
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2

`/2∑
i=1

23/2

i3/2
≤ 15. Therefore we have

|ej(s)| ≤
2200`

τ − 1
,

for all 0 ≤ j ≤ `− 2 and τ0 ≤ s ≤ τ − 1, and also for j = `− 1 and (τ − 1)/`2 < s ≤ τ − 1.
For (τ − 1)/`3 < s ≤ (τ − 1)/`2, we have

|e`−1(s)| ≤ 2200`

τ − 1
+

`3/2

τ − 1
≤ 800`3/2

τ − 1
,

since ` ≥ 8.0000
This completes the proof of Lemma 5.1, and hence in turn the proofs of Lemma 4.2

and Theorem 1.1.

7 Concentration for Ut(`)

In this section, we give a very brief sketch of the proof of Theorem 1.2. The proof
proceeds on very similar lines to that of Theorem 1.1.

Recall that Ut(`) is the number of vertices of degree at least ` at time t. It is easy to
show that the expected value of Ut(`) is close to ut(`) = 2t/`(`+ 1), uniformly over t and
`.

The difference Ft(`) = Ut(`)− ut(`) satisfies the matrix equation

Ft = Wt−1Ft−1 + ∆Mt.

Here ∆Mt is a vector of martingale differences, and

Wu =


1− 1

2u 0 · · · 0
2

2u 1− 2
2u · · · 0

...
. . .

. . . 0

0 0 `0−1
2u 1− `0−1

2u

 .

The indexing of vectors and matrices runs from ` = 2 to ` = `0; we do not need to track
the component ` = 1 since Ut(1) = t for all t. As for Dt, the plan is to apply Theorem 2.5
to the martingale

M̃τ
t =

t∑
s=τ0+1

Cs−1∆Ms,

where Cs =
∏τ−1
u=s+1Wu, for fixed τ > τ0.

A transition of Us involves an increase of 1 in at most one component U(`); in other
words Us+1 is obtained from Us by adding some unit vector e`, or leaving the vector
unchanged.

For ` = 2, . . . , `0, and τ0 ≤ t < τ , we set

Φ`t(Z) = Φg
`

t (Z) =

t−1∑
s=τ0

`0∑
k=2

Ps(Us, Us + ek)Ct(`, k)2.

We set, for each 1 ≤ ` ≤ `0,

S` = 225
τ − 1

`2
+ 1018ψ2 log13(ψτ),
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and
T `S = inf{t ≥ τ0 : Φ`t(Z) > S`}.

An application of Theorem 2.5 gives

P

((
sup

τ0≤t≤τ
|M̃τ

t (`)| > 3
√

log(ψτ)S`
)
∧ (T `S ≥ τ)

)
≤ 2

ψ2τ2

for each τ ≥ τ0 and 2 ≤ ` ≤ `0.
Now let T̂ be the infimum of the times s ≥ τ0 such that either there is a vertex of

degree at least ψ
√
s− 1, or, for some k ≤ `0,∣∣∣∣Us(k)− 2s

k(k + 1)

∣∣∣∣ > 45

√
s log(ψs)

k
+ 4× 109ψ log7(ψs).

The next step is to prove the following result, analagous to Lemma 4.2.

Lemma 7.1. For all t ≤ T̂ , and all ` = 2, . . . , `0, Φ`t−1(Z) ≤ S`.

The result implies that T `S ≥ T̂ for all ` = 2, . . . , `0.

Now, for each τ ≥ τ0 and each ` ≥ 2, set

δτ (`) = 45

√
τ log(ψτ)

`
+ 3× 109ψ log7(ψτ).

We have

P

((
sup

τ0≤t≤τ
|M̃τ

t (`)| > δτ (`)

)
∧ (T `S ≥ τ)

)
≤ 2

ψ2τ2
.

In particular, together with Lemma 7.1 and the fact that M̃τ
τ = Fτ for each τ ≥ τ0, this

implies that

P
(

(|Fτ (`)| > δτ (`)) ∧ (T̂ ≥ τ)
)
≤ 2

ψ2τ2
.

We next use this inequality to show that, with probability at least 3/ψ, for all τ ≥ τ0 and
` = 2, . . . , `0, either |Fτ (`)| ≤ δτ (`) or τ ≥ T̂ . Similarly to the proof of Theorem 1.1, this
leads to the conclusion that P(T̂ <∞) ≤ 4/ψ, which is the desired result.

8 More complex preferential attachment models

In this section, we discuss some of the issues we confront when extending this proof
to other models of preferential attachment.

A first extension would cover the model which again generates a random tree, where
now an arriving vertex chooses an existing vertex v as a neighbour with probability
proportional to X(v)+β, where X(v) is the degree of vertex v, and β is a fixed constant.
For such a model, the expected degree of a vertex at time t grows as Ct1/(2+β), and the
expected number of vertices of degree ` at time t behaves as Ct/`3+β . When attempting
to follow the proof in this paper to establish concentration results, the main difficulty
is in finding a suitable analogue of Lemma 5.1, giving bounds on the error function
playing the role of ej(s).

Another well-studied variant is to have each arriving vertex select some fixed num-
ber m of neighbours (with replacement), instead of just one. The main difficulty intro-
duced by this variation is that we have to account for the possibility that some existing
vertex has its degree increased by more than one at each step, and that the recurrence
relations do not have such clean forms.

In the full Cooper-Frieze model (see [6], [5]), the number of new edges added at
each step is a random variable. Indeed, with some probability, no new vertex is added,
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and some edges are added between existing vertices, chosen either uniformly or via
preferential attachment. This means that the numbers of vertices and edges present at
time t are no longer determined, causing further complications in the application of our
method.

We do believe that all of these problems can be overcome, and that our method can
be used to analyse general Cooper-Frieze models. We also hope that the method will
find further applications in the analysis of other random processes.
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