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Abstract

We give necessary and sufficient condition for existence and uniqueness of Lp-solu-
tions of reflected BSDEs with continuous barrier, generator monotone with respect
to y and Lipschitz continuous with respect to z, and with data in Lp, p ≥ 1. We also
prove that the solutions may be approximated by the penalization method.
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1 Introduction

Let B be a standard d-dimensional Brownian motion defined on some probability
space (Ω,F , P ) and let {Ft} denote the augmentation of the natural filtration generated
by B. In the present paper we study the problem of existence, uniqueness and approxi-
mation of Lp-solutions of reflected backward stochastic differential equations (RBSDEs
for short) with monotone generator of the form

Yt = ξ +
∫ T
t
f(s, Ys, Zs) ds−

∫ T
t
dKs −

∫ T
t
Zs dBs, t ∈ [0, T ],

Yt ≥ Lt, t ∈ [0, T ],

K is continuous, increasing, K0 = 0,
∫ T
0

(Yt − Lt) dKt = 0.

(1.1)

Here ξ is an FT -measurable random variable called the terminal condition, f : [0, T ] ×
Ω × R × Rd → R is the generator (or coefficient) of the equation and an {Ft}-adapted
continuous proces L = {Lt, t ∈ [0, T ]} such that LT ≤ ξ P -a.s. is called the obstacle
(or barrier). A solution of (1.1) is a triple (Y,Z,K) of {Ft}-progressively measurable
processes having some integrability properties depending on assumptions imposed on
the data ξ, f, L and satisfying (1.1) P -a.s.

Equations of the form (1.1) were introduced in El Karoui et al. [6]. At present it is
widely recognized that they provide a useful and efficient tool for studying problems
in different mathematical fields, such as mathematical finance, stochastic control and
game theory, partial differential equations and others (see, e.g., [4, 6, 7, 8, 10]).
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Reflected BSDEs with monotone generator

In [6] existence and uniqueness of square-integrable solutions of (1.1) are proved un-
der the assumption that ξ,

∫ T
0
|f(t, 0, 0)| dt and L∗T = supt≤T |Lt| are square-integrable,

f satisfies the linear growth condition and is Lipschitz continuous with respect to both
variables y and z. These assumptions are too strong for many interesting applications.
Therefore many attempts have been made to prove existence and uniqueness of so-
lutions of RBSDEs under less restrictive assumptions on the data. Roughly speaking
one can distinguish here two types of results: for RBSDEs with less regular barriers
(see, e.g., [15]) and for equations with continuous barriers whose generators or termi-
nal conditions satisfy weaker assumptions than in [6]. We are interested in the second
direction of investigation of (1.1).

In the paper we consider Lp-integrable data with p ≥ 1 and we assume that the
generator is continuous and monotone in y and Lipschitz continuous with respect to z.
Assumptions of that type were considered in [1, 9, 12, 16] but it is worth mentioning
that the case where the generator is monotone and at the same time the data are Lp-
integrable for some p ∈ [1, 2) was considered previously only in [1, 16] (to be exact, in
[1] the author considers the case p ∈ (1, 2) but for generalized RBSDEs). Let us also
mention that in the case p = 2 existence and uniqueness results are known for equa-
tions with generators satisfying even weaker regularity conditions. For instance, in [13]
continuous generators satisfying the linear growth conditions are considered, in [17] it
is assumed that the generator is left-Lipschitz continuous and possibly discontinuous
in y, and in [11] equations with generators satisfying the superlinear growth condition
with respect to y, the quadratic growth condition with respect to z and with data ensur-
ing boundedness of the first component Y are considered. In all these papers except
for [16] the authors consider the so-called general growth condition which says that

|f(t, y, 0)| ≤ |f(t, 0, 0)|+ ϕ(|y|), t ∈ [0, T ], y ∈ R, (1.2)

where ϕ : R+ → R+ is a continuous increasing function or continuous function which is
bounded on bounded subsets of R. In [16] weaker than (1.2) condition of the form

∀r>0 sup
|y|≤r

|f(·, y, 0)− f(·, 0, 0)| ∈ L1(0, T ). (1.3)

is assumed. Condition (1.3) seems to be the best possible growth condition on f with
respect to y. It was used earlier in the paper [3] devoted to Lp-solutions of usual (non-
reflected) BSDEs with monotone generators. Similar condition is widely used in the
theory of partial differential equations (see [2] and the references given there). Let us
point out, however, that in contrast to the case of usual BSDEs with monotone gener-
ators, in general assumption (1.2) (or (1.3)) together with Lp-integrability of the data
(integrability of ξ, L∗T ,

∫ T
0
|f(t, 0, 0)| dt in our case) do not guarantee existence of Lp-

integrable solutions of (1.1). For existence some additional assumptions relating the
growth of f with that of the barrier is required. In [1, 12] existence of solutions is
proved under the assumption that E|ϕ(supt≤T e

µtL+
t )|2 < +∞, where ϕ is the function

of condition (1.2) and µ is the monotonicity coefficient of f . In [16] it is shown that it
suffices to assume that

E(

∫ T

0

|f(t, sup
s≤t

L+
t , 0)| dt)p dt < +∞. (1.4)

Condition (1.4) is still not the best possible. In our main result of the paper we
give a necessary and sufficient condition for existence and uniqueness of Lp-integrable
solution of RBSDE (1.1) under the assumptions that the data are Lp-integrable, f is
monotone in y and Lipschitz continuous in z and (1.3) is satisfied. Moreover, our con-
dition is not only weaker than (1.4) but at the same time much easier to check than
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Reflected BSDEs with monotone generator

(1.4) in case of very important in applications Markov type RBSDEs with obstacles of
the form L = h(·, X), where h : [0, T ] × Rd → R is a measurable function and X is a
Hunt process associated with some Markov semigroup. In the case of Markov RBSDEs
which appear for instance in applications to variational problems for PDEs (see, e.g.,
[6, 10]) our condition can be formulated in terms of f, h only. We prove the main result
for p ≥ 1. Moreover, we show that for p ≥ 1 a unique solution of RBSDE (1.1) can be
approximated via penalization. The last result strengthens the corresponding result in
[16] proved in case p > 1 for general generators and in case p = 1 for generators not
depending on z.

In the last part of the paper we study (1.1) in the case where ξ, L+,∗,
∫ T
0
|f(t, 0, 0)| dt

are Lp-integrable for some p ≥ 1 but our weaker form of (1.4) is not satisfied. We have
already mentioned, that then there are no Lp-integrable solutions of (1.1). We show
that still there exist solutions of (1.1) having weaker regularity properties.

The paper is organized as follows. Section 2 contains notation and main hypotheses
used in the paper. In Section 3 we show basic a priori estimates for solutions of BSDEs.
In Section 4 we prove comparison results as well as some useful results on càdlàg
regularity of monotone limits of semimartingales and uniform estimates of monotone
sequences. In Section 5 we prove our main existence and uniqueness result for p > 1,
and in Section 6 for p = 1. Finally, in Section 7 we deal with nonintegrable solutions.

2 Notation and hypotheses

Let B = {Bt, t ≥ 0} be a standard d-dimensional Brownian motion defined on some
complete probability space (Ω,F , P ) and let {Ft, t ≥ 0} be the augmented filtration
generated by B. In the whole paper all notions whose definitions are related to some
filtration are understood with respect to the filtration {Ft}.

Given a stochastic process X on [0, T ] with values in Rn we set X∗t = sup0≤s≤t |Xs|,
t ∈ [0, T ], where | · | denotes the Euclidean norm on Rn. By S we denote the set of all
progressively measurable continuous processes. For p > 0 we denote by Sp the set of
all processes X ∈ S such that

‖X‖Sp = (E sup
t∈[0,T ]

|Xt|p)1∧1/p < +∞.

M is the set of all progressively measurable processes X such that

P (

∫ T

0

|Xt|2 dt < +∞) = 1

and for p > 0, Mp is the set of all processes X ∈M such that

(E(

∫ T

0

|Xt|2 dt)p/2)1∧1/p < +∞.

For p, q > 0, Lp,q(F) (resp. Lp(FT )) denotes the set of all progressively measurable
processes (FT measurable random variables) X such that

(E(

∫ T

0

|Xt|p dt)q/(1∧1/p))1∧1/q < +∞
(

resp. (E|X|p)1/p < +∞
)
.

For brevity we denote Lp,p(F) by Lp(F). By L1(0, T ) we denote the space of Lebesgue
integrable real valued functions on [0, T ].
Mc is the set of all continuous martingales (resp. local martingales) andMp

c , p ≥ 1,
is the set of all martingales M ∈ Mc such that E(〈M〉T )p/2 < +∞. Vc (resp. V+

c ) is
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the set of all continuous progressively measurable processes of finite variation (resp.
increasing processes) and Vpc (resp. V+,p

c ) is the set of all processes V ∈ Vc (resp.
V ∈ V+

c ) such that E|V |pT < +∞. We put Hpc =Mp
c + Vpc .

For a given measurable process Y of class (D) we denote

‖Y ‖1 = sup{E|Yτ |, τ ∈ T }.

In what follows f : [0, T ]×Ω×R×Rd → R is a measurable function with respect to
Prog×B(R)×B(Rd), where Prog denotes the σ-field of progressive subsets of [0, T ]×Ω.

In the whole paper all equalities and inequalities between random elements are
understood to hold P -a.s.

Let p ≥ 1. In the paper we consider the following hypotheses.

(H1) E|ξ|p + E(
∫ T
0
|f(t, 0, 0)| dt)p < +∞.

(H2) There exists λ > 0 such that |f(t, y, z)−f(t, y, z′)| ≤ λ|z−z′| for every t ∈ [0, T ], y ∈
R, z, z′ ∈ Rd.

(H3) There exists µ ∈ R such that (f(t, y, z) − f(t, y′, z))(y − y′) ≤ µ(y − y′)2 for every
t ∈ [0, T ], y, y′ ∈ R, z, z′ ∈ Rd.

(H4) For every (t, z) ∈ [0, T ]×Rd the mapping R 3 y → f(t, y, z) is continuous.
(H5) For every r > 0 the mapping [0, T ] 3 t → sup|y|≤r |f(t, y, 0) − f(t, 0, 0)| belongs to

L1(0, T ).
(H6) L is a continuous, progressively measurable process such that LT ≤ ξ.
(H7) There exists a semimartingale X such that X ∈ Hpc for some p > 1, Xt ≥ Lt,

t ∈ [0, T ] and E(
∫ T
0
f−(s,Xs, 0) ds)p < +∞.

(H7*) There exists a semimartingale X of class (D) such that X ∈ V1
c +Mq

c for every

q ∈ (0, 1), Xt ≥ Lt, t ∈ [0, T ] and E
∫ T
0
f−(s,Xs, 0) ds < +∞.

(A) There exist µ ∈ R and λ ≥ 0 such that

ŷf(t, y, z) ≤ ft + µ|y|+ λ|z|

for every t ∈ [0, T ], y ∈ R, z ∈ Rd, where ŷ = 1{y 6=0}
y
|y| and {ft; t ∈ [0, T} is a

nonnegative progressively measurable process.
(Z) There exist α ∈ (0, 1), γ ≥ 0 and a nonnegative process g ∈ L1(F) such that

|f(t, y, z)− f(t, y, 0)| ≤ γ(gt + |y|+ |z|)α

for every t ∈ [0, T ], y ∈ R, z ∈ Rd.

3 A priori estimates

In this section K denotes an arbitrary but fixed process of the class V+
c such that

K0 = 0.
The following version of Itô’s formula will be frequently used in the paper.

Proposition 3.1. Let p ≥ 1 and let X be a progressively measurable process of the
form

Xt = X0 +

∫ t

0

dKs +

∫ t

0

Zs dBs, t ∈ [0, T ],

where Z ∈M . Then there is L ∈ V+
c such that

|Xt|p − |X0|p = p

∫ t

0

|Xs|p−1X̂s dKs + p

∫ t

0

|Xs|p−1X̂s dBs

+ c(p)

∫ t

0

1{Xs 6=0}|Xs|p−2|Zs|2 ds+ Lt1{p=1}

with c(p) = p(p− 1)/2.
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Proof. The proof is a matter of slight modification of the proof of [3,Lemma 2.2].

Definition 3.2. We say that a pair (Y,Z) of progressively measurable processes is a
solution of BSDE(ξ, f + dK) iff Z ∈ M , the mapping [0, T ] 3 t 7→ f(t, Yt, Zt) belongs to
L1(0, T ), P -a.s. and

Yt = ξ +

∫ T

t

f(s, Ys, Zs) ds+

∫ T

t

dKs −
∫ T

t

Zs dBs, t ∈ [0, T ]. (3.1)

Lemma 3.3. Let (Y, Z) be a solution of BSDE(ξ, f + dK). Assume that (H3) is satisfied
and there exists a progressively measurable process X such that Xt ≥ Yt, t ∈ [0, T ] and
the mappings [0, T ] 3 t 7→ X+

t , [0, T ] 3 t 7→ f−(t,Xt, 0) belong to L1(0, T ), P -a.s.

(i) If (H2) is satisfied then for every stopping time τ ≤ T and a ≥ µ,∫ τ

0

eatdKt ≤ |eaτYτ |+ |Y0|+
∫ τ

0

easZs dBs + λ

∫ τ

0

eas|Zs| ds

+

∫ τ

0

easf−(s,Xs, 0) ds+

∫ τ

0

a+easX+
s ds.

(ii) If (Z) is satisfied then for every stopping time τ ≤ T and a ≥ µ,∫ τ

0

eatdKt ≤ |eaτYτ |+ |Y0|+
∫ τ

0

easZs dBs + γ

∫ τ

0

eas(gs + |Ys|+ |Zs|)α ds

+

∫ τ

0

easf−(s,Xs, 0) ds+

∫ τ

0

a+easX+
s ds.

Proof. Assume that µ ≤ 0. Then f−(s, Ys, 0) ≤ f−(s,Xs, 0), s ∈ [0, T ] and from (3.1) and
(H2) it follows that

Kτ ≤ −Yτ + Y0 +

∫ τ

0

Zs dBs + λ

∫ τ

0

|Zs| ds−
∫ τ

0

f(s, Ys, 0) ds,

which implies (i) with a = 0. Now, let a ≥ µ and let Ỹt = eatYt, Z̃t = eatZt and ξ̃ = eaT ξ,
f̃(t, y, z) = eatf(t, e−aty, e−atz)− ay, dK̃t = eat dKt. Then f̃ satisfies (H3) with µ = 0 and
by Itô’s formula,

Ỹt = ξ̃ +

∫ T

t

f̃(s, Ỹs, Z̃s) ds+

∫ T

t

dK̃s −
∫ T

t

Z̃s dBs, t ∈ [0, T ],

from which in the same manner as before we obtain (i) for a ≥ µ.
To prove (ii) let us observe that from (3.1) and (Z) it follows immediately that

Kτ ≤ −Yτ + Y0 +

∫ τ

0

Zs dBs + γ

∫ τ

0

(gs + |Ys|+ |Zs|)α ds−
∫ τ

0

f(s, Ys, 0) ds.

Therefore repeating arguments from the proof of (i) we get (ii).

Lemma 3.4. Assume (A) and let (Y,Z) be a solution of BSDE(ξ, f + dK). If Y ∈ Sp for
some p > 0 and

E(

∫ T

0

X+
s ds)

p + E(

∫ T

0

f−(s,Xs, 0) ds)p + E(

∫ T

0

|f(s, 0, 0)| ds)p < +∞

for some progressively measurable process X such that Xt ≥ Yt, t ∈ [0, T ], then Z ∈Mp

and there exists C depending only on λ, p, T such that for every a ≥ µ+ λ2,

E

(
(

∫ T

0

e2as|Zs|2 ds)p/2 + (

∫ T

0

eas dKs)
p

)
≤ CE

(
sup
t≤T

eapt|Yt|p

+ (

∫ T

0

eas|f(s, 0, 0)| ds)p + (

∫ T

0

easf−(s,Xs, 0) ds)p + (

∫ T

0

a+easX+
s ds)

p

)
.
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Proof. By standard arguments we may assume that µ+ λ2 ≤ 0 and take a = 0. For each
k ∈ N let us consider the stopping time

τk = inf{t ∈ [0, T ];

∫ t

0

|Zs|2 ds ≥ k} ∧ T. (3.2)

Then as in the proof of Eq. (5) in [3] we get

(

∫ τk

0

|Zs|2 ds)p/2 ≤ cp
(
|Y ∗T |p + (

∫ T

0

fs ds)
p + |

∫ τk

0

YsZs dBs|p/2 + (

∫ τk

0

|Ys| dKs)
p/2

)
,

and hence, repeating arguments following Eq. (5) in [3] we show that

E(

∫ τk

0

|Zs|2 ds)p/2 ≤ cpE
(
|Y ∗T |p + (

∫ T

0

fs ds)
p + (

∫ τk

0

|Ys| dKs)
p/2

)
. (3.3)

By Lemma 3.3 and the Burkholder-Davis-Gundy inequality,

EKp
τk
≤ c′(p, λ, T )E

(
|Y ∗T |p + (

∫ τk

0

|Zs|2 ds)p/2 + (

∫ T

0

f−(s,Xs, 0) ds)p
)
. (3.4)

Moreover, applying Young’s inequality we conclude from (3.3) that for every α > 0,

E(

∫ τk

0

|Zs|2 ds)p/2

≤ c′′(p, α)E

(
|Y ∗T |p + (

∫ T

0

fs ds)
p + (

∫ T

0

f−(s,Xs, 0) ds)p
)

+ αEKp
τk
. (3.5)

Taking α = (2c′(p, λ, T ))−1 and combining (3.4) with (3.5) we obtain

E(

∫ τk

0

|Zs|2 ds)p/2 ≤ C(p, λ, T )E

(
|Y ∗T |p + (

∫ T

0

fs ds)
p + (

∫ T

0

f−(s,Xs, 0) ds)p}
)
.

Applying Fatou’s lemma we conclude from the above inequality and (3.4) that

E(

∫ T

0

|Zs|2 ds)p/2 + EKp
T ≤ CE

(
|Y ∗T |p + (

∫ T

0

fs ds)
p + (

∫ T

0

f−(s,Xs, 0) ds)p
)
,

which is the desired estimate.

Remark 3.5. Observe that if f does not depend on z then the constant C of Lemma 3.4
depends only on p. This follows from the fact that in this case c′ in the key inequality
(3.4) depends only on p.

Proposition 3.6. Assume that (A) is satisfied and

E(

∫ T

0

f−(s,Xs, 0) ds)p + E(

∫ T

0

|f(s, 0, 0)| ds)p < +∞

for some p > 1 and X+ ∈ Sp such that Xt ≥ Yt, t ∈ [0, T ]. Then if (Y, Z) is a solution of
BSDE(ξ, f + dK) such that Y ∈ Sp, then there exists C depending only on λ, p, T such
that for every a ≥ µ+ λ2/[1 ∧ (p− 1)] and every stopping time τ ≤ T ,

E sup
t≤τ

eapt|Yt|p + E(

∫ τ

0

e2as|Zs|2 ds)p/2 + E(

∫ τ

0

eas dKs)
p

≤ CE
(
eapτ |Yτ |p + (

∫ τ

0

eas|f(s, 0, 0)| ds)p + sup
t≤τ
|eatX+

t |p

+ (

∫ τ

0

easf−(s,Xs, 0) ds)p + (

∫ τ

0

a+easX+
s ds)

p

)
.
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Assume additionally that f does not depend on z. If p = 1 and X+, Y are of class (D)
then for every a ≥ µ,

‖ea·Y ‖1 + E

∫ T

0

eas dKs ≤ E
(
eaT |ξ|+

∫ T

0

eas|f(s, 0)| ds

+

∫ T

0

easf−(s,Xs) ds+

∫ T

0

a+easX+
s ds

)
+ ‖ea·X+‖1 .

Proof. To shorten notation we prove the proposition in the case where τ = T . The proof
of the general case requires only minor technical changes. Moreover, by the change of
variables used at the beginning of the proof of Lemma 3.3 we can reduce the proof to
the case where a = 0 and µ+ λ2/[1 ∧ (p− 1)] ≤ 0. Therefore we will assume that a, µ, λ
satisfy the last two conditions.

By Itô’s formula (see Proposition 3.1),

|Yt|p + c(p)

∫ T

t

|Ys|p−21{Ys 6=0}|Zs|2 ds = |ξ|p + p

∫ T

t

|Ys|p−1Ŷsf(s, Ys, Zs) ds

+ p

∫ T

t

|Ys|p−1Ŷs dKs − p
∫ T

t

|Ys|p−1ŶsZs dBs, t ∈ [0, T ].

By the same method as in the proof of Eq. (6) in [3] we deduce from the above inequality
that

|Yt|p +
c(p)

2

∫ T

t

|Ys|p−21{Ys 6=0}|Zs|2 ds ≤ H − p
∫ T

t

|Ys|p−1ŶsZs dBs

+ p

∫ T

t

|Ys|p−1Ŷs dKs, t ∈ [0, T ], (3.6)

where H = |ξ|p +
∫ T
0
|Ys|p−1fs ds. Since the mapping R 3 y 7→ |y|p−1ŷ is increasing,∫ T

t

|Ys|p−1Ŷs dKs ≤
∫ T

t

|X+
s |p−1X̂+

s dKs, t ∈ [0, T ].

From this and (3.6),

|Yt|p +
c(p)

2

∫ T

t

|Ys|p−21{Ys 6=0}|Zs|2 ds ≤ H ′ − p
∫ T

t

|Ys|p−1ŶsZs dBs, (3.7)

where H ′ = |ξ|p + p
∫ T
0
|Ys|p−1fs ds+ p

∫ T
0
|X+

s |p−1 dKs. As in the proof of [3, Proposition
3.2] (see (7) and the second inequality following (8) in [3]), using the Burkholder-Davis-
Gundy inequality we conclude from (3.7) that

E|Y ∗T |p ≤ dpEH ′. (3.8)

Applying Young’s inequality we get

pdpE

∫ T

0

|Ys|p−1ft dt ≤ pdpE(|Y ∗T |p−1
∫ T

0

ft dt) ≤
1

4
E|Y ∗T |p + d′pE(

∫ T

0

ft dt)
p (3.9)

and

pdpE

∫ T

0

|X+
t |p−1 dKt ≤ d′(p, α)E|X+,∗

T |p + αEKp
T . (3.10)
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By Lemma 3.3, there exists d(p, λ, T ) > 0 such that

EKp
T ≤ d(p, λ, T )E

(
|Y ∗T |p + (

∫ T

0

|Zs|2 ds)p/2 + (

∫ T

0

f−(s,Xs, 0) ds)p
)
.

From this and Lemma 3.4 we see that there exists c(p, λ, T ) > 0 such that

EKp
T ≤ c(p, λ, T )E

(
|Y ∗T |p + (

∫ T

0

fs ds)
p + (

∫ T

0

f−(s,Xs, 0) ds)p
)
. (3.11)

Put α = (4c(p, λ, T ))−1. Then from (3.8)–(3.11) it follows that there is C(p, λ, T ) such
that

E|Y ∗T |p ≤ C(p, λ, T )E

(
|ξ|p + (

∫ T

0

|f(s, 0, 0)| ds)p

+ (

∫ T

0

f−(s,Xs, 0) ds)p + sup
t≤T
|X+

t |p
)
.

Hence, by (3.11) and Lemma 3.4,

E|Y ∗τ |p + E(

∫ τ

0

|Zs|2 ds)p/2 + EKp
T ≤ CE

(
|Yτ |p + (

∫ τ

0

|f(s, 0, 0)| ds)p + |X+,∗
τ |p

+ (

∫ τ

0

f−(s,Xs, 0) ds)p
)
.

From this the first assertion follows. Now suppose that f does not depend on z. As in
the first part of the proof we may assume that µ ≤ 0 and a = 0. Applying Itô’s formula
(see Proposition 3.1) we conclude that for any stopping times σ ≤ τ ≤ T ,

|Yσ| ≤ |Yτ |+
∫ τ

σ

f(s, Ys)Ŷs ds+

∫ τ

σ

Ŷs dKs −
∫ τ

σ

ZsŶs dBs. (3.12)

Let us define τk by (3.2). Then
∫ τk∧·
0

ZsŶs dBs is a uniformly integrable martingale.
Using this, the fact that Y is of class (D) and monotonicity of f with respect to y we
deduce from (3.12) that |Yσ| ≤ E(|ξ|+

∫ T
0
|f(s, 0)| ds+KT |Fσ), hence that

‖Y ‖1 ≤ E(|ξ|+
∫ T

0

|f(s, 0)| ds+KT ). (3.13)

On the other hand, −f(t, Yt) ≤ −f(t,Xt) for t ∈ [0, T ] since Yt ≤ Xt, t ∈ [0, T ]. Therefore

Kτ = Y0 − Yτ −
∫ τ

0

f(s, Ys) ds+

∫ τ

0

Zs dBs

≤ X0 − Yτ −
∫ τ

0

f(s,Xs) ds+

∫ τ

0

Zs dBs.

Taking τ = τk and using the fact that Y is of class (D) we deduce from the above
inequality that

EKT ≤ EX+
0 + E|ξ|+ E

∫ T

0

f−(s,Xs) ds.

Combining this with (3.13) we get the desired result.

Remark 3.7. If f does not depend on z then the constant C of the first assertion of
Proposition 3.6 depends only on p. To see this it suffices to observe that if f does not
depend on z then the constant c in the key inequality (3.11) depends only on p (see
Remark 3.5).
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Reflected BSDEs with monotone generator

4 Some useful tools

We begin with a useful comparison result for solutions of (3.1) with K ≡ 0.

Proposition 4.1. Let (Y 1, Z1), (Y 2, Z2) be solutions of BSDE(ξ1, f1), BSDE(ξ2, f2), re-
spectively. Assume that (Y 1 − Y 2)+ ∈ Sq for some q > 1. If ξ1 ≤ ξ2 and for a.e. t ∈ [0, T ]

either
1{Y 1

t >Y
2
t }(f

1(t, Y 1
t , Z

1
t )− f2(t, Y 1

t , Z
1
t )) ≤ 0, f2 satisfies (H2), (H3) (4.1)

or
1{Y 1

t >Y
2
t }(f

1(t, Y 2
t , Z

2
t )− f2(t, Y 2

t , Z
2
t )) ≤ 0, f1 satisfies (H2), (H3) (4.2)

is satisfied then Y 1
t ≤ Y 2

t , t ∈ [0, T ].

Proof. We show the proposition in case (4.1) is satisfied. If (4.2) is satisfied, the proof
is analogous. Without loss of generality we may assume that µ ≤ 0. By the Itô-Tanaka
formula, for every p ∈ (1, q) and every stopping time τ ≤ T ,

|(Y 1
t∧τ − Y 2

t∧τ )+|p +
p(p− 1)

2

∫ τ

t∧τ
1{Y 1

s 6=Y 2
s }|(Y

1
s − Y 2

s )+|p−2|Z1
s − Z2

s |2 ds

= |(Y 1
τ − Y 2

τ )+|p + p

∫ τ

t∧τ
|(Y 1

s − Y 2
s )+|p−1(f1(s, Y 1

s , Z
1
s )− f2(s, Y 2

s , Z
2
s )) ds

− p
∫ τ

t∧τ
|(Y 1

s − Y 2
s )+|p−1(Z1

s − Z2
s ) dBs. (4.3)

By (4.1),

1{Y 1
t >Y

2
t }(f

1(t, Y 1
t , Z

1
t )− f2(t, Y 2

t , Z
2
t ))

= 1{Y 1
t >Y

2
t }(f

1(t, Y 1
t , Z

1
t )− f2(t, Y 1

t , Z
1
t ))

+ 1{Y 1
t >Y

2
t }(f

2(t, Y 1
t , Z

1
t )− f2(t, Y 2

t , Z
2
t ))

≤ 1{Y 1
t >Y

2
t }(f

2(t, Y 1
t , Z

1
t )− f2(t, Y 2

t , Z
1
t ))

+ 1{Y 1
t >Y

2
t }(f

2(t, Y 2
t , Z

1
t )− f2(t, Y 2

t , Z
2
t ))

≤ λ1{Y 1
t >Y

2
t }|Z

1
t − Z2

t |.

From this, (4.3) and Young’s inequality,

|(Y 1
t∧τ − Y 2

t∧τ )+|p +
p(p− 1)

2

∫ τ

t∧τ
1{Y 1

s 6=Y 2
s }|(Y

1
s − Y 2

s )+|p−2|Z1
s − Z2

s |2 ds

≤ |(Y 1
τ − Y 2

τ )+|p + pλ

∫ τ

t∧τ
|(Y 1

s − Y 2
s )+|p−1|Z1

s − Z2
s | ds

− p
∫ τ

t∧τ
|(Y 1

s − Y 2
s )+|p−1(Z1

s − Z2
s ) dBs

≤ |(Y 1
τ − Y 2

τ )+|p +
pλ2

p− 1

∫ τ

t∧τ
|(Y 1

s − Y 2
s )+|p ds

+
p(p− 1)

4

∫ τ

t∧τ
1{Y 1

s 6=Y 2
s }|(Y

1
s − Y 2

s )+|p−2|Z1
s − Z2

s |2 ds

− p
∫ τ

t∧τ
|(Y 1

s − Y 2
s )+|p−1(Z1

s − Z2
s ) dBs.

Let τk = inf{t ∈ [0, T ];
∫ t
0
|(Y 1

s − Y 2
s )+|2(p−1)|Z1

s − Z2
s |2 ds ≥ k} ∧ T . From the above

estimate it follows that

E|(Y 1
t∧τk − Y

2
t∧τk)+|p ≤ E|(Y 1

τk
− Y 2

τk
)+|p +

pλ2

p− 1
E

∫ τk

t∧τk
|(Y 1

s − Y 2
s )+|p ds.
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Reflected BSDEs with monotone generator

Since(Y 1 − Y 2)+ ∈ Sq, letting k → +∞ and using the assumptions we get

E|(Y 1
t − Y 2

t )+|p ≤ pλ2

p− 1
E

∫ T

t

|(Y 1
s − Y 2

s )+|p ds, t ∈ [0, T ].

By Gronwall’s lemma, E|(Y 1
t − Y 2

t )+|p = 0, t ∈ [0, T ], from which the desired result
follows.

Lemma 4.2. Assume that {(Xn, Y n,Kn)} is a sequence of real valued càdlàg progres-
sively measurable processes such that

(a) Y nt = −Kn
t +Xn

t , t ∈ [0, T ], Kn-increasing, Kn
0 = 0,

(b) Y nt ↑ Yt, t ∈ [0, T ], Y 1, Y are of class (D),

(c) There exists a càdlàg process X such that for some subsequence {n′}, Xn′

τ → Xτ

weakly in L1(FT ) for every stopping time τ ≤ T .

Then Y is càdlàg and there exists a càdlàg increasing process K such that Kn′

τ → Kτ

weakly in L1(FT ) for every stopping time τ ≤ T and

Yt = −Kt +Xt, t ∈ [0, T ].

Proof. From (b) it follows that Y n
′

τ → Yτ weakly in L1(FT ) for every stopping time
τ ≤ T . Set Kt = Xt − Yt. By the above and (c), Kn′

τ → Kτ weakly in L1(Ω) for every
stopping time τ ≤ T . If σ, τ are stopping times such that σ ≤ τ ≤ T then Kσ ≤ Kτ since
Kn
σ ≤ Kn

τ , n ∈ N. Therefore K is increasing. The fact that Y,K are càdlàg processes
follows easily from [14, Lemma 2.2].

In what follows we say that a sequence {τk} of stopping times is stationary if

P (lim inf
k→+∞

{τk = T}) = 1.

Lemma 4.3. Assume that {Y n} is a nondecreasing sequence of continuous processes
such that supn≥1E|Y

n,∗
T |q < +∞ for some q > 0. Then there exists a stationary sequence

{τk} of stopping times such that Y n,∗τk
≤ k ∨ |Y n0 |, P -a.s. for every k ∈ N.

Proof. Set V nt = sup0≤s≤t(Y
n
s − Y 1

s ). Then V n is nonnegative and V n ∈ V+
c . Since {Y n}

is nondecreasing, there exists an increasing process V such that V nt ↑ Vt, t ∈ [0, T ]. By
Fatou’s lemma,

EV qT ≤ lim inf
n→+∞

E|V nT |q ≤ c(q) sup
n≥1

E|Y n,∗T |q <∞.

Now, set V ′t = inft<t′≤T Vt′ , t ∈ [0, T ] and then τk = inf{t ∈ [0, T ];Y 1,∗
t + V ′t > k} ∧ T . It

is known that V ′ is a progressively measurable càdlàg process. Since VT is integrable,
the sequence {τk} is stationary. From the above it follows that if τk > 0 then

Y n,∗τk
= Y n,∗τk− ≤ V

′
τk− + Y 1,∗

τk− ≤ k, k ∈ N,

and the proof is complete.

Lemma 4.4. If {Zn} is a sequence of progressively measurable processes such that

supn≥1E(
∫ T
0
|Znt |2 dt)p/2 < ∞ for some p > 1, then there exists Z ∈ Mp and a subse-

quence {n′} such that for every stopping time τ ≤ T ,
∫ τ
0
Zn

′

t dBt →
∫ τ
0
Zt dBt weakly in

Lp(FT ).
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Proof. Since {Zn} is bounded in L2,p(F) and the space L2,p(F) is reflexive, there exists
a subsequence (still denoted by {n}) and Z ∈ L2,p(F) such that Zn → Z weakly in
L2,p(F). It is known that if ξ ∈ Lp′(FT ), where p′ = p/(p − 1), then there exists η ∈
L2,p′(F) = (L2,p(F))∗ such that

ξ = Eξ +

∫ T

0

ηt dBt. (4.4)

Let f ∈ (Lp(FT ))∗. Then there exists ξ ∈ Lp′(FT ) such that f(ζ) = Eζξ for every
ζ ∈ Lp(FT ). Let η ∈ L2,p′(F) be such that (4.4) is satisfied. Without loss of generality
we may assume that Eξ = 0. Then by Itô’s isometry,

f(

∫ T

0

Znt dBt) = Eξ

∫ T

0

Znt dBt = E

∫ T

0

ηt dBt

∫ T

0

Znt dBt

= E

∫ T

0

ηtZ
n
t dt→ E

∫ T

0

ηtZt = f(

∫ T

0

Zt dBt).

Since the same reasoning applies to the sequence {1{·≤τ}Zn} in place of {Zn}, the
lemma follows.

5 Existence and uniqueness results for p > 1

First we recall the definition of a solution (Y,Z,K) of (1.1). Note that a priori we do
not impose any integrability conditions on the processes Y,Z,K.

Definition 5.1. We say that a triple (Y,Z,K) of progressively measurable processes is
a solution of RBSDE(ξ, f, L) iff

(a) K is an increasing continuous process, K0 = 0,
(b) Z ∈M and the mapping [0, T ] 3 t 7→ f(t, Yt, Zt) belongs to L1(0, T ), P -a.s.,

(c) Yt = ξ +
∫ T
t
f(s, Ys, Zs) ds+

∫ T
t
dKs −

∫ T
t
Zs dBs, t ∈ [0, T ],

(d) Yt ≥ Lt, t ∈ [0, T ],
∫ T
0

(Yt − Lt) dKt = 0.

Proposition 5.2. Let (Y 1, Z1,K1), (Y 2, Z2,K2) be solutions of RBSDE(ξ1, f1, L1) and
RBSDE(ξ2, f2, L2), respectively. Assume that (Y 1−Y 2)+ ∈ Sq for some q > 1. If ξ1 ≤ ξ2,
L1
t ≤ L2

t , t ∈ [0, T ], and either (4.1) or (4.2) is satisfied then Y 1
t ≤ Y 2

t , t ∈ [0, T ].

Proof. Assume that (4.1) is satisfied. Let q > 1 be such that (Y 1 − Y 2)+ ∈ Sq. Without
loss of generality we may assume that µ ≤ 0. By the Itô-Tanaka formula, for p ∈ (1, q)

and every stopping time τ ≤ T ,

|(Y 1
t∧τ − Y 2

t∧τ )+|p +
p(p− 1)

2

∫ τ

t∧τ
1{Y 1 6=Y 2

s }|(Y
1
s − Y 2

s )+|p−2|Z1
s − Z2

s |2 ds

= |(Y 1
τ − Y 2

τ )+|p + p

∫ τ

t∧τ
|(Y 1

s − Y 2
s )+|p−1(f1(s, Y 1

s , Z
1
s )− f2(s, Y 2

s , Z
2
s )) ds

+ p

∫ τ

t∧τ
|(Y 1

s − Y 2
s )+|p−1 (dK1

s − dK2
s )

− p
∫ τ

t∧τ
|(Y 1

s − Y 2
s )+|p−1(Z1

s − Z2
s ) dBs. (5.1)

By monotonicity of the function x 7→ x̂|x|p−1, condition (d) of the definition of a solution
of reflected BSDE and the fact that L1

t ≤ L2
t for t ∈ [0, T ],∫ τ

t∧τ
|(Y 1

s − Y 2
s )+|p−1 (dK1

s − dK2
s ) ≤

∫ τ

t∧τ
|(Y 1

s − Y 2
s )+|p−1 dK1

s

≤
∫ τ

t∧τ
|(Y 1

s − L1
s)

+|p−1 dK1
s = 0.
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Combining this with (5.1) we get estimate (4.3) in Proposition 4.1. Therefore repeating
arguments following (4.3) in the proof of that proposition we obtain the desired result.
The proof in case (4.2) is satisfied is analogous and therefore left to the reader.

Proposition 5.3. If f satisfies (H2), (H3) then there exists at most one solution (Y, Z,K)

of RBSDE(ξ, f, L) such that Y ∈ Sp for some p > 1.

Proof. Follows immediately from Proposition 5.2 and uniqueness of the Doob-Meyer
decomposition of semimartingales.

Theorem 5.4. Let p > 1.

(i) Assume (H1)–(H6). Then there exists a solution (Y,Z,K) of RBSDE(ξ, f, L) such
that (Y,Z,K) ∈ Sp ⊗Mp ⊗ V+,p

c iff (H7) is satisfied.

(ii) Assume (H1)–(H7). For n ∈ N let (Y n, Zn) be a solution of the BSDE

Y nt = ξ +

∫ T

t

f(s, Y ns , Z
n
s ) ds+

∫ T

t

dKn
s −

∫ T

t

Zns dBs, t ∈ [0, T ] (5.2)

with

Kn
t =

∫ t

0

n(Y ns − Ls)− ds (5.3)

such that (Y n, Zn) ∈ Sp ⊗Mp. Then

E sup
t≤T
|Y nt − Yt|p + E sup

t≤T
|Kn

t −Kt|p + E(

∫ T

0

|Znt − Zt|2dt)p/2 → 0 (5.4)

as n→ +∞.

Proof. Without loss of generality we may assume that µ ≤ 0. Assume that there is a
solution (Y,Z,K) ∈ Sp ⊗Mp ⊗ V+,p

c of RBSDE(ξ, f, L). Then by [3, Remark 4.3],

E(

∫ T

0

|f(s, Ys, Zs)| ds)p ≤ cE
(
|ξ|p + (

∫ T

0

fs ds)
p +Kp

T

)
, (5.5)

which in view of (H2) and the fact that Yt ≥ Lt, t ∈ [0, T ] shows (H7). Conversely,
let us assume that (H1)–(H7) are satisfied. Let (Y n, Zn) be a solution of (5.2) such that
(Y n, Zn) ∈ Sp⊗Mp. We will show that there exists a process X ∈ Hpc such that Xt ≥ Y nt ,
t ∈ [0, T ] for every n ∈ N. Since X ∈ Hpc , there exist M ∈ Mp

c and V ∈ Vpc such that
X = V +M . By the representation property of Brownian filtration, there exists Z ′ ∈Mp

such that

Xt = XT −
∫ T

t

dVs −
∫ T

t

Z ′s dBs, t ∈ [0, T ].

The above identity can be rewritten in the form

Xt = XT +

∫ T

t

f(s,Xs, Z
′
s) ds−

∫ T

t

(f+(s,Xs, Z
′
s) ds+ dV +

s )

+

∫ T

t

(f−(s,Xs, Z
′
s) ds+ dV −s )−

∫ T

t

Z ′s dBs, t ∈ [0, T ].

By [3, Theorem 4.2], there exists a unique solution (X,Z) ∈ Sp ⊗Mp of the BSDE

Xt = ξ ∨XT +

∫ T

t

f(s,Xs, Zs) ds+

∫ T

t

(f−(s,Xs, Z
′
s) ds+ dV −s )−

∫ T

t

Zs dBs.
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By Proposition 4.1, Xt ≥ Xt ≥ Lt, t ∈ [0, T ]. Hence

Xt = ξ ∨XT +

∫ T

t

f(s,Xs, Zs) ds+

∫ T

t

n(Xs − Ls)− ds

+

∫ T

t

(f−(s,Xs, Z
′
s) ds+ dV −s )−

∫ T

t

Zs dBs, t ∈ [0, T ],

so using once again Proposition 4.1 we see that Xt ≥ Y nt , t ∈ [0, T ]. By [3, Remark 4.3],

E(
∫ T
0
|f(s,Xs, 0)| ds)p <∞. Hence, by Lemma 3.3 and Proposition 3.6,

E|Y n,∗T |p + E(

∫ T

0

|Zns |2 ds)p/2 + E|Kn
T |p

≤ C(p, λ, T )E

(
|ξ|2 + (

∫ T

0

fs ds)
p + (

∫ T

0

|f(s,Xs, 0)| ds)p
)
. (5.6)

From this and [3, Remark 4.3],

E(

∫ T

0

|f(s, Y ns , Z
n
s )| ds)p ≤ C

′
(p, λ, T ). (5.7)

By Proposition 4.1 there exists a progressively measurable process Y such that Y nt ↑
Yt, t ∈ [0, T ]. Using the monotone convergence of Y n, (H3)–(H5), (5.6), (5.7) and the
Lebesgue dominated convergence theorem we conclude that

E(

∫ T

0

|f(s, Y ns , 0)− f(s, Ys, 0)| ds)p → 0 (5.8)

Moreover, by (H2) and (5.6),

sup
n≥1

E

∫ T

0

|f(s, Y ns , Z
n
s )− f(s, Y ns , 0)|p ds <∞.

It follows in particular that there exists a process η ∈ Lp(F) such that∫ τ

0

(f(s, Y ns , Z
n
s )− f(s, Y ns , 0)) ds→

∫ τ

0

ηs ds

weakly in L1(FT ) for every stopping time τ ≤ T . Consequently, by Lemmas 4.2 and 4.4,
Y is a càdlàg process and there exist Z ∈ Mp and a càdlàg increasing process K such
that K0 = 0 and

Yt = ξ +

∫ T

t

f(s, Ys, 0) ds+

∫ T

t

ηs ds+

∫ T

t

dKs −
∫ T

t

Zs dBs, t ∈ [0, T ]. (5.9)

From (5.2), (5.6), (5.7) and the pointwise convergence of the sequence {Y n} one can

deduce that E
∫ T
0

(Ys − Ls)− ds = 0, which when combined with (H6) and the fact that
Y is càdlàg implies that Yt ≥ Lt, t ∈ [0, T ]. From this, the monotone character of the
convergence of the sequence {Y n} and Dini’s theorem we conclude that

E|(Y n − L)−,∗T |
p → 0. (5.10)
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By Proposition 3.1, for n,m ∈ N we have

|Y nt − Y mt |p + c(p)

∫ T

t

|Y ns − Y ms |p−21{Y n
s −Ym

s 6=0}|Zns − Zms |2 ds

= p

∫ T

t

|Y ns − Y ms |p−1 ̂Y ns − Y ms (f(s, Y ns , Z
n
s )− f(s, Y ms , Zms )) ds

+ p

∫ T

t

|Y ns − Y ms |p−1 ̂Y ns − Y ms (dKn
s − dKm

s )

− p
∫ T

t

|Y ns − Y ms |p−1 ̂Y ns − Y ms (Zns − Zms ) dBs, t ∈ [0, T ]. (5.11)

By monotonicity of the function R 3 x 7→ |x|p−1x̂,∫ T

t

|Y ns − Y ms |p−1 ̂Y ns − Y ms dKn
s ≤

∫ T

t

|(Y ms − Ls)−|p−1 ̂(Y ms − Ls)− dKn
s (5.12)

and

−
∫ T

t

|Y ns − Y ms |p−1 ̂Y ns − Y ms dKm
s ≤

∫ T

t

|(Y ns − Ls)−|p−1 ̂(Y ns − Ls)− dKm
s . (5.13)

By (H2), (H3), (5.11)–(5.13) and Hölder’s inequality,

E|Y nt − Y mt |p + c(p)E

∫ T

t

|Y ns − Y ms |p−21{Y n
s −Ym

s 6=0}|Zns − Zms |2 ds

≤ pλE
∫ T

0

|Y ns − Y ms |p−1|Zns − Zms | ds+ (E|(Y n − L)−,∗T |
p)(p−1)/p(E|Km

T |p)1/p

+ (E|(Y m − L)−,∗T |
p)(p−1)/p(E|Kn

T |p)1/p. (5.14)

Since

pλ|Y ns − Y ms |p−1|Zns − Zms | ≤
pλ2

1 ∧ (p− 1)
|Y ns − Y ms |p

+
c(p)

2
1{Y n

s −Ym
s 6=0}|Y ns − Y ms |p−2|Zns − Zms |2,

from (5.14) we get

E|Y nt − Y mt |p +
c(p)

2
E

∫ T

t

|Y ns − Y ms |p−21{Y n
s −Ym

s 6=0}|Zns − Zms |2 ds

≤ c(p, λ)E

∫ T

0

|Y ns − Y ms |p ds+ (E|(Y n − L)−,∗T |
p)(p−1)/p(E|Km

T |p)1/p

+ (E|(Y m − L)−,∗T |
p)(p−1)/p(E|Kn

T |p)1/p ≡ In,m.

From the above, (5.6), (5.10) and the monotone convergence of {Y n} we get

lim
n,m→+∞

In,m = 0 (5.15)

which implies that

lim
n,m→+∞

E

∫ T

0

|Y ns − Y ms |p−21{Y n
s 6=Ym

s }|Z
n
s − Zms |2 ds = 0. (5.16)
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Reflected BSDEs with monotone generator

From (5.11) one can also conclude that

E sup
0≤t≤T

|Y nt − Y mt |p

≤ c′(p, λ)

(
In,m + E sup

0≤t≤T
|
∫ T

t

|Y ns − Y ms |p−1 ̂Y ns − Y ms (Zns − Zms ) dBs|
)
.

Using the Burkholder-Davis-Gundy inequality and then Young’s inequality we deduce
from the above that

E sup
0≤t≤T

|Y nt − Y mt |p ≤ c′′(p, λ)

(
In,m + E

∫ T

0

1{Y n
s 6=Ym

s }|Y
n
s − Y ms |p−2|Zns − Zms |2 ds

)
.

Hence, by (5.15) and (5.16),

lim
n,m→+∞

E sup
0≤t≤T

|Y nt − Y mt |p = 0, (5.17)

which implies that Y ∈ Sp. Our next goal is to show that

lim
n,m→+∞

E(

∫ T

0

|Znt − Zmt |2 dt)p/2 = 0. (5.18)

By Itô’s formula applied to |Y n − Y m|2, (H2) and (H3),∫ T

0

|Znt − Zmt |2 dt ≤ 2λ

∫ T

0

|Y nt − Y mt ||Znt − Zmt | dt+ 2

∫ T

0

|Y nt − Y mt | dKn
t

+ 2

∫ T

0

|Y nt − Y mt | dKm
t + sup

0≤t≤T
|
∫ T

t

(Zns − Zms )(Y ns − Y ms ) dBs|.

Hence, by the Burkholder-Davis-Gundy inequality and Young’s inequality,

E(

∫ T

0

|Znt − Zmt |2 dt)p/2 ≤ C(p, λ)

(
E|(Y n − Y m)∗T |p

+ (E|(Y n − Y m)∗T |p)1/2(E|Kn
T |p)1/2 + (E|(Y n − Y m)∗T |p)1/2(E|Km

T |p)1/2
)
.

From the above inequality, (5.6) and (5.17) we get (5.18). From (5.18) and (5.9) it
follows immediately that

Yt = ξ +

∫ T

t

f(s, Ys, Zs) ds+

∫ T

t

dKs −
∫ T

t

Zs dBs, t ∈ [0, T ],

which implies that K is continuous. In fact, by (5.6), K ∈ V+,p
c . Moreover, from (5.2),

(5.7), (5.8) (5.17), (5.18) and (H2) we deduce that

lim
n,m→+∞

E sup
0≤t≤T

|Kn
t −Km

t |p = 0. (5.19)

Since
∫ T
0

(Y nt −Lt) dKn
t ≤ 0, it follows from (5.17), (5.19) that

∫ T
0

(Yt−Lt) dKt ≤ 0, which
when combined with the fact that Yt ≥ Lt, t ∈ [0, T ] shows that∫ T

0

(Yt − Lt) dKt = 0.

Thus the triple (Y,Z,K) is a solution of RBSDE(ξ, f, L), which completes the proof of
(i). Assertion (ii) follows from (5.17)–(5.19).
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Reflected BSDEs with monotone generator

Remark 5.5. Let p > 1 and let assumptions (H1)–(H3) hold. If (Y,Z,K) is a solution of
RBSDE(ξ, f, L) such that (Y, Z) ∈ Sp ⊗Mp then from [3, Remark 4.3] it follows immedi-
ately that

E(

∫ T

0

|f(s, Ys, Zs)| ds)p < +∞ iff EKp
T < +∞.

Moreover, if there exists X ∈ Hpc such that E(
∫ T
0
f−(s,Xs, 0) ds)p < +∞ then

E(

∫ T

0

1{Ys≤Xs} dKs)
p < +∞. (5.20)

Indeed, since X ∈ Hpc , there exist M ∈ Mp
c and V ∈ Vpc such that Xt = X0 + Mt + Vt,

t ∈ [0, T ]. Let L0(Y − X) denote the local time of Y − X at 0. By (H2), (H3) and the
Itô-Tanaka formula applied to (Y −X)−,∫ T

0

1{Ys≤Xs} dKs = (YT −XT )− − (Y0 −X0)− −
∫ T

0

1{Ys≤Xs}f(s, Ys, Zs) ds

−
∫ T

0

1{Ys≤Xs}dVs −
1

2

∫ T

0

dL0
s(Y −X)−

∫ T

0

1{Ys≤Xs}Zs dBs

+

∫ T

0

1{Ys≤Xs} dMs

≤ 2Y ∗T + 2X∗T −
∫ T

0

1{Ys≤Xs}f(s,Xs, 0) ds+ λ

∫ T

0

|Zs| ds

+

∫ T

0

d|V |s −
∫ T

0

1{Ys≤Xs}Zs dBs +

∫ T

0

1{Ys≤Xs} dMs,

from which one can easily get (5.20).

We close this section with an example which shows that assumption (1.4) is not
necessary for existence of p-integrable solutions of reflected BSDEs.

Example 5.6. Let Vt = exp(|Bt|4), t ∈ [0, T ]. Observe that

P (

∫ T

0

Vt dt < +∞) = 1, E

∫ T

a

Vt dt = +∞, a ∈ (0, T ).

Now, set ξ ≡ 0, f(t, y) = −(y − (T − t))+Vt, Lt = T − t, t ∈ [0, T ]. Then ξ, f, L satisfy
(H1)–(H7) with p = 2. On the other hand,

E

∫ T

0

f−(t, L∗t ) dt = E

∫ T

0

f−(t, T ) dt = E

∫ T

0

tVt dt ≥ aE
∫ T

a

Vt dt = +∞.

6 Existence and uniqueness results for p = 1

We first prove uniqueness.

Proposition 6.1. If f satisfies (H2), (H3) and (Z) then there exists at most one solution
(Y,Z,K) of RBSDE(ξ, f, L) such that Y is of class (D) and Z ∈

⋃
β>αM

β .

Proof. Without loss of generality we may assume that µ ≤ 0. Let triples (Y 1, Z1,K1),
(Y 2, Z2,K2) be two solutions to RBSDE(ξ, f, L). By Proposition 5.2 it suffices to prove
that |Y 1 − Y 2| ∈ Sp for some p > 1. Write Y = Y 1 − Y 2, Z = Z1 − Z2, K = K1 − K2
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Reflected BSDEs with monotone generator

and τk = inf{t ∈ [0, T ];
∫ t
0
(|Z1

s |2 + |Z2
s |2) ds > k} ∧ T . Then by the Itô formula (see [3,

Corollary 2.3]),

|Yt∧τk | ≤ |Yτk |+
∫ τk

t∧τk
Ŷs(f(s, Y 1

s , Z
1
s )− f(s, Y 2

s , Z
2
s )) ds

+

∫ τk

t∧τk
Ŷs dKs −

∫ τk

t∧τk
ŶsZs dBs, t ∈ [0, T ].

By the minimality property (d) of the reaction measures K1,K2 in the definition of a
solution of RBSDE(ξ, f, L),

∫ T
0
Ŷs dKs ≤ 0. Hence

|Yt∧τk | ≤ |Yτk |+
∫ τk

t∧τk
Ŷs(f(s, Y 1

s , Z
1
s )− f(s, Y 2

s , Z
2
s )) ds−

∫ τk

t∧τk
ŶsZs dBs

≤ |Yτk |+
∫ T

0

|f(s, Y 1
s , Z

1
s )− f(s, Y 1

s , Z
2
s )| ds−

∫ τk

t∧τk
ŶsZs dBs

for t ∈ [0, T ], the last inequality being a consequence of (H3). Consequently,

|Yt∧τk | ≤ EFt(|Yτk |+
∫ T

0

|f(s, Y 1
s , Z

1
s )− f(s, Y 1

s , Z
2
s )| ds), t ∈ [0, T ].

Since Y is of class (D), letting k → +∞ we conclude from the above that

|Yt| ≤ EFt(

∫ T

0

|f(s, Y 1
s , Z

1
s )− f(s, Y 1

s , Z
2
s )| ds), t ∈ [0, T ].

By (Z),

|Yt| ≤ 2γEFt(

∫ T

0

(gs + |Y 1|s + |Z1|s + |Z2
s |)α ds).

From this it follows that |Y | ∈ Sp for some p > 1, which proves the proposition.

Remark 6.2. A brief inspection of the proof of Proposition 6.1 reveals that if f does
not depend on z and satisfies (H2) then there exits at most one solution (Y,Z,K) of
RBSDE(ξ, f, L) such that Y is of class (D).

Remark 6.3. If (H1), (H3), (Z) are satisfied and (Y,Z) is a unique solution of BSDE(ξ, f)

such that Y is of class (D) and Z ∈ Lα(F) then

E

∫ T

0

|f(s, Ys, Zs)| ds < +∞.

Indeed, by Proposition 3.1, for every stopping time τ ≤ T ,

|Yt∧τ | ≤ |Yτ |+
∫ τ

t∧τ
Ŷsf(s, Ys, Zs) ds−

∫ τ

t∧τ
ŶsZs dBs, t ∈ [0, T ].

Hence

−
∫ τ

t∧τ
Ŷs(f(s, Ys, Zs)− f(s, 0, Zs)) ds ≤ |Yτ | − |Yt∧τ |+

∫ τ

t∧τ
|f(s, 0, Zs)| ds

−
∫ τ

t∧τ
ŶsZs dBs.
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Reflected BSDEs with monotone generator

By the above inequality, (H3) (without loss of generality we may assume that µ ≤ 0) and
(Z), for t ∈ [0, T ] we have

E

∫ τ

t∧τk
|f(s, Ys, Zs)− f(s, 0, Zs)| ds

≤ E|Yτk |+ E

∫ τ

t∧τk
(gs + |Zs|+ |Ys|)α ds+

∫ τ

t∧τk
fs ds,

where τk is defined by (3.2). Since Y is of class (D), letting k → +∞ we obtain

E

∫ T

0

|f(s, Ys, Zs)− f(s, 0, Zs)| ds ≤ E|ξ|+ γE

∫ T

0

(gs + |Zs|+ |Ys|)α ds+

∫ T

0

fs ds.

Using once again (Z) we conclude from the above that

E

∫ T

0

|f(s, Ys, Zs)| ds ≤ E|ξ|+ 2γE

∫ T

0

(gs + |Zs|+ |Ys|)α ds+ 2

∫ T

0

fs ds < +∞.

Theorem 6.4. Let p = 1.

(i) Assume (H1)–(H6), (Z). Then there exists a solution (Y,Z,K) of RBSDE(ξ, f, L)

such that Y is of class (D), K ∈ V+,1
c and Z ∈

⋂
q<1M

q iff (H7*) is satisfied.

(ii) Assume (H1)–(H6), (H7*) and for n ∈ N let (Y n, Zn) be a solution of (5.2) such
that (Y n, Zn) ∈ Sq ⊗Mq, q ∈ (0, 1), and Y n is of class (D). Let Kn be defined by
(5.3). Then for every q ∈ (0, 1),

E sup
t≤T
|Y nt − Yt|q + E sup

t≤T
|Kn

t −Kt|q + E(

∫ T

0

|Znt − Zt|2 dt)q/2 → 0

as n→ +∞.

Proof. (i) Necessity. By Remark 6.3, if there is a solution (Y, Z,K) of BSDE(ξ, f, L) such
that (Y,Z) ∈ Sq ⊗Mq, q ∈ (0, 1), K ∈ V+,1

c and Y is of class (D) then (H7*) is satisfied
with X = Y .

Sufficiency. We first show that the sequence {Y n} is nondecreasing. To this end, let
us put fn(t, y, z) = f(t, y, z) + n(y − Lt)

−. Since the exponential change of variable
described at the beginning of the proof of Lemma 3.3 does not change the monotonicity
of the sequence {Y n}, we may and will assume that the mapping R 3 y 7→ fn(t, y, 0) is
nonincreasing. By the Itô-Tanaka formula, for every stopping time τ ≤ T ,

(Y nt∧τ − Y n+1
t∧τ )+ +

1

2

∫ τ

τ∧t
dL0

s(Y
n − Y n+1)

= (Y nτ − Y n+1
τ )+ +

∫ τ

t∧τ
1{Y n

s >Y
n+1
s }(fn(s, Y ns , Z

n
s )− fn+1(s, Y n+1

s , Zn+1
s )) ds

−
∫ τ

t∧τ
1{Y n

s >Y
n+1
s }(Z

n
s − Zn+1

s ) dBs.

Taking the conditional expectation with respect to Ft on both sides of the above equality
with τ replaced by τk = inf{t ∈ [0, T ];

∫ t
0
|Zns − Zn+1

s |2 ds ≥ k} ∧ T , letting k → +∞ and
using the fact that Y is of class (D) we obtain

(Y nt − Y n+1
t )+ ≤ EFt

∫ T

t

1{Y n
s >Y

n+1
s }(fn(s, Y ns , Z

n
s )− fn+1(s, Y n+1

s , Zn+1
s )) ds. (6.1)
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From the above inequality and the fact that fn ≤ fn+1 we get∫ T

t

1{Y n
s >Y

n+1
s }(fn(s, Y ns , Z

n
s )− fn+1(s, Y ns , Z

n
s )) ds

+

∫ T

t

1{Y n
s >Y

n+1
s }(fn+1(s, Y ns , Z

n
s )− fn+1(s, Y n+1

s , Zn+1
s )) ds

≤
∫ T

t

1{Y n
s >Y

n+1
s }(fn+1(s, Y ns , Z

n
s )− fn+1(s, Y n+1

s , Zn+1
s )) ds

=

∫ T

t

1{Y n
s >Y

n+1
s }(fn+1(s, Y ns , Z

n
s )− fn+1(s, Y ns , 0)) ds

+

∫ T

t

1{Y n
s >Y

n+1
s }(fn+1(s, Y ns , 0)− fn+1(s, Y n+1

s , 0)) ds

+

∫ T

t

1{Y n
s >Y

n+1
s }(fn+1(s, Y n+1

s , 0)− fn+1(s, Y n+1
s , Zn+1

s )) ds.

Since fn(t, y, z) − fn(t, y, z′) = f(t, y, z) − f(t, y, z′) for every t ∈ [0, T ], y ∈ R, z, z′ ∈ Rd,
using the monotonicity of fn+1 and assumption (Z) we conclude from the above and
(6.1) that for t ∈ [0, T ],

(Y nt − Y n+1
t )+ ≤ 2γEFt

∫ T

0

(gs + |Y ns |+ |Zns |+ |Y n+1
s |+ |Zn+1

s |)α ds.

Since (Y n, Zn) ∈ Sq ⊗Mq for every q ∈ (0, 1), n ∈ N, it follows from the above estimate
that (Y n−Y n+1)+ ∈ Sp for some p > 1. Hence, by Proposition 4.1, Y nt ≤ Y n+1

t , t ∈ [0, T ].
Write

Yt = lim
n→+∞

Y nt , t ∈ [0, T ].

We are going to show that there is a process X of class (D) such that X ∈ V1
c +Mq

c for
q ∈ (0, 1) and Xt ≥ Yt, t ∈ [0, T ]. Indeed, since X from assumption (H7*) belongs to
V1
c +Mq

c for q ∈ (0, 1), there exist M ∈ Mq
c and V ∈ V1

c such that X = V + M . By the
representation property of the Brownian filtration there exists Z ′ ∈Mq such that

Xt = XT −
∫ T

t

dVs −
∫ T

t

Z ′s dBs, t ∈ [0, T ],

which we can write in the form

Xt = XT +

∫ T

t

f(s,Xs, Z
′
s) ds−

∫ T

t

(f+(s,Xs, Z
′
s) ds+ dV +

s )

+

∫ T

t

(f−(s,Xs, Z
′
s) ds+ dV −s )−

∫ T

t

Z ′s dBs, t ∈ [0, T ].

By [3, Theorem 6.3] and Remark 6.3 there exists a unique solution (X,Z) of the BSDE

Xt = ξ ∨XT +

∫ T

t

f(s,Xs, Zs) ds+

∫ T

t

(f−(s,Xs, Z
′
s) ds+ dV −s )−

∫ T

t

Zs dBs

such that (X,Z) ∈
⋂
q<1 Sq ⊗Mq, X is of class (D) and

E

∫ T

0

|f(t, X̄t, Z̄t)| dt < +∞. (6.2)
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As in the proof of the fact that (Y n − Y n+1)+ ∈ Sp one can show that for every stopping
time τ ≤ T ,

(Xt∧τ −Xt∧τ )+ ≤ (Xτ −Xτ )+ +

∫ τ

t∧τ
1{Xs>Xs}(f(s,Xs, Z

′
s)− f(s,Xs, Zs)) ds

− 2

∫ τ

t∧τ
1{Xs>Xs}(Z

′
s − Zs) dBs

≤ (Xτ −Xτ )+ + 2γ

∫ τ

t∧τ
(gs + |Xs|+ |X̄s|+ |Z ′s|+ |Zs|)α ds

− 2

∫ τ

t∧τ
1{Xs>Xs}(Z

′
s − Zs) dBs.

Let τk = inf{t ∈ [0, T ];
∫ t
0
(|Z ′

s|2 + |Zs|2) ds ≥ k} ∧ T . Then

(Xt∧τk −Xt∧τk)+ ≤ EFt(Xτk −Xτk)+ + 2γEFt

∫ T

0

(gs + |Xs|+ |X̄s|+ |Z ′s|+ |Zs|)α ds.

Since X,X are of class (D), letting k → +∞ we get

(Xt −Xt)
+ ≤ 2γEFt

∫ T

0

(gs + |Xs|+ |X̄s|+ |Z ′s|+ |Zs|)α ds.

Therefore (X − X)+ ∈ Sp for some p > 1 since Z ′, Z ∈ Mq, X, X̄ ∈ Sq, q ∈ (0, 1).
Consequently, by Proposition 4.1, Xt ≤ Xt, t ∈ [0, T ]. Thus

Xt = ξ ∨XT +

∫ T

t

f(s,Xs, Zs) ds+

∫ T

t

n(Xs − Ls)− ds

+

∫ T

t

(f−(s,Xs, Z
′
s) ds+ dV −s )−

∫ T

t

Zs dBs, t ∈ [0, T ].

As in the case of the process (X − X)+ one can show that (Y n − X)+ ∈ Sp for some
p > 1. Hence, by Proposition 4.1, Y nt ≤ Xt, t ∈ [0, T ] for every n ∈ N. Furthermore,
since Y 1, X ∈ Sq, q ∈ (0, 1), we have

sup
n≥1

E|Y n,∗T |q < +∞. (6.3)

It follows in particular that supn≥1 |Y n0 | < ∞ since Y n0 are deterministic. Moreover,
by Lemma 4.3, there exists a stationary sequence {σ1

k} of stopping times such that for
every k ∈ N,

sup
n≥1
|Y n,∗
σ1
k
| ≤ k ∨ (sup

n≥1
|Y n0 |) < +∞. (6.4)

Set

σ2
k = inf{t ∈ [0, T ],min{Y 1,∗

t , X
+,∗
t ,

∫ t

0

f−(s,Xs, 0) ds,

∫ t

0

|f(s, 0, 0)| ds} > k} ∧ T

and τk = σ1
k ∧ σ2

k. It is easy to see that the sequence {τk} is stationary. Using this and
the fact that Y nτk , f , L satisfy the assumptions of Theorem 5.4 on the interval [0, τk] one
can show that there exist Y,K ∈ S, Z ∈M such that K is increasing, K0 = 0 and

sup
0≤t≤T

|Y nt − Yt|+ sup
0≤t≤T

|Kn
t −Kt|+

∫ T

0

|Zns − Zs|2 ds→ 0 in probability P (6.5)
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as n→ +∞. Moreover, one can show that Yt ≥ Lt, t ∈ [0, T ],

Yt = ξ +

∫ T

t

f(s, Ys, Zs) ds+

∫ T

t

dKs −
∫ T

t

Zs dBs, t ∈ [0, T ] (6.6)

and ∫ T

0

(Ys − Ls) dKs = 0. (6.7)

Accordingly, the triple (Y,Z,K) is a solution of RBSDE(ξ, f, L). The proof of (6.5)–(6.7)
runs as the proof of Theorem 5.4 (see the reasoning following (5.6) with p = 2), the
only difference being in the fact that now we consider equations on [0, τk] with terminal
values depending on n. However, using (6.4) and the pointwise convergence of {Y n}
allows overcome this difficulty. Since Y 1

t ≤ Yt ≤ Xt, t ∈ [0, T ], and Y 1, X+ are of class
(D), it follows that Y is of class (D). By Lemma 3.4 for every q ∈ (0, 1),

sup
n≥1

E
(
(

∫ T

0

|Znt |2 dt)q/2 + |Kn
T |q
)
< +∞. (6.8)

From this and (6.5) we conclude that Z ∈
⋂
q<1M

q and E|KT |q < ∞ for q ∈ (0, 1). To
see that EKT <∞ let us define τk by (3.2). Then by (6.6),

Kτk = Y0 − Yτk −
∫ τk

0

f(s, Ys, Zs) ds+

∫ τk

0

Zs dBs. (6.9)

Since Y is of class (D), using Fatou’s lemma, (H2), (Z) and the fact that Yt ≤ Xt, t ∈ [0, T ]

we conclude from (6.9) that

EKT ≤ EY +
0 + Eξ− + E

∫ T

0

f−(s,Xs, 0) ds+ γE

∫ T

0

(gs + |Ys|+ |Zs|)α ds.

Hence EKT <∞, because by (6.2) and (H2), E
∫ T
0
|f(s,Xs, 0)| ds < +∞.

(ii) Convergence of {Y n} in Sq for q ∈ (0, 1) follows from (6.3) and (6.5). The desired
convergence of {Zn} and {Kn} follows from (6.5) and (6.8).

Remark 6.5. An important class of generators satisfying (H1)–(H5) together with (Z)
are generators satisfying (H1)–(H5) which are bounded or not depending on z. Another
class which share these properties are generators of the form

f(t, y, z) = g(t, y) + c(1 + |z|)q,

where q ∈ [0, α] and g is a progressively measurable function satisfying (H1)–(H5).

Remark 6.6. Let assumptions (H1)–(H3), (Z) hold and let (Y, Z,K) be a solution of
RBSDE(ξ, f, L) such that Y is of class (D) and Z ∈

⋃
β>αM

β . Then from Remark 3.5 it
follows immediately that

E(

∫ T

0

|f(s, Ys, Zs)| ds) < +∞ iff EKT < +∞.

If, in addition, there exists a continuous semimartingale X such that (H7*) is satisfied
then

E

∫ T

0

1{Ys≤Xs}dKs < +∞.
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To prove the last estimate let us put τk = inf{t ∈ [0, T ]; 〈M〉t +
∫ t
0
|Zs|2 ds > k} ∧ T . By

the Itô-Tanaka formula and (H2), (H3),∫ τk

0

1{Ys≤Xs} dKs = (Yτk −Xτk)− − (Y0 −X0)− −
∫ τk

0

1{Ys≤Xs}f(s, Ys, Zs) ds

−
∫ τk

0

1{Ys≤Xs}dVs −
1

2

∫ τk

0

dL0
s(Y −X)

−
∫ τk

0

1{Ys≤Xs}Zs dBs +

∫ τk

0

1{Ys≤Xs} dMs.

Hence

E

∫ τk

0

1{Ys≤Xs} dKs ≤ E|Yτk |+ EX+
τk

+ E

∫ T

0

1{Ys≤Xs}f
−(s,Xs, 0) ds

+ γE

∫ T

0

(gs + |Zs|+ |Ys|)α ds+ E

∫ T

0

d|V |s.

Since (Y −X)− is of class (D), letting k → +∞ in the above inequality we get the desired
result.

7 Nonintegrable solutions of reflected BSDEs

In this section we examine existence and uniqueness of solutions of reflected BSDEs
in the case where the data satisfy (H1)–(H6) (resp. (H1)–(H6), (Z) for p = 1) but (H7)
(resp. (H7*) in case p = 1) is not satisfied. In view of Theorems 5.4 and 6.4 in that
case there is neither a solution (Y,Z,K) in the space Sp ⊗Mp ⊗ Vp,+c if p > 1 nor a
solution in the space Sq ⊗Mq ⊗V1,+

c , q ∈ (0, 1) with Y of class (D) if p = 1. We will show
that nevertheless there exists a solution with weaker integrability properties. Before
proving our main result let us note that in [6, 9, 13] reflected BSDEs with generator
f such that |f(t, y, z)| ≤ M(|f(t, 0, 0)| + |y| + |z|) for some M ≥ 0 are considered. In

case p = 2 it is proved there that if we assume that ξ,
∫ T
0
|f(s, 0, 0)| ds ∈ L2(FT ), L is

continuous and L+ ∈ S2 then there exists a solution (Y,Z,K) ∈ S2 ⊗ M2 ⊗ V+,2
c of

(1.1) (see [6] for the case of Lipschitz continuous generator and [9, 13] for continuous
generator). We would like to stress that although in [6, 9, 13] condition (H7) is not
explicitly stated, it is satisfied, because if f satisfies the linear growth condition and
L+ ∈ S2 then

E(

∫ T

0

f−(t, L+,∗
t , 0) dt)2 ≤ 2M2T 2 + 2T 2E|L+,∗

T |
2 < +∞

and Lt ≤ L+,∗
t , t ∈ [0, T ], L+,∗ ∈ V+,2

c .

Theorem 7.1. Let (H1)–(H6) (resp. (H1)–(H6), (Z)) be satisfied and L+ ∈ Sp for some
p > 1 (resp. L+ is of class (D)). Then there exists a solution (Y, Z,K) ∈ Sp ⊗M ⊗ V+

c

(resp. (Y,Z,K) ∈ Sq⊗M⊗V+
c , q ∈ (0, 1) such that Y is of class (D)) of the RBSDE(ξ, f, L).

Proof. We first assume that p = 1. By [3, Theorem 6.3] there exists a unique solution
(Y n, Zn) ∈

⋂
q<1 Sq ⊗Mq of (5.2) such that Y n is of class (D). By Proposition 6.4 (see

also the reasoning used at the beginning of the proof of Theorem 6.4), for every n ∈ N,
Y nt ≤ Y n+1

t and Y nt ≤ Ȳ nt , t ∈ [0, T ], where (Ȳ n, Z̄n) ∈
⋂
q<1 Sq ⊗Mq is a solution of the

BSDE

Ȳ nt = ξ +

∫ T

t

f+(s, Ȳ ns , Z̄
n
s ) ds+

∫ T

t

n(Ȳ ns − Ls)− ds−
∫ T

t

Z̄ns dBs, t ∈ [0, T ]

EJP 17 (2012), paper 107.
Page 22/25

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v17-1759
http://ejp.ejpecp.org/


Reflected BSDEs with monotone generator

such that Ȳ n is of class (D). Hence

|Y nt | ≤ |Y 1
t |+ |Ȳ nt |, t ∈ [0, T ]. (7.1)

Put
Rt(L) = ess sup

t≤τ≤T
E(Lτ |Ft).

It is known (see [4, 5]) that R(L) has a continuous version (still denoted by R(L)) such
that R(L) is a supermartingale of class (D) majorizing the process L. Moreover, by
the Doob-Meyer decomposition theorem there exist a uniformly integrable continuous
martingale M and a process V ∈ V+,1

c such that R(L) = M + V . In particular, by [3,
Lemma 6.1], R(L) ∈ Mq

c + V+,1
c for every q ∈ (0, 1). Therefore the data ξ, f+, L satisfy

assumptions (H1)–(H6), (Z) and (H7*) with X = R(L). Hence, by Theorem 6.4, there
exists a unique solution (Ȳ , Z̄, K̄) ∈ Sq ⊗Mq ⊗ V+,1

c , q ∈ (0, 1), of the RBSDE(ξ, f+, L)

such that Ȳ is of class (D) and

Ȳ nt ↗ Ȳt, t ∈ [0, T ].

By the above and (7.1),

|Y nt | ≤ |Y 1
t |+ |Ȳt|, t ∈ [0, T ]. (7.2)

Put Yt = supn≥1 Y
n
t , t ∈ [0, T ] and

τk = inf{t ∈ [0, T ];

∫ t

0

f−(s,Rs(L), 0) ds > k} ∧ T.

Then f, L satisfy assumptions (H1)–(H6), (Z) and (H7*) with X = R(L) on each interval
[0, τk]. Therefore analysis similar to that in the proof of (5.4), but applied to the equation

Y nt∧τk = Y nτk +

∫ τk

t∧τk
f(s, Y ns , Z

n
s ) ds+

∫ τk

t∧τk
n(Y ns − Ls)− ds−

∫ τk

t∧τk
Zns dBs (7.3)

instead of (5.2), shows that for every k ∈ N,

E sup
0≤t≤τk

|Y nt − Y mt |q + E(

∫ τk

0

|Zns − Zms |2 ds)q/2 + E sup
0≤t≤τk

|Kn
t −Km

t |q → 0 (7.4)

as n,m→ +∞, where Kn
t =

∫ t
0
n(Y ns − Ls)− ds. (The only difference between the proof

of (7.4) and (5.4) is caused by the fact that in (7.3) the terminal condition Y nτk depends on
n. But in view of (7.2), monotonicity of the sequence {Y n} and integrability of Y 1, Ȳ the
dependence of Y nτk on n presents no difficulty). Since the sequence {τk} is stationary,
from (7.3), (7.4) we conclude that there exist K ∈ V+

c and Z ∈M such that

Yt = ξ +

∫ T

t

f(s, Ys, Zs) ds+

∫ T

t

dKs −
∫ T

t

Zs dBs, t ∈ [0, T ]

and (7.4) holds with (Y,Z,K) in place of (Y n, Zn,Kn). From the properties of the se-
quence {(Y n, Zn,Kn)} on [0, τk] proved in Theorem 6.4 it follows that

Yt ≥ Lt, t ∈ [0, τk],

∫ τk

0

(Ys − Ls) ds = 0

for k ∈ N. By stationarity of the sequence {τk} this implies that

Yt ≥ Lt, t ∈ [0, T ],

∫ T

0

(Ys − Ls) ds = 0.
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Accordingly, the triple (Y, Z,K) is a solution of RBSDE(ξ, f, L).
In case p > 1 the proof is similar. As a matter of fact it is simpler because instead of

considering the Snell envelope R(L) of the process L it suffices to consider the process
L+,∗.

Remark 7.2. From Proposition 6.1 it follows that the solution obtained in Theorem 7.1
is unique in its class for p > 1. In case p = 1 it is unique in its class if f does not depend
on z (see Remark 6.2).

The next example shows that in general the process K of Theorem 7.1 may be non-
integrable for any q > 0.

Example 7.3. Let f(t, y) = −y+ exp(|Bt|4), Lt ≡ 1, ξ ≡ 1. Then ξ, f, L satisfy (H1)–(H6)
and L ∈ Sp for every p ≥ 1. So by Theorem 7.1 and Proposition 5.2 there exists a unique
solution (Y,Z,K) ∈ S2 ⊗M ⊗ V+

c of the RBSDE(ξ, f, L). Observe that EKq
T = +∞ for

any q > 0. Of course, to check this it suffices to consider the case q ∈ (0, 1]. Aiming
for a contradiction, suppose that q ∈ (0, 1] and EKq

T < +∞. Then by [3, Lemma 3.1],

Z ∈ Mq, which implies that E(
∫ T
0
f−(t, Yt) dt)

q < +∞. On the other hand, since Yt ≥ 1

for t ∈ [0, T ], it follows that

E(

∫ T

0

f−(t, Yt) dt)
q ≥ E

∫ T

0

(f−(t, 1))q dt = E

∫ T

0

exp(q|Bt|4) dt = +∞.
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