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Convergence of mixing times for sequences of

random walks on finite graphs
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Abstract

We establish conditions on sequences of graphs which ensure that the mixing times
of the random walks on the graphs in the sequence converge. The main assump-
tion is that the graphs, associated measures and heat kernels converge in a suitable
Gromov-Hausdorff sense. With this result we are able to establish the convergence
of the mixing times on the largest component of the Erdős-Rényi random graph in
the critical window, sharpening previous results for this random graph model. Our
results also enable us to establish convergence in a number of other examples, such
as finitely ramified fractal graphs, Galton-Watson trees and the range of a high-
dimensional random walk.
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1 Introduction

The geometric and analytic properties of random graphs have been the subject of
much recent research. One strand of this development has been to examine sequences
of random subgraphs of vertex transitive graphs that are, in some sense, at or near
criticality. A key example is the percolation model and, for bond percolation above the
upper critical dimension, we expect to see mean-field behavior in the sequence of finite
graphs in the critical window. That is, the natural scaling exponents for the volume and
diameter of the graph and for the mixing time are of the same order as those for the
Erdős-Rényi random graph in the critical window, as given in [36].

This mean-field behavior is seen in other natural models of sequences of critical
random graphs. For example [6] obtained general conditions for the geometric proper-
ties of percolation clusters on sequences of finite graphs and discussed examples such
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Mixing times for sequences of random walks

as the high dimensional torus and the n-cube, while the random walk on critical per-
colation clusters on the high-dimensional torus is treated in [24]. Motivated by these
results we will focus on the asymptotic behavior of mixing times for random walks on
sequences of finite graphs. We consider general sequences of graphs but under some
strong conditions which will enable us to establish the convergence of the mixing time.

In order to demonstrate our main result we consider the Erdős-Rényi random graph.
Let G(N, p) be the random subgraph of the complete graph on N labeled vertices
{1, . . . , N} in which each edge is present with probability p independently of the other
edges. It is a classical result that if we set p = c/N , then as N → ∞, if c > 1 there
is a giant component containing a positive fraction of the vertices, while for c < 1 the
largest component is of size logN . However, if p = N−1 + λN−4/3 for some λ ∈ R, we
are in the so-called critical window, and it is known that the largest connected compo-
nent CN , is of order N2/3. The recent work of [1] has shown that the scaling limit of the
graph,M, exists and can be constructed from the continuum random tree.

For the Erdős-Rényi random graph above criticality, [19] and [4] established mixing
time bounds for the simple random walk on the giant component. The simple random
walk on this graph is the discrete time Markov chain with transition probabilities deter-
mined by p(x, y) = 1/deg(x) for all y such that (x, y) is an edge in CN . For the random
graph in the critical window, the following result on the mixing time t1mix(CN ) (a precise
definition will be given later in (1.8), see also Remark 1.3) of the lazy random walk (a
version of the simple random walk which remains at its current vertex with probabil-
ity 1/2, otherwise it moves as the simple random walk) was obtained by Nachmias and
Peres ([36, Theorem 1.1]).

Theorem 1.1. Let CN be the largest connected component of G(N, (1+λN−1/3)/N) for
some λ ∈ R. Then, for any ε > 0, there exists A = A(ε, λ) <∞ such that for all large N ,

P (t1mix(CN ) /∈ [A−1N,AN ]) < ε.

It is natural to ask for more refined results on the behavior of the family of mixing
times. The purpose of this paper is to give a general criteria for the convergence of
mixing times for a sequence of simple random walks on finite graphs in the setting
where the graphs can be embedded nicely in a compact metric space. Due to the recent
work of [1] and [9] we can apply our main result to the case of the Erdős-Rényi random
graph, to obtain the following result.

Theorem 1.2. Fix p ∈ [1,∞]. If tpmix(ρN ) is the Lp-mixing time of the simple random
walk on CN started from its root ρN , then

N−1tpmix(ρN )→tpmix(ρ),

in distribution, where the random variable tpmix(ρ) ∈ (0,∞) is the Lp-mixing time of the
Brownian motion onM started from ρ.

We will later illustrate our main result with a number of other examples of random
walks on sequences of finite graphs. In order to state it, though, we start by describ-
ing the general framework in which we work. Firstly, let (F, dF ) be a compact metric
space and let π be a non-atomic Borel probability measure on F with full support. We
will assume that balls BF (x, r) := {y ∈ F : dF (x, y) < r} are π-continuity sets (i.e.
π(∂BF (x, r)) = 0 for every x ∈ F , r > 0). Secondly, take XF = (XF

t )t≥0 to be a
π-symmetric Hunt process on F (for definition and properties see [20]), which will typ-
ically be the Brownian motion on the limit of the sequence of graphs. We suppose the
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following:

• XF is conservative, i.e. its semigroup (Pt)t≥0 satisfies Pt1 = 1, π-a.e., ∀t > 0,(1.1)

• there exists a jointly continuous transition density (qt(x, y))x,y∈F,t>0 of XF , (1.2)

• for every x, y ∈ F and t > 0, qt(x, y) > 0, (1.3)

• for every x ∈ F and t > 0, qt(x, ·) is not identically equal to 1, (1.4)

where conditions (1.3) and (1.4) are assumed to exclude various trivial cases, and by
transition density we mean the kernel qt(x, y) such that

Ex[f(XF
t )] =

∫
F

qt(x, y)f(y)π(dy),

for all bounded continuous function f on F . Furthermore, we will say that the transition
density (qt(x, y))x,y∈F,t>0 converges to stationarity in an Lp sense for some p ∈ [1,∞] if
it holds that

lim
t→∞

Dp(x, t) = 0, (1.5)

for every x ∈ F , where Dp(x, t) := ‖qt(x, ·) − 1‖Lp(π). If this previous condition is satis-
fied, then it is possible to check that the Lp-mixing time of F ,

tpmix(F ) := inf

{
t > 0 : sup

x∈F
Dp(x, t) ≤ 1/4

}
, (1.6)

is a finite quantity (see Section 3). Finally, note that tpmix(F ) ≤ tp
′

mix(F ) for p ≤ p′, which
can easily be shown using the Hölder inequality.

We continue by introducing some general notation for graphs and their associated
random walks. First, fix G = (V (G), E(G)) to be a finite connected graph with at least
two vertices, where V (G) denotes the vertex set and E(G) the edge set of G, and sup-
pose dG is a metric on V (G). In some examples, dG will be a rescaled version of the
usual shortest path graph distance, by which we mean that dG(x, y) is some multiple of
the number of edges in the shortest path from x to y in G, but this is not always the most
convenient choice. Define a symmetric weight function µG : V (G)2 → R+ that satisfies
µGxy > 0 if and only if {x, y} ∈ E(G). The discrete time random walk on the weighted
graph G is then the Markov chain ((XG

m)m≥0,P
G
x , x ∈ V (G)) with transition probabilities

(PG(x, y))x,y∈V (G) defined by PG(x, y) := µGxy/µ
G
x , where µGx :=

∑
y∈V (G) µ

G
xy. If we de-

fine a measure πG on V (G) by setting, for A ⊆ V (G), πG(A) :=
∑
x∈A µ

G
x /
∑
x∈V (G) µ

G
x ,

then πG is the invariant probability measure for XG. The transition density of XG, with
respect to πG, is given by (pGm(x, y))x,y∈V (G),m≥0, where

pGm(x, y) :=
PGx (Xm = y)

πG({y})
.

Due to parity concerns for bipartite graphs, we will consider a smoothed version of this
function (qGm(x, y))x,y∈V (G),m≥0 obtained by setting

qGm(x, y) :=
pGm(x, y) + pGm+1(x, y)

2
, (1.7)

and define the Lp-mixing time of G by

tpmix(G) := inf

{
m > 0 : sup

x∈V (G)

DG
p (x,m) ≤ 1/4

}
, (1.8)

where DG
p (x,m) := ‖qGm(x, ·) − 1‖Lp(πG). Finally, in the case that we are considering a

sequence of graphs (GN )N≥1, we will usually abbreviate πG
N

to πN and qG
N

to qN , etc.
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Remark 1.3. In [36], the mixing time of CN is defined in terms of the total variation
distance, that is

Tmix(CN ) = min{t : ‖Pt(x, ·)− π(·)‖TV ≤ 1/8, ∀x ∈ V (CN )}, (1.9)

where Pt(x,B) =
∑
y∈B p

N
t (x, y)π(y) for B ⊂ V (CN ), pNt (x, y) is the transition density for

the random walk and ‖µ−ν‖TV = maxB⊂V (CN ) |µ(B)−ν(B)| for probability measures µ, ν
on V (CN ). (To be precise, 1/8 in (1.9) is 1/4 in [36], but this only affects the constants
in the results.) However, noting that

‖µ− ν‖TV =
1

2

∑
x∈V (CN )

|µ({x})− ν({x})|,

(see, for example [35, Proposition 4.2]), one sees that Tmix(CN ) = t1mix(CN ). Also note
that [36] considers the lazy walk on the graph to avoid parity issues, but the same
techniques will apply to the mixing time defined in terms of the smoothed heat kernel
introduced at (1.7).

We are now ready to state the assumption under which we are able to prove the con-
vergence of mixing times for the random walks on a sequence of graphs. This captures
the idea that, when suitably rescaled, the discrete state spaces, invariant measures and
transition densities of a sequence of graphs converge to (F, dF ), π and (qt(x, y))x,y∈F,t>0,
respectively. Its formulation involves a spectral Gromov-Hausdorff topology, the defini-
tion of which is postponed until Section 2, and a useful sufficient condition for it will be
given in Proposition 2.4 below. Note that we extend the definition of the discrete tran-
sition densities on graphs to all positive times by linear interpolation of (qGm(x, y))m≥0

for each pair of vertices x, y ∈ V (G). Note also that the extended transition densities
are different from those of continuous time Markov chains.

Assumption 1. (GN )N≥1 is a sequence of finite connected graphs with at least two
vertices for which there exists a sequence (γ(N))N≥1 such that, for any compact interval
I ⊂ (0,∞),((

V (GN ), dGN
)
, πN ,

(
qNγ(N)t(x, y)

)
x,y∈V (GN ),t∈I

)
→ ((F, dF ) , π, (qt(x, y))x,y∈F,t∈I)

in a spectral Gromov-Hausdorff sense.

In the case where we have random graphs, we will typically assume that we have the
above convergence holding in distribution. Our main conclusion is then the following.

Theorem 1.4. Suppose that Assumption 1 is satisfied. If p ∈ [1,∞] is such that
the transition density (qt(x, y))x,y∈F,t>0 converges to stationarity in an Lp sense, then
tpmix(F ) ∈ (0,∞) and

γ(N)−1tpmix(GN )→ tpmix(F ). (1.10)

In Section 3.2, we will explain how to derive a variation of Theorem 1.4 that concerns
the convergence of mixing times of processes started at a distinguished point in the
state space.

We emphasize that a key part of our paper is to verify Assumption 1 and apply
Theorem 1.4 in various interesting examples (including the Erdős-Rényi random graphs
in the critical window as mentioned above). Therefore, we devote considerable space
to applying our results to such examples.
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The organization of the paper is as follows. In Section 2, we give a precise definition
of the spectral Gromov-Hausdorff convergence and give some of its basic properties. In
Section 3, we prove Theorem 1.4 and derive a variation of the theorem for distinguished
starting points. Some sufficient conditions for (1.1)-(1.5) are given in Section 4. A
selection of examples where the assumptions of Theorem 1.4 can be verified, and hence
we have convergence of the mixing time sequence, are given in Section 5. In Section
6 we introduce some geometric conditions on graphs for upper and lower bounds on
the mixing times for the corresponding symmetric Markov chains. We use these ideas
to derive tail estimates of mixing times on random graphs in the case of the continuum
random tree and the Erdős-Rényi random graph. The proofs of these results can be
found in the Appendix.

2 Spectral Gromov-Hausdorff convergence

The aim of this section is to define a spectral Gromov-Hausdorff distance on triples
consisting of a metric space, a measure and a heat kernel-type function that will allow
us to make Assumption 1 precise. We will also derive an equivalent characterization of
this assumption that will be applied in the subsequent section when proving our mixing
time convergence result, and present a sufficient condition for Assumption 1 that will
be useful when it comes to checking it in examples. Note that we do not need to assume
(1.3), (1.4) in this section, and only use (1.1) to deduce Proposition 2.4 from a result of
[14].

First, for a compact interval I ⊂ (0,∞), let M̃I be the collection of triples of the
form (F, π, q), where F = (F, dF ) is a non-empty compact metric space, π is a Borel
probability measure on F and q = (qt(x, y))x,y∈F,t∈I is a jointly continuous real-valued
function of (t, x, y). We say two elements, (F, π, q) and (F ′, π′, q′), of M̃I are equivalent if
there exists an isometry f : F → F ′ such that π ◦ f−1 = π′ and q′t ◦ f = qt for every t ∈ I,
by which we mean q′t(f(x), f(y)) = qt(x, y) for every x, y ∈ F , t ∈ I. DefineMI to be the
set of equivalence classes of M̃I under this relation. We will often abuse notation and
identify an equivalence class inMI with a particular element of it. Now, set

∆I ((F, π, q), (F ′, π′, q′))

:= inf
Z,φ,φ′,C

{
dZH(φ(F ), φ′(F ′)) + dZP (π ◦ φ−1, π′ ◦ φ′−1)

+ sup
(x,x′),(y,y′)∈C

(
dZ(φ(x), φ′(x′)) + dZ(φ(y), φ′(y′)) + sup

t∈I
|qt(x, y)− q′t(x′, y′)|

)}
,

where the infimum is taken over all metric spaces Z = (Z, dZ), isometric embeddings
φ : F → Z, φ′ : F ′ → Z, and correspondences C between F and F ′, dZH is the Hausdorff
distance between compact subsets of Z, and dZP is the Prohorov distance between Borel
probability measures on Z. Note that, by a correspondence C between F and F ′, we
mean a subset of F × F ′ such that for every x ∈ F there exists at least one x′ ∈ F ′ such
that (x, x′) ∈ C and conversely for every x′ ∈ F ′ there exists at least one x ∈ F such that
(x, x′) ∈ C.

In the following lemma, we check that the above definition gives us a metric and
that the corresponding space is separable. (The latter fact will be useful when it comes
to making convergence in distribution statements regarding the mixing times of se-
quences of random graphs, as is done in Sections 5.2 and 5.3, for example). Before
this, however, let us make a few remarks about the inspiration for the distance in ques-
tion. In the infimum characterizing ∆I , the first term is simply that used in the standard
Gromov-Hausdorff distance (see [7, Definition 7.3.10], for example). In fact, as far as
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the topology is considered, this term could have been omitted since it is absorbed by
the other terms in the expression, but we find that it is technically convenient and some-
what instructive to maintain it. The second term is that considered by the authors of
[23] in defining their ‘Gromov-Prohorov’ distance between metric measure spaces. The
final term is closely related to one used in [17, Section 6] when defining a distance
between spatial trees – real trees equipped with a continuous function. Indeed, the
notion of a correspondence is quite standard in the Gromov-Hausdorff setting as a way
to relate two compact metric spaces. One can, for example, alternatively define the
Gromov-Hausdorff distance between compact metric spaces as half the infimum of the
distortion of the correspondences between them (see [7, Theorem 7.3.25]).

Lemma 2.1. For any compact interval I ⊂ (0,∞), (MI ,∆I) is a separable metric space.

Proof. Fix a compact interval I ⊂ (0,∞). That ∆I is a non-negative function and is
symmetric is obvious. To prove that it is also the case that ∆I ((F, π, q), (F ′, π′, q′)) <∞
for any choice of (F, π, q), (F ′, π′, q′) ∈ MI , simply consider Z to be the disjoint union
of F and F ′, setting dZ(x, x′) := diam(F, dF ) + diam(F ′, d′F ) for any x ∈ F, x′ ∈ F ′, and
suppose that C = F × F ′.

We next show that ∆I is positive definite. Suppose (F, π, q), (F ′, π′, q′) ∈ MI are
such that ∆I ((F, π, q), (F ′, π′, q′)) = 0. For every ε > 0, we can thus choose Z, φ, φ′, C
such that the sum of quantities in the defining infimum of ∆I is bounded above by ε.
Moreover, there exists a δ ∈ (0, ε] such that

sup
x1,x2,y1,y2∈F :

dF (x1,x2),dF (y1,y2)≤δ

sup
t∈I
|qt(x1, y1)− qt(x2, y2)| ≤ ε. (2.1)

Now, let (xi)
∞
i=1 be a dense sequence of disjoint elements of F (in the case F is finite,

we suppose that the sequence terminates after having listed all of the elements of F ).
By the compactness of F , there exists an integer Nε such that (BF (xi, δ))

Nε
i=1 is a cover

for F . Define A1 := BF (x1, δ), and Ai := BF (xi, δ)\ ∪i−1
j=1 BF (xi, δ) for i = 2, . . . , Nε, so

that (Ai)
Nε
i=1 is a disjoint cover of F , and then consider a function fε : F → F ′ obtained

by setting
fε(x) := x′i

on Ai, where x′i is chosen such that (xi, x
′
i) ∈ C for each i = 1, . . . , Nε. Clearly, by

definition, fε is a measurable function. It is further the case that it satisfies, for any
x ∈ F ,

dZ(φ(x), φ′(fε(x))) ≤ dZ(φ(x), φ(xi)) + dZ(φ(xi), φ
′(x′i)) ≤ 2ε,

where, in the above, we assume that i ∈ {1, . . . , Nε} is such that x ∈ Ai. From this, it
readily follows that:

sup
x,y∈F

|dF (x, y)− dF ′(fε(x), fε(y))| ≤ 4ε (2.2)

and
dF
′

P (π ◦ f−1
ε , π′) ≤ 3ε, (2.3)

where dF
′

P is the Prohorov distance on F ′. By applying (2.1), we also have that

sup
x,y∈F,t∈I

|qt(x, y)− q′t(fε(x), fε(y))| ≤ 2ε. (2.4)

To continue, we use a diagonalization argument to deduce the existence of a sequence
(εn)n≥1 such that fεn(xi) converges to some limit f(xi) ∈ F ′ for every i ≥ 1. From (2.2),
we obtain that dF ′(f(xi), f(xj)) = dF (xi, xj) for every i, j ≥ 1, and so we can extend
the map f continuously to the whole of F ([7, Proposition 1.5.9]). This construction
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immediately implies that f is distance preserving. Moreover, reversing the roles of F
and F ′, we are able to find a distance preserving map from F ′ to F . Hence f must be
an isometry. To check that (F, π, q) and (F ′, π′, q′) are equivalent, it therefore remains
to check that π ◦ f−1 = π′ and q′t ◦ f = qt for every t ∈ I. Fix ε > 0 and recall that
the definition of (xi)

Nε
i=1 means that it is an ε-net for F . Let ε′ ∈ (0, ε] be such that

dF ′(fε′(xi), f(xi)) ≤ ε for every i = 1, . . . , Nε. Then,

dF ′(fε′(x), f(x)) ≤ dF ′(fε′(x), fε′(xi)) + dF ′(fε′(xi), f(xi)) + dF ′(f(xi), f(x)) ≤ 7ε, (2.5)

where we are again assuming that i ∈ {1, . . . , Nε} is such that x ∈ Ai, and have applied
(2.2) and the distance-preserving property of f . In particular, this implies that

dF
′

P (π ◦ f−1, π′) ≤ dF
′

P (π ◦ f−1, π ◦ f−1
ε′ ) + dF

′

P (π ◦ f−1
ε′ , π

′) ≤ 10ε,

where we use (2.3) to deduce the second inequality. Since ε > 0 was arbitrary, this
yields that π ◦ f−1 = π′. Finally, (2.4) and (2.5) imply that

sup
x,y∈F,t∈I

|qt(x, y)− q′t(f(x), f(y))| ≤ 2ε+ sup
x′1,x

′
2,y
′
1,y
′
2∈F

′:

dF ′ (x
′
1,x
′
2),dF ′ (y

′
1,y
′
2)≤7ε

sup
t∈I
|q′t(x′1, y′1)− qt(x′2, y′2)| ,

and so q′t ◦ f = qt for every t ∈ I follows from the continuity properties of q′. This
completes the proof of the fact that: if ∆I ((F, π, q), (F ′, π′, q′)) = 0, then the triples
(F, π, q) and (F ′, π′, q′) are equivalent in the sense described at the start of the section.
Consequently, ∆I is indeed positive definite on the set of equivalence classesMI .

For the triangle inequality, we closely follow the proof of [23, Lemma 5.2]. Let
(F (i), π(i), q(i)) be an element ofMI , i = 1, 2, 3. Suppose that

∆I((F
(1), π(1), q(1)), (F (2), π(2), q(2))) < δ1,

so that we can find a metric space Z1, isometric embeddings φ1,1 : F (1) → Z1 and
φ2,1 : F (2) → Z1 and correspondence C1 between F (1) and F (2) such that the sum of
quantities in the defining infimum of ∆I is bounded above by δ1. If

∆I((F
(2), π(2), q(2)), (F (3), π(3), q(3))) < δ2,

we define Z2 ,φ2,2, φ3,2, C2 in an analogous way. Now, set Z to be the disjoint union of Z1

and Z2, and define a distance on it by setting dZ |Zi×Zi = dZi for i = 1, 2, and for x ∈ Z1,
y ∈ Z2,

dZ(x, y) := inf
z∈F (2)

(dZ1
(x, φ2,1(z)) + dZ2

(φ2,2(z), y)) .

Abusing notation slightly, it is then the case that, after points separated by a 0 distance
have been identified, (Z, dZ) is a metric space into which there is a natural isometric
embedding φi of Zi, i = 1, 2. In this space, we have that

dZH(φ1(φ1,1(F (1))), φ2(φ3,2(F (3))))

≤ dZ1

H (φ1,1(F (1)), φ2,1(F (2))) + dZ2

H (φ2,2(F (2)), φ3,2(F (3))),

where we have applied the fact that φ1(φ2,1(y)) = φ2(φ2,2(y)) for every y ∈ F (2), and so
φ1(φ2,1(F (2))) = φ2(φ2,2(F (2))) as subsets of Z. A similar bound applies to the embedded
measures. Now, let

C := {(x, z) ∈ F (1) × F (3) : ∃y ∈ F (2) such that (x, y) ∈ C1, (y, z) ∈ C2},

then if (x, z) ∈ C,

dZ(φ1(φ1,1(x)), φ2(φ3,2(z))) ≤ dZ1(φ1,1(x), φ2,1(y)) + dZ2(φ2,2(y), φ3,2(z)),
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where y ∈ F (2) is chosen such that (x, y) ∈ C1 and (y, z) ∈ C2, and we again note
φ1(φ2,1(y)) = φ2(φ2,2(y)). Proceeding in the same fashion, one can deduce a corre-
sponding bound involving q(i), i = 1, 2, 3. Putting these pieces together, it is elementary
to deduce that

∆I((F
(1), π(1), q(1)), (F (3), π(3), q(3))) ≤ δ1 + δ2,

and the triangle inequality follows. Thus we have proved that (MI ,∆I) is a metric
space.

To complete the proof, we only need to show separability. This is straightforward,
however, as for any element ofMI , one can construct an approximating sequence that
incorporates only: metric spaces with a finite number of points and rational distances
between them, probability measures on these with a rational mass at each point, and
functions that are defined (at each coordinate pair) to be equal to rational values at
a finite collection of rational time points and are linear between these. To be more
explicit, let (F, π, q) be an element ofMI , and then define a sequence (FN , πN , qN )N≥1

as follows. First, let FN be a finite N−1-net of F , which exists because F is compact.
By perturbing dF , it is possible to define a metric dFN on FN such that |dFN (x, y) −
dF (x, y)| ≤ N−1 and moreover dFN (x, y) ∈ Q for all x, y ∈ FN . Now, since FN is an N−1-
net of F , it is possible to choose a partition (Ax)x∈FN of F such that x ∈ Ax and the
diameter of Ax (with respect to dF ) is no greater than 2N−1. Moreover, it is possible to
choose the partition in such a way that Ax is measurable for each x ∈ FN . We construct
a probability measure on FN by choosing πN ({x}) ∈ Q such that |πN ({x}) − π(Ax)| ≤
N−1 (subject to the constraint that

∑
x∈FN π

N ({x}) = 1). Finally, define εN by setting

εN := sup
s,t∈I:

|s−t|≤N−1

sup
x,x′,y,y′∈F :

dF (x,x′),dF (y,y′)≤N−1

|qs(x, y)− qt(x′, y′)| ,

so that, by the joint continuity of q, εN → 0 as N → ∞. Let inf I ≤ t0 ≤ t1 ≤ · · · ≤ tK ≤
sup I be a set of rational times such that |t0− inf I|, | sup I− tK |, |ti+1− ti| ≤ N−1, choose
qNti (x, y) ∈ Q such that |qNti (x, y) − qti(x, y)| ≤ N−1 for each x, y ∈ FN , and then extend
qN to have domain FN ×FN × I by linear interpolation in t at each pair of vertices. This
construction readily yields that ∆I((F, π, q), (F

N , πN , qN )) ≤ 6N−1 + 3εN → 0. Since the
class of triples from which the approximating sequence is chosen is clearly countable,
this completes the proof of separability.

We will say that a sequence inMI converges in a spectral Gromov-Hausdorff sense
if it converges to a limit in this space with respect to the metric ∆I . We note that
in the framework of compact Riemannian manifolds, different but related notions of
spectral distances were introduced by Bérard, Besson and Gallot ([5]) and by Kasue
and Kumura ([25]). Moreover, by applying our characterization of spectral Gromov-
Hausdorff convergence, we are able to deduce that if Assumption 1 holds, then we can
isometrically embed all the rescaled graphs, measures and transition densities upon
them into a common metric space (E, dE) so that they converge to the relevant limit
objects in a more standard way, as the following lemma makes precise. Note that in
the proof of the result and henceforth we define balls in the space (E, dE) by setting
BE(x, r) := {x ∈ E : dE(x, y) < r}.

Lemma 2.2. Suppose that Assumption 1 is satisfied. For any compact interval I ⊂
(0,∞), there exist isometric embeddings of (V (GN ), dGN ), N ≥ 1, and (F, dF ) into a
common metric space (E, dE) such that

lim
N→∞

dEH(V (GN ), F ) = 0, (2.6)
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lim
N→∞

dEP (πN , π) = 0, (2.7)

and also,

lim
N→∞

sup
x,y∈F

sup
t∈I

∣∣∣qNγ(N)t(gN (x), gN (y))− qt(x, y)
∣∣∣ = 0, (2.8)

where, for brevity, we have identified the spaces (V (GN ), dGN ), N ≥ 1, and (F, dF ), and
the measures upon them with their isometric embeddings in (E, dE). For each x ∈ F ,
we define gN (x) to be a vertex in V (GN ) minimizing dE(x, y) over y ∈ V (GN ).

Proof. Fix a compact interval I ⊂ (0,∞). By Assumption 1, for each N ≥ 1 it is possible
to find metric spaces (EN , dN ), isometric embeddings φN : (V (GN ), dGN ) → (EN , dN ),
φ′N : (F, dF ) → (EN , dN ) and correspondences CN between V (GN ) and F such that,
identifying the original objects and their embeddings,

dE
N

H (V (GN ), F ) + dE
N

P (πN , π)

+ sup
(x,x′),(y,y′)∈CN

(
dN (x, x′) + dN (y, y′) + sup

t∈I

∣∣∣qNγ(N)t(x, y)− qt(x′, y′)
∣∣∣) ≤ εN , (2.9)

where εN → 0. Now, proceeding similarly to the proof of the triangle inequality in
Lemma 2.1, set E to be the disjoint union of EN , N ≥ 1, and define a distance on it by
setting dE |EN×EN = dN for N ≥ 1, and for x ∈ EN , x′ ∈ EN ′ , N 6= N ′, set

dE(x, x′) := inf
y∈F

(dN (x, y) + dN ′(y, x
′)) .

Quotienting out points that are separated by distance 0 results in a metric space (E, dE)

(again, this is a slight abuse of notation), into which we have natural isometric embed-
dings of the metric spaces (V (GN ), dGN ), N ≥ 1, and (F, dF ). Moreover, in the metric
space (E, dE), it readily follows from (2.9) that the relevant isometrically embedded ob-
jects satisfy (2.6) and (2.7). To prove (2.8), first note that for every x ∈ V (GN ), N ≥ 1,
there exists an x′ ∈ F such that (x, x′) ∈ CN . This implies that dE(x, x′) ≤ εN , and so,
for any δ > 0,

sup
x,y,z∈V (GN ):
dGN (y,z)≤δ

sup
t∈I

∣∣∣qNγ(N)t(x, y)− qNγ(N)t(x, z)
∣∣∣

≤ 2εN + sup
x,y,z∈F :

dF (y,z)≤δ+2εN

sup
t∈I
|qt(x, y)− qt(x, z)| . (2.10)

Now, for every x ∈ F and N ≥ 1, there exists an x′ ∈ V (GN ) such that (x′, x) ∈ CN , and
so dE(x′, x) ≤ εN . Therefore, since gN (x) is the closest vertex of V (GN ) to x,

gN (x) ∈ BE(x, 2εN ) ∩ V (GN ) ⊆ BE(x′, 3εN ) ∩ V (GN ) = BV (GN )(x
′, 3εN ).

Consequently,

sup
x,y∈F

sup
t∈I

∣∣∣qNγ(N)t(gN (x), gN (y))− qt(x, y)
∣∣∣

≤ εN + 2 sup
x,y,z∈V (GN ):
dGN (y,z)≤3εN

sup
t∈I

∣∣∣qNγ(N)t(x, y)− qNγ(N)t(x, z)
∣∣∣

≤ 5εN + 2 sup
x,y,z∈F :

dF (y,z)≤5εN

sup
t∈I
|qt(x, y)− qt(x, z)| ,

where the second inequality is an application of (2.10). Letting N → ∞ and applying
the joint continuity of (qt(x, y))x,y∈F,t>0, we obtain the desired result.
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For our later convenience, let us note a useful tightness condition for the rescaled
transition densities that was essentially established in the proof of the previous result.

Lemma 2.3. Suppose that Assumption 1 holds. For any compact interval I ⊂ (0,∞),

lim
δ→0

lim sup
N→∞

sup
x,y,z∈V (GN ):
dGN (y,z)≤δ

sup
t∈I

∣∣∣qNγ(N)t(x, y)− qNγ(N)t(x, z)
∣∣∣ = 0. (2.11)

Proof. Recalling the continuity property of q, taking the limit as N →∞ in (2.10) yields

lim sup
N→∞

sup
x,y,z∈V (GN ):
dGN (y,z)≤δ

sup
t∈I

∣∣∣qNγ(N)t(x, y)− qNγ(N)t(x, z)
∣∣∣ ≤ sup

x,y,z∈F :
dF (y,z)≤δ

sup
t∈I
|qt(x, y)− qt(x, z)| .

Again appealing to the continuity of q, the right-hand side here converges to 0 as δ → 0,
which completes the proof.

It is straightforward to reverse the conclusions of the previous two lemmas to check
that if (2.6), (2.7), (2.8) and (2.11) hold, then so does Assumption 1. Indeed, under these
assumptions, we have isometric embeddings of (V (GN ), dGN ), N ≥ 1, and (F, dF ) into a
common metric space (E, dE) for which: (2.6) gives the Hausdorff convergence of sets;
(2.7) gives the Prohorov convergence of measures; and moreover, it is elementary to
check from (2.8) and (2.11) that, with respect to the correspondences

CN :=
{

(x, x′) ∈ F × V (GN ) : dE(x, x′) ≤ N−1
}
,

the relevant transition densities converge uniformly, as described in the definition of
the metric ∆I . Thus, in examples, it will suffice to check these equivalent conditions
when seeking to verify Assumption 1. In fact, it is further possible to weaken these
assumptions slightly by appealing to a local limit theorem from [14]. To be precise,
because we are assuming that the transition densities of the graph satisfy the tightness
condition of (2.11), we can apply [14, Theorem 15], to replace the local convergence
statement of (2.8) with a central limit-type convergence statement. Note that, although
in [14] it was assumed that the metric onGN was a shortest path graph distance, exactly
the same argument yields the corresponding conclusion in our setting, and so we simply
state the result.

Proposition 2.4 (cf. [14, Theorem 15]). Suppose that (V (GN ), dGN ), N ≥ 1, and (F, dF )

can be isometrically embedded into a common metric space (E, dE) in such a way that
(2.6) and (2.7) are both satisfied. Moreover, assume that there exists a dense subset
F ∗of F such that, for any compact interval I ⊂ (0,∞), x ∈ F ∗, y ∈ F , r > 0,

lim
N→∞

PG
N

gN (x)

(
XGN

bγ(N)tc ∈ BE(y, r)
)

= PFx
(
XF
t ∈ BE(y, r)

)
(2.12)

uniformly for t ∈ I, and also (2.11) holds. Then Assumption 1 holds.

To complete this section, let us observe that [14] also provides two ways to check
(2.11): one involving a resistance estimate on the graphs in the sequence ([14, Propo-
sition 17]), and one involving the parabolic Harnack inequality ([14, Proposition 16]).
Since the first of these two methods will be applied in several of our examples later, let
us recall the result here. To allow us to state the result, we define RGN (x, y) to be the
resistance between x and y in V (GN ) (see (6.1)), when we suppose that GN is an elec-
trical network with conductances of edges being given by the weight function µG

N

. This
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defines a metric on V (GN ), for which the following result is proved as [14, Proposition
17]. As above, note that although it was a shortest path graph distance considered in
[14], the same proof applies for a general distance on the graph in question. Moreover,
the statement of the lemma is slightly different from that of the corresponding result in
[14], because there the scaling α(n) was absorbed into the definition of the metric.

Lemma 2.5 (cf. [14, Proposition 17]). Suppose that there exists a sequence (α(N))N≥1

and constants κ, c1, c2, c3 ∈ (0,∞) such that

RGN (x, y) ≤ c1 (α(N)dGN (x, y))
κ
, ∀x, y ∈ V (GN ),

and also

c2γ(N) ≤ α(N)κβ(N) ≤ c3γ(N),

where β(N) :=
∑
x,y∈V (GN ) µ

GN

xy , then (2.11) holds.

3 Convergence of Lp-mixing times

3.1 Proof of Theorem 1.4

In this subsection we prove the mixing time convergence result of Theorem 1.4.
Throughout, we will suppose that Assumption 1 holds and that the graphs GN and
limiting metric space F have been embedded into a common metric space (E, dE) in
the way described by Lemma 2.2.

Recall from the introduction the definition of Dp(x, t) = ‖qt(x, ·) − 1‖Lp(π), the Lp-
distance from stationarity of the process XF started from x at time t. By applying the
continuity of (qt(x, y))x,y∈F,t>0, compactness of F and finiteness of π, it is easy to check
that this quantity is finite for every x ∈ F and t > 0. The next lemma collects together
a number of other basic properties of Dp(x, t) that we will apply later (the first part is a
minor extension of [8, Proposition 3.1], in our setting).

Lemma 3.1. Let p ∈ [1,∞]. For every x ∈ F , the function t 7→ Dp(x, t) is continuous
and strictly decreasing. Furthermore, we have

lim
t→0

Dp(x, t) ≥ 2. (3.1)

Proof. That the function t 7→ Dp(x, t) is continuous is clear from (1.2), and so we turn
to checking that it is strictly decreasing. First, a standard argument involving an
application of Jensen’s inequality and the invariance of π allows one to deduce that
‖Ptf‖Lp(π) ≤ ‖f‖Lp(π) for any f ∈ Lp(F, π), where (Pt)t≥0 is the semigroup naturally
associated with the transition density (qt(x, y))x,y∈F,t>0. Now, suppose f ∈ Lp(F, π) is
such that ‖Ptf‖Lp(π) = ‖f‖Lp(π), and define f1(y) := |Ptf(y)|p and f2(y) := Pt(|f |p)(y).
By the assumption on f and the fact that XF is conservative and π-symmetric, we have
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that ∫
F

f1dπ =

∫
F

|Ptf(y)|pπ(dy)

=

∫
F

|f(y)|pπ(dy)

=

∫
F

|f(y)|p
∫
F

qt(y, z)π(dz)π(dy)

=

∫
F

∫
F

|f(y)|pqt(z, y)π(dy)π(dz)

=

∫
F

Pt(|f |p)(z)π(dz)

=

∫
F

f2dπ.

Furthermore, Jensen’s inequality implies f1(y) ≤ f2(y). Thus, it must be the case that
f1(y) = f2(y), π-a.e. In particular, because π is a probability measure, there exists a
y ∈ F such that f1(y) = f2(y).

In the case p > 1, the conclusion of the previous paragraph readily implies that
f is constant qt(y, z)π(dz)-a.e. Recalling the assumption that qt(y, z) > 0 everywhere,
namely (1.3), it must therefore hold that f is constant π-a.e. Observing that for s, t > 0

we can write Dp(x, s + t) = ‖Ps(qt(x, ·) − 1)‖Lp(π), it follows that Dp(x, s + t) < Dp(x, t)

if and only if qt(x, ·) = 1, π-a.e. However, condition (1.4) and the assumption that the
transition density is continuous imply that there exists a non-empty open set on which
qt(x, ·) 6= 1. Thus, because π has full support, it is not the case that qt(x, ·) = 1, π-a.e.,
and we must have Dp(x, s+ t) < Dp(x, t), as desired.

For p = 1, the result f1(y) = f2(y) implies that f is either non-negative or non-
positive, π-a.e. Consequently, if we suppose that Dp(x, s + t) = ‖Ps(qt(x, ·) − 1)‖Lp(π) =

Dp(x, t) for some s > 0, then it must be the case that qt(x, ·)−1 is either non-negative or
non-positive. However, since

∫
F

(qt(x, y)− 1)π(dy) = 0 (due to (1.1)) and (1.4) holds, we
arrive at a contradiction. In particular, it must be the case that Dp(x, s + t) < Dp(x, t),
and this completes the proof of strict monotonicity.

To establish the limit in (3.1), it will suffice to prove the result in the case p = 1

(obtaining the result for other values of p is then simply Jensen’s inequality). Let x ∈ F
and r > 0, then

D1(x, t) ≥
∫
BE(x,r)

(qt(x, y)− 1)π(dy) +

∫
BE(x,r)c

(1− qt(x, y))π(dy)

= 2Px
(
XF
t ∈ BE(x, r)

)
− 2π(BE(x, r)),

where (1.1) is used in the last equality. Since XF is a Hunt process, the first term here
converges to 2 as t→ 0. Furthermore, because π is non-atomic, the second term can be
made arbitrarily small by suitable choice of r. The result follows.

We continue by defining the Lp-mixing time at x ∈ F by setting

tpmix(x) := inf{t > 0 : Dp(x, t) ≤ 1/4}.

In fact, the previous lemma yields that tpmix(x) is the unique value of t ∈ (0,∞) such that
Dp(x, t) = 1/4 (when (1.5) holds at x). Similarly, define the Lp-mixing time of x ∈ V (GN )

by setting

tN,pmix(x) := inf{t > 0 : DN
p (x, t) ≤ 1/4},
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where DN
p (x,m) = ‖qNm(x, ·) − 1‖Lp(πN ). That the discrete mixing times at a point con-

verge when suitably rescaled to the continuous mixing time there is the conclusion of
the following proposition.

Proposition 3.2. Suppose that Assumption 1 is satisfied. If p ∈ [1,∞] is such that (1.5)
holds for x ∈ F , then

lim
N→∞

γ(N)−1tN,pmix(gN (x)) = tpmix(x),

where, as in the statement of Lemma 2.2, gN (x) is a vertex in V (GN ) that minimizes the
distance dE(x, y) over V (GN ).

Proof. Suppose p ∈ [1,∞] is such that (1.5) holds for x ∈ F , set t0 := tpmix(x) ∈ (0,∞),
and fix ε > 0. By (1.2) and the tightness of Lemma 2.3, there exists a δ > 0 such that

sup
t∈I

sup
y,z∈F :

dE(y,z)<2δ

||qt(x, y)− 1|p − |qt(x, z)− 1|p| < ε, (3.2)

lim sup
N→∞

sup
t∈I

sup
y,z∈V (GN ):
dGN (y,z)<3δ

∣∣∣|qNγ(N)t(gN (x), y)− 1|p − |qNγ(N)t(gN (x), z)− 1|p
∣∣∣ < ε, (3.3)

where I := [t0/2, 2t0]. Moreover, by the compactness of F , there exists a finite collection
of balls (BE(xi, δ))

k
i=1 covering F . Define A1 := B(x1, 2δ), and Ai := BE(xi, 2δ)\ ∪i−1

j=1

BE(xi, 2δ) for i = 2, . . . , k, so that (Ai)
k
i=1 is a disjoint cover of the δ-enlargement of F .

We observe

|Dp(x, t)
p −DN

p (gN (x), γ(N)t)p| ≤ T1 + T2 + T3 + T4,

where

T1 :=

∣∣∣∣∣
∫
F

|qt(x, y)− 1|pπ(dy)−
k∑
i=1

|qt(x, xi)− 1|pπ(Ai)

∣∣∣∣∣ ,
T2 :=

∣∣∣∣∣
k∑
i=1

|qt(x, xi)− 1|pπ(Ai)−
k∑
i=1

|qt(x, xi)− 1|pπN (Ai)

∣∣∣∣∣ ,
T3 :=

∣∣∣∣∣
k∑
i=1

|qt(x, xi)− 1|pπN (Ai)−
k∑
i=1

|qNγ(N)t(gN (x), gN (xi))− 1|pπN (Ai)

∣∣∣∣∣ ,
T4 :=

∣∣∣∣∣
k∑
i=1

|qNγ(N)t(gN (x), gN (xi))− 1|pπN (Ai)−
∫
V (GN )

|qNγ(N)t(gN (x), y)− 1|pπN (dy)

∣∣∣∣∣ .
Now, suppose t ∈ I. From (3.2), we immediately deduce that T1 ≤ ε. For T2, we
first observe that the fact balls are π-continuity sets implies that A1, . . . , Ak are also
π-continuity sets. Hence πN (Ai) → π(Ai) for each i = 1, . . . , k, and so T2 ≤ ε for
large N . That T3 ≤ ε for large N is a straightforward consequence of Lemma 2.2.
Finally, applying the fact that dEH(F, V (GN )) → 0, we deduce that, for large N , (Ai)

k
i=1

is a disjoint cover for V (GN ). Since gN (xi) ∈ BE(xi, δ) for large N , we also have that
dGN (y, gN (xi)) ≤ 3δ, uniformly over y ∈ Ai, i = 1, . . . , k. Thus we can appeal to (3.3) to
deduce that it is also the case that T4 ≤ ε for large N . In fact, each of these bounds can
be assumed to hold uniformly over t ∈ I, thereby demonstrating that

lim
N→∞

sup
t∈I

∣∣Dp(x, t)−DN
p (gN (x), γ(N)t)

∣∣ = 0. (3.4)

Since t 7→ DN
p (gN (x), γ(N)t) is a decreasing function in t for every N (cf. [8, Proposition

3.1]) and t 7→ Dp(x, t) is strictly decreasing, the proposition follows.
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Remark 3.3. In the case p = 2, the proof of the previous result greatly simplifies. In
particular, we note that

D2(x, t)2 = ‖qt(x, ·)− 1‖22 = q2t(x, x)− 1, (3.5)

and similarly
DN

2 (x, γ(N)t)2 = ‖qNγ(N)t(x, ·)− 1‖22 = qN2γ(N)t(x, x)− 1.

Hence the limit at (3.4) is an immediate consequence of the local limit result of (2.8),
and we do not have to concern ourselves with estimating the relevant integrals directly.

To extend the above proposition to the corresponding result for the mixing times of
the entire spaces, we will appeal to the following lemma, which establishes a continuity
property for the Lp-mixing times from fixed starting points in the limiting space, and a
related tightness property for the discrete approximations.

Lemma 3.4. Suppose p ∈ [1,∞] is such that (1.5) holds for x ∈ F , then the following
statements are true.
(a) The function y 7→ tpmix(y) is continuous at x.
(b) Under Assumption 1, it is the case that

lim
δ→0

lim sup
N→∞

sup
y∈V (GN ):

dGN (gN (x),y)<δ

γ(N)−1
∣∣∣tN,pmix(y)− tN,pmix(gN (x))

∣∣∣ = 0.

Proof. Consider p ∈ [1,∞] such that (1.5) holds for x ∈ F , so that t0 := tpmix(x) is finite,
and let ε ∈ (0, t0/2). Since the function t 7→ Dp(x, t) is strictly decreasing (by Lemma
3.1), there exists an η > 0 such that Dp(x, t0 − ε) > Dp(x, t0) + η = 1/4 + η and also
Dp(x, t0 + ε) < 1/4 − η. By the continuity of (qt(x, y))x,y∈F,t>0, there also exists a δ > 0

such that
sup

t∈[t0−ε,t0+ε]

sup
y∈F :

dF (x,y)<δ

|Dp(x, t)−Dp(y, t)| < η.

Hence if y ∈ BF (x, δ), then

Dp(y, t0 − ε) > Dp(x, t0 − ε)− η >
1

4
,

Dp(y, t0 + ε) < Dp(x, t0 + ε) + η <
1

4
.

This implies that tpmix(y) ∈ [t0 − ε, t0 + ε], and (a) follows.
The proof of part (b) is similar. In particular, choose η as above and note that (3.4)

implies that DN
p (gN (x), γ(N)(t0−ε)) > 1/4+η/2 and DN

p (gN (x), γ(N)(t0 +ε)) < 1/4−η/2
for large N . Furthermore, by the transition density tightness of Lemma 2.3, there exists
a δ > 0 such that

sup
t∈[t0−ε,t0+ε]

sup
y∈V (GN ):

dGN (gN (x),y)<δ

∣∣DN
p (gN (x), γ(N)t)−DN

p (y, γ(N)t)
∣∣ < η

2
,

for large N . Hence if N is large and y ∈ V (GN ) is such that dGN (gN (x), y) < δ,
then DN

p (y, γ(N)(t0 − ε)) > 1/4, and DN
p (y, γ(N)(t0 + ε)) < 1/4. This implies that

γ(N)−1tN,pmix(y) ∈ [t0− ε, t0 + ε]. Since it is trivially true that, once N is large enough, this
result can be applied with y = gN (x), the result follows.
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We are now ready to give the proof of our main result.

Proof of Theorem 1.4. Observe that, under the assumptions of the theorem, Lemma
3.4(a) implies that the function (tpmix(x))x∈F is continuous. Since F is compact, the
supremum of (tpmix(x))x∈F is therefore finite. Now, it is an elementary exercise to check
that we can write the Lp-mixing time of F , as defined at (1.6), in the following way:

tpmix(F ) = sup
x∈F

tpmix(x). (3.6)

Consequently tpmix(F ) ∈ (0,∞), as desired.
To complete the proof, we are required to demonstrate the convergence statement

of (1.10). Fix ε > 0. For every x ∈ F , Proposition 3.2 and Lemma 3.4(b) allow us to
choose δ(x) > 0 and N(x) <∞ such that

sup
N≥N(x)

∣∣∣γ(N)−1tN,pmix(gN (x))− tpmix(x)
∣∣∣ ≤ ε,

sup
N≥N(x)

sup
y∈V (GN ):

dGN (gN (x),y)<4δ(x)

γ(N)−1
∣∣∣tN,pmix(gN (x))− tN,pmix(y)

∣∣∣ ≤ ε.
Since (BE(x, δ(x)))x∈F is an open cover for F , by compactness it admits a finite subcover
(BE(x, δ(x)))x∈X . Moreover, because dEH(F, V (GN )) → 0, there exists an N0 > 0 such
that if N ≥ N0, then (BE(x, 2δ(x)))x∈X is a cover for V (GN ). Applying this choice of X ,
we have for N ≥ N0 ∨maxx∈X N(x) that

γ(N)−1tpmix(GN ) ≤ sup
x∈X

γ(N)−1tN,pmix(gN (x)) + ε ≤ sup
x∈X

tpmix(x) + 2ε ≤ tpmix(F ) + 2ε,

where we note that, similarly to (3.6), the Lp-mixing time of the graphGN can be written
as

tpmix(GN ) = sup
x∈V (GN )

tN,pmix(x).

Furthermore, if x0 ∈ F is chosen such that tpmix(x0) ≥ tpmix(F )− ε, then, for large N ,

γ(N)−1tN,pmix(GN ) ≥ γ(N)−1tN,pmix(gN (x0)) ≥ tpmix(x0)− ε ≥ tpmix(F )− 2ε,

where we have again made use of Proposition 3.2. Since ε > 0 was arbitrary, we are
done.

3.2 Distinguished starting points

In certain situations, convergence of transition densities might only be known with
respect to a single distinguished starting point. This is the case, for instance, in two of
the most important examples we present in Section 5 – critical Galton-Watson trees and
the critical Erdős-Rényi random graph. In such settings, it is only possible to prove a
convergence result for the mixing time from the distinguished point. It is the purpose
of this subsection to present a precise conclusion of this kind.

Consider, for a compact interval I ⊂ (0,∞), the space of triples of the form (F, π, q),
where F = (F, dF , ρ) is a non-empty compact metric space with distinguished vertex ρ,
π is a Borel probability measure on F and q = (qt(x, y))x,y∈F,t∈I is a jointly continuous
real-valued function of (t, x, y); this is the same as the collection M̃I defined in Section
2, though we have added the supposition that the metric spaces are pointed. We say
two such elements, (F, π, q) and (F ′, π′, q′), are equivalent if there exists an isometry
f : F → F ′ such that f(ρ) = ρ′, π ◦ f−1 = π′ and q′t ◦ f = qt for every t ∈ I. By
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following the proof of Lemma 2.1, one can check that it is possible to define a metric
on the equivalence classes of this relation by simply including in the definition of ∆I

the condition that the correspondence C must contain (ρ, ρ′). We define convergence
in a spectral pointed Gromov-Hausdorff sense to be with respect to this metric. The
distinguished starting point version of Assumption 1 is then as follows.

Assumption 2. Let (GN )N≥1 be a sequence of finite connected graphs with at least two
vertices and one, ρN say, distinguished, for which there exists a sequence (γ(N))N≥1

such that, for any compact interval I ⊂ (0,∞),((
V (GN ), dGN , ρ

N
)
, πN ,

(
qNγ(N)t(ρ

N , x)
)
x∈V (GN ),t∈I

)
converges to ((F, dF , ρ) , π, (qt(ρ, x))x∈F,t∈I) in a spectral pointed Gromov-Hausdorff sense,
where ρ is a distinguished point in F .

The following result can then be proved in an almost identical fashion to Proposition
3.2, simply replacing gN (x) by ρN and x by ρ. In doing this, it is useful to note that if As-
sumption 1 is replaced by Assumption 2, then we are able to include in the conclusions
of Lemma 2.2 that ρN converges to ρ in E.

Theorem 3.5. Suppose that Assumption 2 is satisfied. If p ∈ [1,∞] is such that (1.5)
holds for x = ρ, then

γ(N)−1tN,pmix(ρN )→ tpmix(ρ).

4 Convergence to stationarity of the transition density

Before continuing to present example applications of the mixing time convergence
results proved so far, we describe how to check the Lp convergence to stationarity of the
transition density of XF in the case when we have a spectral decomposition for it and
a spectral gap. In the same setting, we will also explain how to check the non-triviality
conditions on the transition density that were made in the introduction.

Write the generator of the conservative Hunt process XF as −∆, and suppose that
∆ has a compact resolvent. Then there exists a complete orthonormal basis of L2(F, π),
(ϕk)k≥1 say, such that ∆ϕk = λkϕk for all k ≥ 0, 0 ≤ λ0 ≤ λ1 ≤ . . . and limk→∞ λk =∞.
By expanding as a Fourier series, we can consequently write the transition density of
XF as

qt(x, y) =
∑
k≥0

(∫
F

qt(x, z)ϕk(z)π(dz)

)
ϕk(y)

=
∑
k≥0

PFt ϕk(x)ϕk(y)

=
∑
k≥0

e−λktϕk(x)ϕk(y),

where (PFt )t≥0 is the associated semigroup, and the final equality holds as a simple
consequence of the fact that d

dt (P
F
t ϕk) = −PFt ∆ϕk = −λkPFt ϕk. Now by (1.1), it holds

that 1 = PFt 1 is in the domain of ∆. A standard argument thus yields ∆1 = ∆PFt 1 =

− d
dt (P

F
t 1) = 0, and so there is no loss of generality in presupposing that λ0 = 0 and

ϕ0 ≡ 1 in this setting. The only additional assumption we make on the transition density
(qt(x, y))x,y∈F,t>0 is that it is jointly continuous in (t, x, y) (i.e. (1.2) holds).
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Lemma 4.1. Suppose that the operator ∆ has a compact resolvent, so that the above
spectral decomposition holds. If there is a spectral gap, i.e. λ1 > 0, then (qt(x, y))x,y∈F,t>0

converges to stationarity in an Lp sense (namely (1.5) holds) for any p ∈ [1,∞].

Proof. Recall from (3.5) that D2(x, t)2 = q2t(x, x) − 1. Under the assumptions of the
lemma, it follows that

D2(x, t)2 =
∑
k≥1

e−2λktϕk(x)2 → 0, (4.1)

as t→∞, which completes the proof of the result for p = 2. To extend this to any p, we
first use Cauchy-Schwarz to deduce

(qt(x, y)− 1)2 =

∑
k≥1

e−λktϕk(x)ϕk(y)

2

≤
∑
k≥1

e−λktϕk(x)2
∑
k≥1

e−λktϕk(y)2

= (qt(x, x)− 1)(qt(y, y)− 1).

Consequently, we have that

D∞(x, t)2 = sup
y∈F

(qt(x, y)− 1)2

≤ (qt(x, x)− 1) sup
y∈F

(qt(y, y)− 1)

≤ D2(x, t/2)2 sup
y∈F

D∞(y, 1)

for any t ≥ 1, where the second inequality involves an application of the monotonicity
property proved as part of Lemma 3.1. Now, by (1.2), the term supy∈F D∞(y, 1) is a
finite constant, and so combining the above bound with (4.1) implies that D∞(x, t) ≤
CD2(x, t/2) → 0 as t → ∞. The result for general p ∈ [1,∞] is an immediate conse-
quence of this.

We now give a lemma that explains how to check conditions (1.3) and (1.4).

Lemma 4.2. Suppose that the operator ∆ has a compact resolvent and there is a spec-
tral gap, then the conditions (1.3) and (1.4) are automatically satisfied.

Proof. Firstly, assume that qt(x, y) = 0 for some x, y ∈ F , t > 0. If s ∈ (0, t), then the
Chapman-Kolmogorov equations yield 0 = qt(x, y) =

∫
F
qs(x, z)qt−s(z, y)π(dz). Since π

has full support, using (1.2), it follows that qs(x, z)qt−s(z, y) = 0 for every z ∈ F . In
particular, qs(x, y)qt−s(y, y) = 0. Noting that qt−s(y, y) = D2

2(y, t/2) + 1 ≥ 1, we deduce
that qs(x, y) = 0. Now, define a function f : (0,∞) → R+ by setting f(s) := qs(x, y).
Letting (λ′i)i≥0 represent the distinct eigenvalues of ∆, we can write

f(s) =
∑
i≥0

aie
−λ′is,

where ai :=
∑
j:λj=λ′i

ϕj(x)ϕj(y). In fact, since Cauchy-Schwarz implies
∑
i≥0 |aie−λ

′
is| ≤

(qs(x, x)qs(y, y))1/2 < ∞, this series converges absolutely whenever s ∈ (0,∞). Thus
f(z) :=

∑
i≥0 aie

−λ′iz defines an analytic function on the whole half-plane <(z) > 0. By
our previous observation regarding qs(x, y), this analytic function is equal to 0 on the
set (0, t], and therefore it must be 0 everywhere on <(z) > 0. However, this contradicts
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the fact that f(t) = qt(x, y) → 1 as t → ∞, which was proved in Lemma 4.1. Hence,
qt(x, y) > 0 for every x, y ∈ F , t > 0.

Secondly, suppose that qt(x, ·) ≡ 1 for some x ∈ F and t > 0. Then 1 = qt(x, x) =

1 +
∑
i≥1 ϕi(x)2e−λit, and so ϕi(x) = 0 for every i ≥ 1. This implies that qt(x, x) = 1 for

every t > 0. However, by following the proof of (3.1), one can deduce that

lim
t→0

(qt(x, x)− 1) = lim
t→0

D2
2(x, t/2) ≥ lim

t→0
D2

1(x, t/2) ≥ 2,

and so the previous conclusion can not hold. Consequently, we have shown that qt(x, ·) 6≡
1 for any x ∈ F , t > 0, as desired.

To summarize, the above results demonstrate that to verify all the conditions on the
transition density that are required to apply our mixing time convergence results, it
will suffice to check that the conservative Hunt process XF has a jointly continuous
transition density and the corresponding non-negative self-adjoint operator, ∆, has a
compact resolvent and exhibits a spectral gap. As the following corollary explains, this
is a particularly useful observation in the case that the Dirichlet form (E ,F) associated
with XF is a resistance form. A precise definition of such an object appears in [27,
Definition 3.1], for example, but the key property is the finiteness of the corresponding
resistance, i.e.

R(x, y) := sup

{
|f(x)− f(y)|2

E(f, f)
: f ∈ F , E(f, f) > 0

}
is finite for any x, y ∈ F .

Corollary 4.3. Suppose that XF is a π-symmetric Hunt process on F such that the
associated Dirichlet form (E ,F) is a resistance form, then (1.1)-(1.5) are automatically
satisfied.

Proof. The fact that XF is conservative is clear since for a resistance form 1 ∈ F and
E(1, 1) = 0. That (1.2) holds is proved in [27, Lemma 10.7]. Moreover, we can check
that the non-negative operator corresponding to (E ,F) has a compact resolvent (see
[27, Lemma 9.7] and [30, Theorem B.1.13]) and exhibits a spectral gap (this is an easy
consequence of the fact that, for a resistance form, E(f, f) = 0 if and only if f is con-
stant). Thus, by Lemma 4.1 and Lemma 4.2, the transition density of XF also satisfies
(1.3)-(1.5).

5 Examples

The mixing time results of the previous sections have many applications. To begin
with a particularly simple one, consider GN to be a discrete d-dimensional box of side-
length N , i.e. vertex set {1, 2, . . . , N}d and nearest neighbor connections. By applying
classical results about the convergence of the simple random walk on this graph to
Brownian motion on [0, 1]d reflected at the boundary, Theorem 1.4 readily implies that
the Lp-mixing time of the simple random walk on {1, 2, . . . , N}d, when rescaled by N−2,
converges to the Lp-mixing time of the limit process for any p ∈ [1,∞]. A similar result
could be proved for the random walk on the discrete torus (Z/NZ)d. More interest-
ingly, however, as we will now demonstrate, it is possible to apply our main results in
a number of examples where the graphs, and sometimes limiting spaces, are random:
self-similar fractal graphs with random weights, critical Galton-Watson trees, the criti-
cal Erdős-Rényi random graph, and the range of the random walk in high dimensions.
For the second and third of these, we will in the next section go on to describe how the
convergence in distribution of mixing times we establish can be applied to relate tail
asymptotics for mixing time distributions of the discrete and continuous models.
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5.1 Self-similar fractal graphs with random weights

Although the results we have proved apply more generally to self-similar fractal
graphs (see below for some further comments on this point), to keep the presentation
concise we restrict our attention here to graphs based on the classical Sierpinski gasket,
the definition of which we now recall. Suppose p1, p2, p3 are the vertices of an equilateral
triangle in R2. Define the similitudes

ψi(x) := pi +
z − pi

2
, i = 1, 2, 3.

Since (ψi)
3
i=1 is a family of contraction maps, there exists a unique non-empty compact

set F such that F = ∪3
i=1ψi(F ) – this is the Sierpinski gasket. We will suppose dF is the

intrinsic shortest path metric on F defined in [28], and note that this induces the same
topology as the Euclidean metric. Moreover, we suppose π is the (ln 3)/(ln 2)-Hausdorff
measure on F with respect to the Euclidean metric, normalized to be a probability
measure. This measure is non-atomic, has full support and satisfies π(∂B(x, r)) = 0 for
every x ∈ F , r > 0 (see [14, Lemma 25]).

We now define a sequence of graphs (GN )N≥0 by setting

V (GN ) :=
3⋃

i1,...,iN=1

ψi1...iN (V0),

where V0 := {p1, p2, p3} and ψi1...in := ψi1 ◦ · · · ◦ ψin , and

E(GN ) := {{ψi1...iN (x), ψi1...iN (y)} : x, y ∈ V0, x 6= y, i1, . . . , iN ∈ {1, 2, 3}} .

We set dGN := dF |V (GN )×V (GN ), so that (V (GN ), dGN ) converges to (F, dF ) with respect
to the Hausdorff distance between compact subsets of F . Weights (µNe )e∈E(GN ),N≥0

will be selected independently at random from a common distribution, which we as-
sume is supported on an interval [c1, c2], where 0 < c1 ≤ c2 < ∞. By the procedure
described in the introduction, we define from these weights a sequence of random
measures (πN )N≥0 on the vertex sets of our graphs in the sequence (GN )N≥0. That
πN weakly converges to π as Borel probability measures on F , almost-surely, can be
checked by applying [14, Lemma 26].

To describe the scaling limit of the random walks associated with the random weights
µN , we appeal to the homogenization result of [31]. To describe this, we first intro-
duce the Dirichlet form associated with the walk on the level N graph by setting, for
f ∈ RV (GN ),

EN (f, f) :=

3∑
i1,...,iN=1

∑
x,y∈V0,x 6=y

µNψi1...iN (x)ψi1...iN (y) (f(ψi1...iN (x))− f(ψi1...iN (y)))
2
. (5.1)

Let ΛN = (ΛNxy)x,y∈V0,x 6=y be the collection of weights such that the associated random

walk on G0 is the trace of XGN onto V0. It then follows from [31, Theorem 3.4] that
there exists a deterministic constant C ∈ (0,∞) such that

lim
n→∞

E

∣∣∣∣∣
(

5

3

)N
ΛNxy − C

∣∣∣∣∣ = 0,

for any x, y ∈ V0, x 6= y. Now, suppose ENC is a quadratic form on RV (GN ) which satisfies
(5.1) with µNψi1...iN (x)ψi1...iN (y) replaced by C in each summand, then define

E(f, f) = lim
N→∞

(
5

3

)N
ENC (f |V (GN ), f |V (GN ))
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for f ∈ F , where F is the subset of C(F,R) such that the right-hand side above exists
and is finite. It is known that (E ,F) is a local, regular Dirichlet form on L2(F, π), which
is also a resistance form (see [30], for example). Thus, by Corollary 4.3, the associated
π-symmetric diffusion XF , which (modulo the scaling constant C) is known as Brownian
motion on the Sierpinski gasket, satisfies (1.1)-(1.5).

For the case of unbounded fractal graphs, a probabilistic version of (2.12) was
proved as [14, Proposition 30(i)] by applying the homogenization result for processes of
[32] (cf. [31]). Since the Sierpinski gasket is a finitely ramified fractal, it is a relatively
straightforward technical exercise to adapt this result to the compact case by consider-
ing a decomposition of the sample paths of the relevant processes into segments started
at one of the outer corners of the gasket and stopped upon hitting another (a full proof
of this can be found in [15]).

Finally, a probabilistic version of the tightness condition of (2.11) is easily checked
by applying (a probabilistic version of) Lemma 2.5, using known resistance estimates
for nested fractals (cf. [14, Proposition 30(ii)]), and so Assumption 1 holds in probability
due to Proposition 2.4. Thus we are able to apply Theorem 1.4 to deduce the following.

Theorem 5.1. If tmix(GN ) is the mixing time of the random walk on the level N approx-
imation to the Sierpinski gasket equipped with uniformly bounded, independently and
identically distributed random weights, then

5−N tmix(GN )→ tmix(F )

in probability, where tmix(F ) is the mixing time of the diffusion XF .

Let us remark that the same argument will yield at least two generalizations of this
theorem. Firstly, it is not necessary for the weights to be independent and identically
distributed, but rather it will be sufficient for them only to be ‘cell independent’, i.e.
each collection (µNψi1...iN (x)ψi1...iN (y))x,y∈V0,x 6=y is independent and identically distributed

as (µxy)x,y∈V0,x 6=y. (We note that without a symmetry condition, though, the limiting
diffusion will no longer be guaranteed to be the Brownian motion on the Sierpinski
gasket.) Secondly, the Sierpinski gasket is just one example of a nested fractal. Identical
arguments could be applied to obtain corresponding mixing time results for sequences
of graphs based on any of the highly-symmetric fractals that come from this class (since
the key references [14], [31] and [32] all incorporate nested fractals already).

Finally, variations on the above mixing time convergence result can also be estab-
lished for examples along the lines of those appearing in [14, Sections 7.4 and 7.5].
These include: an almost-sure statement for Vicsek set-type graphs (which comple-
ments the mixing time bounds for deterministic versions of these graphs proved in
[22]); a convergence of mixing times for deterministic Sierpinski carpet graphs; and a
subsequential limit for Sierpinski carpets with random weights. Since many of the ideas
needed for these applications are similar to those discussed above, we omit the details.

5.2 Critical Galton-Watson trees

The connection between critical Galton-Watson processes and α-stable trees is now
well-known, and so we will be brief in introducing it. Let ξ be a mean 1 random variable
whose distribution is aperiodic (not supported on a sub-lattice of Z). Furthermore,
suppose that ξ is in the domain of attraction of a stable law with index α ∈ (1, 2), by
which we mean that there exists a sequence aN →∞ such that

ξ[N ]−N
aN

→ Ξ, (5.2)
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in distribution, where ξ[N ] is the sum of N independent copies of ξ and the limit random
variable satisfies E(e−λΞ) = e−λ

α

for λ > 0. If TN is a Galton-Watson tree with offspring
distribution ξ conditioned to have total progeny N , then it is the case that

N−1aNTN → T (α), (5.3)

in distribution with respect to the Gromov-Hausdorff distance between compact metric
spaces, where T (α) is an α-stable tree normalized to have total mass equal to 1 (see [34,
Theorem 4.3], which is a corollary of a result originally proved in [16]). Note that the
left-hand side here is shorthand for the metric space (V (TN ), N−1aNdTN ), where V (TN )

is the vertex set of TN and dTN is the shortest path graph distance on this set.
The α-stable tree T (α) is almost-surely a compact metric space. Moreover, there is

a natural non-atomic probability measure upon it, π(α) say, which has full support, and
appears as the limit of the uniform measure on the approximating graph trees. Usefully,
we can decompose this measure in terms of a collection of measures of level sets of the
tree. More specifically, in the construction of the α-stable tree from an excursion we can
naturally choose a root ρ ∈ T (α). We define T (α)(r) := {x ∈ T (α) : dT (α)(ρ, x) = r} to be
the collection of vertices at height r above this vertex. For almost-every realization of
T (α), there then exists a càdlàg sequence of finite measures on T (α), (`r)r>0, such that
`r is supported on T (α)(r) for each r and π(α) =

∫∞
0
`rdr (see [17, Section 4.2]). Clearly

this implies that π(α)(∂BT (α)(ρ, r)) = 0 for every r > 0, for almost-every realization of
T (α). Since α-stable trees satisfy a root-invariance property (see [17, Theorem 4.8]),
one can easily extend this result to hold for π(α)-a.e. x ∈ T (α). Although this is not quite
the assumption of the introduction that π(α)(∂BT (α)(x, r)) = 0 for every x ∈ T (α), r > 0,
by a minor tweak of the proof of Proposition 3.2, we are still able to apply our mixing
time convergence results in the same way.

Upon almost-every realization of the metric measure space (T (α), π(α)), it is possible
to define a corresponding Brownian motion X(α) (to do this, apply [29, Theorem 5.4], in
the way described in [10, Section 2.2]). This is a conservative π(α)-symmetric Hunt pro-
cess, and the associated Dirichlet form (E(α),F (α)) is actually a resistance form. Thus
we can again apply Corollary 4.3 to confirm that (1.1)-(1.5) hold for some correspond-
ing transition density, q(α) say. Now, in [13], it was demonstrated that if PTN

ρN
is the

law of the random walk on TN started from its root (original ancestor) ρN and πN is its
stationary probability measure, then, after embedding all the objects into an underly-
ing Banach space in a suitably nice way, the conclusion of (5.3) can be extended to the
distributional convergence of(

N−1aNTN , πN (Na−1
N ·),P

TN
ρN

((
N−1aNX

TN
bN2a−1

N tc

)
t∈[0,1]

∈ ·
))

to (T (α), π(α),P
(α)
ρ ), where P

(α)
ρ is the law of X(α) started from ρ. By applying the fixed

starting point version of the local limit result of Proposition 2.4 (cf. [14, Theorem 1]),
similarly to the argument of [14, Section 7.2], for the Brownian continuum random tree,
which corresponds to the case α = 2, one can obtain from this a distributional version of
Assumption 2. (The tightness condition of (2.11) is easily checked by applying Lemma
2.5.)

Lemma 5.2. For any compact interval I ⊂ (0,∞),((
V (TN ), N−1aNdT N , ρ

N
)
, πN ,

(
qN
N2a−1

N t
(ρN , x)

)
x∈V (TN ),t∈I

)
converges in distribution to ((T (α), dT (α) , ρ), π(α), (q

(α)
t (ρ, x))x∈T (α),t∈I) in a spectral pointed

Gromov-Hausdorff sense.
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Consequently, since the space in which the above convergence in distribution oc-
curs is separable, we can use a Skorohod coupling argument to deduce from this and
Theorem 3.5 the following mixing time convergence result. We remark that the

√
2

that appears in the finite variance result is simply an artefact of the particular scaling
we have described here, and could alternatively have been absorbed in the scaling of
metrics.

Theorem 5.3. Fix p ∈ [1,∞]. If tpmix(ρN ) is the Lp-mixing time of the random walk on
TN started from its root ρN , then

N−2aN t
p
mix(ρN )→tpmix(ρ),

in distribution, where tpmix(ρ) ∈ (0,∞) is the Lp-mixing time of the Brownian motion on
T (α) started from ρ. In particular, in the case when the offspring distribution has finite
variance σ, it is the case that

σ√
2
N−3/2tpmix(ρN )→tpmix(ρ),

in distribution.

Remark 5.4. We note that it was only for convenience that the convergence of the
random walks on the trees TN , N ≥ 1, to the Brownian motion on T (α) was proved
from a single starting point in [13]. We do not anticipate any significant problems
in extending this result to hold for arbitrary starting points. Indeed, the first step
would be to make the obvious adaptations to the proof of [13, Lemma 4.2] to extend the
result, which demonstrates convergence of simple random walks (and related additive
functionals) on subtrees of TN consisting of a finite number of branch segments to the
corresponding continuous objects, from the case when all the random walks start from
the root to an arbitrary starting point version. An argument identical to the remainder
of [13, Section 4] could then be used to obtain the convergence of simple random walks
on the whole trees, at least in the case when the starting point of the diffusion is in
one of the finite subtrees considered. Since the union of the finite subtrees is dense
in the limiting space, we could subsequently use the heat kernel continuity properties
to obtain the non-pointed spectral Gromov-Hausdorff version of Lemma 5.2. However,
we do not pursue this approach here as it would require a substantial amount of space
and new notation that is not relevant to the main ideas of this article. Were it to be
checked, Theorem 1.4 would imply, for any p ∈ [1,∞], the distributional convergence of
tpmix(TN ), the Lp-mixing time of the random walk on TN , when rescaled appropriately, to
tpmix(T (α)) ∈ (0,∞), the Lp-mixing time of the Brownian motion on T (α).

5.3 Critical Erdős-Rényi random graph

Closely related to the random trees of the previous section is the Erdős-Rényi ran-
dom graph at criticality. In particular, let G(N, p) be the random graph in which every
edge of the complete graph on N labeled vertices {1, . . . , N} is present with probability
p independently of the other edges. Supposing p = N−1 + λN−4/3 for some λ ∈ R,
so that we are in the so-called critical window, it is known that the largest connected
component CN , equipped with its shortest path graph metric dCN , satisfies(

V (CN ), N−1/3dCN
)
→ (M, dM)

in distribution, again with respect to the Gromov-Hausdorff distance between compact
metric spaces, where (M, dM) is a random compact metric space [1]. (In fact, this
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and all the results given in this subsection hold for a family of i-th largest connected
components for all i ∈ N. For notational simplicity, we only discuss the largest con-
nected component CN .) Moreover, in [9], it was shown that the associated random
walks started from a root vertex ρN satisfy a distributional convergence result of the
form (

N−1/3XC
N

bNtc

)
t≥0
→
(
XMt

)
t≥0

,

where XM is a diffusion on the space M started from a distinguished vertex ρ ∈ M.
Although the invariant probability measures of the random walks, πN say, were not
considered in [9], it is not difficult to extend this result to include them since the hard
work regarding their convergence has already been completed (see [9, Lemma 6.3],
in particular). Hence, by again applying the fixed starting point version of the local
limit result of Proposition 2.4 (using Lemma 2.5 again to deduce the relevant tightness
condition), we are able to obtain the analogue of Lemma 5.2 in this setting.

Lemma 5.5. For any compact interval I ⊂ (0,∞),((
V (CN ), N−1/3dCN , ρ

N
)
, πN ,

(
qNNt(ρ

N , x)
)
x∈V (TN ),t∈I

)
,

converges in distribution to ((M, dM, ρ), πM, (qMt (ρ, x))x∈M,t∈I), where πM is the in-
variant probability measure of XM and (qMt (x, y))x,y∈M,t>0 is its transition density with
respect to this measure, in a spectral pointed Gromov-Hausdorff sense.

In order to proceed as above, we must of course check that πM and qM satisfy a
number of technical conditions. To do this, first observe that a typical realization ofM
looks like a (rescaled) typical realization of the Brownian continuum random tree T (2)

glued together at a finite number of pairs of points [1]. Since πM can be considered as
the image of the canonical measure π(2) on T (2) under this gluing map, it is elementary
to obtain from the statements of the previous section regarding π(2) that πM is almost-
surely non-atomic, has full support and satisfies πM(∂BM(x, r)) = 0 for πM-a.e. x ∈ M
and every r > 0, as desired. For qM, we simply observe that because the Dirichlet form
corresponding to XM is a resistance form ([9, Proposition 2.1]), we can once again
apply Corollary 4.3 to establish conditions (1.1)-(1.5).

Given these results, pointwise mixing time convergence follows from Theorem 3.5.

Theorem 5.6. Fix p ∈ [1,∞]. If tpmix(ρN ) is the Lp-mixing time of the random walk on
CN started from its root ρN , then

N−1tpmix(ρN )→tpmix(ρ),

in distribution, where tpmix(ρ) ∈ (0,∞) is the Lp-mixing time of the Brownian motion on
M started from ρ.

Remark 5.7. As discussed in Remark 5.4, we do not expect any major barriers in
extending the above result to arbitrary starting points. The first task in doing this
would be to adapt the convergence result proved in [9] regarding the convergence of
simple random walks on subgraphs of Cn1 formed of a finite number of line segments
([9, Lemma 6.4]) to arbitrary starting points. One could then extend this to obtain the
desired convergence result for simple random walks on the entire space using ideas
from [9, Section 7] and heat kernel continuity. It would also be necessary to introduce
a new Gromov-Hausdorff-type topology to state the result, as the one used in [9] is only
suitable for the pointed case. Again, we suspect taking these steps will simply be a
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lengthy technical exercise, and choose not to follow them through here. We do though
reasonably expect that tpmix(CN ), the Lp-mixing time of the random walk on CN , when
rescaled appropriately, converges in distribution to tpmix(M) ∈ (0,∞), the Lp-mixing
time of the Brownian motion onM, for any p ∈ [1,∞].

5.4 Random walk on range of random walk in high dimensions

Let S = (Sn)n≥0 be the simple random walk on Zd started from 0, built on an un-
derlying probability space with probability measure P, and define the range of S up to
time N to be the graph GN with vertex set

V (GN ) := {Sn : 0 ≤ n ≤ N} , (5.4)

and edge set
E(GN ) := {{Sn−1, Sn} : 1 ≤ n ≤ N} . (5.5)

In this section, we will explain how to prove that if d ≥ 5, which is an assumption hence-
forth, then the mixing times of the sequence of graphs (GN )N≥1 grows asymptotically
as cN2, P-a.s., where c is a deterministic constant. Since doing this primarily depends
on making relatively simple adaptations of the high-dimensional scaling limit result of
[12] for the random walk on the entire range of S (i.e. the N = ∞ case) to the finite
length setting, we will be brief with the details.

First, suppose that S = (Sn)n∈Z is a two-sided extension of (Sn)n≥0 such that (S−n)n≥0

is an independent copy of (Sn)n≥0. The set of cut-times for this process,

T :=
{
n : S(−∞,n] ∩ S[n+1,∞) = ∅

}
,

is known to be infinite P-a.s. ([18]). Thus we can write T = {Tn : n ∈ Z}, where
. . . T−1 < T0 ≤ 0 < T1 < T2 < . . . . The corresponding set of cut-points is given by
C := {Cn : n ∈ Z}, where Cn := STn . For these objects, an ergodicity argument can be
applied to obtain that, P-a.s., as |n| → ∞,

Tn
n
→ τ(d) := E(T1|0 ∈ T ) ∈ [1,∞), (5.6)

dG(0, Cn)

|n|
→ δ(d) := E(dG(0, C1)|0 ∈ T ) ∈ [1,∞),

where dG is the shortest path graph distance on the range G of the entire two-sided
walk S, which is defined analogously to (5.4) and (5.5). In particular, see [12, Lemma
2.2], for a proof of the same convergence statements under the measure P(·|0 ∈ T ),
and note that the conditioning can be removed by using the relationship between P

and P(·|0 ∈ T ) described in [12, Lemma 2.1]. Given these results, it is an elementary
exercise to check that the metric space (V (GN ), τ(d)δ(d)−1N−1dGN ), where dGN is the
shortest path graph distance on GN , converges P-a.s. with respect to the Gromov-
Hausdorff distance to the interval [0, 1] equipped with the Euclidean metric. Moreover,
the same ideas readily yield an extension of this result to a spectral Gromov-Hausdorff
one including that πN , the invariant measure of the associated simple random walk,
converges to Lebesgue measure on [0, 1].

Now, for a fixed realization of G, let X = (Xn)n≥0 be the simple random walk on G

started from 0. Define the hitting times byX of the set of cut-points C byH0 := min{m ≥
0 : Xm ∈ C}, and, for n ≥ 1, Hn := min{m > Hn−1 : Xm ∈ C}. We use these times to
define a useful indexing process Z = (Zn)n≥0 taking values in Z. In particular, if n < H0,
define Zn to be the unique k ∈ Z such that XH0 = Ck. Similarly, if n ∈ [Hm−1, Hm) for
some m ≥ 1, then define Zn to be the unique k ∈ Z such that XHm = Ck. Noting that
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this definition precisely coincides with the definition of Z in [12], from Lemma 3.5 of
that article we have that: for P- a.e. realization of G,(

N−1τ(d)ZbtN2c
)
t≥0
→ (Btκ2(d))t≥0, (5.7)

in distribution, where (Bt)t≥0 is a standard Brownian motion on R started from 0, and
κ2(d) ∈ (0,∞) is the deterministic constant defined in [12]. To deduce from (5.7) the
following scaling limit for XN , the simple random walk on GN , we proceed via a time-
change argument that is essentially a reworking of parts of [12, Section 3].

Lemma 5.8. For P-a.e. realization of S, if XN is started from 0, then(
τ(d)δ(d)−1N−1dGN

(
0, XN

bκ2(d)−1N2tc

))
t≥0
→
(
B

[0,1]
t

)
t≥0

,

in distribution, where B[0,1] = (B
[0,1]
t )t≥0 is Brownian motion on [0, 1] started at 0 and

reflected at the boundary.

Proof. The following proof can be applied to any typical realization of S. To begin with,
define a process (AZ,Nn )n≥0 by setting

AZ,Nn :=

n−1∑
m=0

1{Zm∈[0,T−1
N ]},

where T−1
N := max{n : Tn ≤ N}. From (5.6), we have that T−1

N ∼ τ(d)−1N . Combining
this observation with (5.7), one can check that, simultaneously with (5.7), (N−2ANbtN2c)t≥0

converges in distribution to (κ2(d)−1ABtκ2(d))t≥0, where

ABt :=

∫ t

0

1{Bs∈[0,1]}ds

(cf. [12, Lemma 3.5]).
We now apply the above result to establish a scaling limit for the process X observed

on the vertex set V (G̃N ) := {Sn : T1 ≤ n ≤ T−1
N }. Specifically, set

ANn :=

n−1∑
m=0

1{Xm,Xm+1∈V (G̃N )}.

Similarly to the proof of [12, Lemma 3.6], one can check that

sup
0≤m≤n

∣∣ANm −AZ,Nm ∣∣ ≤ n∑
m=0

1{Zm∈[0,1,2]∪[T−1
N −2,T−1

N −1,T−1
N ]}.

It is therefore a simple consequence of (5.7) that N−2 sup0≤m≤TN2

∣∣ANm −AZ,Nm ∣∣ con-
verges to 0 in probability as N → ∞ for any T ∈ (0,∞). Since we know from equation
(16) of [12] that

N−1 sup
0≤m≤TN2

|dG (0, Xm)− δ(d)Zm|

also converges to 0 in probability, we readily obtain(
τ(d)δ(d)−1N−1dG

(
0, X̃N

bN2tc

))
t≥0
→
(
B

[0,1]
κ2(d)t

)
t≥0

, (5.8)

in distribution, where X̃N = (X̃N
n )n≥0 is the random walk X observed on V (G̃N ) – this

is defined precisely by setting X̃N
n := XαN (n), where αN (n) := max{ANm ≤ n}. We
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remark that the particular limit process B[0,1] arises as a consequence of the fact that
(BαB(t))t≥0, where αB is the right-continuous inverse of AB, has exactly the distribution

of B[0,1].
Finally, since the process X̃N is identical in law to the simple random walk XN

observed on V (G̃N ), to replace X̃N byXN in (5.8) it will suffice to check thatXN spends
only an asymptotically negligible amount of time in V (GN )\V (G̃N ). Since doing this
requires only a simple adaptation of the proof of [12, Lemma 3.8], we omit the details.
To complete the proof, one then needs to replace dG by dGN , but this is straightforward
since

N−1 sup
0≤n≤N

|dG (0, Sn)− dGN (0, Sn)| ≤ N−1
(
T1 + TT−1

N +1 − TT−1
N

)
→ 0,

as N →∞.

Although the previous lemma only contains a convergence statement for the ran-
dom walks started from the particular vertex 0, there is no difficulty in extending this
to the case when XN is started from a point xN0 ∈ V (GN ) such that dGN (0, xN0 ) ∼
τ(d)−1δ(d)Nx0, and B[0,1] is started from x0 ∈ [0, 1]. Applying the local limit result of
Proposition 2.4 (to establish (2.11), we once again appeal to Lemma 2.5), we are able
deduce from this that Assumption 1 holds for P-a.e. realization of the original random
walk.

Lemma 5.9. For P-a.e. realization of S, if I ⊂ (0,∞) is a compact interval, then((
V (GN ), τ(d)δ(d)−1N−1dGN

)
, πN ,

(
qNκ2(d)−1N2t(x, y)

)
x,y∈V (GN ),t∈I

)
,

converges in (MI ,∆I) to the triple consisting of: [0, 1] equipped with the Euclidean
metric, Lebesgue measure on this set and the transition density of Brownian motion on
[0, 1] reflected at the boundary.

Since it is clear that (1.1)-(1.5) hold in this case, we can therefore apply Theorem
1.4 to obtain the desired convergence of mixing times.

Theorem 5.10. Fix p ∈ [1,∞]. If tpmix(S[0,N ]) is the Lp-mixing time of the simple random
walk on the range of S up to time N , then P-a.s.,

κ2(d)N−2tpmix(S[0,N ])→tpmix([0, 1]),

where tpmix([0, 1]) is the Lp-mixing time of the Brownian motion on [0, 1] reflected at the
boundary.

6 Mixing time tail estimates

In this section, we give some sufficient conditions for deriving upper and lower es-
timates for mixing times of random walks on finite graphs, primarily using techniques
adapted from [36]. We will also discuss how to apply these general estimates to con-
crete random graphs (see Section 6.3). In order to shorten the paper, we skip most of
the proofs, which can be found in the extended version of the paper that appears on
arXiv [15].

As will be illustrated by our examples, the results in this section are robust and
convenient for obtaining mixing time tail estimates. Moreover, when the convergence
of mixing times (as in Theorem 1.4) is available for a sequence of graphs, we highlight
how, by first deriving estimates for the relevant continuous mixing time distribution
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(where similar techniques are sometimes applicable, see Remark 6.3), it can be possible
to deduce results regarding the asymptotic tail behavior of random graph mixing times
that are difficult to obtain directly (see the proof of Proposition 6.6 or Remark 6.9, for
example).

We start by fixing our notation. Let G = (V (G), E(G)) be a finite connected graph
and µG be a weight function, as in the introduction. Suppose here that dG is the shortest
path metric on the graph G, and denote, for a distinguished vertex ρ ∈ V (G),

B(R) = {y : dG(ρ, y) < R}, V (R) :=
∑

x∈B(R)

∑
y:y∼x

µGxy = πG(B(R))µ(G), R ∈ (0,∞),

where we write x ∼ y if µGxy > 0 and set µ(G) :=
∑
x,y∈V (G) µ

G
xy. For the Markov chain

XG, let
τR = τB(ρ,R) = min{n ≥ 0 : XG

n 6∈ B(R)}.
We define a quadratic form E by

E(f, g) = 1
2

∑
x,y∈V (G)
x∼y

µGxy(f(x)− f(y))(g(x)− g(y)),

and let H2 = {f ∈ RV (G) : E(f, f) < ∞}. For disjoint subsets A,B of G, the effective
resistance between them is then given by:

Reff(A,B)−1 = inf{E(f, f) : f ∈ H2, f |A = 1, f |B = 0}. (6.1)

If we further define Reff(x, y) = Reff({x}, {y}), and Reff(x, x) = 0, then one can check
that Reff(·, ·) is a metric on V (G) (see [30, Section 2.3]). We will call this the resis-
tance metric. The resistance metric enjoys the following important (but easy to deduce)
estimate,

|f(x)− f(y)|2 ≤ Reff(x, y)E(f, f), ∀f ∈ L2(G,µG).

Moreover, it is easy to verify that if c−1
1 := infx,y∈G:x∼y µ

G
xy > 0, then

Reff(x, y) ≤ c1dG(x, y) ∀x, y ∈ G. (6.2)

Let v, r : {0, 1, · · · ,diamdG(G) + 1} → [0,∞) be strictly increasing functions with
v(0) = r(0) = 0, v(1) = r(1) = 1, which satisfy

C−1
1

( R
R′

)d1
≤ v(R)

v(R′)
≤ C1

( R
R′

)d2
, C−1

2

( R
R′

)α1

≤ r(R)

r(R′)
≤ C2

( R
R′

)α2

(6.3)

for all 0 < R′ ≤ R ≤ diamdG(G) + 1, where C1, C2 ≥ 1, 1 ≤ d1 ≤ d2 and 0 < α1 ≤ α2 ≤ 1.
In what follows, v(·) will give the volume growth order and r(·) the resistance growth
order. For convenience, we extend them to functions on [0,diamdG(G) + 1] by linear
interpolation. For the rest of the paper, C1, C2, d1, d2 and α1, α2 stand for the constants
given in (6.3).

6.1 General upper and lower bounds

In this subsection, we give general upper and lower bounds for mixing times. Note

that, since tpmix(ρ) ≤ tpmix(G) and tpmix(G) ≤ tp
′

mix(G) for p ≤ p′, it will be enough to
estimate t∞mix(G) for the upper bound1 and t1mix(ρ) for the lower bound.

Upper bound: We first give an upper bound of the mixing times that is a reworking of
[36, Corollary 4.2], in our setting.

1In fact, for the upper bound it is enough to estimate t2mix(G). Indeed, the Cauchy-Schwarz inequality and
(3.5) implies the following known fact for mixing times of symmetric Markov chains; t∞mix(G) ≤ 2 t2mix(G; 1/2),
where t2mix(G; 1/2) is the L2-mixing time of G with 1/2 instead of 1/4 in the definition (1.8).
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Lemma 6.1. For any weighted graph (G,µG),

t∞mix(G) ≤ 4diamR(G)µ(G),

where diamR(G) is the diameter of G with respect to the resistance metric Reff .

Lower bound: We next give the mixing time lower bound. Let λ ≥ 1, H0, · · · , H3 > 0,

and let C3 := 2−2/α1C
−1/α2

2 where C2 is the constant in (6.3). We give the following two
conditions concerning the volume and resistance growth.

Reff(ρ, y) ≤ λH0r(dG(ρ, y)), ∀y ∈ B(R), and V (R) ≤ λH1v(R), (6.4)

Reff(ρ,B(R)c) ≥ λ−H2r(R) and V (C3λ
−(H0+H2)/α1R) ≥ λ−H3v(C3λ

−(H0+H2)/α1R).

(6.5)

Proposition 6.2. i) For λ,R > 1, assume that µ(G) ≥ 4V (R), and that (6.4), (6.5) hold
for R, then

t1mix(G) > C4λ
−H′2−H3v(R)r(R), (6.6)

where H ′2 = H2 + (H0 +H2)d2/α1.
ii) For λ,R > 1, assume that µ(G) ≥ 4V (R), and (6.4), (6.5) hold for R and ε0(λ)R,
where ε0(λ) := c1λ

−(H0+
∑3
i=0Hi+H

′
2)/α1 for some c1 > 0 small enough. Then

t1mix(ρ) > C4λ
−H′2−H3v(ε0(λ)R)r(ε0(λ)R).

Remark 6.3. Essentially the same argument can be applied to deduce the correspond-
ing mixing time upper and lower bounds in the continuous setting when we suppose
that we have a process whose Dirichlet form is a resistance form (see [15], Remark A.1,
for the upper bound in particular).

6.2 Random graph case

We now consider a probability space (Ω,F ,P) carrying a family of random weighted
graphs GN (ω) = (V (GN (ω)), E(GN (ω)), µN(ω);ω ∈ Ω). We assume that, for each N ∈ N
and ω ∈ Ω, GN (ω) is a finite, connected graph containing a marked vertex ρN , and
#V (GN (ω)) ≤ MN for some non-random constant MN < ∞. (Here, for a set A, #A is
the number of elements in A.) Let dGN (ω)(·, ·) be a graph distance, B(R) := Bω(ρN , R),
and V (R) := Vω(ρN , R). We write X = (Xn, n ≥ 0, P xω , x ∈ GN (ω)) for the random walk
on GN (ω), and denote by pωn(x, y) its transition density with respect to πω. Furthermore,
we introduce a strictly increasing function h : N ∪ {0} → [0,∞) with h(0) = 0, which
will roughly describe the diameter of GN with respect to the graph distance. We then
set γ(·) = v(h(·)) · r(h(·)). Finally, for i = 1, 2, we suppose pi : [1,∞) → [0, 1] are
functions such that limλ→∞ pi(λ) = 0. We then have the following. (Note that C2, d2 in
the statement are the constant in (6.3).)

Proposition 6.4. (1) Suppose that the following holds:

P(diamR(GN ) ≥ λr(h(N))) ≤ p1(λ), P(µN (GN ) ≥ λv(h(N))) ≤ p2(λ), (6.7)

then
P(t∞mix(GN ) ≥ λγ(N)) ≤ inf

θ∈[0,1]
(p1(λθ/8) + p2(λ1−θ)).

(2) Suppose there exist c1 ≤ 1 and J ≥ (1 +H1)/d2 such that the following holds:

P((6.4) ∧ (6.5) for R = c1λ
−Jh(N)) ≥ 1− p1(λ), P(µN (GN ) < λ−1v(h(N))) ≤ p2(λ),
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then there exist c2, p0 > 0 such that

P(t1mix(GN ) ≤ c2λ−p0γ(N)) ≤ 2p1(λ) + p2(λ/(4C1c
d2
1 )).

(3) Suppose there exist c1 ≤ 1 and J ≥ (1 +H1)/d2 such that the following holds:

P((6.4) ∧ (6.5) for R = c1λ
−Jh(N) and for ε0(λ)R) ≥ 1− p1(λ),

P(µN (GN ) < λ−1v(h(N))) ≤ p2(λ), (6.8)

where ε0(λ) is as in Proposition 6.2 ii), then there exist c2, p0 > 0 such that

P(t1mix(ρN ) ≤ c2λ−p0γ(N)) ≤ 2p1(λ) + p2(λ/(4C1c
d2
1 )).

To illustrate this result, we consider the case when the random graphs GN (ω) are
obtained as components of percolation processes on finite graphs, thereby recovering
[36, Theorem 1.2(c)]. (In [36], it was actually the lazy random walk was considered to
avoid parity concerns, but the same techniques apply when we consider qGm(·, ·) as in
(1.7) instead.)

Proposition 6.5. Let ĜN be a graph with N vertices and with the maximum degree
d ∈ [3, N − 1]. Let CN be the largest component of the percolation subgraph of ĜN

for 0 < p < 1. Let p ≤ 1+λn−1/3

d−1 for some fixed λ ∈ R, and assume that there exist
c1, θ1 ∈ (0,∞) and K1 ∈ N such that

P(#CN ≤ A−1N2/3) ≤ c1A−θ1 , ∀A,N ≥ K1, (6.9)

then there exist c2, θ2 ∈ (0,∞) and K2 ∈ N such that, for all p ∈ [1,∞],

P(A−1N ≤ tpmix(CN ) ≤ AN) ≥ 1− c2A−θ2 , ∀A,N ≥ K2. (6.10)

Finally, below is a list of exponents for each example in Section 5.

Section v(R) r(R) h(N) γ(N)

5.1 RlogK/ logL Rlog λ/ logL LN (Kλ)N

5.2 with aN = N1/α, α ∈ (1, 2] Rα/(α−1) R N1−1/α N2−1/α

5.3 R2 R N1/3 N

5.4 R R N N2

Here the Euclidean distance is used instead of the intrinsic shortest path metric for
the examples in Section 5.1. Note that when α = 2 in Section 5.2 (the finite variance
case), the growth of v(R) and r(R) is of the same order as in Section 5.3. The difference
of scaling exponents of mixing times (namely γ(N)) is due to the difference of scaling
exponents for graph distances (namely h(N)). We also observe that the convergence
to a stable law at (5.2) forces the scaling constants to be of the form aN = N1/αL(N)

for some slowly varying function L (see [21, Section 35]), and hence the above table
captures all the most important first order behavior for the examples in Section 5.2.

6.3 Examples

Critical Galton-Watson trees of Section 5.2
By combining the results in this section with our mixing time convergence result, we
can establish asymptotic bounds for the distributions of mixing times of graphs in the
sequence (TN )N≥1 in the case when we have a finite variance offspring distribution.
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Proposition 6.6. In the case when the offspring distribution has finite variance, there
exist constants c1, c2, c3, c4 ∈ (0,∞) such that

lim sup
N→∞

P
(
N−3/2t∞mix(TN ) ≥ λ

)
≤ c1e−c2λ

2

, ∀λ ≥ 0, (6.11)

and also
lim sup
N→∞

P
(
N−3/2t1mix(ρN ) ≤ λ−1

)
≤ c3e−c4λ

1/25

, ∀λ ≥ 0. (6.12)

Proof. To prove (6.11), we apply the general mixing time upper bound of Lemma 6.1 to
deduce that

P
(
N−3/2t∞mix(TN ) ≥ λ

)
≤ P

(
8N−1/2diamdTN

(TN ) ≥ λ
)
,

where diamdTN
(TN ) is the diameter of TN with respect to dTN , and we note that #E(TN )

is equal to 2(N−1). By (5.3), the right-hand side here converges to P(8 diamdT (2)
(T (2)) ≥

λ). By construction, the diameter of the continuum random tree T (2) is bounded above
by twice the supremum of the Brownian excursion of length 1. We can thus use the
known distribution of the latter random variable (see [26], for example) to deduce the
relevant bound.

For (6.12), we first apply the convergence in distribution of Theorem 5.3 to deduce
that

lim sup
N→∞

P
(
N−3/2t1mix(ρN ) ≤ λ−1

)
≤ P

(
t1mix(ρ) ≤ λ−1

)
.

Now, for the continuum random tree, define

J(λ) = {r > 0 : λ−1r2 ≤ π(2)(BT (2)(ρ, r)) ≤ λr2, R
(2)
T (ρ,BT (2)(ρ, r)c) ≥ λ−1r},

where RT (2) is the resistance on the continuum random tree (see [11, (20)]). Then

P(r ∈ J(λ)) ≥ 1− e−cλ, ∀r ∈ (0, 1
2 ], λ ≥ 1,

(see [11, Lemmas 4.1 and 7.1]). As a consequence of this, we can apply the continuous
version of the mixing time lower bound discussed in Remark 6.3 (with H0 = 0, H1 =

H2 = H3 = 1, H ′2 = 3, αi = 1 and di = 2) to deduce the desired result.

Remark 6.7. The above proof already gives an estimate for the lower tail of t1mix(ρ).
That the bound corresponding to (6.11) holds for the limiting tree, i.e.

P
(
t∞mix(T (2)) ≥ λ

)
≤ c1e−c2λ

2

,

can be proved similarly to the discrete case (see Remark 6.3).

Critical Erdős-Rényi random graph of Section 5.3
Let CN be the largest component of the Erdős-Rényi random graph in the critical win-
dow. Then the following holds.

Proposition 6.8. There exist constants c1, c2, c3, N0, θ ∈ (0,∞) such that

sup
N≥1

P
(
N−1t∞mix(CN ) ≥ λ

)
≤ c1e

−c2λ, ∀λ ≥ 0, (6.13)

sup
N≥N0

P
(
N−1t1mix(CN ) ≤ λ−1

)
≤ c3λ

−θ, ∀λ ≥ 0. (6.14)
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Proof. By [36, Proposition 1.4] and [37, Theorem 1], (6.13) is an application of Propo-
sition 6.4 with p1(λ) = c4e

−c5λ3/2

and p2(λ) = c6e
−c7λ3

. (6.14) is a consequence of
Proposition 6.5.

Remark 6.9. (1) The tail estimates for t1mix(CN ) are given in [36, Theorem 1.1] without
quantitative bounds. (In fact, reading the paper very carefully, it can be checked that
the bounds similar to Proposition 6.8 are available in the paper.)
(2) It does not seem possible to apply current estimates for the graphs (CN )N≥1 and
techniques for bounding mixing times to replace t1mix(CN ) by t1mix(ρN ) in the latter esti-
mate (see [15], Remark A.4), or even prove that the sequence (N/t1mix(ρN ))N≥1 is tight,
i.e.

lim
λ→∞

lim sup
N→∞

P
(
N−1t1mix(ρN ) ≤ λ−1

)
= 0.

That this final statement is nonetheless true is a simple consequence of Theorem 5.6.
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