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The center of mass for spatial branching processes and an
application for self-interaction

János Engländer ∗

Abstract

Consider the center of mass of a d-dimensional supercritical branching-Brownian motion. We
first show that it is a Brownian motion being slowed down such that it tends to a limiting position
almost surely, and that this is also true for a model where branching Brownian motion is modified
by attraction/repulsion between particles, where the strength of the attraction/repulsion is given
by the parameter γ 6= 0.
We then put this observation together with the description of the interacting system as viewed
from its center of mass, and get our main result in Theorem 16: If γ > 0 (attraction), then, as
n→∞,

2−nZn(dy)
w
⇒
� γ

π

�d/2
exp
�

−γ|y − x |2
�

dy, P x − a.s.

for almost all x ∈ Rd , where Z(dy) denotes the discrete measure-valued process corresponding

to the interacting branching particle system,
w
⇒ denotes weak convergence, and P x denotes the

law of the particle system conditioned to have x as the limit for the center of mass.
A conjecture is stated regarding the behavior of the local mass in the repulsive case.
We also consider a supercritical super-Brownian motion, and show that, conditioned on survival,
its center of mass is a continuous process having an a.s. limit as t →∞ .
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1 Introduction

1.1 Notation

1. Probability: The symbol Eû will denote the complement of the event E, and X ⊕Y will denote
the independent sum of the random variables X and Y .

2. Topology and measures: The boundary of the set B will be denoted by ∂ B and the closure of
B will be denoted by cl(B), that is cl(B) := B∪∂ B; the interior of B will be denoted by Ḃ and Bε

will denote the ε-neighborhood of B. We will also use the notation Ḃε := {y ∈ B : Bε+ y ⊂ B},
where B+ b := {y : y − b ∈ B} and Bt := {x ∈ Rd : |x |< t}. By a bounded rational rectangle
we will mean a set B ⊂ Rd of the form B = I1 × I2 × · · · × Id , where Ii is a bounded interval
with rational endpoints for each 1 ≤ i ≤ d. The family of all bounded rational rectangles will
be denoted by R .

M f (Rd) and M1(Rd) will denote the space of finite measures and the space of probability
measures, respectively, on Rd . For µ ∈ M f (Rd), we define ‖µ‖ := µ(Rd). |B| will denote

the Lebesgue measure of B. The symbols “
w
⇒” and“

v
⇒” will denote convergence in the weak

topology and in the vague topology, respectively.

3. Functions: For f , g > 0, the notation f (x) = O (g(x)) will mean that f (x) ≤ C g(x) if x > x0
with some x0 ∈ R, C > 0; f ≈ g will mean that f /g tends to 1 given that the argument tends
to an appropriate limit. For N → R functions the notation f (n) = Θ(g(n)) will mean that
c ≤ f (n)/g(n)≤ C ∀n, with some c, C > 0.

4. Matrices: The symbol Id will denote the d-dimensional unit matrix, and r(A) will denote the
rank of a matrix A.

5. Labeling: In this paper we will often talk about the ‘ith particle’ of a branching particle system.
By this we will mean that we label the particles randomly, but in a way that does not depend
on their spatial position.

1.2 A model with self-interaction

Consider a dyadic (i.e. precisely two offspring replaces the parent) branching Brownian motion
(BBM) in Rd with unit time branching and with the following interaction between particles: if Z
denotes the process and Z i

t is the ith particle, then Z i
t ‘feels’ the drift

1

nt

∑

1≤ j≤nt

γ ·
�

Z j
t − ·

�

,

where γ 6= 0 , that is the particle’s infinitesimal generator is

1

2
∆+

1

nt

∑

1≤ j≤nt

γ ·
�

Z j
t − x

�

· ∇. (1.1)

(Here and in the sequel, nt is a shorthand for 2btc, where btc is the integer part of t.) If γ > 0, then
this means attraction, if γ < 0, then it means repulsion.
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To be a bit more precise, we can define the process by induction as follows. Z0 is a single particle at
the origin. In the time interval [m, m+1) we define a system of 2m interacting diffusions, starting at
the position of their parents at the end of the previous step (at time m− 0) by the following system
of SDE’s:

dZ i
t = dW m,i

t +
γ

2m

∑

1≤ j≤2m

(Z j
t − Z i

t)dt; i = 1, 2, . . . , 2m, (1.2)

where W m,i , i = 1, 2, . . . , 2m; m= 0,1, ... are independent Brownian motions.

Remark 1 (Attractive interaction). If there were no branching and the interval [m, m + 1) were
extended to [0,∞), then for γ > 0 the interaction (1.2) would describe the ferromagnetic Curie-
Weiss model, a model appearing in the microscopic statistical description of a spatially homogeneous
gas in a granular medium. It is known that as m→∞, a Law of Large Numbers, the McKean-Vlasov
limit holds and the normalized empirical measure

ρm(t) := 2−m
2m
∑

i=1

δZ i
t

tends to a probability measure-valued solution of

∂

∂ t
ρ =

1

2
∆ρ+

γ

2
∇ ·
�

ρ∇ f ρ
�

,

where f ρ(x) :=
∫

Rd |x − y|2ρ(d y). (See p. 24 in [8] and the references therein.) �

Remark 2 (More general interaction). It seems natural to replace the linearity of the interaction by
a more general rule. That is, to define and analyze the system where (1.2) is replaced by

dZ i
t = dW m,i

t + 2−m
∑

1≤ j≤2m

g(|Z j
t − Z i

t |)
Z j

t − Z i
t

|Z j
t − Z i

t |
dt; i = 1,2, . . . , 2m,

where the function g : R+ → R has some nice properties. (In this paper we treat the g(x) = γx
case.) This is part of a future project with J. Feng. �

1.3 Existence and uniqueness

Notice that the 2m interacting diffusions on [m, m+1) can be considered as a single 2md-dimensional
Brownian motion with linear (and therefore Lipschitz) drift b : R2md → R2md :

b
�

x1, x2, ..., xd , x1+d , x2+d , ..., x2d , ..., x1+(2m−1)d , x2+(2m−1)d , ..., x2md)

=: γ(β1,β2, ...,β2md)
T ,

where
βk = 2−m(x

bk + x
bk+d + ...+ x

bk+(2m−1)d)− xk, 1≤ k ≤ 2md,

and bk ≡ k (mod d), 1≤ bk ≤ d. This yields existence and uniqueness for our model.
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1.4 Results on the self-interacting model

We are interested in the long time behavior of Z , and also whether we can say something about
the number of particles in a given compact set for n large. In the sequel we will use the standard
notation 〈g, Zt〉= 〈Zt , g〉 :=

∑nt
i=1 g(Z i

t).

In this paper we will first show that Z asymptotically becomes a branching Ornstein-Uhlenbeck
process (inward for attraction and outward for repulsion), but

1. the origin is shifted to a random point which has d-dimensional normal distributionN (0,2Id),
and

2. the Ornstein-Uhlenbeck particles are not independent but constitute a system with a degree
of freedom which is less than their number by precisely one.

The main result of this article concerns the local behavior of the system: we will prove a scaling limit
theorem (Theorem 16) for the local mass when γ > 0 (attraction), and formulate and motivate a
conjecture (Conjecture 18) when γ < 0 (repulsion).

1.5 The center of mass for supercritical super-Brownian motion

In Lemma 6 we will show that Z t := 1
nt

∑nt
i=1 Z i

t , the center of mass for Z satisfies limt→∞ Z t = N ,

where N ∼ N (0, 2Id). In fact, the proof will reveal that Z moves like a Brownian motion, which is
nevertheless slowed down tending to a final limiting location (see Lemma 6 and its proof).

Since this is also true for γ= 0 (BBM with unit time branching and no self-interaction), our first nat-
ural question is whether we can prove a similar result for the supercritical super-Brownian motion.

Let X be the (1
2
∆,β ,α;Rd)-superdiffusion with α,β > 0 (supercritical super-Brownian motion).

Here β is the ‘mass creation parameter’ or ‘mass drift’, while α > 0 is the ‘variance (or intensity)
parameter’ of the branching — see [6] for more elaboration and for a more general setting.

Let Pµ denote the corresponding probability when the initial finite measure is µ. (We will use the
abbreviation P := Pδ0

.) Let us restrict Ω to the survival set

S := {ω ∈ Ω | X t(ω)> 0, ∀t > 0}.

Since β > 0, Pµ(S)> 0 for all µ 6= 0.

It turns out that on the survival set the center of mass for X stabilizes:

Theorem 3. Let α,β > 0 and let X denote the center of mass process for the (1
2
∆,β ,α;Rd)-

superdiffusion X , that is let

X :=
〈id, X 〉
‖X‖

,

where 〈 f , X 〉 :=
∫

Rd f (x)X (dx) and id(x) = x. Then, on S, X is continuous and converges P-almost
surely.
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Remark 4. A heuristic argument for the convergence is as follows. Obviously, the center of mass is
invariant under H-transforms1 whenever H is spatially (but not temporarily) constant. Let H(t) :=
e−β t . Then X H is a (1

2
∆, 0, e−β tα;Rd)-superdiffusion, that is, a critical super-Brownian motion with

a clock that is slowing down. Therefore, heuristically it seems plausible that X H , the center of mass
for the transformed process stabilizes, because after some large time T , if the process is still alive, it
behaves more or less like the heat flow (e−β tα is small), under which the center of mass does not
move. �

1.6 An interacting superprocess model

The next goal is to construct and investigate the properties of a measure-valued process with repre-
sentative particles that are attracted to or repulsed from its center of mass.

There is one work in this direction we are aware of: motivated by the present paper, H. Gill [9]
has constructed very recently a superprocess with attraction to its center of mass. More precisely, Gill
constructs a supercritical interacting measure-valued process with representative particles that are
attracted to or repulsed from its center of mass using Perkins’s historical stochastic calculus.

In the attractive case, Gill proves the equivalent of our Theorem 16 (see later): on S, the mass
normalized process converges almost surely to the stationary distribution of the Ornstein-Uhlenbeck
process centered at the limiting value of its center of mass; in the repulsive case, he obtains sub-
stantial results concerning the equivalent of our Conjecture 18 (see later), using [7]. In addition, a
version of Tribe’s result [12] is presented in [9].

2 The mass center stabilizes

Returning to the discrete interacting branching system, notice that

1

nt

∑

1≤ j≤nt

�

Z j
t − Z i

t

�

= Z t − Z i
t , (2.1)

and so the net attraction pulls the particle towards the center of mass (net repulsion pushes it away
from the center of mass).

Remark 5. The reader might be interested in the very recent work [11], where a one dimensional
particle system is considered with interaction via the center of mass. There is a kind of attraction
towards the center of mass in the following sense: each particle jumps to the right according to some
common distribution F , but the rate at which the jump occurs is a monotone decreasing function of
the signed distance between the particle and the mass center. Particles being far ahead slow down,
while the laggards catch up. �

Since the interaction is in fact through the center of mass, the following lemma is relevant:

Lemma 6 (Mass center stabilizes). There is a random variable N ∼N (0, 2Id) such that limt→∞ Z t =
N a.s.

1See Appendix B in [7] for H-transforms.
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Proof. Let m ∈ N. For t ∈ [m, m+ 1) there are 2m particles moving around and particle Z i
t ’s motion

is governed by
dZ i

t = dW m,i
t + γ(Z t − Z i

t)dt.

Since 2mZ t =
∑2m

i=1 Z i
t , we obtain that

dZ t = 2−m
2m
∑

i=1

dZ i
t = 2−m

2m
∑

i=1

dW m,i
t +

γ

2m

 

2mZ t −
2m
∑

i=1

Z i
t

!

dt = 2−m
2m
∑

i=1

dW m,i
t .

So, for 0≤ τ < 1,

Zm+τ = Zm+ 2−m
2m
⊕

i=1

W m,i
τ =: Zm+ 2−m/2B(m)(τ), (2.2)

where we note that B(m) is a Brownian motion on [m, m+ 1). Using induction, we obtain that2

Z t = B(0)(1)⊕
1
p

2
B(1)(1)⊕ · · · ⊕

1

2k/2
B(k)(1)⊕

· · · ⊕
1

p

2btc−1
B(btc−1)(1)⊕

1
p

nt
B(btc)(τ), (2.3)

where τ := t − btc.
By Brownian scaling W (m) (·) := 2−m/2B(m)(2m·), m ≥ 1 are (independent) Brownian motions. We
have

Z t =W (0)(1)⊕W (1)
�

1

2

�

⊕ · · · ⊕W (btc−1)
�

1

2btc−1

�

⊕W (btc)
�

τ

nt

�

.

By the Markov property, in fact

Z t =cW
�

1+
1

2
+ · · ·+

1

2btc−1
+
τ

nt

�

,

where cW is a Brownian motion (the concatenation of the W (i)’s), and since cW has a.s. continuous
paths, limt→∞ Z t =cW (2), a.s.

For another proof see the remark after Lemma 9.

Remark 7. It is interesting to note that Z is in fact a Markov process. To see this, let {Ft}t≥0 be the
canonical filtration for Z and {Gt}t≥0 the canonical filtration for Z . Since Gs ⊂ Fs, it is enough to
check the Markov property with Gs replaced by Fs.

Assume first 0 ≤ s < t, bsc = btc =: m. Then the distribution of Z t conditional on Fs is the same as
conditional on Zs, because Z itself is a Markov process. But the distribution of Z t only depends on
Zs through Z s, as

Z t
d
= Z s ⊕W (2m)

�

t − s

2m

�

, (2.4)

whatever Zs is. That is, P(Z t ∈ · | Fs) = P(Z t ∈ · | Zs) = P(Z t ∈ · | Z s). Note that this is even true
when s ∈ N and t = s+ 1, because Z t = Z t−0.

Assume now that s < btc =: m. Then the equation P(Z t ∈ · | Fs) = P(Z t ∈ · | Z s), is obtained by
conditioning successively on m, m− 1, ..., bsc+ 1, s. �

2It is easy to check that, as the notation suggests, the summands are independent.
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We will also need the following fact later.

Lemma 8. The coordinate processes of Z are independent one dimensional interactive branching pro-
cesses of the same type as Z.

We leave the simple proof to the reader.

3 Normality via decomposition

Let again m := btc. We will need the following result.

Lemma 9 (Decomposition). In the time interval [m, m + 1) the d · 2m-dimensional process
(Z1

t , Z2
t , ..., Z2m

t ) can be decomposed into two components: a d-dimensional Brownian motion and an
independent d(2m− 1)-dimensional Ornstein-Uhlenbeck process with parameter γ.

More precisely, each coordinate process (as a 2m-dimensional process) can be decomposed into two
components: a one-dimensional Brownian motion in the direction (1, 1, ..., 1) and an independent (2m−
1)-dimensional Ornstein-Uhlenbeck process with parameter γ in the ortho-complement of the vector
(1,1, ..., 1).

Furthermore, (Z1
t , Z2

t , ..., Znt
t ) is dnt -dimensional joint normal for all t ≥ 0.

Proof of lemma. By Lemma 8, we may assume that d = 1. We prove the statement by induction.

(i) For m= 0 it is trivial.

(ii) Suppose that the statement is true for m−1. Consider the time m position of the 2m−1 particles
(Z1

m, Z2
m, ..., Z2m−1

m ) ‘just before’ the fission. At the instant of the fission we obtain the 2m-dimensional
vector

(Z1
m, Z1

m, Z2
m, Z2

m, ..., Z2m−1

m , Z2m−1

m ),

which has the same distribution on the 2m−1 dimensional subspace

S := {x ∈ R2m
| x1 = x2, x3 = x4, ..., x2m−1 = x2m}

of R2m
as the vector

p
2(Z1

m, Z2
m, ..., Z2m−1

m ) on R2m−1
. Since, by the induction hypothesis,

(Z1
m, Z2

m, ..., Z2m−1

m ) is normal, the vector formed by the particle positions ‘right after’ the fission is
a 2m-dimensional degenerate normal. (The reader can easily visualize this for m = 1: the distribu-
tion of (Z1

1 , Z1
1 ) is clearly

p
2 times the distribution of a Brownian particle at time 1, i.e. N (0,

p
2)

on the line x1 = x2.)

Since the convolution of normals is normal, therefore, by the Markov property, it is enough to prove
the statement when the 2m particles start at the origin and the clock is reset: t ∈ [0, 1).

Define the 2m-dimensional process Z∗ on the time interval t ∈ [0, 1) by

Z∗t := (Z1
t , Z2

t , ..., Z2m

t ),

starting at the origin. Because the interaction between the particles attracts the particles towards
the center of mass, Z∗ is a Brownian motion with drift

γ
�

(Z t , Z t , ..., Z t)− (Z1
t , Z2

t , ..., Z2m

t )
�

.
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Notice that this drift is orthogonal to the vector3 v := (1,1, ..., 1), that is, the vector (Z t , Z t , ..., Z t)
is nothing but the orthogonal projection of (Z1

t , Z2
t , ..., Z2m

t ) to the line of v. This observation imme-
diately leads to the following decomposition. The process Z∗ can be decomposed into two compo-
nents:

• the component in the direction of v is a Brownian motion

• in S, the ortho-complement of v, it is an independent Ornstein-Uhlenbeck process with pa-
rameter γ.

Remark 10. (i) The proof also shows that (Z1
t , Z2

t , ..., Znt
t ) given Zs is a.s. joint normal for all

t > s ≥ 0.

(ii) Consider the Brownian component in the decomposition appearing in the proof. Since, on the
other hand, this coordinate is 2m/2Z t , using Brownian scaling, one obtains a slightly different way of
seeing that Z t stabilizes at a position which is distributed as the time 1+2−1+2−2+...+2−m+...= 2
value of a Brownian motion. (The decomposition shows this for d = 1 and then it is immediately
upgraded to general d by independence.) �

Corollary 11 (Asymptotics for finite subsystem). Let k ≥ 1 and consider the subsystem
(Z1

t , Z2
t , ..., Zk

t ), t ≥ m0 for m0 := blog2 kc + 1. (This means that at time m0 we pick k particles
and at every fission replace the parent particle by randomly picking one of its two descendants.) Let the
real numbers c1, ..., ck satisfy

k
∑

i=1

ci = 0,
k
∑

i=1

c2
i = 1. (3.1)

Define Ψt = Ψ
(c1,...,ck)
t :=

∑k
i=1 ci Z

i
t and note that Ψt is invariant under the translations of the coordi-

nate system. Let Lt denote its law.

For every k ≥ 1 and c1, ..., ck satisfying (3.1), Ψ(c1,...,ck) is the same d-dimensional Ornstein-Uhlenbeck
process corresponding to the operator 1/2∆− γ∇ · x, and in particular, for γ > 0,

lim
t→∞
Lt =N

�

0,
1

2γ
Id

�

.

For example, taking c1 = 1/
p

2, c2 = −1/
p

2, we obtain that when viewed from a tagged particle’s
position, any given other particle moves as

p
2 times the above Ornstein-Uhlenbeck process.

Proof. By independence (Lemma 8) it is enough to consider d = 1. For m fixed, consider the
decomposition appearing in the proof of Lemma 9 and recall the notation. By (3.1), whatever
m≥ m0 is, the 2m dimensional unit vector

(c1, c2, ..., ck, 0, 0, ..., 0)

is orthogonal to the 2m dimensional vector v. This means that Ψ(c1,...,ck) is a one dimensional pro-
jection of the Ornstein-Uhlenbeck component of Z∗, and thus it is itself a one dimensional Ornstein-
Uhlenbeck process (with parameter γ) on the unit time interval.

Now, although as m grows, the Ornstein-Uhlenbeck components of Z∗ are defined on larger and
larger spaces (S ⊂ R2m

is a 2m−1 dimensional linear subspace), the projection onto the direction
of (c1, c2, ..., ck, 0, 0, ..., 0) is always the same one dimensional Ornstein-Uhlenbeck process, i.e. the
different unit time ‘pieces’ of Ψ(c1,...,ck) obtained by those projections may be concatenated.

3For simplicity, we use row vectors in this proof.
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4 The interacting system as viewed from the center of mass

Recall that by (2.2) the interaction has no effect on the motion of Z . Let us see now how the
interacting system looks like when viewed from Z .

4.1 The description of a single particle

Using our usual notation, assume that t ∈ [m, m+1) and let τ := t−btc. When viewed from Z , the
relocation4 of a particle is governed by

d(Z1
t − Z t) = dZ1

t − dZ t = dW m,1
t − 2−m

2m
∑

i=1

dW m,i
t − γ(Z1

t − Z t)dt.

So if Y 1 := Z1− Z , then

dY 1
t = dW m,1

t − 2−m
2m
∑

i=1

dW m,i
t − γY 1

t dt.

Clearly,

W m,1
τ − 2−m

2m
⊕

i=1

W m,i
τ =

2m
⊕

i=2

2−mW m,i
τ ⊕ (1− 2−m)W m,1

τ ;

and, by a trivial computation, the right hand side is a Brownian motion with mean zero and variance
(1− 2−m)τId := σ2

mτId . That is,

dY 1
t = σmdfW m,1

t − γY 1
t dt,

where fW m,1 is a standard Brownian motion.

We have thus obtained that on the time interval [m, m + 1), Y 1 corresponds to the Ornstein-
Uhlenbeck operator

1

2
σ2

m∆− γx · ∇. (4.1)

Since for m large σm is close to one, the relocation viewed from the center of mass is asymptotically
governed by an O-U process corresponding to 1

2
∆− γx · ∇.

Remark 12 (Asymptotically vanishing correlation between driving BM’s). Let fW m,i,k be the kth co-
ordinate of the i th Brownian motion: fW m,i = (fW m,i,k, k = 1, 2, ..., d) and Bm,i,k be the kth coordinate
of W m,i . For 1≤ i 6= j ≤ 2m, we have

E
�

σmfW
m,i,k
τ ·σmfW

m, j,k
τ

�

=

E







Bm,i,k
τ − 2−m

2m
⊕

r=1

Bm,r,k
τ







Bm, j,k
τ − 2−m

2m
⊕

r=1

Bm,r,k
τ







=

−2−m
�

Var
�

Bm,i,k
τ

�

+ Var
�

Bm, j,k
τ

��

+ 2−2m · 2mτ= (2−m− 21−m)τ=−2−mτ,

4I.e. the relocation between time m and time t.
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that is, for i 6= j,

E
�

fW m,i,k
τ

fW m, j,`
τ

�

=−
δk`

2m− 1
τ. (4.2)

Hence the pairwise correlation tends to zero as t →∞ (recall that m= btc and τ= t −m ∈ [0, 1)).

And of course, for the variances we have

E
�

fW m,i,k
τ

fW m,i,`
τ

�

= δk` · τ, for 1≤ i ≤ 2m. � (4.3)

4.2 The description of the system; the ‘degree of freedom’

Fix m ≥ 1 and for t ∈ [m, m+ 1) let Yt := (Y 1
t , ..., Y 2m

t )
T , where ()T denotes transposed. (This is a

vector of length 2m where each component itself is a d dimensional vector; one can actually view it
as a 2m× d matrix too.) We then have

dYt = σmdfW (m)
t − γYtdt,

where
fW (m) =

�

fW m,1, ...,fW m,2m�T

and

fW m,i
τ = σ−1

m






W m,i
τ − 2−m

2m
⊕

j=1

W m, j
τ






, i = 1, 2, ..., 2m

are mean zero Brownian motions with correlation structure given by (4.2)-(4.3).

Just like at the end of Subsection 1.2, we can consider Y as a single 2md-dimensional diffusion. Each
of its components is an Ornstein-Uhlenbeck process with asymptotically unit diffusion coefficient.

By independence, it is enough to consider the d = 1 case, and so from now on, in this subsection we
assume that d = 1.

Let us first describe the distribution of fW (m)
t for t ≥ 0 fixed. Recall that {W m,i

s , s ≥ 0; i = 1,2, ..., 2m}
are independent Brownian motions. By definition, fW (m)

t is a 2m-dimensional multivariate normal:

fW (m)
t = σ−1

m ·



















1− 2−m −2−m ... − 2−m

−2−m 1− 2−m ... − 2−m

.

.

.
−2−m −2−m ... 1− 2−m



















W (m)
t =: σ−1

m A(m)W (m)
t ,

where W (m)
t = (W m,1

t , ..., W m,2m

t )T , yielding

dYt = A(m)dW (m)
t − γYtdt.

Since we are viewing the system from the center of mass, fW (m)
t is a singular multivariate normal

and thus Y is a degenerate diffusion. The ‘true’ dimension of fW (m)
t is r(A(m)).

Lemma 13. r(A(m)) = 2m− 1.
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Proof. We will simply write A instead of A(m). Since the columns of A add up to zero, the matrix A
is not of full rank: r(A)≤ 2m− 1. On the other hand,

2mA+



















1 1 ... 1
1 1 ... 1
.
.
.
1 1 ... 1



















= 2mI,

where I is the 2m-dimensional unit matrix, and so by subadditivity,

r(A) + 1= r(2mA) + 1≥ 2m.

By Lemma 13, fW (m)
t is concentrated on S, and there the vector fW (m)

t has non-singular multivariate
normal distribution.5 What this means is that even though fW m,1, ...,fW m,2m

are not independent,
their ‘degree of freedom’ is 2m − 1, i. e. the 2m-dimensional vector fW (m)

t is determined by 2m − 1
independent components (corresponding to 2m− 1 principal axes).

5 Asymptotic behavior

5.1 Conditioning

How can one put together that Z t tends to a random final position with the description of the system
‘as viewed from Z t?’ The following lemma is the first step in this direction.

Lemma 14 (Independence). Let T be the tail σ-algebra of Z.

1. For t ≥ 0, the random vector Yt is independent of the path {Z s}s≥t .

2. The process Y = (Yt ; t ≥ 0) is independent of T .

Proof. In both parts we will refer to the following fact. Let s ≤ t, s ∈ [bm, bm+1); t ∈ [m, m+1) with
bm ≤ m. Since the random variables Z1

t , Z2
t , ..., Z2m

t are exchangeable, thus, denoting bn := 2bm, n :=
2m, the vectors Z t and Z1

s − Z s are uncorrelated for 0≤ s ≤ t. Indeed, by Lemma 8 we may assume
that d = 1 and then

E[Z t ·
�

Z1
s − Z s

�

] = E





Z1
t + Z2

t + ...+ Zn
t

n
·

 

Z1
s −

Z1
s + Z2

s + ...+ Zbns
bn

!

=

1

n
E
�

Z1
t · Z

1
s

�

+
n− 1

n
E
�

Z1
s · Z

2
t

�

−
bn

nbn
E
�

Z1
t · Z

1
s

�

−
bn(n− 1)

nbn
E
�

Z2
t · Z

1
s

�

= 0.

(Of course the index 1 can be replaced by i for any 1≤ i ≤ 2m.)

5Recall that S is the (2m − 1)-dimensional linear subspace given by the orthogonal complement of the vector
(1,1, ..., 1)T .
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Part (1): First, for any t > 0, the (d ·2m-dimensional) vector Yt is independent of the (d-dimensional)
vector Z t , because the d(2m+ 1)-dimensional vector

(Z t , Z1
t − Z t , Z2

t − Z t , . . . , Z2m

t − Z t)
T

is normal (since it is a linear transformation of the d · 2m dimensional vector
(Z1

t , Z2
t , . . . , Z2m

t )
T , which is normal by Lemma 9), and so it is sufficient to recall that Z t and

Z i
t − Z t are uncorrelated for 1≤ i ≤ 2m.

To complete the proof of (a), recall (2.2) and (2.3) and notice that the conditional distribution of
{Z s}s≥t givenFt only depends on its starting point Z t , as it is that of a Brownian path appropriately
slowed down, whatever Yt (or, equivalently, whatever Zt = Yt + Z t) is. Since, as we have seen, Yt is
independent of Z t , we are done.

Part (2): Let A ∈ T . By Dynkin’s Lemma, it is enough to show that (Yt1
, ..., Ytk

) is independent of
A for 0 ≤ t1 < ... < tk and k ≥ 1. Since A ∈ T ⊂ σ(Z s; s ≥ tk + 1), it is sufficient to show that
(Yt1

, ..., Ytk
) is independent of {Z s}s≥tk+1.

To see this, similarly as in Part (1), notice that the conditional distribution of {Z s}s≥tk+1 givenFtk+1

only depends on its starting point Z tk+1, as it is that of a Brownian path appropriately slowed down,
whatever the vector (Yt1

, ..., Ytk
) is. If we show that (Yt1

, ..., Ytk
) is independent of Z tk+1, we are

done.

To see why this latter one is true, one just have to repeat the argument in (a), using again normality6

and recalling that the vectors Z t and Z i
s − Z s are uncorrelated. �

Remark 15 (Conditioning on the final position of Z). Let N := limt→∞ Z t (recall that N ∼
N (0, 2Id)) and

P x(·) := P(· | N = x).

By Lemma 14, P x(Yt ∈ ·) = P(Yt ∈ ·) for almost all x ∈ Rd . It then follows that the decomposition
Zt = Z t ⊕ Yt as well as the result obtained for the distribution of Y in subsections 4.1 and 4.2 are
true under P x too, for almost all x ∈ Rd . �

5.2 Main result and a conjecture

So far we have obtained that on the time interval [m, m + 1), Y 1 corresponds to the Ornstein-
Uhlenbeck operator

1

2
σ2

m∆− γx · ∇,

where σm→ 1 as m→∞, with asymptotically vanishing correlation between the driving Brownian
motions; that

dYt = A(m)dW (m)
t − γYtdt,

where {W m,i
s , s ≥ 0; i = 1,2, ..., 2m} are independent Brownian motions and r(A(m)) = 2m − 1, and

finally, the independence of the center of mass and the relative motions as in Lemma 14.

6We now need normality for finite dimensional distributions and not just for one dimensional marginals, but this is
still true by Lemma 9.
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We now go beyond these preliminary results and state a theorem (the main result of this article)
and a conjecture on the local behavior of the system. Recall that one can consider Zn as an element
ofM f (Rd) by putting unit point mass at the site of each particle; with a slight abuse of notation we
will write Zn(dy). Let {P x , x ∈ Rd} be as in Remark 15. Our main result is as follows.

Theorem 16 (Scaling limit for the attractive case). If γ > 0, then, as n→∞,

2−nZn(dy)
w
⇒
� γ

π

�d/2
exp
�

−γ|y − x |2
�

dy, P x − a.s. (5.1)

for almost all x ∈ Rd . Consequently,

2−nEZn(dy)
w
⇒ f γ(y)dy, (5.2)

where

f γ(·) =
�

π(4+ γ−1)
�−d/2

exp

�

−| · |2

4+ γ−1

�

.

Remark 17.

(i) The proof of Theorem 16 will reveal that actually

2−tn Ztn
(dy)

w
⇒
� γ

π

�d/2
exp
�

−γ|y − x |2
�

dy, P x − a.s.

holds for any given sequence {tn} with tn ↑ ∞ as n→∞. This, of course, is still weaker than
P-a.s. convergence as t → ∞, but one can probably argue, using the method of Asmussen
and Hering, as in Subsection 4.3 of [4] to upgrade it to continuous time convergence. Nev-
ertheless, since our model is defined with unit time branching anyway, we felt satisfied with
(5.1).

(ii) Notice that f γ, which is the limiting density of the intensity measure, is the density for

N
�

0,
�

2+ 1
2γ

�

Id

�

. This is the convolution of N
�

0, 2Id
�

, representing the randomness of

the final position of the center of mass (c.f. Lemma 6) and N
�

0,
�

1
2γ

�

Id

�

, representing
the final distribution of the mass scaled Ornstein-Uhlenbeck branching particle system around
its center of mass (c.f. (5.1)). For strong attraction, the contribution of the second term is
negligible. �

Conjecture 18 (Dichotomy for the repulsive case). Let γ < 0.

1. If |γ| ≥ log2
d

, then Z suffers local extinction:

Zn(dy)
v
⇒ 0, P − a.s.

2. If |γ|< log2
d

, then

2−ned|γ|nZn(dy)
v
⇒ dy, P − a.s.
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5.3 Discussion of the conjecture

The intuition behind the phase transition at log 2/d is as follows. For a branching diffusion on Rd

with motion generator L, smooth nonzero spatially dependent exponential branching rate β(·) ≥
0 and dyadic branching, it is known (see Theorem 3 in [5]) that either local extinction or local
exponential growth takes place according to whether λc ≤ 0 or λc > 0, where λc = λc(L+β) is the
generalized principle eigenvalue7 of L + β on Rd . In particular, for β ≡ B > 0, the criterion for local
exponential growth becomes B > |λc(L)|, where λc(L)≤ 0 is the generalized principle eigenvalue of
L, which is also the ‘exponential rate of escape from compacts’ for the diffusion corresponding to L.
The interpretation of the criterion in this case is that a large enough mass creation can compensate
the fact that individual particles drift away from a given bounded set. (Note that if L correspond to
a recurrent diffusion then λc(L) = 0. )

In our case, the situation is similar, with λc = dγ for the outward Ornstein-Uhlenbeck process, taking
into account that for unit time branching, the role of B is played by log2. The condition for local
exponential growth should therefore be log2> d|γ|.
The scaling 2−ned|γ|n comes from a similar consideration, noting that in our unit time branching
setting, 2n replaces the term eβ t appearing in the exponential branching case, while eλc(L)t becomes
eλc(L)n = edγn.

For a continuous time result analogous to (2) see Example 11 in [4]. Note that since the rescaled
(vague) limit of Zn(dy) is translation invariant (i.e. Lebesgue), the final position of the center of
mass plays no role.

Although we will not prove Conjecture 18, we will discuss some of the technicalities in section 8.

6 Proof of Theorem 3

Since α,β are constant, the branching is independent of the motion, and therefore N defined by

Nt := e−β t‖X t‖

is a nonnegative martingale (positive on S) tending to a limit almost surely. It is straightforward to
check that it is uniformly bounded in L2 and is therefore uniformly integrable (UI). Write

X t =
e−β t〈id, X t〉
e−β t‖X t‖

=
e−β t〈id, X t〉

Nt
.

We now claim that N∞ > 0 a.s. on S. Let A := {N∞ = 0}. Clearly Sû ⊂ A, and so if we show
that P(A) = P(Sû), then we are done. As is well known, P(Sû) = e−β/α. On the other hand, a
standard martingale argument (see the argument after formula (20) in [3]) shows that 0≤ u(x) :=
− log Pδx

(A) must solve the equation

1

2
∆u+ βu−αu2 = 0,

but since Pδx
(A) = P(A) constant, therefore − log Pδx

(A) solves βu−αu2 = 0. Since N is UI, no mass
is lost in the limit, giving P(A)< 1. So u> 0, which in turn implies that − log Pδx

(A) = β/α.

7If the operator is symmetric, the world ‘generalized’ can be omitted. For more on the subject, see Chapter 4 in [10].
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Once we know that N∞ > 0 a.s. on S , it is enough to focus on the term e−β t〈id, X t〉: we are going
to show that it converges almost surely. Clearly, it is enough to prove this coordinate-wise.

Recall a particular case of the H-transform for the (L,β ,α;Rd)-superdiffusion X (see Appendix B in
[7]):

Lemma 19. Define X H by

X H
t := H(·, t)X t

�

that is,
dX H

t

dX t
= H(·, t)

�

, t ≥ 0. (6.1)

If X is an (L,β ,α;Rd)-superdiffusion, and H(x , t) := e−λth(x), where h is a positive solution of (L +
β)h= λh, then X H is a (L+ a∇h

h
· ∇, 0, e−λtαh;Rd)-superdiffusion.

In our case β(·) ≡ β . So choosing h(·) ≡ 1 and λ = β , we have H(t) = e−β t and X H is a
(1

2
∆, 0, e−β tα;Rd)-superdiffusion, that is, a critical super-Brownian motion with a clock that is slow-

ing down. Since, as noted above, it is enough to prove the convergence coordinate-wise, we can
assume that d = 1. One can write

e−β t〈id, X t〉= 〈id, X H
t 〉.

Let {Ss}s≥0 be the ‘expectation semigroup’ for X , that is, the semigroup corresponding to the oper-
ator 1

2
∆+ β . The expectation semigroup {S H

s }s≥0 for X H satisfies Ts := S H
s = e−βsSs and thus it

corresponds to Brownian motion. In particular then

Ts[id] = id. (6.2)

(One can pass from bounded continuous functions to f := id by defining f1 := f 1x>0 and f2 :=
f 1x≤0, then noting that by monotone convergence, Eδx

〈 fi , X H
t 〉 = Ex fi(Wt) ∈ (−∞,∞), i = 1,2,

where W is a Brownian motion with expectation E, and finally taking the sum of the two equations.)
Therefore M := 〈id, X H〉 is a martingale:

Eδx

�

Mt | Fs
�

= Eδx

�

〈id, X H
t 〉 | Fs

�

=

EXs
〈id, X H

t 〉=
∫

R
Eδy
〈id, X H

t 〉X
H
s (dy) =

∫

R
y X H

s (dy) = Ms.

We now show that M is UI and even uniformly bounded in L2, verifying its a.s. convergence, and
that of the center of mass. To achieve this, define gn by gn(x) = |x | · 1{|x |<n}. Then we have

E〈id, X H
t 〉

2 = E|〈id, X H
t 〉|

2 ≤ E〈|id|, X H
t 〉

2,

and by the monotone convergence theorem we can continue with

= lim
n→∞

E〈gn, X H
t 〉

2.

Since gn is compactly supported, there is no problem to use the moment formula and continue with

= lim
n→∞

∫ t

0

ds e−βs〈δ0, Ts[αg2
n]〉= α lim

n→∞

∫ t

0

ds e−βsTs[g
2
n](0).
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Recall that {Ts; s ≥ 0} is the Brownian semigroup, that is, Ts[ f ](x) = Ex f (Ws), where W is Brown-
ian motion. Since gn(x)≤ |x |, therefore we can trivially upper estimate the last expression by

α

∫ t

0

ds e−βsE0(W
2
s ) = α

∫ t

0

ds se−βs = α

�

1− e−β t

β2 −
te−β t

β

�

<
α

β2 .

Since this upper estimate is independent of t, we are done:

sup
t≥0

E〈id, X H
t 〉

2 ≤
α

β2 .

Finally, we show that X has continuous paths. To this end we first note that we can (and will)
consider a version of X where all the paths are continuous in the weak topology of measures. We
now need a simple lemma.

Lemma 20. Let {µt , t ≥ 0} be a family inM f (Rd) and assume that t0 > 0 and µt
w
⇒ µt0

as t → t0.
Assume furthermore that

C = Ct0,ε := cl







t0+ε
⋃

t=t0−ε
supp(µt)







is compact with some ε > 0. Let f : Rd → Rd be a continuous function. Then limt→t0
〈 f ,µt〉= 〈 f ,µt0

〉.

Proof of Lemma 20. First, if f = ( f1, ..., fd) then all fi are Rd → R continuous functions and
limt→t0

〈 f ,µt〉 = 〈 f ,µt0
〉 simply means that limt→t0

〈 fi ,µt〉 = 〈 fi ,µt0
〉. Therefore, it is enough to

prove the lemma for an Rd → R continuous function. Let k be so large that C ⊂ Ik := [−k, k]d .
Using a mollified version of 1[−k,k], it is trivial to construct a continuous function bf =: Rd → R such
that bf = f on Ik and bf = 0 on Rd \ I2k. Then,

lim
t→t0
〈 f ,µt〉= lim

t→t0
〈bf ,µt〉= 〈bf ,µt0

〉= 〈 f ,µt0
〉,

since bf is a bounded continuous function. �

Returning to the proof of the theorem, let us invoke the fact that for

Cs(ω) := cl

 

⋃

z≤s

supp(Xz(ω))

!

,

we have P(Cs is compact) = 1 for all fixed s ≥ 0 (compact support property; see [6]). By the
monotonicity in s, there exists an Ω1 ⊂ Ω with P(Ω1) = 1 such that for ω ∈ Ω1,

Cs(ω) is compact ∀s ≥ 0.

Let ω ∈ Ω1 and recall that we are working with a continuous path version of X . Then letting f := id
and µt = X t(ω), Lemma 20 implies that for t0 > 0, limt→t0

〈id, X t(ω)〉 = 〈id, X t0
(ω)〉. The right

continuity at t0 = 0 is similar. �
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7 Proof of Theorem 16

Before we prove (5.1), we note the following. Fix x ∈ Rd . Abbreviate

ν (x)(dy) :=
� γ

π

�d/2
exp
�

−γ|y − x |2
�

dy.

Since 2−nZn(dx),ν (x) ∈M1(Rd), therefore, as is well known8, 2−nZn(dx)
w
⇒ ν (x) is in fact equiva-

lent to
∀g ∈ E : 2−n〈g, Zn〉 → 〈g,ν (x)〉,

where E is any given family of bounded measurable functions with ν (x)-zero (Lebesgue-zero) sets
of discontinuity that is separating forM1(Rd).

In fact, one can pick a countable E , which, furthermore, consists of compactly supported functions.
Such an E is given by the indicators of sets in R .

Fix such a family E . Since E is countable, in order to show (5.1), it is sufficient to prove that for
almost all x ∈ Rd ,

P x(2−n〈g, Zn〉 → 〈g,ν (x)〉) = 1, g ∈ E . (7.1)

We will carry out the proof of (7.1) in several subsections.

7.1 Putting Y and Z together

The following remark is for the interested reader familiar with [4] only. It can be skipped without
any problem.

Remark 21. Once we have the description of Y as in Subsections 4.1 and 4.2 and Remark 15, we
can try to put them together with the Strong Law of Large Numbers for the local mass from [4] for
the process Y .

If the components of Y were independent and the branching rate were exponential, Theorem 6
of [4] would be readily applicable. However, since the 2m components of Y are not independent
(as we have seen, their degree of freedom is 2m − 1) and since, unlike in [4], we now have unit
time branching, the method of [4] must be adapted to our setting. The reader will see that this
adaptation requires quite a bit of extra work. �

Let ef (·) = ef γ(·) := ( γ
π
)d/2 exp

�

−γ| · |2
�

, and note that ef is the density for N (0, (2γ)−1Id).

We now claim that in order to show (7.1), it is enough to prove that for almost all x ,

P x(2−n〈g, Yn〉 → 〈g, ef 〉) = 1, g ∈ E . (7.2)

This is because

lim
n→∞

2−n〈g, Zn〉= lim
n→∞

2−n〈g, Yn+ Zn〉= lim
n→∞

2−n〈g(·+ Zn), Yn〉= I + I I ,

where
I := lim

n→∞
2−n〈g(·+ x), Yn〉

8See Proposition 4.8.12 and the proof of Propositions 4.8.15 in [1].
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and
I I := lim

n→∞
2−n〈g(·+ Zn)− g(·+ x), Yn〉.

Now, (7.2) implies that for almost all x , I = 〈g(·+ x), ef (·)〉 P x -a.s., while the compact support of
g, and Heine’s Theorem yields that I I = 0, P x − a.s. Hence, limn→∞ 2−n〈g, Zn〉 = 〈g(·+ x), ef (·)〉 =
〈g(·), ef (· − x)〉, P x -a.s., giving (7.1).

Next, let us see how (5.1) implies (5.2). Let g be continuous and bounded. Since 2−n〈Zn, g〉 ≤
‖g‖∞, it follows by bounded convergence that

lim
n→∞

E2−n〈Zn, g〉=
∫

Rd

E x
�

lim
n→∞

2−n〈Zn, g〉
�

Q(dx) =

∫

Rd

〈g(·), ef (· − x)〉Q(dx),

where Q ∼ N (0, 2Id). Now, if bf ∼ N (0, 2Id) then, since f γ ∼ N
�

0,
�

2+ 1
2γ

�

Id

�

, it follows that

f γ = bf ∗ ef and
∫

Rd

〈g(·), ef (· − x)〉Q(dx) = 〈g(·), f γ〉,

yielding (5.2).

Next, notice that it is in fact sufficient to prove (7.2) under P instead of P x . Indeed, by Lemma 14,

P x
�

lim
n→∞

2−n〈g, Yn〉= 〈g, ef 〉
�

= P
�

lim
n→∞

2−n〈g, Yn〉= 〈g, ef 〉 | N = x
�

= P
�

lim
n→∞

2−n〈g, Yn〉= 〈g, ef 〉
�

.

Let us use the shorthand Un(dy) := 2−nYt(dy); in general Ut(dy) := 1
nt

Yt(dy). With this notation,
our goal is to show that

P(〈g, Un〉 → 〈g, ef 〉) = 1, g ∈ E . (7.3)

Now, as mentioned earlier, we may (and will) take E := I , where I is the family of indicators of
sets in R . Then, it remains to show that

P

�

Un(B)→
∫

B

ef (x)dx

�

= 1, B ∈ R . (7.4)

7.2 Outline of the further steps

Notation 22. In the sequel {Ft}t≥0 will denote the canonical filtration for Y , rather than the canon-
ical filtration for Z .

The following key lemma (Lemma 23) will play an important role. It will be derived using Lemma
25 and (7.12), where the latter one will be derived with the help of Lemma 25 too. Then, Lemma
23 together with (7.14) will be used to complete the proof of (7.4) and hence, that of Theorem 16.

Lemma 23. Let B ⊂ Rd be a bounded measurable set. Then,

lim
n→∞

�

Un+mn
(B)− E(Un+mn

(B) | Fn)
�

= 0, P − a.s. (7.5)
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7.3 Establishing the crucial estimate (7.12) and the key Lemma 23

Let Y i
n denote the “ith” particle at time n, i = 1,2, ..., 2n. Since B is a fixed set, in the sequel we will

simply write Un instead of Un(B). Recall the time inhomogeneity of the underlying diffusion process
and note that by the branching property, we have the clumping decomposition: for n, m≥ 1,

Un+m =
2n
∑

i=1

2−nU (i)m , (7.6)

where given Fn, each member in the collection {U (i)m : i = 1, ..., 2n} is defined similarly to Um but
with Ym replaced by the time m configuration of the particles starting at Y i

n , i = 1, ..., 2n, respectively,
and with motion component 1

2
σn+k∆− γx ·∆ in the time interval [k, k+ 1).

7.3.1 The functions a and ζ

Next, we define two positive functions, a and ζ on (1,∞). Here is a rough motivation.

(i) The function a· will be related (via (7.9) below) to the radial speed of the particle system Y .

(ii) The function ζ(·), will be related (via (7.10) below) to the speed of ergodicity of the underlying
Ornstein-Uhlenbeck process.

For t > 1, define
at := C0 ·

p
t, (7.7)

ζ(t) := C1 log t, (7.8)

where C0 and C1 are positive (non-random) constants to be determined later. Note that

mt := ζ(at) = C3+ C4 log t

with C3 = C1 log C0 ∈ R and C4 = C1/2> 0. We will use the shorthand

`n := 2bmnc.

Recall that ef γ is the density for N (0, (2γ)−1Id) and let q(x , y, t) = q(γ)(x , y, t) and q(x , dy, t) =
q(γ)(x , dy, t) denote the transition density and the transition kernel, respectively, corresponding to
the operator 1

2
∆− γx · ∇. We are going to show below that for sufficiently large C0 and C1, the

following holds. For each given x ∈ Rd and B ⊂ Rd nonempty bounded measurable set,

P
�

∃n0,∀n0 < n ∈ N : supp(Yn)⊂ Ban

�

= 1, and (7.9)

lim
t→∞

sup
z∈Bt ,y∈B

�

�

�

�

�

q(z, y,ζ(t))
ef γ(y)

− 1

�

�

�

�

�

= 0. (7.10)

For (7.9), note that in Example 10 of [4] similar calculations were carried out for the case when the
underlying diffusion is an Ornstein-Uhlenbeck process and the breeding is quadratic. It is important
to point out that in that example the estimates followed from expectation calculations (see also
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Remark 9 in [4]), and thus they can be mimicked in our case for the Ornstein-Uhlenbeck process
performed by the particles in Y (which corresponds to the operator 1

2
σm∆−γx ·∇ on [m, m+1), m≥

1), despite the fact that the particle motions are now correlated. These expectation calculations
lead to the estimate that the growth rate of the support of Y satisfies (7.9) with a sufficiently large
C0 = C0(γ). The same example shows that (7.10) holds with a sufficiently large C1 = C1(γ).

Remark 24. Denote by ν = νγ ∈ M1(Rd) the distribution of N (0, (2γ)−1Id). Let B ⊂ Rd be a
nonempty bounded measurable set. Taking t = an in (7.10) and recalling that ζ(an) = mn,

lim
n→∞

sup
z∈Ban ,y∈B

�

�

�

�

�

q(z, y, mn)
ef γ(y)

− 1

�

�

�

�

�

= 0.

Since ef γ is bounded, this implies that for any bounded measurable set B ⊂ Rd ,

lim
n→∞

sup
z∈Ban

�

q(z, B, mn)− ν(B)
�

= 0. (7.11)

We will use (7.11) in Subsection 7.4. �

7.3.2 Covariance estimates

Let {Y i, j
mn

, j = 1, ...,`n} be the descendants of Yn
i at time mn + n. So Y 1, j

mn
and Y 2,k

mn
are respectively

the jth and kth particle at time mn + n of the trees emanating from the first and second particles
at time n. It will be useful to control the covariance between 1B(Y

1, j
mn
) and 1B(Y 2,k

mn
), where B is a

nonempty, bounded open set. To this end, we will need the following lemma, the proof of which is
relegated to Section 9 in order to minimize the interruption in the main flow of the argument.

Lemma 25. Let B ⊂ Rd be a bounded measurable set.

(a) There exists a non-random constant K(B) such that if C = C(B,γ) := 3
γ
|B|2K(B), then

P
�

∀n large enough and ∀ξ, eξ ∈ Πn, ξ 6= eξ :

�

�P(ξmn
, eξmn

∈ B | Fn)− P(ξmn
∈ B | Fn)P(eξmn

∈ B | Fn)
�

�≤
Cn

2n

�

= 1,

where Πn denotes the collection of those `n particles, which, start at some time-n location of their
parents and run for (an additional) time mn.

(b) Let C = C(B) := ν(B)− (ν(B))2. Then

P

�

lim
n→∞

sup
ξ∈Πn

�

�Var
�

1{ξmn∈B} | Fn

�

− C
�

�= 0

�

= 1.

Remark 26. In the sequel, instead of writing ξmn
and eξmn

, we will use the notation Y i1, j
mn

and Y i2,k
mn

with 1≤ i1, i2 ≤ n; 1≤ j, k ≤ `n satisfying that i1 6= i2 or j 6= k. �
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7.3.3 The crucial estimate (7.12)

Let B ⊂ Rd be a bounded measurable set and C = C(B,γ) as in Lemma 25. Define

Zi :=
1

`n

`n
∑

j=1

h

1B(Y
i, j

mn
)− P(Y i, j

mn
∈ B | Y i

n)
i

, i = 1,2, ..., 2n.

With the help of Lemma 25, we will establish the following crucial estimate, the proof of which is
provided in Section 9.

Claim 27. There exists a non-random constant bC(B,γ)> 0 such that

P







∑

1≤i 6= j≤2n

E
�

ZiZ j | Fn

�

≤ bC(B,γ)n`n

2n
∑

i=1

E
�

Z 2
i | Fn

�

, for large n’s






= 1. (7.12)

The significance of Claim 27 is as follows.

Claim 28. Lemma 25 together with the estimate (7.12) implies Lemma 23.

Proof of Claim 28. Assume that (7.12) holds. By the clumping decomposition under (7.6),

Un+mn
− E(Un+mn

| Fn) =
2n
∑

i=1

2−n
�

U (i)mn
− E(U (i)mn

| Fn)
�

.

Since U (i)mn
= `−1

n

∑`n
j=1 1B(Y

i, j
mn
), therefore

U (i)mn
− E(U (i)mn

| Fn) = U (i)mn
− E(U (i)mn

| Y i
n) =Zi .

Hence,

E
�

�

Un+mn
− E(Un+mn

| Fn)
�2
| Fn

�

= E











2n
∑

i=1

2−n
�

U (i)mn
− E(U (i)mn

| Fn)
�





2

| Fn







= E











2n
∑

i=1

2−nZi





2

| Fn






= 2−2n







2n
∑

i=1

E
�

Z 2
i | Fn

�

+
∑

1≤i 6= j≤2n

E
�

ZiZ j | Fn

�







By (7.12), P-almost surely, this can be upper estimated for large n’s by

2−2n



(Cn`n+ 1)
2n
∑

i=1

E
�

Z 2
i | Fn

�



≤ 2−2n



C ′n`n

2n
∑

i=1

E
�

Z 2
i | Fn

�



 ,

where bC(B,γ)< C ′. Now note that by Lemma 25,

`2
nE[Z 2

1 | Fn]

=
`n
∑

j,k=1

n

P(Y 1, j
mn

, Y 1,k
mn
∈ B | Fn)− P(Y 1, j

mn
∈ B | Fn)P(Y

1,k
mn
∈ B | Fn)

o

= (`2
n− `n)

n

P(Y 1,1
mn

, Y 1,2
mn
∈ B | Fn)− P(Y 1,1

mn
∈ B | Fn)P(Y

1,2
mn
∈ B | Fn)

o

+`nVar
�

1{Y 1,1
mn ∈B} | Fn

�

= O (n2−n`2
n) +O (`n).
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(Here the first term corresponds to the k 6= j case and the second term corresponds to the k = j
case.)

Since, by Lemma 25, this estimate remains uniformly valid when the index 1 is replaced by anything
between 1 and 2n, therefore,

`2
n

2n
∑

i=1

E[Z 2
i | Fn] = O (n`2

n) +O (2
n`n) = O (2n`n) a.s.

(Recall that mn = C3+ C4 log n.) Thus,

2n
∑

i=1

E[Z 2
i | Fn] = O (2n/`n) a.s.

It then follows that, P-almost surely, for large n’s,

E
�

�

Un+mn
− E(Un+mn

| Fn)
�2
| Fn

�

≤ C ′′ · n2−n.

The summability immediately implies Lemma 23; nevertheless, since conditional probabilities are
involved, we decided to write out the standard argument in details. First, we have that P-almost
surely,

∞
∑

n=1

E
�

�

Un+mn
− E(Un+mn

| Fn)
�2
| Fn

�

<∞.

Then, by the (conditional) Markov inequality, for any δ > 0, P-almost surely,

∞
∑

n=1

P
��

�Un+mn
− E(Un+mn

| Fn)
�

�> δ | Fn

�

<∞.

Finally, by a well known conditional version of Borel-Cantelli (see e.g. Theorem 1 in [2]), it follows
that

P
��

�Un+mn
− E(Un+mn

| Fn)
�

�> δ occurs finitely often
�

= 1,

which implies the result in Lemma 23. �

The following remark is intended to the interested reader familiar with [4] only, and can be skipped
without any trouble.

Remark 29 (No spine argument needed). In [4], this part of the analysis was more complicated,
because the upper estimate there involved the analogous term Us, which, unlike here, was not upper
bounded. Therefore, in [4] we proceeded with a spine change of measure along with some further
calculations. That part of the work is saved now. The martingale by which the change of measure
was defined in [4], now becomes identically one: 2−n〈1, Yn〉 = 1. (Because now 2−n plays the role
of e−λc t and the function 1 plays the role of the positive (L+ β −λc)-harmonic function φ.) �
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7.4 The rest of the proof

Recall the definition of ν and R , and that our goal is to show that for any B ∈ R ,

P( lim
n→∞

Un(B) = ν(B)) = 1. (7.13)

Let us fix B ∈ R for the rest of the subsection, and simply write Ut instead of Ut(B).

Next, recall the limit in (7.11), but note that the underlying diffusion is only asymptotically Ornstein-
Uhlenbeck9, that is σ2

n = 1− 2−n, and so the transition kernels qn defined by

qn(x , dy, k) := P(Y 1
k ∈ dy | Y 1

n = x), k ≥ n,

are slightly different from q. Note also the decomposition

E
�

Un+mn
| Fn

�

=
2n
∑

i=1

2−nE(U (i)mn
| Fn) = 2−n

2n
∑

i=1

qn(Y
i

n , B, n+mn).

In addition, recall the following facts.

1. If An := {supp(Yn) 6⊂ Ban
}, then limn→∞ 1An

= 0, P-a.s.;

2. mt = ζ(at) = C3+ C4 log t;

3. Lemma 23.

From these it follows that the limit

lim
n→∞

sup
x0∈Ban

�

�qn(x0, B, n+mn)− ν(B)
�

�= 0, (7.14)

which we will verify below, implies (7.13) with Un replaced by Un+mn
.

Remark 30 (n and N(n)). Notice that (7.13) must then also hold P-a.s. for Un, and even for Utn

with any given sequence tn ↑ ∞ replacing n. Indeed, define the sequence N(n) by the equation

N(n) +mN(n) = tn.

Clearly, N(n) = Θ(tn), and in particular limn→∞ N(n) =∞. Now, it is easy to see that in the proof
of Theorem 16, including the remainder of this paper, all the arguments go through when replacing
n by N(n), yielding thus (7.13) with Un replaced by UN(n)+mN(n)

= Utn
. In those arguments it never

plays any role that n is actually an integer. �

(We preferred to provide Remark 30 instead of presenting the proof with N(n) replacing n every-
where, and to avoid notation even more difficult to follow10.)

Motivated by Remark 30, we now show (7.14). To achieve this goal, first recall that on the time
interval [l, l + 1), Y = Y 1 corresponds to the Ornstein-Uhlenbeck operator

1

2
σ2

l∆− γx · ∇,

9Unlike in [4], where σn ≡ 1.
10For example, one should replace 2n with 2bN(n)c or nN(n) everywhere.
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where σ2
l = 1− 2−l , l ∈ N. That is, if σ(n)(·) is defined by σ(n)(s) := σn+l for s ∈ [l, l + 1), then,

given Fn and with a Brownian motion W , one has that

Ymn
− E(Ymn

| Fn) = Ymn
− e−γmn Y0 =

∫ mn

0

σ(n)(s)eγ(s−mn) dWs

=

∫ mn

0

eγ(s−mn) dWs −
∫ mn

0

[1−σ(n)(s)]eγ(s−mn) dWs.

Fix ε > 0. By the Chebyshev inequality and the Itô-isometry,

P

 
�

�

�

�

�

∫ mn

0

[1−σ(n)(s)]eγ(s−mn) dWs

�

�

�

�

�

> ε

!

≤ ε−2E





�
∫ mn

0

[1−σ(n)(s)]eγ(s−mn) dWs

�2




= ε−2

∫ mn

0

[1−σ(n)(s)]2e2γ(s−mn) ds.

Now,

[1−σ(n)(s)]2 ≤ [1−σn]
2 = (1−

p

1− 2−n)2 =





2−n

1+
p

1− 2−n





2

≤ 2−2n.

Hence,

P

 
�

�

�

�

�

∫ mn

0

[1−σ(n)(s)]eγ(s−mn) dWs

�

�

�

�

�

> ε

!

≤ ε−2

∫ mn

0

2−2ne2γ(s−mn) ds.

Since e−mn = e−C3 n−C4 , we obtain that

ε−2

∫ mn

0

2−2ne2γ(s−mn) ds = ε−2e−2γC32−2nn−2γC4

∫ mn

0

e2γs ds

= ε−2e−2γC32−2nn−2γC4 ·
e2γC3 n2γC4 − 1

2γ
→ 0, as n→∞.

Therefore,

lim
n→∞

P

 
�

�

�

�

�

∫ mn

0

[1−σ(n)(s)]eγ(s−mn) dWs

�

�

�

�

�

> ε

!

= 0. (7.15)

We have

qn(x0, B, n+mn) = P(Y 1
n+mn

∈ B | Y 1
n = x0)

= P

�
∫ mn

0

σ(n)(s)eγ(s−mn) dWs ∈ B− x0e−γmn

�

,

and

q(x0, B, mn) = P

�
∫ mn

0

eγ(s−mn) dWs ∈ B− x0e−γmn

�

.
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For estimating qn(x0, B, n+mn) let us use the inequality

Ȧε ⊂ A+ b ⊂ Aε, for A⊂ Rd , b ∈ Rd , |b|< ε,ε > 0.

So, for any ε > 0,

qn(x0, B, n+mn)

= P

�
∫ mn

0

eγ(s−mn) dWs −
∫ mn

0

[1−σn(s)]eγ(s−mn) dWs ∈ B− x0e−γmn

�

= P

�
∫ mn

0

eγ(s−mn) dWs ∈ B− x0e−γmn +

∫ mn

0

[1−σn(s)]eγ(s−mn) dWs

�

≤ P

�
∫ mn

0

eγ(s−mn) dWs ∈ Bε− x0e−γmn

�

+P

 
�

�

�

�

�

∫ mn

0

[1−σ(n)(s)]eγ(s−mn) dWs

�

�

�

�

�

> ε

!

= q(x0, Bε, mn) + P

 
�

�

�

�

�

∫ m

0

[1−σ(n)(s)]eγ(s−mn) dWs

�

�

�

�

�

> ε

!

.

Taking limsupn→∞ supx0∈Ban
, the second term vanishes by (7.15) and the first term becomes ν(Bε)

by (7.11).

The lower estimate is similar:

qn(x0, B, n+mn)

≥ P

�
∫ mn

0

eγ(s−mn) dWs ∈ Ḃε− x0e−γmn

�

−P

 
�

�

�

�

�

∫ mn

0

[1−σ(n)(s)]eγ(s−mn) dWs

�

�

�

�

�

> ε

!

= q(x0, Ḃε, mn)− P

 
�

�

�

�

�

∫ mn

0

[1−σ(n)(s)]eγ(s−mn) dWs

�

�

�

�

�

> ε

!

.

Taking lim infn→∞ supx0∈Ban
, the second term vanishes by (7.15) and the first term becomes ν(Ḃε)

by (7.11).

Now (7.14) follows from these limits:

lim
ε↓0
ν(Bε) = lim

ε↓0
ν(Ḃε) = ν(B). (7.16)

To verify (7.16) let ε ↓ 0 and use that, obviously, ν(∂ B) = 0. Then ν(Bε) ↓ ν(cl(B)) = ν(B) because
Bε ↓ cl(B), and ν(Ḃε) ↑ ν(Ḃ) = ν(B) because Ḃε ↑ Ḃ.

The proof of (7.14) and that of Theorem 16 is now completed. �
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8 On a possible proof of Conjecture 18

In this section we provide some discussion for the reader familiar with [4] and interested in a
possible way of proving Conjecture 18.

The main difference relative to the attractive case is that, as we have mentioned earlier, in that case
one does not need the spine change of measure from [4]. In the repulsive case however, one cannot
bypass the spine change of measure. Essentially, an h-transform transforms the outward Ornstein-
Uhlenbeck process into an inward Ornstein-Uhlenbeck process, and in the exponential branching
clock setting (and with independent particles), this inward Ornstein-Uhlenbeck process becomes
the ‘spine.’ A possible way of proving Conjecture 18 would be to try to adapt the spine change of
measure to unit time branching and dependent particles.

9 The proof of Lemma 25 and that of (7.12)

9.1 Proof of Lemma 25

The proof of the first part is a bit tedious, the proof of the second part is very simple. We recall that
{Ft}t≥0 denotes the canonical filtration for Y .

(a): Throughout the proof, we may (and will) assume that, the growth of the support of Y is
bounded from above by the function a, because this happens with probability one. That is, we
assume that

∃n0(ω) ∈ N such that ∀n≥ n0 ∀ξ, eξ ∈ Πn : |ξ0|, |eξ0| ≤ C0
p

n. (9.1)

(Recall that C0 is not random.)

First assume d = 1.

Next, note that given Fn (or, what is the same11, given Zn), ξmn
and eξmn

have joint normal distri-
bution. This is because by Remark 10, (Z1

t , Z2
t , ..., Znt

t ) given Zn is a.s. joint normal for t > n, and
(ξmn

, eξmn
) is a projection of (Z1

t , Z2
t , ..., Znt

t ). Therefore, denoting bx := x−ξ0, by := y− eξ0, the joint

(conditional) density of ξmn
and eξmn

(given Fn) on R2 is of the form

f (n)(x , y) = f (x , y) =
1

2πσxσy

p

1−ρ2
exp

 

−
1

2(1−ρ2)





bx2

σ2
x
+
by2

σ2
y
−

2ρbx by

σxσy





!

,

where σ2
x ,σ2

y and ρ = ρn denote the (conditional) variances of the marginals and the (conditional)

correlation12 between the marginals, respectively, given Fn. Abbreviating κ := 1
σxσy

, one has

f (x , y) =
1

2πσxσy

p

1−ρ2
exp

 

−
1

2(1−ρ2)





bx2

σ2
x
+
by2

σ2
y





!

exp
�

ρ

1−ρ2κbx by
�

.

11Given Fn, the distribution of
�

ξmn
, eξmn

�

will not change by specifying Zn, that is, specifying Zn.
12Provided, of course, that ρn 6= 1, but we will see in (9.3) below that limn→∞ρn = 0.
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Let f (n)1 = f1 and f (n)2 = f2 denote the (conditional) marginal densities of f , given Fn. We now
show that P-a.s., for all large enough n,

| f (x , y)− f1(x) f2(y)| ≤ K(B)nρ, with some K(B)> 0 on B, (9.2)

and that P-a.s.,

ρ = ρn = E
�

(ξmn
− E(ξmn

| Fn))(eξmn
− E(eξmn

| Fn)) | Fn

�

≤
3

γ
· 2−n, n≥ 1. (9.3)

Clearly, (9.2) and (9.3) imply the statement in (a):
�

�

�

�

�

∫

B×B

f (x , y)− f1(x) f2(y)dxdy

�

�

�

�

�

≤

∫

B×B

| f (x , y)− f1(x) f2(y)|dxdy ≤ |B|2K(B)nρn = |B|2K(B)
3

γ
· n2−n.

To see (9.2), write

f (x , y)− f1(x) f2(y) =
(

f (x , y)−
1

2πσxσy
exp

 

−
1

2





bx2

σ2
x
+
by2

σ2
y





!

exp
�

ρ

1−ρ2κbx by
�

)

+

(

1

2πσxσy
exp

 

−
1

2





bx2

σ2
x
+
by2

σ2
y





!

exp
�

ρ

1−ρ2κbx by
�

− f1(x) f2(y)

)

=: I + I I .

Now,

|I |=
1

2πσxσy
exp

 

−
1

2





bx2

σ2
x
+
by2

σ2
y





!

exp
�

ρ

1−ρ2κbx by
�

·

�

�

�

�

�

�







1
p

1−ρ2
e

1
2

�

bx2

σ2
x
+ by2

σ2
y

�

− 1
2(1−ρ2)

�

bx2

σ2
x
+ by2

σ2
y

�

− 1







�

�

�

�

�

�

≤
1

2πσxσy
exp
�

ρ

1−ρ2κbx by
�

·

�

�

�

�

�





1
p

1−ρ2
exp

(

1

2





bx2

σ2
x
+
by2

σ2
y





�

1−
1

(1−ρ2)

�

)

− 1





�

�

�

�

�

.

Since B is a fixed bounded measurable set, using (9.1) along with the approximations 1− e−a ≈ a
as a → 0, and 1−

p

1−ρ2 ≈ ρ2/2 as ρ → 0, one can see that if (9.3) holds, then there exists a
K(B)> 0 such that P-a.s.,

|I | ≤ K(B)nρ2 for all large enough n.

To see that the presence of the Fn-dependent σx ,σy do not change this fact, recall that ξ and
eξ are both (time inhomogeneous) Ornstein-Uhlenbeck processes (see Section 4.1), and so σx and
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σy are bounded between two positive (absolute) constants for n ≥ 1. (Recall that the variance of
an Ornstein-Uhlenbeck process is bounded between two positive constants, which depend on the
parameters only, on the time interval (ε,∞), for ε > 0.)

A similar (but simpler) computation shows that if (9.3) holds, then there exists a K(B) > 0 (we can
choose the two constants the same, so this one will be denoted by K(B) too) such that P-a.s.,

|I I | ≤ K(B)nρ, ∀x , y ∈ B for all large enough n.

These estimates of I and I I yield (9.2).

Thus, it remains to prove (9.3). Recall that we assume d = 1. Using similar notation as in Subsection
4.1, let fW (i) (i = 1,2) be Brownian motions, which, satisfy for s ∈ [k, k+ 1), 0≤ k < mn,

σn+kfW
(1)
s =

⊕

i∈In+k

2−n−kW k,i
s ⊕ (1− 2−n−k)W k,1

s , (9.4)

σn+kfW
(2)
s =

⊕

i∈Jn+k

2−n−kW k,i
s ⊕ (1− 2−n−k)W k,2

s ,

where the W k,i are 2n+k independent standard Brownian motions, and In+k := {i : 2 ≤ i ≤
2n+k}, Jn+k := {i : 1 ≤ i ≤ 2n+k, i 6= 2}. Recall that, by (4.1), given Fn, Y and eY are Ornstein-
Uhlenbeck processes driven by fW (1) and fW (2), respectively, and fW (1) and fW (2) are independent of
Fn.

Notation 31. We are going to use the following (slight abuse of) notation. For r > 0, the expression
∑r−1

j=0

∫ j+1

j
f (s)dWs will mean

∑brc−1
j=0

∫ j+1

j
f (s)dWs +

∫ r

brc f (s)dWs, where W is Brownian motion.

Using this notation with r = mn and recalling that σ(n)(s) := σn+l for s ∈ [l, l + 1), one has

ξmn
− E(ξmn

| Fn) =

∫ mn

0

σ(n)(s)eγ(s−mn) dfW (1)
s =

mn−1
∑

j=0

σn+ j

∫ j+1

j

eγ(s−mn) dfW (1)
s

and

eξmn
− E(eξmn

| Fn) =

∫ mn

0

σ(n)(s)eγ(s−mn) dfW (2)
s =

mn−1
∑

j=0

σn+ j

∫ j+1

j

eγ(s−mn) dfW (2)
s ,

where, of course, E(ξmn
| Fn) = e−γmnξ0 and E(eξmn

| Fn) = e−γmn eξ0. Writing out σn+ j dfW (1)
s and

σn+ j dfW (2)
s according to (9.4), one obtains, that given Fn,

I := ξmn
− E(ξmn

| Fn) =

mn−1
∑

j=0







∑

i∈In+ j

2−n− j

∫ j+1

j

eγ(s−mn)dW j,i
s + (1− 2−n− j)

∫ j+1

j

eγ(s−mn)dW j,1
s






,

I I := eξmn
− E(eξmn

| Fn) =

mn−1
∑

j=0







∑

i∈Jn+ j

2−n− j

∫ j+1

j

eγ(s−mn)dW j,i
s + (1− 2−n− j)

∫ j+1

j

eγ(s−mn)dW j,2
s






.
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Because I and I I are jointly independent of Fn, one has

E(I · I I | Fn) = E(I · I I).

Since the Brownian motions W j,i are independent for fixed j and different i’s, and the Brownian
increments are also independent for different j’s, therefore one has E(I · I I) = E

∑mn−1
j=0 (I I I + IV ),

where

I I I := (2n+ j − 2)2−2(n+ j)

 

∫ j+1

j

eγ(s−mn) dBs

!2

;

IV := 21−n− j(1− 2−n− j)

 

∫ j+1

j

eγ(s−mn) dBs

!2

,

and B is a generic Brownian motion. By Itô’s isometry,

E(I · I I) =
mn−1
∑

j=0

�

(2n+ j − 2)2−2(n+ j)+ 21−n− j(1− 2−n− j)
�

∫ j+1

j

e2γ(s−mn)ds =

1

2γ

bmnc−1
∑

j=0

�

3 · 2−(n+ j)− 4 · 2−2(n+ j)
�

[e2γ( j+1−mn)− e2γ( j−mn)] + Rn =

1

2γ
2−n

bmnc−1
∑

j=0

�

3 · 2− j − 4 · 2(−n−2 j)
�

[e2γ( j+1−mn)− e2γ( j−mn)] + Rn,

where

Rn :=
1

2γ
2−n ·

�

3 · 2−bmnc− 4 · 2(−n−2bmnc)
�

[1− e2γ(bmnc−mn)]<
3

2γ
2−n.

(Note that 3 · 2− j > 4 · 2(−n−2 j) and γ > 0.) Hence

0< E(I · I I)

<
3

2γ
2−n

bmnc−1
∑

j=0

[e2γ( j+1−mn)− e2γ( j−mn)] + Rn <
3

2γ
2−n(2− e−2γmn),

and so (9.3) follows, finishing the proof of part (a) for d = 1.

Assume that d ≥ 2. It clear that (9.3) follows from the one dimensional case. As far as (9.2) is
concerned, the computation is essentially the same as in the one dimensional case. Note, that
although the formulæ are lengthier in higher dimension, the 2d-dimensional covariance matrix is
block-diagonal because of the independence of the d coordinates (Lemma 8), and this simplifies the
computation significantly. We leave the simple details to the reader.

(b): Write
Var
�

1{ξmn∈B} | Fn

�

= P(ξmn
∈ B | Fn)− P2(ξmn

∈ B | Fn),

and note that P(ξmn
∈ B | ξ0 = x) = qn(x , B, n+mn), and ξ0 is the location of the parent particle at

time n. Hence, (7.14) together with (7.9) implies the limit in (b). �
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9.2 Proof of (7.12)

We will assume that ν(B) > 0 (i.e. C(B) = ν(B)− (ν(B))2 > 0), or equivalently, that B has positive
Lebesgue measure. This does not cause any loss of generality, since otherwise the Zi ’s vanish a.s.
and (7.12) is trivially true.

Now let us estimate E
�

ZiZ j | Fn

�

and E
�

Z 2
i | Fn

�

. The calculation is based on Lemma 25 as
follows. First, by part (a) of Lemma 25, it holds P-a.s. that for all large enough n,

P(Y 1, j
mn
∈ B, Y 2,k

mn
∈ B | Fn)− P(Y 1, j

mn
∈ B | Fn)P(Y

2,k
mn
∈ B | Fn)≤ C(B,γ) · n2−n.

Therefore, recalling that `n = 2bmnc, one has that P-a.s., for all large enough n,

`2
nE[Z1Z2 | Fn]

=
`n
∑

j,k=1

n

P(Y 1, j
mn
∈ B, Y 2,k

mn
∈ B | Fn)− P(Y 1, j

mn
∈ B | Fn)P(Y

2,k
mn
∈ B | Fn)

o

≤ C(B,γ) · n2−n`2
n.

This estimate holds when Y 1, j
mn

and Y 2,k
mn

are replaced by any Y p, j
mn

and Y r,k
mn

, where p 6= r and 1 ≤
p, r ≤ 2n; consequently, if

In :=
∑

1≤i 6= j≤2n

E
�

ZiZ j | Fn

�

(which is the left hand side of the inequality in (7.12)) then one has that P-a.s., for all large enough
n,

`2
n In ≤ 2n · (2n− 1)C(B,γ) · n2−n`2

n < C(B,γ) · n2n`2
n.

Hence, to finish the proof, it is sufficient to show that13

`2
nJn =Θ

�

n2n`2
n

�

a.s., (9.5)

for

Jn = n`n

2n
∑

i=1

E[Z 2
i | Fn]

(which is the right hand side of the inequality in (7.12) without the constant). To this end, we
essentially repeat the argument in the proof of Claim 28. The only difference is that we now also
use the assumption C(B)> 0, and obtain that

`2
nE[Z 2

1 | Fn] = O (n2−n`2
n) +Θ(`n),

as n→∞, a.s.

Just like in the proof of Claim 28, replacing 1 by i, the estimate holds uniformly for 1≤ i ≤ 2n, and
so

`2
n

2n
∑

i=1

E[Z 2
i | Fn] = O (n`2

n) +Θ(2
n`n) = Θ(2

n`n) a.s.,

13What we mean here is that there exist c, C > 0 absolute constants such that for all n≥ 1, c < Jn/n2n < C a.s.
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where in the last equality we used that `n = 2bmnc and mn = o(n). From here, (9.5) immediately
follows:

`2
nJn = n`3

n

2n
∑

i=1

E[Z 2
i | Fn] = Θ(n2n`2

n) a.s.,

and the proof of (7.12) is completed. �
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