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Abstract

We calculate the mean and almost-sure leading order behaviour of the high frequency asymp-
totics of the eigenvalue counting function associated with the natural Dirichlet form on α-stable
trees, which lead in turn to short-time heat kernel asymptotics for these random structures. In
particular, the conclusions we obtain demonstrate that the spectral dimension of an α-stable tree
is almost-surely equal to 2α/(2α− 1), matching that of certain related discrete models. We also
show that the exponent for the second term in the asymptotic expansion of the eigenvalue count-
ing function is no greater than 1/(2α− 1). To prove our results, we adapt a self-similar fractal
argument previously applied to the continuum random tree, replacing the decomposition of the
continuum tree at the branch point of three suitably chosen vertices with a recently developed
spinal decomposition for α-stable trees .
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1 Introduction

This work contains a study of the spectral properties of the class of random real trees known as α-
stable trees, α ∈ (1,2]. Such objects are natural: arising as the scaling limits of conditioned Galton-
Watson trees [1], [6]; admitting constructions in terms of Levy processes [7] and fragmentation
processes [12]; as well as having connections to continuous state branching process models [7].
In recent years, a number of geometric properties of α-stable trees have been studied, such as
the Hausdorff dimension and measure function [8], [9], [12], degree of branch points [8] and
decompositions into subtrees [13], [22], [23]. Here, our goal is to enhance this understanding
of α-stable trees by establishing various analytical properties for them, including determining their
spectral dimension, with the results we obtain extending those known to hold for the continuum
random tree [4], which corresponds to the case α= 2.

To allow us to state our main results, we will start by introducing some notation (precise definitions
are postponed until Section 2). First, fix α ∈ (1, 2] and let T = (T , dT ) represent the α-stable
tree T equipped with its natural metric dT . For P-a.e. realisation of T , it is possible to define a
canonical non-atomic Borel probability measure, µ say, whose support is equal to T , where P is the
probability measure on the probability space upon which all the random variables of the discussion
are defined. As with other measured real trees, by applying results of [18], one can check that it is
P-a.s. possible to construct an associated Dirichlet form (E ,F ) on L2(T ,µ) as an electrical energy
when we consider (T , dT ) to be a resistance network. In particular, (E ,F ) is characterised by the
following identity: for every x , y ∈ T ,

dT (x , y)−1 = inf{E ( f , f ) : f ∈ F , f (x) = 0, f (y) = 1}. (1)

Our focus will be on the asymptotic growth of the eigenvalues of the triple (E ,F ,µ), which are
defined to be the numbers λ which satisfy

E ( f , g) = λ

∫

T
f gdµ, ∀g ∈ F ,

for some non-trivial eigenfunction f ∈ F . The corresponding eigenvalue counting function, N , is
obtained by setting

N(λ) := #{eigenvalues of (E ,F ,µ)≤ λ}. (2)

Our conclusions for this function are presented in the following theorem, which describes the large
λ mean and P-a.s. behaviour of N . In the statement of the result, the notation E represents the
expectation under the probability measure P. Note that the first order result for α = 2 was estab-
lished previously as [4], Theorem 2, and our proof is an adaptation of the argument followed there.
In particular, in [4] the recursive self-similarity of the continuum random tree described in [2] was
used to enable renewal and branching process techniques to be applied to deduce the results of
interest. In this article, we proceed similarly by drawing recursive self-similarity for α-stable trees
from a spinal decomposition proved in [13].

Theorem 1.1. For each α ∈ (1, 2] and ε > 0, there exists a deterministic constant C ∈ (0,∞) such
that the following statements hold.
(a) As λ→∞,

EN(λ) = Cλ
α

2α−1 +O
�

λ
1

2α−1
+ε
�

.
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(b) P-a.s., as λ→∞,
N(λ)∼ Cλ

α
2α−1 .

Moreover, in P-probability, the second order estimate of part (a) also holds.

Remark 1.2. In the special case when α= 2, the estimate of the second order term can be improved to
O(1) in part (a) of the above theorem. A similar comment also applies to Corollaries 1.3(a) and 1.4
below.

For a bounded domain Ω ⊆ Rn, Weyl’s Theorem establishes for the Dirichlet or Neumann Laplacian
eigenvalue counting function the limit

lim
λ→∞

N(λ)

λn/2
= cn|Ω|n,

where |Ω|n is the n-dimensional Lebesgue measure of Ω and cn is a dimension dependent constant.
As a result, in the literature on fractal sets, the limit, when it exists,

dS = 2 lim
λ→∞

ln N(λ)
lnλ

is frequently referred to as the spectral dimension of a (Laplacian on a) set. In our setting, the
previous theorem allows us to immediately read off that an α-stable tree has dS = 2α/(2α − 1),
P-a.s., where the Laplacian considered here is that associated with the Dirichlet form (E ,F ) in the
standard way. As the Hausdorff dimension with respect to dT of an α-stable tree T is dH = α/(α−1)
(see [8], [12]), it follows that dS = 2dH/(dH+1). This relationship between the analytically defined
dS and geometrically defined dH has been established for p.c.f. self-similar sets and some other
finitely ramified random fractals when the Hausdorff dimension is measured with respect to an
intrinsic resistance metric (which is identical to dT in the α-stable tree case), see [14], [19] for
example. Furthermore, it is worth remarking that 2α/(2α− 1) is also the spectral dimension of the
random walk on a Galton-Watson tree whose offspring distribution lies in the domain of attraction
of a stable law with index α, conditioned to survive [5]. This final observation could well have
been expected given the convergence result proved in [3] that links the random walks on a related
family of Galton-Watson trees conditioned to be large and the Markov process X corresponding to
(E ,F ,µ), which can be interpreted as the Brownian motion on the α-stable tree.

Of course we have shown much more than just the existence of the spectral dimension, as we have
demonstrated the mean and P-a.s. existence of the Weyl limit (which does not exist for exactly
self-similar fractals with a high degree of symmetry [19]). In fact, for a compact manifold with
smooth boundary (under a certain geometric condition), it was proved in [15] that the asymptotic
expansion of the eigenvalue counting function of the Neumann Laplacian is given by

N(λ) = cn|Ω|λn/2+
1

4
cn−1|∂Ω|n−1λ

(n−1)/2+ o(λ(n−1)/2).

Analogously, the result we establish here provides an estimate on the size of the second order term
for α-stable trees. If our expansion had the same structure as the classical result, in the case α = 2,
for example, we would expect to see a constant second order term, as the natural boundary is finite.
However, despite seeing this in mean, we do not have (or expect) an almost sure or in probability
second term of this type. Indeed, although our results do not confirm that the second order exponent
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is equal to 1/(2α− 1), we anticipate that the randomness in the structure leads to fluctuations of
this higher order.

As in [4], it is straightforward to transfer our conclusions regarding the leading order spectral
asymptotics of α-stable trees to a result about the heat kernel (pt(x , y))x ,y∈T for the Laplacian asso-
ciated with (E ,F ,µ). In particular, a simple application of an Abelian theorem yields the following
asymptotics for the trace of the heat semigroup.

Corollary 1.3. If α ∈ (1, 2], ε > 0, C is the constant of Theorem 1.1 and Γ is the standard gamma
function, then the following statements hold.
(a) As t → 0,

E

∫

T
pt(x , x)µ(d x) = CΓ

�

3α−1
2α−1

�

t−
α

2α−1 +O
�

t−
1

2α−1
+ε
�

.

(b) P-a.s., as t → 0,
∫

T
pt(x , x)µ(d x)∼ CΓ

�

3α−1
2α−1

�

t−
α

2α−1 .

Finally, α-stable trees are known to satisfy the same root invariance property as the continuum
random tree. More specifically, if we select a µ-random vertex σ ∈ T , then the tree T rooted at σ
has the same distribution as the tree T rooted at its original root, ρ say (see [8], Proposition 4.8).
This allows us to transfer part (a) of the previous result to a limit for the annealed on-diagonal heat
kernel at ρ (cf. [4], Corollary 4).

Corollary 1.4. If α ∈ (1, 2], ε > 0, C is the constant of Theorem 1.1 and Γ is the standard gamma
function, then, as t →∞,

Ept(ρ,ρ) = CΓ
�

3α−1
2α−1

�

t−
α

2α−1 +O
�

t−
1

2α−1
+ε
�

.

The rest of the article is organised as follows. In Section 2 we describe some simple properties of
Dirichlet forms on compact real trees, and also introduce a spinal decomposition for α-stable trees
that will be applied recursively. In Section 3 we prove the mean spectral result stated in this section,
via a direct renewal theorem proof. By making the changes to [4] that were briefly described above,
we then proceed to establishing the almost-sure first order eigenvalue asymptotics in Section 4
using a branching process argument. Finally, in Section 5, we further investigate the second order
behaviour of the function N(λ) as λ→∞.

2 Dirichlet forms and recursive spinal decomposition

Before describing the particular properties of α-stable trees that will be of interest to us, we present
a brief introduction to Dirichlet forms on more general tree-like metric spaces. To this end, for the
time being we suppose that T = (T , dT ) is a deterministic compact real tree (see [21], Definition
1.1) and µ is a non-atomic finite Borel measure on T of full support. These assumptions easily allow
us to check the conditions of [18], Theorem 5.4, to deduce that there exists a unique local regular
Dirichlet form (E ,F ) on L2(T ,µ) associated with the metric dT through the identity at (1). Given
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the triple (E ,F ,µ), we define the corresponding eigenvalue counting function N as at (2). Now,
one of the defining features of a Dirichlet form is that, equipped with the norm ‖ · ‖E ,µ defined by

‖ f ‖E ,µ :=

�

E ( f , f ) +

∫

T
f 2dµ

�1/2

, ∀ f ∈ F , (3)

the collection of functions F is a Hilbert space, and moreover, the characterisation of (E ,F ) at (1)
implies that the natural embedding from (F ,‖ · ‖E ,µ) into L2(T ,µ) is compact (see [17], Lemma
8.6, for example). By standard theory for self-adjoint operators, it follows that N(λ) is zero for
λ < 0 and finite for λ ≥ 0 (see [19], Theorem B.1.13, for example). Furthermore, by applying
results of [19], Section 2.3, one can deduce that 1 ∈ F , and E ( f , f ) = 0 if and only if f is constant
on T . Thus N(0) = 1. When we incorporate this fact into our argument in the next section it will
be convenient to have notation for the shifted eigenvalue counting function Ñ : R → R+ defined
by setting Ñ(λ) = N(λ)− 1, which clearly satisfies Ñ(λ) = #{eigenvalues of (E ,F ,µ) ∈ (0,λ]} for
λ > 0.

Later, it will also be useful to consider the Dirichlet eigenvalues of (E ,F ,µ) when the bound-
ary of T is assumed to consist of two distinguished vertices ρ,σ ∈ T , ρ 6= σ. To define these
eigenvalues precisely, we first introduce the form (E D,F D) by setting E D := E|F D×F D , where
F D :=

�

f ∈ F : f (ρ) = 0= f (σ)
	

. Since µ({ρ,σ}) = 0, [10], Theorem 4.4.3, implies that
(E D,F D) is a regular Dirichlet form on L2(T ,µ). Furthermore, as it is the restriction of (E ,F ),
we can apply [20], Corollary 4.7, to deduce that

N D(λ)≤ N(λ)≤ N D(λ) + 2, (4)

where N D is the eigenvalue counting function for (E D,F D,µ), and also, since E ( f , f ) = 0 if and
only if f is a constant on T , N D(0) = 0. The eigenvalues of the triple (E D,F D,µ) will also be
called the Dirichlet eigenvalues of (E ,F ,µ) and N D the Dirichlet eigenvalue counting function of
(E ,F ,µ).

To conclude this general discussion of Dirichlet forms on compact real trees, we prove a lemma
that provides a lower bound for the first non-zero eigenvalue of (E ,F ,µ) and first eigenvalue of
(E D,F D,µ), which will be repeatedly applied in the subsequent section. In the statement of the
result, diamdT (T ) := supx ,y∈T dT (x , y) is the diameter of the real tree (T , dT ).

Lemma 2.1. In the above setting, N D(λ) = Ñ(λ) = 0 whenever

0≤ λ <
1

diamdT (T )µ(T )
.

Proof. As in the proof of [4], Lemma 20, observe that if f ∈ F D is an eigenfunction of (E D,F D,µ)
with eigenvalue λ > 0, then (1) implies that, for x ∈ T ,

f (x)2 = ( f (x)− f (ρ))2 ≤ E ( f , f )dT (ρ, x)≤ λdiamdT (T )
∫

T
f 2dµ.

Integrating out x with respect to µ yields the result in the Dirichlet case.
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Similarly, if f ∈ F is an eigenfunction of (E ,F ,µ) with eigenvalue λ > 0, then, for x , y ∈ T ,

( f (x)− f (y))2 ≤ λdiamdT (T )
∫

T
f 2dµ.

Since by the definition of an eigenfunction
∫

T f dµ = λ−1E ( f , 1) = 0, integrating out both x and y
with respect to µ yields λ≥ 2/(diamdT (T )µ(T )), which is actually a slightly stronger result for the
Neumann case than stated.

We now turn to α-stable trees. To fix notation, as in the introduction we will henceforth assume
that T = (T , dT ) is an α-stable tree, α ∈ (1, 2], µ is the canonical Borel probability measure on
T and all the random variables we consider are defined on a probability space with probability
measure P. Since α-stable trees have been reasonably widely studied, we do not feel it essential to
provide an explicit construction of such objects, examples of which can be found in [7] and [12].
Instead, we simply observe that the results of [7] imply that (T ,µ) satisfies all the properties for
measured compact real trees that were assumed at the start of this section, and therefore the above
discussion applies to the Dirichlet forms (E ,F ), (E D,F D), and eigenvalue counting functions N , Ñ ,
N D, associated with the α-stable tree T , P-a.s.

Fundamental to our proof of Theorem 1.1 in the case α ∈ (1, 2) is the fine spinal decomposition of T
that was developed in [13], and which we now describe. First, suppose that there is a distinguished
vertex ρ ∈ T , which we call the root, and choose a second vertex σ ∈ T randomly according to µ.
Note that, since µ is non-atomic, ρ 6= σ, P-a.s. Secondly, let (T o

i )i∈N be the connected components
of T \[[ρ,σ]], where [[ρ,σ]] is the minimal arc connecting ρ to σ in T . We assume that (T o

i )i∈N
have been ordered so that the masses ∆i := µ(T o

i ), which P-a.s. take values in (0,1) and sum to
1, are non-increasing in i. P-a.s. for each i, the closure of T o

i in T contains precisely one point
more than T o

i , ρi say, and we can therefore write it as Ti = T o
i ∪ {ρi}. We define a metric dTi

and
probability measure µi on Ti by setting

dTi
:=∆

1−α
α

i dT |Ti×Ti
, µi(·) :=

µ(· ∩ Ti)
∆i

. (5)

Furthermore, let σi be µi-random vertices of Ti , chosen independently for each i. The usefulness of
this decomposition of T into the subsets (Ti)i∈N is contained in the subsequent proposition, which
is a simple modification of parts of [13], Corollary 10, and is stated without proof.

Proposition 2.2. For every α ∈ (1,2),
¦

((Ti , dTi
),µi ,ρi ,σi)

©

i∈N is an independent collection of copies
of ((T , dT ),µ,ρ,σ), and moreover, the entire family is independent of (∆i)i∈N, which has a Poisson-
Dirichlet (α−1, 1−α−1) distribution.

Similarly to the argument of [4], we will apply this result recursively, and will label the objects
generated by this procedure using the address space of sequences that we now introduce. For n≥ 0,
let

Σn := Nn, Σ∗ :=
⋃

m≥0

Σm,

where Σ0 := {;}. For i ∈ Σm, j ∈ Σn, write i j = i1 . . . im j1 . . . jn, and for k ∈ Σ∗, denote by |k| the
unique integer n such that k ∈ Σn. Later, we will also write for i ∈ Σm, i|n = i1 . . . in for any n≤ m.
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Continuing with our inductive procedure, given ((Ti , dTi
),µi ,ρi ,σi) for some i ∈ Σ∗, we define

n

((Ti j , dTi j
),µi j ,ρi j ,σi j)

o

j∈N
and (∆i j) j∈N from ((Ti , dTi

),µi ,ρi ,σi) using exactly the same method

as that by which T was decomposed above. Thus, if the σ-algebra generated by the random vari-
ables (∆i)1≤|i|≤n is denoted by Fn for each n ∈ N, by iteratively applying Proposition 2.2 it is easy
to deduce the following result.

Corollary 2.3. Let α ∈ (1,2). For each n ∈ N,
¦

((Ti , dTi
),µi ,ρi ,σi)

©

i∈Σn
is an independent collection

of copies of ((T , dT ),µ,ρ,σ), independent of Fn.

For i ∈ Σ∗\{;}, we will write (Ei ,Fi), (E D
i ,F D

i ), Ni , Ñi , N D
i to represent the Dirichlet forms and

eigenvalue counting functions corresponding to ((Ti , dTi
),µi ,ρi ,σi). and set

Di :=∆i|1∆i|2 . . .∆i||i| ,

which is actually the mass of Ti with respect to the original measure µ. By convention, we set
D; := 1, and when other objects are indexed by ;, we are referring to the relevant quantities defined
from the original α-stable tree.

Finally, when discussing the Brownian case (α = 2), we will instead consider the decomposition
of the real tree T described in [4]. The first step of this decomposition involves choosing two µ-
random vertices σ1 and σ2, and then splitting the tree T at the unique branch point of these and the
root ρ. Taking the closure of the resulting three connected components and rescaling as at (5) yields
three independent copies of the original tree. Moreover, these three real trees are independent of the
mass factors, (∆i)3i=1 say, which have a Dirichlet (1

2
, 1

2
, 1

2
) distribution. By repeating this step, one

can define a whole collection of trees and related objects indexed by the space of finite sequences
of {1,2, 3}. Since the procedure for doing this is extremely similar to that of the α ∈ (1, 2) case
outlined above, we leave the reader to refer to [4] for further details.

3 Mean spectral asymptotics

To prove the mean spectral asymptotics for α-stable trees given in Theorem 1.1(a), we will appeal
to a renewal theorem argument. In doing this, we depend on a series of inequalities that allow
the Neumann and Dirichlet eigenvalue counting functions of (E ,F ,µ) to be usefully compared with
those associated with Dirichlet forms on subsets of T . In particular, the collection of subsets that we
consider will be those arising from the fine spinal decomposition of T described in Section 2, namely
(Ti)i∈N, and the first main result of this section is the following, where until the final paragraph of
this section we suppose α ∈ (1,2) and define γ := α/(2α− 1).

Proposition 3.1. P-a.s., we have, for every λ≥ 0,
∑

i∈N
N D

i (λ∆
1/γ
i )≤ N D(λ)≤ N(λ)≤ 1+

∑

i∈N
Ñi(λ∆

1/γ
i ),

with the upper bound being finite.

To derive this result, we will proceed via a sequence of lemmas. The first of these provides an
alternative description of (E ,F ) that will be useful in proving the lower bound for N D(λ), which
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appears as Lemma 3.3. We write (E[[ρ,σ]],F[[ρ,σ]]) to represent the local regular Dirichlet form
on the compact real tree ([[ρ,σ]], dT |[[ρ,σ]]×[[ρ,σ]]) equipped with the one-dimensional Hausdorff
measure that is constructed using [18], Theorem 5.4 and which therefore satisfies the variational
equality analogous to (1). Note that in what follows we apply the convention that if a form E is
defined for functions on a set A and f is a function defined on B ⊇ A, then we write E( f , f ) to mean
E( f |A, f |A).

Lemma 3.2. P-a.s., we can write

E ( f , f ) = E[[ρ,σ]]( f , f ) +
∑

i∈N
∆

1−α
α

i Ei( f , f ), ∀ f ∈ F , (6)

F =
¦

f ∈ L2(T ,µ) : f |[[ρ,σ]] ∈ F[[ρ,σ]], and also, for every i ∈ N, f |Ti
∈ Fi

©

. (7)

Proof. Let (E ′,F ′) be defined by setting E ′( f , f ) to be equal to the expression on the right-hand
side of (6) for any f ∈ F ′, where F ′ is defined to be equal to the right-hand side of (7). By results
of [19], Section 2.3, to show that (E ,F ) and (E ′,F ′) are equal and establish the lemma, it will be
enough to check that (1) still holds when we replace (E ,F ) by (E ′,F ′).
Suppose x ∈ T o

i , y ∈ T o
j , for some i 6= j, then the infimum of interest can be rewritten as

inf{E ′( f , f ) : f ∈ F ′, f (x) = 0, f (y) = 1}
= inf

a,b∈R
inf{E ′( f , f ) : f ∈ F ′, f (x) = 0, f (ρi) = a, f (ρ j) = b, f (y) = 1}.

Now, observe that if f is in the collection of functions over which this double-infimum is taken, then
so is g, where g is equal to f on [[ρ,σ]]∪Ti ∪T j and equal to f (ρk) on Tk for k 6= i, j. Moreover,
g satisfies

E ′(g, g) = ∆
1−α
α

i Ei( f , f ) + E[[ρ,σ]]( f , f ) +∆
1−α
α

j E j( f , f )≤ E ′( f , f ),

and so we can neglect functions that are not constant on each Tk, k 6= i, j. In particular, we need to
compute

inf
a,b∈R

inf{∆
1−α
α

i Ei( f , f ) + E[[ρ,σ]]( f , f ) +∆
1−α
α

j E j( f , f )},

where the second infimum is taken over functions in F ′ that satisfy f (x) = 0, f (ρi) = a, f (ρ j) =
b, f (y) = 1 and are constant on each Tk, k 6= i, j. Since the forms Ei , E[[ρ,σ]] and E j are zero on
constant functions, we can apply their characterisation in terms of distance to obtain that this is
equal to

inf
a,b∈R

¨

a2

dT (x ,ρi)
+
(b− a)2

dT (ρi ,ρ j)
+
(1− b)2

dT (ρ j , y)

«

,

and, from this, a simple quadratic optimisation using the additivity of the metric dT along paths
yields the desired result in this case. The argument is similar for other choices of x , y ∈ T .

The method of proof of the next lemma is an adaptation of [20], Proposition 6.3.
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Lemma 3.3. P-a.s., we have, for every λ≥ 0,

N D(λ)≥
∑

i∈N
N D

i (λ∆
1/γ
i ).

Proof. First, define a quadratic form (E (0),F (0)) by setting E (0) := E|F (0)×F (0) , where

F (0) :=
�

f ∈ F : f (x) = 0,∀x ∈ [[ρ,σ]]∪
�

∪i∈N{σi}
�	

.

Since µ([[ρ,σ]] ∪
�

∪i∈N{σi}
�

) = 0, it is possible to check that (E (0),F (0)) is a regular Dirichlet
form on L2(T ,µ) by applying [10], Theorem 4.4.3. Moreover, since we have that F (0) ⊆ F D and
E (0) = E D|F (0)×F (0) , we can again apply [20], Theorem 4.5, to deduce that N (0)(λ) ≤ N D(λ) for
every λ ≥ 0, where N (0) is the eigenvalue counting function for (E (0),F (0),µ). Consequently, to
complete the proof of the lemma, it will suffice to show that P-a.s. we have, for every λ≥ 0,

N (0)(λ)≥
∑

i∈N
N D

i (λ∆
1/γ
i ). (8)

To demonstrate that this is indeed the case, first fix i ∈ N and suppose f is an eigenfunction of
(E D

i ,F D
i ,µi) with eigenvalue λ∆1/γ

i . If we set

g(x) :=

¨

f (x), for x ∈ Ti ,
0 otherwise,

then we can apply Lemma 3.2 to deduce that, for h ∈ F (0),

E (0)(g, h) = ∆
1−α
α

i E D
i ( f , h) = λ∆i

∫

Ti

f hdµi = λ

∫

T
ghdµ.

Thus g is an eigenfunction of (E (0),F (0),µ) with eigenvalue λ, and (8) follows.

We now prove the upper bound for N(λ). In establishing the corresponding estimates in [4], [14]
and [20], extensions of the Dirichlet form of interest for which the eigenvalue counting function
could easily be controlled were constructed, and we will follow a similar approach here. However,
since the collection of sets (Ti)i∈N is infinite, compactness issues prevent us from directly imitating
this procedure to define a single suitable Dirichlet form extension of (E ,F ). Instead we will consider
a sequence of Dirichlet form extensions, each built as a sum of Dirichlet forms on the sets in a finite
decomposition of T .

Lemma 3.4. P-a.s., we have, for every λ≥ 0,

Ñ(λ)≤
∑

i∈N
Ñi(λ∆

1/γ
i ),

with the upper bound being finite.
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Proof. We start by describing our sequence of Dirichlet form extensions of (E ,F ). Fix k ∈ N, and
set Sk := T \∪k

i=1 T
o

i , which is a compact real tree when equipped with the restriction of dT to Sk.
Again appealing to [18], Theorem 5.4, let (ESk

,FSk
) be the associated local regular Dirichlet form

on L2(Sk,µ(· ∩ Sk)). Now, define a pair (E (k),F (k)) by setting F (k) equal to
¨

f ∈ L2(T ,µ) :
for every i ∈ {1, . . . , k}, f = fi on T o

i
for some fi ∈ Fi , and also f |Sk

∈ FSk

«

,

and

E (k)( f , g) := ESk
( f , g) +

k
∑

i=1

∆
1−α
α

i Ei( fi , gi), ∀ f , g ∈ F (k).

SinceFi is dense in L2(Ti ,µ(·∩Ti)) andFSk
is dense in L2(Sk,µ(·∩Sk)), we clearly have thatF (k)

is dense in L2(T ,µ). Furthermore, applying the corresponding properties for the Dirichlet forms
in the sum, it is easy to check that (E (k),F (k)) is a non-negative symmetric bilinear form satisfying
the Markov property, by which we mean that if f ∈ F (k) and f := (0 ∨ f ) ∧ 1, then f ∈ F (k) and
E (k)( f , f )≤ E (k)( f , f ). Hence to prove that (E (k),F (k)) is a Dirichlet form on L2(T ,µ) it remains to
demonstrate that (F (k),‖ · ‖E (k),µ) is a Hilbert space, where ‖ · ‖E (k),µ is the defined as at (3). Given

that the number of terms in the above sum is finite, this is elementary, and so (E (k),F (k)) is indeed
a Dirichlet form on L2(T ,µ). Moreover, by a simple adaptation of the proof of [20], Proposition
6.2(3), it can also be shown that the identity map from (F (k),‖ · ‖E (k),µ) to L2(T ,µ) is compact, and

so the eigenvalue counting function for (E (k),F (k),µ), N (k) say, is finite everywhere on the real line.

In order to demonstrate that (E (k),F (k)) is an extension of (E ,F ), we first observe that, by following
an identical line of reasoning to that applied in the proof of Lemma 3.2, it is possible to prove that
the Dirichlet form (E ,F ) satisfies

E ( f , g) := ESk
( f , g) +

k
∑

i=1

∆
1−α
α

i Ei( f , g), ∀ f , g ∈ F ,

F =
¦

f ∈ L2(T ,µ) : for every i ∈ {1, . . . , k}, f |Ti
∈ Fi , and also f |Sk

∈ FSk

©

.

From this characterisation of (E ,F ), it is immediate that F ⊆ F (k) and E = E (k)|F×F , as desired.
Consequently a further application of [20], Theorem 4.5, yields that Ñ(λ)≤ Ñ (k)(λ) := N (k)(λ)−1,
and we complete our proof by establishing suitable upper bounds for Ñ (k).

Let f 6≡ 0 be an eigenfunction of (E (k),F (k)) with eigenvalue λ > 0. If i ∈ {1, . . . , k} and g ∈ Fi ,
then define a function h ∈ F (k) by setting

h(x) :=

¨

g(x), if x ∈ T o
i ,

0, otherwise.

By the definition of E (k) and this construction, we have that

Ei( f , g) = ∆
α−1
α

i E (k)( f , h) = λ∆
α−1
α

i

∫

T
f hdµ= λ∆1/γ

i

∫

Ti

f gdµi .
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Thus if f is not identically zero on Ti , then it must be the case that λ∆1/γ
i is an eigenvalue of

(Ei ,Fi ,µi). Similarly, if g ∈ FSk
, h is defined by

h(x) :=

¨

g(x), if x ∈ Sk,
0, otherwise,

and f is not identically zero on Sk, then λ is an eigenvalue of (ESk
,FSk

,µ(· ∩ Sk)). Combining
these facts, it follows that, for λ≥ 0,

Ñ (k)(λ)≤ ÑSk
(λ) +

k
∑

i=1

Ñi(λ∆
1/γ
i ), (9)

where ÑSk
is the (strictly positive) eigenvalue counting function for (ESk

,FSk
,µ(· ∩ Sk)).

Now note that, by Lemma 2.1, the first term in (9) is zero whenever λ is strictly less than
1/diamdT (Sk)µ(Sk). Thus we can conclude that, for each k ∈ N,

Ñ(λ)≤
k
∑

i=1

Ñi(λ∆
1/γ
i ), ∀λ <

1

diamdT (T )(1−∆1− · · · −∆k)
.

Since diamdT (T ) < ∞ and ∆1 + · · ·+∆k → 1 as k → ∞, P-a.s., the upper bound of the lemma
follows.

It still remains to show the P-a.s. finiteness of
∑

i∈N Ñi(λ∆
1/γ
i ). To show this is the case, we again

apply Lemma 2.1 to obtain that the ith term is zero whenever

λ <∆−1/γ
i

�

diamdTi
(Ti)µi(Ti)

�−1
=
�

∆idiamdT (Ti)
�−1

.

The result is readily obtained from this on noting that (∆idiamdT (Ti))−1 is bounded below by
(∆idiamdT (T ))

−1 → ∞ as i → ∞ and so only a finite number of terms (each of which is finite)
in the sum are non-zero, P-a.s.

Given the eigenvalue counting function comparison result of Proposition 3.1, which follows from
(4), Lemma 3.3 and Lemma 3.4, we now turn to our renewal theorem argument to derive mean
spectral asymptotics for α-stable trees. Similarly to [4], define the functions (ηi)i∈Σ∗ by, for t ∈ R,

ηi(t) := N D
i (e

t)−
∑

j∈N
N D

i j (e
t∆1/γ

i j ),

and let η := η;. By Proposition 3.1, ηi(t) is non-negative and finite for every t ∈ R, P-a.s., and
the dominated convergence theorem implies that ηi has cadlag paths, P-a.s. It will also be useful
to note that Corollary 2.3 implies ηi is independent of (∆ j)| j|≤|i|. If we set X i(t) := N D

i (e
t), and

X := X;, then it is immediate that the following evolution equation holds:

X (t) = η(t) +
∑

i∈N
X i(t + γ

−1 ln∆i). (10)

We introduce associated discounted mean processes

m(t) := e−γtEX (t), u(t) := e−γtEη(t),
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define a measure ν by ν([0, t]) =
∑

i∈N P(∆i ≥ e−γt), and let νγ be the measure that satisfies
νγ(d t) = e−γtν(d t). The properties we require of m, u and νγ are collected in the following lemma.
In the proof of this result, which is an adaptation of [4], Lemma 20, it will be convenient to define,
for x ≥ 0,

ψ(x) :=
∑

i∈N
E(∆x

i ). (11)

By [25], equation (6), this quantity is infinite for x ≤ α−1, and otherwise satisfies

ψ(x) =
α− 1

αx − 1
. (12)

Moreover, we set

β :=
α− 1

2α− 1
≡ γ−

1

2α− 1
. (13)

Lemma 3.5. (a) The function m is bounded.
(b) The function u is in L1(R) and, for any ε > 0, u(t) = O(e−(β−ε)t) as t →∞.
(c) The measure νγ is a Borel probability measure on [0,∞), and the integral

∫∞
0

tνγ(d t) is finite.

Proof. First observe that by iterating (10) we obtain for each k ∈ N that

X (t) =
∑

|i|<k

ηi(t + γ
−1 ln Di) +

∑

i∈Σk

X i(t + γ
−1 ln Di).

Thus establishing the P-a.s. limit

lim
k→∞

∑

i∈Σk

X i(t + γ
−1 ln Di) = 0, ∀t ∈ R, (14)

will also confirm that we can P-a.s. write

X (t) =
∑

i∈Σ∗

ηi(t + γ
−1 ln Di), ∀t ∈ R. (15)

To prove that (14) does indeed hold, we first note that, since X i(t+γ−1 ln Di) = N D
i (e

t D1/γ
i ) = 0 for

et D1/γ
i < diamdTi

(Ti)−1, the sum appearing in (14) is zero if

sup
i∈Σk

D1/γ
i diamdTi

(Ti)< e−t .

Hence, to prove (14), it will be enough to show that this supremum converges P-a.s. to zero as
k→∞. To establish that this is the case, we will apply the following bound: for ε,θ > 0,

∞
∑

k=0

P

�

sup
i∈Σk

D1/γ
i diamdTi

(Ti)≥ ε
�

≤
∞
∑

k=0

P







∑

i∈Σk

Dθ/γi diamdTi
(Ti)

θ ≥ εθ







≤ ε−θE
�

diamdT (T )
θ
�

∞
∑

k=0

∑

i∈Σk

E
�

Dθ/γi

�

= ε−θE
�

diamdT (T )
θ
�

∞
∑

k=0

ψ(θγ−1)k, (16)
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where we have made use of the recursive decomposition result of Corollary 2.3. Exploiting the
fragmentation process description of α-stable trees proved in [22], it is possible to apply [11],
Proposition 14, to check that the expectation E(diamdT (T )

θ ) is finite for any θ > 0. Furthermore,
by (12), we have that ψ(θγ−1) < 1 for θ > γ. Thus, by choosing θ > γ, we obtain that the
expression at (16) is finite, and therefore the Borel-Cantelli lemma can be applied to complete the
proof that (14) and (15) hold.

From the characterisation of X at (15) and the definition of ηi we see that

m(t) = e−γt
∑

i∈Σ∗

E






N D

i (e
t D1/γ

i )−
∑

j∈N
N D

i j (e
t D1/γ

i j )






.

Since

ηi(t + γ
−1 ln Di) = N D

i (e
t D1/γ

i )−
∑

j∈N
N D

i j (e
t D1/γ

i j )

≤ 1{D1/γ
i diamdTi

(Ti)≥e−t}+
∑

j∈N

�

Ñi j(e
t D1/γ

i j )− N D
i j (e

t D1/γ
i j )
�

,

≤ 1{D1/γ
i diamdTi

(Ti)≥e−t}+
∑

j∈N
1{D1/γ

i j diamdTi j
(Ti j)≥e−t}, (17)

where we have applied (4), Lemma 2.1 and Proposition 3.1, it follows that

m(t) ≤ 2e−γt
∑

i∈Σ∗

P
�

D1/γ
i diamdTi

(Ti)≥ e−t
�

= 2e−γtE
�

#
¦

i ∈ Σ∗ :−γ−1 ln Di ≤ t + ln diamdT̃ (T̃ )
©�

,

where (T̃ , dT̃ ) is an independent copy of (T , dT ). Similarly to the corresponding argument in [4],
by considering the Crump-Mode-Jagers branching process with particles i ∈ Σ∗, where i ∈ Σ∗ has
offspring i j at time − ln∆i j after its birth, j ∈ N, it is possible to show that E(#{i ∈ Σ∗ : − ln Di ≤
t}) ≤ Cet for every t ∈ R, where C is a finite constant. Hence m(t) ≤ 2CE

�

diamdT (T )
γ
�

for every
t ∈ R. As already noted, the moments of the diameter of an α-stable tree are finite and so this bound
establishes that m is bounded.

For part (b), first observe that

u(t) = e−γtEη(t)≤ e−γt
∑

i∈Σ∗

Eηi(t + γ
−1 ln Di) = m(t),

and so u is bounded. Thus, since η is P-a.s. cadlag, then u is also measurable. Furthermore,
multiplying (17) by e−γt and taking expectations yields, for any θ > 0,

u(t) ≤ e−γt

 

P
�

diamdT (T )≥ e−t
�

+
∑

i∈N
P
�

∆1/γ
i diamdTi

(Ti)≥ e−t
�

!

≤ e(θ−γ)tE
�

diamdT (T )
θ
�

 

1+
∑

i∈N
E
�

∆θ/γi

�

!

= Cθ e(θ−γ)t ,
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where the second inequality is a simple application of Chebyshev’s inequality and Cθ :=
E(diamdT (T )

θ )(1+ψ(θγ−1)). As all the positive moments of diamdT (T ) are finite and ψ(θγ−1)
is finite for θ > γα−1, Cθ is a finite constant for any θ > (2α − 1)−1. In particular, choosing
θ = (2α− 1)−1 + ε, we obtain u(t) = O(e−(β−ε)t) as t →∞, which is the second claim of part (b).
We further note that by setting θ = 1+γ, the above bound implies u(t) = O(et) as t →−∞, which,
in combination with our earlier observations, establishes that u ∈ L1(R) as desired.

Finally, to demonstrate that νγ is a Borel probability measure on [0,∞) is elementary given that
ψ(1) =

∑

i∈N∆i = 1, P-a.s. Moreover, by definition the integrability condition can be rewritten
∑

i∈N E(∆i| ln∆i|) <∞, and this can be confirmed by a second application of equation (6) of [25].

Applying this lemma, it would be possible to apply the renewal theorem of [16] exactly as in [4]
to deduce the convergence of m(t) as t → ∞. However, in order to establish an estimate for the
second order term, we present a direct proof of the renewal theorem in our setting. The β in the
statement of the result is defined as at (13), and m(∞) is the constant defined by

m(∞) :=

∫∞
−∞ u(t)d t
∫∞

0
tνγ(d t)

. (18)

That m(∞) is finite and non-zero is an easy consequence of Lemma 3.5.

Proposition 3.6. For any ε > 0, the function m satisfies

|m(t)−m(∞)|= O(e−(β−ε)t),

as t →∞.

Proof. From (15) and Fubini’s theorem, we obtain

m(t) = e−γtEX (t)

=
∑

i∈Σ∗

e−γtEηi(t + γ
−1 ln Di)

=
∑

i∈Σ∗

∫ ∞

0

e−γ(t−s)Eηi(t − s)e−γsP(−γ−1 ln Di ∈ ds)

=

∫ ∞

0

u(t − s)
∑

i∈Σ∗

e−γsP(−γ−1 ln Di ∈ ds),

where to deduce the third equality, we apply the independence of ηi and Di that follows from
Corollary 2.3. We will analyse the measure in this integral. Let λ > 0, then

∫ ∞

0

e−λs
∑

i∈Σ∗

e−γsP(−γ−1 ln Di ∈ ds) =
∑

i∈Σ∗

ED1+λ/γ
i

=
∞
∑

n=0

ψ(1+λγ−1)n

=
1

1−ψ(1+λγ−1)
.

1785



Furthermore, observe that M := (
∫∞

0
sνγ(ds))−1 satisfies

M−1 =−γ−1ψ′(1) =
2α− 1

α− 1
.

It follows that

∫ ∞

0

e−λs






Mds−

∑

i∈Σ∗

e−γsP(−γ−1 ln Di ∈ ds)






=

M

λ
−

1

1−ψ(1+λγ−1)
=−1,

and inverting this Laplace transform yields

Mds−
∑

i∈Σ∗

e−γsP(−γ−1 ln Di ∈ ds) =−δ0(s)ds,

where δ0(s) is the Dirac delta function. Therefore

m(∞)−m(t)

= M

∫ ∞

0

u(t + s)ds+

∫ ∞

0

u(t − s)






Mds−

∑

i∈Σ∗

e−γsP(−γ−1 ln Di ∈ ds)







= M

∫ ∞

0

u(t + s)ds− u(t),

and the result follows from Lemma 3.5.

Rewriting the above result in terms of N D and using (4) to compare N D with N yields Theorem
1.1(a) for α ∈ (1,2). Before we conclude this section, though, let us briefly discuss the case α = 2,
so as to explain how the corresponding parts of the theorem and Remark 1.2 can be verified. Letting
m, u and νγ be defined as in [4] (which closely matches the notation of this article), then by
repeating an almost identical argument to the previous proof, with the Poisson-Dirichlet random
variables (∆i)i∈N of this article being replaced by the Dirichlet (1

2
, 1

2
, 1

2
) triple of that, it is possible

to show that

m(∞)−m(t) =

∫ ∞

0

u(t + s)ds− u(t).

(To do this, it is necessary to apply the observations that, in the α = 2 setting, the constant M is
equal to 1, and the function corresponding to ψ(x) can be computed to be 3(2x + 1)−1.) Since u
was shown in [4] to satisfy u(t) ≤ Ce−2t/3 for t ≥ 0, the right-hand side is bounded by a constant
when multiplied by e2t/3, and it follows that Theorem 1.1(a) holds for α = 2 with the second order
term reduced to O(1).

4 Almost-sure spectral asymptotics

Our task for this section is to establish the P-a.s. convergence of e−γt X (t) as t → ∞, where X (t)
is defined as in the previous section and α ∈ (1, 2) is fixed throughout. For this, we follow the
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branching process argument of [4], which extends [14], making changes where necessary to deal
with the infinite number of offspring. This approach relies on a second moment bound for X (t),
which we prove via a sequence of lemmas. For brevity, we will henceforth write δi := diamdTi

(Ti).
It will also be convenient to let m(i, j) = sup{n : i|n = j|n} be the generation of the most recent
common ancestor of the addresses i, j ∈ Σ∗ and for j = ik to write Di

j =
∏| j|

l=|i|+1∆ j|l .

We first state an elementary extension of Markov’s inequality.

Lemma 4.1. Let X , Y be positive random variables. Then for all x , y > 0,

P(X > x , Y > y)≤
1

x y
EX Y. (19)

Lemma 4.2. Let i ∈ Σk, j ∈ Σl with k ≤ l, and θ > 0. Writing m := m(i, j) and δ := δ;, we have that

P(D1/γ
i δi ≥ e−t , D1/γ

j δ j ≥ e−t)

≤ e2θ t(Eδ4θ )1/2(E(∆4θ/γ
i|m+1
)E(∆4θ/γ

j|m+1
))1/4E(D2θ/γ

i|m
)E
�

(Di|m+1
i )θ/γ

�

E
�

(D j|m+1
j )θ/γ

�

whenever m< k, and if ε > 0, then

P(D1/γ
i δi ≥ e−t , D1/γ

j δ j ≥ e−t)≤ e2θ tE(δ2(1+ε−1)θ )1/(1+ε
−1)E(D2θ/γ

i )E((Di
j)
(1+ε)θ/γ)1/(1+ε)

whenever m= k.

Proof. We start by assuming m< k or, if k = l, then m< k− 1. By definition, we have that

P(D1/γ
i δi ≥ e−t , D1/γ

j δ j ≥ e−t)

= P(D1/γ
i|m+1
(Di|m+1

i )1/γδi ≥ e−t , D1/γ
j|m+1
(D j|m+1

j )1/γδ j ≥ e−t)

= E(P((Di|m+1
i )1/γ ≥ x i , (D

j|m+1
j )1/γ ≥ x j|x i , x j)) (20)

where x−1
i = et D1/γ

i|m+1
δi , x−1

j = et D1/γ
j|m+1

δ j . Now, as Di|m+1
i and D j|m+1

j are independent, we have

P(D1/γ
i δi ≥ e−t , D1/γ

j δ j ≥ e−t)

≤ E(P((Di|m+1
i )1/γ ≥ x i|x i , x j)P((D

j|m+1
j )1/γ ≥ x j|x i , x j))

≤ E(x−θi x−θj E((Di|m+1
i )θ/γ|x i , x j)E((D

j|m+1
j )θ/γ|x i , x j))

≤ e2θ tE(δθi δ
θ
j ∆

θ/γ

i|m+1
∆θ/γj|m+1

)E(D2θ/γ
i|m
)E((Di|m+1

i )θ/γ)E((D j|m+1
j )θ/γ)

A repeated application of Cauchy-Schwarz to E(δθi δ
θ
j ∆

θ/γ

i|m+1
∆θ/γj|m+1

) then gives the result.

For the case where k = l and m= k−1, that is i, j have the same parent we cannot use independence
in the same way and instead use (19) in (20) to get

P(D1/γ
i δi ≥ e−t , D1/γ

j δ j ≥ e−t) ≤ E(x−θi x−θj E(∆θ/γi|k
∆θ/γj|k

|x i , x j))

≤ e2θ tE(δθi δ
θ
j ∆

θ/γ

i|k
∆θ/γj|k

)E(D2θ/γ
i|m
)
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and Cauchy-Schwarz again gives the result.

For the case where m= k we have by (19) that

P(D1/γ
i δi ≥ e−t , D1/γ

i (D
i
j)

1/γδ j ≥ e−t)

≤ e2θ tE
�

D2θ/γ
i δθi (D

i
j)
θ/γδθj

�

= e2θ tE(D2θ/γ
i )E

�

δθi (D
i
j)
θ/γδθj

�

Applying Hölder twice to E
�

δθi (D
i
j)
θ/γδθj

�

, we have the result in this case as well.

For the following result, we define ψr :=ψ(rθγ−1) for r = 1,2, where the function (ψ(x))x≥0 was
introduced at (11). We also set

ψ1,ε :=
∑

i∈N
E(∆(1+ε)θ/γi )1/(1+ε).

If θ > γ/α, we observe that ψ1 ≤ ψ1,ε <∞, where the lower inequality is simply Jensen’s and the
upper inequality is a consequence of [25], equation (50).

Lemma 4.3. For k ≤ l, θ > γ/α and ε > 0, we have that

∑

i∈Σk

∑

j∈Σl

E(ηi(t + γ
−1 ln Di)η j(t + γ

−1 ln D j))≤ Ce2θ t(k+ 1)ψk+l
1,ε

 

ψ2

ψ2
1,ε

∨ 1

!k

for some finite constant C.

Proof. Let i ∈ Σk, j ∈ Σl for some k ≤ l, then (17) implies that

E(ηi(t + γ
−1 ln Di)η j(t + γ

−1 ln D j))

≤ E(1Ai ,A j
+ 1Ai

∑

n∈N
1A jn
+ 1A j

∑

n∈N
1Ain
+
∑

n,n′∈N

1Ain,A jn′
)

= P(Ai , A j) +
∑

n∈N
(P(Ai , A jn) + P(A j , Ain)) +

∑

n,n′∈N

P(Ain, A jn′), (21)

where Ai := {D1/γ
i δi ≥ e−t}. We now apply Lemma 4.2 to deduce that

∑

i∈Σk

∑

j∈Σl : j|k 6=i

E(ηi(t + γ
−1 ln Di)η j(t + γ

−1 ln D j))

≤ e2θ t(Eδ4θ )1/2
∑

i∈Σk

∑

j∈Σl : j|k 6=i

(E(∆4θ/γ
i|m+1
)E(∆4θ/γ

j|m+1
))1/4E(D2θ/γ

i|m
)(I1+ I2+ I3),

where m := m(i, j) is strictly less than k for the i and j in the above sum, δ := δ;, and

I1 := E
�

(Di|m+1
i )θ/γ

�

E
�

(D j|m+1
j )θ/γ

�

I2 :=
∑

n∈N

�

E
�

(Di|m+1
i )θ/γ

�

E
�

(D j|m+1
jn )θ/γ

�

+ E
�

(Di|m+1
in )θ/γ

�

E
�

(D j|m+1
j )θ/γ

��

I3 :=
∑

n,n′∈N

E
�

(Di|m+1
in )θ/γ

�

E
�

(D j|m+1

jn′ )
θ/γ
�

.
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Noting as in the proof of Lemma 3.5 that Eδ4θ is finite, it will suffice to bound the sums over the
terms involving I1, I2 and I3. Firstly, we have that

∑

i∈Σk

∑

j∈Σl : j|k 6=i

(E(∆4θ/γ
i|m+1
)E(∆4θ/γ

j|m+1
))1/4E(D2θ/γ

i|m
)I1

≤
k−1
∑

m′=0

∑

i′∈Σm′

E(D2θ/γ
i′ )

×
∑

i∈Σk:i|m′=i′

∑

j∈Σl : j|m′=i′
(E(∆4θ/γ

i|m′+1
)E(∆4θ/γ

j|m′+1
))1/4E

�

(D
i|m′+1
i )θ/γ

�

E
�

(D
j|m′+1
j )θ/γ

�

≤ C
k−1
∑

m′=0

ψm′
2 ψ

k+l−2m′−2
1

≤ Ckψk+l
1

�

ψ2

ψ2
1

∨ 1

�k

,

where C is a finite constant and we have applied [25], equation (50) to deal with the (m+ 1)st
generation terms. Similar calculations show that the analogous sums involving I2 and I3 can be
bounded by the same expression after suitable modification of the constant.

We now consider the sum of E(ηi(t + γ−1 ln Di)η j(t + γ−1 ln D j)) over i ∈ Σk and j ∈ Σl in the case
when i is an ancestor of j. Again applying Lemma 4.2, we deduce that

∑

i∈Σk

∑

j∈Σl : j|k=i

 

P(Ai , A j) + P(A j|k+1
, A j) +

∑

n∈N

�

P(Ai , A jn) + P(A jn|k+1
, A jn)

�

!

≤ e2θ tE(δ2(1+ε−1)θ )1/(1+ε
−1)
∑

i∈Σk

E(D2θ/γ
i )

∑

j∈Σl : j|k=i



E((Di
j)
(1+ε)θ/γ)1/(1+ε)

+E(∆2θ/γ
j|k+1
)E((D j|k+1

j )(1+ε)θ/γ)1/(1+ε)+
∑

n∈N
E((Di

jn)
(1+ε)θ/γ)1/(1+ε)

+ E(∆2θ/γ
jn|k+1
)
∑

n∈N
E((D jn|k+1

jn )(1+ε)θ/γ)1/(1+ε)




≤ Ce2θ tψk
2ψ

l−k
1,ε . (22)

Note that if l = k, then the first term involving j|k+1 should be deleted from the above argument.
Another appeal to Lemma 4.2 yields that we also have

∑

i∈Σk

∑

j∈Σl : j|k=i

∑

n∈N:in6= j|k+1

 

P(Ain, A j) +
∑

n′∈N

P(Ain, A jn′)

!

≤ Ce2θ tψk
2ψ

l−k
1 . (23)

Summing (22) and (23), the bound at (21) implies
∑

i∈Σk

∑

j∈Σl : j|k=i

E(ηi(t + γ
−1 ln Di)η j(t + γ

−1 ln D j))≤ Ce2θ tψk
2ψ

l−k
1,ε . (24)

On combining our estimates, we obtain the lemma.
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We can now proceed with our second moment bound for X (t).

Lemma 4.4. For θ > γ, there is a finite constant C such that

E(X (t)2)≤ Ce2θ t , ∀t ∈ R.

Proof. This is a simple application of the preceding lemma. Firstly, applying (15), we have that

EX (t)2 = E







∑

i, j∈Σ∗

ηi(t + γ
−1 ln Di)η j(t + γ

−1 ln D j)






,

≤ 2
∞
∑

k=0

∞
∑

l=k

∑

i∈Σk

∑

j∈Σl

E
�

ηi(t + γ
−1 ln Di)η j(t + γ

−1 ln D j)
�

.

From Lemma 4.3, it follows that

E
�

X (t)2
�

≤ Ce2θ t
∞
∑

k=0

∞
∑

l=k

(k+ 1)ψk+l
1,ε

 

ψ2

ψ2
1,ε

∨ 1

!k

,

for some finite constant C , which may depend on ε > 0. Noting that, in the range of θ considered,
ψr < 1 for r = 1, 2 and ψ1,ε → ψ1 as ε → 0 (by the dominated convergence theorem), it is clear
that the double sum is finite for suitably small ε. Thus the proof is complete.

For the purposes of proving almost-sure convergence, we introduce the following notation to repre-
sent a cut-set of Σ∗: for t > 0,

Λt := {i ∈ Σ∗ : −γ−1 ln Di ≥ t >−γ−1 ln Di||i|−1
}.

We will also have cause to refer to the subset of Λt defined by, for t, c > 0,

Λt,c := {i ∈ Σ∗ : −γ−1 ln Di ≥ t + c, t >−γ−1 ln Di||i|−1
}.

We note that the sets Λt ,Λt,c are countably infinite, but that Λt\Λt,c is a finite set P-a.s. The
following is the main result of this section.

Proposition 4.5. P-a.s we have that

e−γt X (t)→ m(∞), as t →∞,

where m(∞) is the constant defined at (18).

Proof. We follow the earlier proofs of such results which originate with [24]. First, we truncate the
characteristics ηi (this term is meant in the generalised sense of [24], Section 7) by defining, for
fixed c > 0, ηc

i (t) := ηi(t)1{t≤n0c}, where n0 is an integer that will be chosen later in the proof.
From these truncated characteristics construct the processes X c

i as

X c
i (t) :=

∑

j∈Σ∗

ηc
i j(t + γ

−1 ln(Di j/Di)),
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and set X c := X c
; . The corresponding discounted mean process is mc(t) := e−γtEX c(t), and this may

be checked to converge to mc(∞) ∈ (0,∞) as t → ∞ using the renewal theorem of [16]. From a
branching process decomposition of X c , we can deduce the following bound for n1 ≥ n0, n ∈ N,

|e−γc(n+n1)X c(c(n+ n1))−mc(∞)| ≤ S1(n, n1) + S2(n, n1) + S3(n, n1),

where

S1(n, n1) :=
�

�

�

�

�

�

∑

i∈Λcn\Λcn,cn1

�

e−γc(n+n1)X c
i (c(n+ n1) + γ

−1 ln Di)− Dim
c(c(n+ n1) + γ

−1 ln Di)
�

�

�

�

�

�

�

,

S2(n, n1) :=

�

�

�

�

�

�

∑

i∈Λcn\Λcn,cn1

Dim
c(c(n+ n1) + γ

−1 ln Di)−mc(∞)

�

�

�

�

�

�

,

S3(n, n1) := e−γc(n+n1)
∑

i∈Λcn,cn1

X c
i (c(n+ n1) + γ

−1 ln Di).

For the first two terms we can apply exactly the same argument as in [14] to deduce that, P-a.s.,

lim
n1→∞

limsup
n→∞

S j(n, n1) = 0, for j = 1, 2.

More explicitly, the result for S1(n, n1) is an immediate application of the strong law of large numbers
proved as [24], Proposition 4.1. For S2(n, n1) on the other hand, we first note that this term is
bounded above by

∑

i∈Λcn\Λcn,cn1/2

Di

�

�mc(c(n+ n1) + γ
−1 ln Di)−mc(∞)

�

�+ 3 sup
t∈R

m(t)
∑

i∈Λcn,cn1/2

Di .

The first summand is bounded above by supt≥cn1/2 |m
c(t)−mc(∞)|, and so clearly decays to 0 as n

and then n1 diverges. Checking that the second summand does the same depends on recalling from
Lemma 3.5 that m is bounded and applying the general branching process result of [24], Theorem
5.4, which yields an estimate of the form limn→∞

∑

i∈Λcn,cn1/2
Di ≤ c1e−c2n1 , where c1 and c2 are

constants not depending on n1.

We will now show that S3(n, n1) decays in a similar fashion. We need to modify the approach of [4]
slightly to deal with the infinite number of offspring. Firstly we introduce a set of characteristics,
φ

c,n1
i , defined by

φ
c,n1
i (t) :=

∑

j∈N
X i j(0)1{t+cn1+lnδi j≥−γ−1 ln∆i j>t+cn1, t>0},

where the bound involving δi j = diamdTi j
(Ti j) is included to ensure that only a finite number of

terms contribute to the sum. For t > 0, set

Y c,n1(t) :=
∑

i∈Σ∗

φ
c,n1
i (t + γ−1 ln Di).
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Note that from the definition of the cut-set Λcn,cn1
we can deduce that

Y c,n1(cn) =
∑

i∈Λcn,cn1

X i(0)1{c(n+n1)+γ−1 ln Di≥− lnδi} ≥ eγc(n+n1)S3(n, n1),

where for the second inequality we apply the monotonicity of the X is and the fact that X i(t) = 0
for t < lnδ−1

i . Now, Y c,n1 is a branching process with random characteristic φc,n1
i , and we will

proceed by checking that the conditions of the extension of [24], Theorem 5.4, that is stated as
[14], Theorem 3.2, are satisfied by it. There are two conditions, one on the characteristic, the other
on the reproduction process.

For the reproduction process, it is enough to show that there is a non-increasing, bounded positive
integrable function g such that

∫∞
0

g(t)−1νγ(d t) <∞. If we take g(t) = 1∧ t−2, then by equation
(6) of [25], we see that

∫ ∞

0

(1∨ t2)e−γtν(d t)≤ E
∑

i∈N
∆i

�

1+ (γ−1 ln∆i)
2
�

<∞.

For the characteristic, we need to prove the existence of a non-increasing, bounded positive inte-
grable function h such that E supt≥0 e−γtφ

c,n1
; (t)/h(t) <∞. Taking h(t) := e−β t/2, where β is the

constant defined at (13), we find that

sup
t∈R

e−γtφ
c,n1
; (t)

h(t)
≤ e

�

β

2
−γ
�

t
∑

i∈N
X i(0)

�

et+cn1δi∆
1/γ
i

�
1+α

2(2α−1)

= ecn1(1+α)/2(2α−1)
∑

i∈N
X i(0)δ

1+α
2(2α−1)
i ∆

1+α
2α

i . (25)

Thus it will suffice to prove that the final expression here has a finite first moment. Since (X i(0))i∈N
and (δi)i∈N are independent of (∆i)i∈N, we deduce that

E

 

∑

i∈N
X i(0)δ

1+α
2(2α−1)
i ∆

1+α
2α

i

!

≤
�

E(X (0)2)E
�

δ
1+α

2α−1
;

��1/2

ψ((1+α)/2α), (26)

where we have applied Cauchy-Schwarz to separate the expectations involving δ; and X (0). Now
observe that, by Lemma 4.4, E(X (0)2) < ∞, the moments of the diameter of a α-stable tree are
finite and ψ((1+α)/2α)<∞, which means that the condition on the characteristics is fulfilled.

Consequently, applying [14], Theorem 3.2, we find that P-a.s.,

e−γt Y c,n1(t)→

∫∞
0

e−γtEφc,n1
; (t)d t

∫∞
0

tνγ(d t)
, as t →∞.

By (25) and (26), the above limit is bounded by Cecn1(1+α)/2(2α−1), where C is a constant not
depending on n1. Hence, P-a.s.,

lim
n1→∞

limsup
n→∞

S3(n, n1)≤ lim
n1→∞

Cecn1(1+α)/2(2α−1)e−γcn1 = lim
n1→∞

Ce−cn1β/2 = 0,
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and combining the three limit results for S1, S2 and S3, it is easy to deduce that P-a.s.,

lim
n→∞

|e−γcnX c(cn)−mc(∞)|= 0. (27)

We now show that the process X , when suitably scaled, converges along the subsequence (cn)n≥0.
From (27) we have that P-a.s.,

limsup
n→∞

|e−γcnX (cn)−m(∞)| ≤ |m(∞)−mc(∞)|+ lim sup
n→∞

e−γcn|X (cn)− X c(cn)|. (28)

Recall that the process X c and its discounted mean process mc depend on the integer n0. By the
dominated convergence theorem, the first of the terms in (28), which is deterministic, converges to
zero as n0 →∞. To show the corresponding result for the second term, we start by introducing a
collection of random variables (Ui)i∈Σ∗ satisfying

Ui := sup
t∈R

e−γtηi(t)
h(t)

,

where, similarly to above, h(t) := e−β t/2. By applying ideas from the proof of Lemma 3.5, it is an
elementary exercise to check that EUi <∞. Now, if we define characteristics φi(t) := Ui1{t∈[0,c]},
then this finite integrability of Ui readily implies the conditions of [14], Theorem 3.2, which yields
that, P-a.s.,

e−γt
∑

i∈Σ∗

φi(t + γ
−1 ln Di)→

∫ c

0
e−γtEUid t

∫∞
0

tνγ(d t)
, as t →∞.

This we can rewrite as, P-a.s.,

e−γt
∑

i∈At\At−c

Ui →

∫ c

0
e−γtEUid t

∫∞
0

tνγ(d t)
, as t →∞,

where At := {i ∈ Σ∗ : −γ−1 ln Di ≤ t}. Hence, we can proceed similarly to the proof of [24], Lemma
5.8, to obtain that, P-a.s., for n> n0,

e−γcn|X (cn)− X c(cn)| = e−γcn
∑

i∈Σ∗

ηi(cn+ γ−1 ln Di)1{cn+γ−1 ln Di>cn0}

≤
∑

i∈Σ∗

DiUih(cn+ γ−1 ln Di)1{i∈Ac(n−n0)}

≤ U;h(cn) +
n−n0
∑

k=1

∑

i∈Ack\Ac(k−1)

DiUih(c(n− k))

≤ U;h(cn) +
n−n0
∑

k=1

e−c((n−k)β/2+(k−1)γ)
∑

i∈Ack\Ac(k−1)

Ui

≤ U;e
−β cn/2+ C

n−n0
∑

k=1

e−c(n−k)β/2

= U;e
−β cn/2+ C

∞
∑

k=n0

e−ckβ/2.
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This yields in particular that, P-a.s.,

lim sup
n→∞

e−γcn|X (cn)− X c(cn)| ≤ Ce−cn0β/2.

Consequently, by choosing n0 suitably large, the upper bound in (28) can be made arbitrarily small,
which has as a result that e−γcnX (cn) → m(∞) as n → ∞, P-a.s., for each c. The proposition is
readily deduced from this using the monotonicity of X .

5 The second order term

In this section we proceed to extend the result of the previous section so as to obtain an estimate on
the second order term. We continue to assume that α ∈ (1,2), and recall from (13) the definition of
β = (α−1)/(2α−1). In particular, in terms of the process X (t) = N D(et), it is our aim to prove the
following proposition.

Proposition 5.1. For each ε > 0, in P-probability, as t →∞,

|e−γt X (t)−m(∞)|= O(e−(β−ε)t).

Let us start by introducing the notation Y (t) := e−γt X (t)−m(t) for the rescaled and centred version
of X (t). Using the decomposition of X given at (10), we have

Y (t) = ζ(t) +
∑

i∈N
∆iYi(t + γ

−1 ln∆i),

where Yi is defined in the obvious way and

ζ(t) = e−γt(η(t)− Eη(t)) +
∑

i∈N
(∆im(t + γ

−1 ln∆i)− E(∆im(t + γ
−1 ln∆i))).

Hence
Y (t)2 = Z(t) +

∑

i∈N
∆2

i Yi(t + γ
−1 ln∆i)

2, (29)

where

Z(t) = ζ2(t) + 2ζ(t)
∑

i∈N
∆iYi(t + γ

−1 ln∆i) +
∑

i, j∈N,i 6= j

∆i∆ jYi(t + γ
−1 ln∆i)Yj(t + γ

−1 ln∆ j).

Iterating (29), we have for any k ∈ N,

Y (t)2 =
∑

|i|<k

D2
i Zi(t + γ

−1 ln Di) +
∑

i∈Σk

D2
i Yi(t + γ

−1 ln Di)
2,

where the definition of Zi is also the obvious one. The following lemma shows that the value of the
remainder term here converges to zero as k→∞, from which we obtain a useful decomposition of
Y (t)2.
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Lemma 5.2. We have, P-a.s., that

lim
k→∞

∑

i∈Σk

D2
i Yi(t + γ

−1 ln Di)
2 = 0,

and hence we have the representation, P-a.s.,

Y (t)2 =
∑

i∈Σ∗

D2
i Zi(t + γ

−1 ln Di), ∀t ∈ R. (30)

Proof. From the second moment estimates of Lemma 4.4 and the boundedness of m (see Lemma
3.5), we have that

EY (t)2 ≤ 2Ee−2γt X (t)2+ 2m(t)2 ≤ C
�

e2εt ∨ 1
�

.

Thus

E
∑

i∈Σk

D2
i Yi(t + γ

−1 ln Di)
2 ≤

∑

i∈Σk

CE
�

D2
i

�

e2ε(t+γ−1 ln Di) ∨ 1
��

.

=
∑

i∈Σk

C
�

e2εt ∨ 1
�

E(D2
i )

= C
�

e2εt ∨ 1
�

ψ(2)k,

where ψ was defined at (11). As ψ(2)< 1, we therefore have that

∞
∑

k=0

P







∑

i∈Σk

D2
i Yi(t + γ

−1 ln Di)
2 > δ






≤ Cδ−1

�

e2εt ∨ 1
�

∞
∑

k=0

ψ(2)k <∞,

where we have applied Chebyshev to deduce the first inequality. Hence, Borel-Cantelli implies the
representation of Y (t)2 for each fixed t, P-a.s. By countability, it follows that the same result holds
for each rational t. Since Y is cadlag, the representation can easily be extended to hold for all
t ∈ R.

We use this result to derive a second moment estimate for Y (t).

Lemma 5.3. For each ε > 0, there exists a constant C such that

EY (t)2 ≤ Ce−(2β−ε)t .

Proof. We need to estimate the terms on the right-hand side of (30). Firstly, from the definition of
Zi , conditioning on ∆i and using EYi(t) = 0 we have

ED2
i Zi(t + γ

−1 ln Di)

= ED2
i ζi(t + γ

−1 ln Di)
2+ 2ED2

i ζi(t + γ
−1 ln Di)

∑

j∈N
∆i jYi j(t + γ

−1 ln Di j)

≤ 2E
�

e−2γt D2
i (ηi(t + γ

−1 ln Di)− E(ηi(t + γ
−1 ln Di)|Di))

2
�

+ 2E















∑

j∈N
κi j







2








+2ED2
i e−γtηi(t + γ

−1 ln Di)
∑

j∈N
∆i jYi j(t + γ

−1 ln Di j),
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where we define κi j := Di jm(t + γ−1 ln Di j)− E(Di jm(t + γ−1 ln Di j)|Di). Hence EY (t)2 ≤ 2(I1 +
I2+ I3), where

I1 =
∑

i∈Σ∗

E
�

e−2γt D2
i (ηi(t + γ

−1 ln Di)− E(ηi(t + γ
−1 ln Di)|Di))

2
�

,

I2 =
∑

i∈Σ∗

E















∑

j∈N
κi j







2








,

I3 =
∑

i∈Σ∗

E






D2

i e−γtηi(t + γ
−1 ln Di)

∑

j∈N
∆i jYi j(t + γ

−1 ln Di j)






.

For I1, we apply Lemma 4.2 similarly to the proof of Lemma 4.3 to deduce that, for suitably chosen
θ > γ/α,

I1 ≤
∞
∑

k=0

∑

i∈Σk

e−2γtE(ηi(t + γ
−1 ln Di)

2)

≤ Ce−2γt e2θ t
∞
∑

k=0

ψ(2θγ−1)k

= Ce−(2(α−1)γ/α−ε)t ,

which is a bound of the appropriate magnitude. For I2, we use an extension of [25], equation (6),
coupled with the estimate on the convergence rate of m(t) to its limit. Specifically, we begin by
writing κi j = DiA j(t i) where t i := t + γ−1 ln Di and

A j(t) :=∆ jm(t + γ
−1 ln∆ j)− E∆ jm(t + γ

−1 ln∆ j).

As
∑

j∈N∆ j = 1, we can write

∑

j∈N
A j(t) =

∑

j∈N

�

∆ jm̂(t + γ
−1 ln∆ j)− E∆ jm̂(t + γ

−1 ln∆ j)
�

,

where m̂(t) := m(t)−m(∞). By Proposition 3.6 and the boundedness of m (Lemma 3.5(a)), there
is a constant C such that |m̂(t)|= |m(t)−m(∞)| ≤ Ce−(β−ε)t for t ∈ R, and hence

�

�

�

�

�

�

∑

j∈N
A j(t))

�

�

�

�

�

�

≤ C







∑

j∈N
∆1−(β−ε)/γ

j + E
∑

j∈N
∆1−(β−ε)/γ

j






e−(β−ε)t .
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Now, to obtain our estimate, we note that

E















∑

j∈N
κi j







2








= E









D2
i E















∑

j∈N
A j(t i)







2

Di

















≤ CE









D2
i E















∑

j∈N
∆1−(β−ε)/γ

j







2

+






E
∑

j∈N
∆1−(β−ε)/γ

j







2








D−2(β−ε)/γ
i









e−2(β−ε)t .

Using the lemma in the appendix, and the fact that 1− βγ−1 = α−1, we can compute the first term
as follows:

E







∑

j∈N
∆1−(β−ε)/γ

j







2

= E







∑

j∈N
∆2−2(β−ε)/γ

j +
∑

j,l∈N: j 6=l

∆1−(β−ε)/γ
j ∆1−(β−ε)/γ

l







= ψ(2− 2(β − ε)γ−1) +
Γ(2−α−1)2

(εγ−1)2Γ(1−α−1)Γ(1+α−1)
.

Thus we obtain that

E















∑

j∈N
κi j







2








≤ CED2/α+ε
i e−2(β−ε)t .

As 2/α+ ε > 1 for α ∈ (1,2], this can be summed over i ∈ Σ∗ to give the bound

I2 ≤ ce−2(β−ε)t .

Finally, for I3, we first observe that by (15) and the definition of Y (t) we can write

Y (t) = e−γt
∑

i∈Σ∗

�

ηi(t + γ
−1 ln Di)− Eηi(t + γ

−1 ln Di)
�

.

Hence

I3 ≤ e−2γt
∑

i∈Σ∗

E






D2

i ηi(t + γ
−1 ln Di)

∑

j∈Σ∗\{;}

ηi j(t + γ
−1 ln Di j)







≤ e−2γt
∞
∑

k=0

∞
∑

l=k+1

∑

i∈Σk

∑

j∈Σl : j|k=i

E
�

ηi(t + γ
−1 ln Di)η j(t + γ

−1 ln D j)
�

.

To bound the inner two sums, we follow the arguments of Section 4, but taking different powers to
those used there. For example, in the case when i is an ancestor of j, we can replace the second
statement of Lemma 4.2 by: for θ1,θ2,ε′ ≥ 0,

P(Ai ∩ A j)≤ Cet(θ1+θ2)E
�

D(θ1+θ2)/γ
i

�

E
�

(Di
j)
θ2(1+ε′)/γ

�1/(1+ε′)
,
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where Ai is defined as in the proof of Lemma 4.3 and C is a constant that depends only on θ1,θ2
and ε′. After proceeding similarly with the other relevant terms and taking θ1 := (2α−1 − 1)γ,
θ2 := γ+ ε, we are consequently able to show that (cf. (24)): for any θ > γ/α,

∑

i∈Σk

∑

j∈Σl : j|k=i

E(ηi(t + γ
−1 ln Di)η j(t + γ

−1 ln D j))≤ Ce2θ tψk
2ψ(1+ εγ

−1,ε′)l−k,

where, as previously, ψ2 :=ψ(2θγ−1), and

ψ(1+ εγ−1,ε′) :=
∑

i∈N
E
�

∆(1+εγ
−1)(1+ε′)

i

�1/(1+ε′)
→ψ(1+ εγ−1),

as ε′→ 0. Since ψ(1+ εγ−1),ψ2 < 1, if ε′ is chosen small enough, we find from these results that

I3 ≤ Ce−(2β−ε)t
∞
∑

k=0

∞
∑

l=k+1

ψk
2ψ(1+ εγ

−1,ε′)l−k ≤ Ce−(2β−ε)t ,

as desired.

Given this bound, it is now straightforward to prove the result of interest.

Proof of Proposition 5.1. By Chebyshev and Lemma 5.3, there exists a C such that for all t ≥ 0

P(|Y (t)|> x)≤ x−2E(Y (t)2)≤ x−2Ce−(2β−ε)t .

Now choose x = e−t(β−ε) to see that

P(|Y (t)|> e−t(β−ε))≤ Ce−εt ,

and hence we have the desired result in probability.

To completely establish Theorem 1.1, it remains to demonstrate that part (b) holds in the case α= 2.
However, since the appropriate first order asymptotic behaviour was already obtained in [4] and the
second order term requires us to make only very minor changes to the above argument, we omit the
proof of this part of the theorem.

Unfortunately, the arguments of this section are not enough to yield an almost-sure result regarding
the size of second order term in the asymptotic expansion of the eigenvalue counting function for
α-stable trees. By Borel-Cantelli, the results we have proved so far would be good enough to show
that for any c > 0 it is P-a.s. the case that

lim sup
n→∞

|Y (nc)|ecn(β−ε) ≤ 1.

To extend this to all t and establish that, P-a.s.,

limsup
t→∞

|e−γt X (t)−m(t)|e−t(β−ε) ≤ C ,

it would be enough to have moment estimates of the form

EY (t)k ≤ Ce−k(β−ε)t ,
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for all k ∈ N. Although it appears that suitable extensions of the techniques used here would, after
much effort, yield such a result, we will leave such a calculation to an interested reader. Finally, let
us remark that, by analogy with the results known to hold for related branching processes, it might
also be hoped that a central limit theorem-type result of the following form holds, establishing the
second order term for the eigenvalue counting function of α-stable trees.

Conjecture 5.4. As λ→∞,

N D(λ)−m(∞)λα/(2α−1)

λ1/(2α−1)
→ Zα, in distribution,

where Zα is an α-stable random variable.

A Appendix

The following result, which is a straightforward extension of [25], equation (6), is applied in the
proof of Lemma 5.3.

Lemma A.1. Suppose (Vi)i∈N has the Poisson-Dirichlet (α,θ) distribution. For measurable functions
f , g we have

E
∞
∑

i=1

∞
∑

j=1, j 6=i

f (Vi)g(Vj)

= Cα,θ

∫ 1

0

∫ 1

0

f (x)g((1− x)y)x−1−α(1− x)θ+α−1 y−1−α(1− y)θ+2α−1d xd y,

where

Cα,θ =
Γ(θ + 1)Γ(θ +α+ 1)

Γ(1−α)2Γ(θ +α)Γ(θ + 2α)
.

Proof. This is an application of size-biased sampling. Following the set up in [25], define Ṽ1 to be a
size biased pick from (Vi)i∈N, that is

P(Ṽ1 = Vn|{Vi}) = Vn, n ∈ N.

Also, let Ṽ2 be the second size biased pick, that is a random variable with distribution

P(Ṽ2 = Vn|Ṽ1, {Vi}) =
Vn1{Vn 6=Ṽ1}

1− Ṽ1
, n ∈ N.

It is then possible to show that we can write

Ṽ1 = Ỹ1, Ṽ2 = (1− Ỹ1)Ỹ2,
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where Ỹi , i = 1,2, are independent random variables with Beta(1−α,θ+ iα) distribution (see [25],
Proposition 2, for example). Applying this result,

E
∞
∑

i=1

∞
∑

j=1, j 6=i

f (Vi)g(Vj)

= E
f (Ṽ1)

Ṽ1

g(Ṽ2)(1− Ṽ1)

Ṽ2

= E
f (Ỹ1)

Ỹ1

g((1− Ỹ1)Ỹ2)

Ỹ2

=
Γ(θ + 1)Γ(θ +α+ 1)

Γ(1−α)2Γ(θ +α)Γ(θ + 2α)

×
∫ 1

0

∫ 1

0

f (x)g((1− x)y)x−1−α y−1−α(1− x)θ+α−1(1− y)θ+2α−1d xd y,

as required.

To apply this in our setting, we use f (x) = g(x) = xα
−1+εγ−1

with Poisson-Dirichlet parameters
(α−1, 1−α−1).
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