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Abstract

An information-theoretic development is given for the problem of compound Poisson approxima-
tion, which parallels earlier treatments for Gaussian and Poisson approximation. Nonasymptotic
bounds are derived for the distance between the distribution of a sum of independent integer-
valued random variables and an appropriately chosen compound Poisson law. In the case where
all summands have the same conditional distribution given that they are non-zero, a bound
on the relative entropy distance between their sum and the compound Poisson distribution is
derived, based on the data-processing property of relative entropy and earlier Poisson approx-
imation results. When the summands have arbitrary distributions, corresponding bounds are
derived in terms of the total variation distance. The main technical ingredient is the introduc-
tion of two “information functionals,” and the analysis of their properties. These information
functionals play a role analogous to that of the classical Fisher information in normal approxi-
mation. Detailed comparisons are made between the resulting inequalities and related bounds.
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1 Introduction and main results

The study of the distribution of a sum Sn =
∑n

i=1 Yi of weakly dependent random variables Yi is an
important part of probability theory, with numerous classical and modern applications. This work
provides an information-theoretic treatment of the problem of approximating the distribution of
Sn by a compound Poisson law, when the Yi are discrete, independent random variables. Before
describing the present approach, some of the relevant background is briefly reviewed.

1.1 Normal approximation and entropy

When Y1, Y2, . . . , Yn are independent and identically distributed (i.i.d.) random variables with mean
zero and variance σ2 < ∞, the central limit theorem (CLT) and its various refinements state that
the distribution of Tn := (1/

p
n)
∑n

i=1 Yi is close to the N(0,σ2) distribution for large n. In recent
years the CLT has been examined from an information-theoretic point of view and, among various
results, it has been shown that, if the Yi have a density with respect to Lebesgue measure, then the
density fTn

of the normalized sum Tn converges monotonically to the normal density with mean zero
and variance σ2; that is, the entropy h( fTn

) :=−
∫

fTn
log fTn

of fTn
increases to the N(0,σ2) entropy

as n→∞, which is maximal among all random variables with fixed variance σ2. [Throughout, ‘log’
denotes the natural logarithm.]

Apart from this intuitively appealing result, information-theoretic ideas and techniques have also
provided nonasymptotic inequalities, for example giving accurate bounds on the relative entropy
D( fTn

‖φ) :=
∫

fTn
log( fTn

/φ) between the density of Tn and the limiting normal density φ. Details
can be found in [8; 19; 17; 3; 2; 35; 28] and the references in these works.

The gist of the information-theoretic approach is based on estimates of the Fisher information, which
acts as a “local” version of the relative entropy. For a random variable Y with a differentiable density
f and variance σ2 <∞, the (standardized) Fisher information is defined as,

JN (Y ) := E
�

∂

∂ y
log f (Y )−

∂

∂ y
logφ(Y )

�2

,

where φ is the N(0,σ2) density. The functional JN satisfies the following properties:

(A) JN (Y ) is the variance of the (standardized) score function, rY (y) := ∂
∂ y

log f (y)− ∂
∂ y

logφ(y),
y ∈ R.

(B) JN (Y ) = 0 if and only if Y is Gaussian.

(C) JN satisfies a subadditivity property for sums.

(D) If JN (Y ) is small then the density f of Y is approximately normal and, in particular, D( f ‖φ)
is also appropriately small.

Roughly speaking, the information-theoretic approach to the CLT and associated normal approxima-
tion bounds consists of two steps; first a strong version of Property (C) is used to show that JN (Tn)
is close to zero for large n, and then Property (D) is applied to obtain precise bounds on the relative
entropy D( fTn

‖φ).
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1.2 Poisson approximation

More recently, an analogous program was carried out for Poisson approximation. The Poisson law
was identified as having maximum entropy within a natural class of discrete distributions on Z+ :=
{0, 1,2, . . .} [16; 34; 18], and Poisson approximation bounds in terms of relative entropy were
developed in [23]; see also [21] for earlier related results. The approach of [23] follows a similar
outline to the one described above for normal approximation. Specifically, for a random variable Y
with values in Z+ and distribution P, the scaled Fisher information of Y was defined as,

Jπ(Y ) := λE[ρY (Y )
2] = λVar(ρY (Y )), (1.1)

where λ is the mean of Y and the scaled score function ρY is given by,

ρY (y) :=
(y + 1)P(y + 1)

λP(y)
− 1, y ≥ 0. (1.2)

[Throughout, we use the term ‘distribution’ to refer to the discrete probability mass function of an
integer-valued random variable.]

As discussed briefly before the proof of Theorem 1.1 in Section 2 the functional Jπ(Y ) was shown
in [23] to satisfy Properties (A-D) exactly analogous to those of the Fisher information described
above, with the Poisson law playing the role of the Gaussian distribution. These properties were
employed to establish optimal or near-optimal Poisson approximation bounds for the distribution
of sums of nonnegative integer-valued random variables [23]. Some additional relevant results in
earlier work can be found in [36][31][29][10].

1.3 Compound Poisson approximation

This work provides a parallel treatment for the more general – and technically significantly more
difficult – problem of approximating the distribution PSn

of a sum Sn =
∑n

i=1 Yi of independent Z+-
valued random variables by an appropriate compound Poisson law. This and related questions arise
naturally in applications involving counting; see, e.g., [7; 1; 4; 14]. As we will see, in this setting the
information-theoretic approach not only gives an elegant alternative route to the classical asymptotic
results (as was the case in the first information-theoretic treatments of the CLT), but it actually yields
fairly sharp finite-n inequalities that are competitive with some of the best existing bounds.

Given a distribution Q on N= {1,2, . . .} and a λ > 0, recall that the compound Poisson law CPo(λ,Q)
is defined as the distribution of the random sum

∑Z
i=1 X i , where Z ∼ Po(λ) is Poisson distributed

with parameter λ and the X i are i.i.d. with distribution Q, independent of Z .

Relevant results that can be seen as the intellectual background to the information-theoretic ap-
proach for compound Poisson approximation were recently established in [20; 38], where it was
shown that, like the Gaussian and the Poisson, the compound Poisson law has a maximum entropy
property within a natural class of probability measures on Z+. Here we provide nonasymptotic,
computable and accurate bounds for the distance between PSn

and an appropriately chosen com-
pound Poisson law, partly based on extensions of the information-theoretic techniques introduced
in [23] and [21] for Poisson approximation.

In order to state our main results we need to introduce some more terminology. When considering
the distribution of Sn =

∑n
i=1 Yi , we find it convenient to write each Yi as the product BiX i of two
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independent random variables, where Bi takes values in {0, 1} and X i takes values in N. This is done
uniquely and without loss of generality, by taking Bi to be Bern(pi) with pi = Pr{Yi 6= 0}, and X i
having distribution Q i on N, where Q i(k) = Pr{Yi = k |Yi ≥ 1}= Pr{Yi = k}/pi , for k ≥ 1.

In the special case of a sum Sn =
∑n

i=1 Yi of random variables Yi = BiX i where all the X i have the
same distribution Q, it turns out that the problem of approximating PSn

by a compound Poisson law
can be reduced to a Poisson approximation inequality. This is achieved by an application of the so-
called “data-processing” property of the relative entropy, which then facilitates the use of a Poisson
approximation bound established in [23]. The result is stated in Theorem 1.1 below; its proof is
given in Section 2.

Theorem 1.1. Consider a sum Sn =
∑n

i=1 Yi of independent random variables Yi = BiX i , where the X i
are i.i.d. ∼ Q and the Bi are independent Bern(pi). Then the relative entropy between the distribution
PSn

of Sn and the CPo(λ,Q) distribution satisfies,

D(PSn
‖CPo(λ,Q))≤

1

λ

n
∑

i=1

p3
i

1− pi
,

where λ :=
∑n

i=1 pi .

Recall that, for distributions P and Q on Z+, the relative entropy, or Kullback-Leibler divergence,
D(P‖Q), is defined by,

D(P‖Q) :=
∑

x∈Z+

P(x) log
h P(x)

Q(x)

i

.

Although not a metric, relative entropy is an important measure of closeness between probability
distributions [12][13] and it can be used to obtain total variation bounds via Pinsker’s inequality
[13],

dTV(P,Q)
2 ≤ 1

2
D(P‖Q),

where, as usual, the total variation distance is

dTV(P,Q) := 1
2

∑

x∈Z+

�

�P(x)−Q(x)
�

�= max
A⊂Z+

�

�P(A)−Q(A)
�

�.

In the general case where the distributions Q i corresponding to the X i in the summands Yi = BiX i
are not identical, the data-processing argument used in the proof of Theorem 1.1 can no longer
be applied. Instead, the key idea in this work is the introduction of two “information function-
als,” or simply “informations,” which, in the present context, play a role analogous to that of the
Fisher information JN and the scaled Fisher information Jπ in Gaussian and Poisson approximation,
respectively.

In Section 3 we will define two such information functionals, JQ,1 and JQ,2, and use them to derive
compound Poisson approximation bounds. Both JQ,1 and JQ,2 will be seen to satisfy natural analogs
of Properties (A-D) stated above, except that only a weaker version of Property (D) will be estab-
lished: When either JQ,1(Y ) or JQ,2(Y ) is close to zero, the distribution of Y is close to a compound
Poisson law in the sense of total variation rather than relative entropy. As in normal and Poisson ap-
proximation, combining the analogs of Properties (C) and (D) satisfied by the two new information
functionals, yields new compound Poisson approximation bounds.
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Theorem 1.2. Consider a sum Sn =
∑n

i=1 Yi of independent random variables Yi = BiX i , where each X i
has distribution Q i on N with mean qi , and each Bi ∼ Bern(pi). Let λ =

∑n
i=1 pi and Q =

∑n
i=1

pi

λ
Q i .

Then,

dTV(PSn
, CPo(λ,Q))≤ H(λ,Q)q











n
∑

i=1

p3
i

1− pi





1/2

+ D(Q)







,

where PSn
is the distribution of Sn, q =

∑n
i=1

pi

λ
qi , H(λ,Q) denotes the Stein factor defined in (1.4)

below, and D(Q) is a measure of the dissimilarity of the distributions Q = (Q i), which vanishes when
the Q i are identical:

D(Q) :=
∞
∑

j=1

n
∑

i=1

jpi

q
|Q i( j)−Q( j)| . (1.3)

Theorem 1.2 is an immediate consequence of the subadditivity property of JQ,1 established in Corol-
lary 4.2, combined with the total variation bound in Proposition 5.3. The latter bound states that,
when JQ,1(Y ) is small, the total variation distance between the distribution of Y and a compound
Poisson law is also appropriately small. As explained in Section 5, the proof of Proposition 5.3 uses a
basic result that comes up in the proof of compound Poisson inequalities via Stein’s method, namely,
a bound on the sup-norm of the solution of the Stein equation. This explains the appearance of
the Stein factor, defined next. But we emphasize that, apart from this point of contact, the overall
methodology used in establishing the results in Theorems 1.2 and 1.4 is entirely different from that
used in proving compound Poisson approximation bounds via Stein’s method.

Definition 1.3. Let Q be a distribution on N. If { jQ( j)} is a non-increasing sequence, set δ = [λ{Q(1)−
2Q(2)}]−1 and let,

H0(λ,Q) =

¨

1 if δ ≥ 1p
δ(2−

p
δ) if δ < 1.

For general Q and any λ > 0, the Stein factor H(λ,Q) is defined as:

H(λ,Q) =







H0(λ,Q), if { jQ( j)} is non-increasing

eλmin
�

1, 1
λQ(1)

�

, otherwise.
(1.4)

Note that in the case when all the Q i are identical, Theorem 1.2 yields,

dTV(PSn
, CPo(λ,Q))2 ≤ H(λ,Q)2 q2

n
∑

i=1

p3
i

1− pi
, (1.5)

where q is the common mean of the Q i =Q, whereas Theorem 1.1 combined with Pinsker’s inequal-
ity yields a similar, though not generally comparable, bound,

dTV(PSn
, CPo(λ,Q))2 ≤

1

2λ

n
∑

i=1

p3
i

1− pi
. (1.6)
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See Section 6 for detailed comparisons in special cases.

The third and last main result, Theorem 1.4, gives an analogous bound to that of Theorem 1.2, with
only a single term in the right-hand-side. It is obtained from the subadditivity property of the second
information functional JQ,2, Proposition 4.3, combined with the corresponding total variation bound
in Proposition 5.1.

Theorem 1.4. Consider a sum Sn =
∑n

i=1 Yi of independent random variables Yi = BiX i , where each
X i has distribution Q i on N with mean qi , and each Bi ∼ Bern(pi). Assume all Q i have have full support
on N, and let λ=

∑n
i=1 pi , Q =

∑n
i=1

pi

λ
Q i , and PSn

denote the distribution of Sn. Then,

dTV(PSn
, CPo(λ,Q))≤ H(λ,Q)

(

n
∑

i=1



p3
i

∑

y
Q i(y)y

2
�Q∗2i (y)

2Q i(y)
− 1
�2




)1/2

,

where Q∗2i denotes the convolution Q i ∗Q i and H(λ,Q) denotes the Stein factor defined in (1.4) above.

The accuracy of the bounds in the three theorems above is examined in specific examples in Section
6, where the resulting estimates are compared with what are probably the sharpest known bounds
for compound Poisson approximation. Although the main conclusion of these comparisons – namely,
that in broad terms our bounds are competitive with some of the best existing bounds and, in
certain cases, may even be the sharpest – is certainly encouraging, we wish to emphasize that the
main objective of this work is the development of an elegant conceptual framework for compound
Poisson limit theorems via information-theoretic ideas, akin to the remarkable information-theoretic
framework that has emerged for the central limit theorem and Poisson approximation.

The rest of the paper is organized as follows. Section 2 contains basic facts, definitions and notation
that will remain in effect throughout. It also contains a brief review of earlier Poisson approximation
results in terms of relative entropy, and the proof of Theorem 1.1. Section 3 introduces the two new
information functionals: The size-biased information JQ,1, generalizing the scaled Fisher information
of [23], and the Katti-Panjer information JQ,2, generalizing a related functional introduced by John-
stone and MacGibbon in [21]. It is shown that, in each case, Properties (A) and (B) analogous to
those stated in Section 1.1 for Fisher information hold for JQ,1 and JQ,2. In Section 4 we consider
Property (C) and show that both JQ,1 and JQ,2 satisfy natural subadditivity properties on convolu-
tion. Section 5 contains bounds analogous to that Property (D) above, showing that both JQ,1(Y )
and JQ,2(Y ) dominate the total variation distance between the distribution of Y and a compound
Poisson law.

2 Size-biasing, compounding and relative entropy

In this section we collect preliminary definitions and notation that will be used in subsequent sec-
tions, and we provide the proof of Theorem 1.1.

The compounding operation in the definition of the compound Poisson law in the Introduction can
be more generally phrased as follows. [Throughout, the empty sum

∑0
i=1[. . .] is taken to be equal

to zero].
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Definition 2.1. For any Z+-valued random variable Y ∼ R and any distribution Q on N, the compound
distribution CQR is that of the sum,

Y
∑

i=1

X i ,

where the X i are i.i.d. with common distribution Q, independent of Y .

For example, the compound Poisson law CPo(λ,Q) is simply CQPo(λ), and the compound binomial
distribution CQBin(n, p) is that of the sum Sn =

∑n
i=1 BiX i where the Bi are i.i.d. Bern(p) and the

X i are i.i.d. with distribution Q, independent of the Bi . More generally, if the Bi are Bernoulli with
different parameters pi , we say that Sn is a compound Bernoulli sum since the distribution of each
summand BiX i is CQBern(pi).

Next we recall the size-biasing operation, which is intimately related to the Poisson law. For any
distribution P on Z+ with mean λ, the (reduced) size-biased distribution P# is,

P#(y) =
(y + 1)P(y + 1)

λ
, y ≥ 0.

Recalling that a distribution P on Z+ satisfies the recursion,

(k+ 1)P(k+ 1) := λP(k), k ∈ Z+, (2.1)

if and only if P = Po(λ), it is immediate that P = Po(λ) if and only if P = P#. This also explains,
in part, the definition (1.1) of the scaled Fisher information in [23]. Similarly, the Katti-Panjer
recursion states that P is the CPo(λ,Q) law if and only if,

kP(k) = λ
k
∑

j=1

jQ( j)P(k− j), k ∈ Z+; (2.2)

see the discussion in [20] for historical remarks on the origin of (2.2).

Before giving the proof of Theorem 1.1 we recall two results related to Poisson approximation
bounds from [23]. First, for any random variable X ∼ P on Z+ with mean λ, a modified log-Sobolev
inequality of [9] was used in [23, Proposition 2] to show that,

D(P‖Po(λ))≤ Jπ(X ), (2.3)

as long as P has either full support or finite support. Combining this with the subadditivity property
of Jπ and elementary computations, yields [23, Theorem 1] that states: If Tn is the sum of n
independent Bi ∼ Bern(pi) random variables, then,

D(PTn
‖Po(λ))≤

1

λ

n
∑

i=1

p3
i

1− pi
, (2.4)

where PTn
denotes the distribution of Tn and λ=

∑n
i=1 pi .
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Proof of Theorem 1.1. Let Zn ∼ Po(λ) and Tn =
∑n

i=1 Bi . Then the distribution of Sn is also that of
the sum

∑Tn
i=1 X i; similarly, the CPo(λ,Q) law is the distribution of the sum Z =

∑Zn
i=1 X i . Thus,

writing X = (X i), we can express Sn = f (X, Tn) and Z = f (X, Zn), where the function f is the same
in both places. Applying the data-processing inequality and then the chain rule for relative entropy
[13],

D(PSn
‖CPo(λ,Q)) ≤ D(PX,Tn

‖PX,Zn
)

=
h
∑

i

D(PX i
‖PX i
)
i

+ D(PTn
‖PZn
)

= D(PTn
‖Po(λ)),

and the result follows from the Poisson approximation bound (2.4).

3 Information functionals

This section contains the definitions of two new information functionals for discrete random vari-
ables, along with some of their basic properties.

3.1 Size-biased information

For the first information functional we consider, some knowledge of the summation structure of the
random variables concerned is required.

Definition 3.1. Consider the sum S =
∑n

i=1 Yi ∼ P of n independent Z+-valued random variables
Yi ∼ Pi = CQ i

Ri , i = 1, 2, . . . , n. For each j, let Y ′j ∼ CQ j
(R#

j ) be independent of the Yi , and let

S( j) ∼ P( j) be the same sum as S but with Y ′j in place of Yj .

Let qi denote the mean of each Q i , pi = E(Yi)/qi and λ =
∑

i pi . Then the size-biased information of
S relative to the sequence Q= (Q i) is,

JQ,1(S) := λE[r1(S; P,Q)2],

where the score function r1 is defined by,

r1(s; P,Q) :=

∑

i pi P
(i)(s)

λP(s)
− 1, s ∈ Z+.

For simplicity, in the case of a single summand S = Y1 ∼ P1 = CQR we write r1(·; P,Q) and JQ,1(Y )
for the score and the size-biased information of S, respectively. [Note that the score function r1 is
only infinite at points x outside the support of P, which do not affect the definition of the size-biased
information functional.]

Although at first sight the definition of JQ,1 seems restricted to the case when all the summands Yi
have distributions of the form CQ i

Ri , we note that this can always be achieved by taking pi = Pr{Yi ≥
1} and letting Ri ∼ Bern(pi) and Q i(k) = Pr{Yi = k|Yi ≥ 1}, for k ≥ 1, as before.

We collect below some of the basic properties of JQ,1 that follow easily from the definition.
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1. Since E[r1(S; P,Q)] = 0, the functional JQ,1(S) is in fact the variance of the score r1(S; P,Q).

2. In the case of a single summand S = Y1 ∼ CQR, if Q is the point mass at 1 then the score r1
reduces to the score function ρY in (1.2). Thus JQ,1 can be seen as a generalization of the
scaled Fisher information Jπ of [23] defined in (1.1).

3. Again in the case of a single summand S = Y1 ∼ CQR, we have that r1(s; P,Q) ≡ 0 if and only
if R# = R, i.e., if and only if R is the Po(λ) distribution. Thus in this case JQ,1(S) = 0 if and
only if S ∼ CPo(λ,Q) for some λ > 0.

4. In general, writing F (i) for the distribution of the leave-one-out sum
∑

j 6=i Yi ,

r1(·; P,Q)≡ 0 ⇐⇒
∑

pi F
(i) ∗ (CQ i

Ri − CQ i
R#

i )≡ 0.

Hence within the class of ultra log-concave Ri (a class which includes compound Bernoulli
sums), since the moments of Ri are no smaller than the moments of R#

i with equality if and
only if Ri is Poisson, the score r1(·; P,Q) ≡ 0 if and only if the Ri are all Poisson, i.e., if and
only if P is compound Poisson.

3.2 Katti-Panjer information

Recall that the recursion (2.1) characterizing the Poisson distribution was used as part of the mo-
tivation for the definition of the scaled Fisher information Jπ in (1.1) and (1.2). In an analogous
manner, we employ the Katti-Panjer recursion (2.2) that characterizes the compound Poisson law to
define another information functional.

Definition 3.2. Given a Z+-valued random variable Y ∼ P and an arbitrary distribution Q on N, the
Katti-Panjer information of Y relative to Q is defined as,

JQ,2(Y ) := E[r2(Y ; P,Q)2],

where the score function r2 is,

r2(y; P,Q) :=
λ
∑∞

j=1 jQ( j)P(y − j)

P(y)
− y, y ∈ Z+,

and where λ is the ratio of the mean of Y to the mean of Q.

From the definition of the score function r2 it is immediate that,

E[r2(Y ; P,Q)] =
∑

y
P(y)r2(y; P,Q)

= λ

�

∑

y:P(y)>0

∑

j

jQ( j)P(y − j)
�

− E(Y )

= λ

�

∑

j

jQ( j)
�

− E(Y ) = 0,

therefore JQ,2(Y ) is equal to the variance of r2(Y ; P,Q). [This computation assumes that P has full
support on Z+; see the last paragraph of this section for further discussion of this point.] Also, in
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view of the Katti-Panjer recursion (2.2) we have that JQ,2(Y ) = 0 if and only if r2(y; P,Q) vanishes
for all y , which happens if and only if the distribution P of Y is CPo(λ,Q).

In the special case when Q is the unit mass at 1, the Katti-Panjer information of Y ∼ P reduces to,

JQ,2(Y ) = E
h�λP(Y − 1)

P(Y )
− Y
�2i

= λ2 I(Y ) + (σ2− 2λ), (3.1)

where λ,σ2 are the mean and variance of Y , respectively, and I(Y ) denotes the functional,

I(Y ) := E
h� P(Y − 1)

P(Y )
− 1
�2i

, (3.2)

proposed by Johnstone and MacGibbon [21] as a discrete version of the Fisher information (with
the convention P(−1) = 0). Therefore, in view of (3.1) we can think of JQ,2(Y ) as a generalization
of the “Fisher information” functional I(Y ) of [21].

Finally note that, although the definition of JQ,2 is more straightforward than that of JQ,1, the Katti-
Panjer information suffers the drawback that – like its simpler version I(Y ) in [21] – it is only finite
for random variables Y with full support on Z+. As noted in [22] and [23], the definition of I(Y )
cannot simply be extended to all Z+-valued random variables by just ignoring the points outside the
support of P, where the integrand in (3.2) becomes infinite. This was, partly, the motivation for the
definition of the scaled scored function Jπ in [23]. Similarly, in the present setting, the important
properties of JQ,2 established in the following sections fail unless P has full support, unlike for the
size-biased information JQ,1.

4 Subadditivity

The subadditivity property of Fisher information (Property (C) in the Introduction) plays a key role
in the information-theoretic analysis of normal approximation bounds. The corresponding property
for the scaled Fisher information (Proposition 3 of [23]) plays an analogous role in the case of
Poisson approximation. Both of these results are based on a convolution identity for each of the two
underlying score functions. In this section we develop natural analogs of the convolution identities
and resulting subadditivity properties for the functionals JQ,1 and JQ,2.

4.1 Subadditivity of the size-biased information

The proposition below gives the natural analog of Property (C) in the the Introduction, for the
information functional JQ,1. It generalizes the convolution lemma and Proposition 3 of [23].

Proposition 4.1. Consider the sum Sn =
∑n

i=1 Yi ∼ P of n independent Z+-valued random variables
Yi ∼ Pi = CQ i

Ri , i = 1,2, . . . , n. For each i, let qi denote the mean of Q i , pi = E(Yi)/qi and λ =
∑

i pi .
Then,

r1(s; P,Q) = E





n
∑

i=1

pi

λ
r1(Yi; Pi ,Q i)

�

�

�

�

�

Sn = s



 , (4.1)
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and hence,

JQ,1(Sn)≤
m
∑

i=1

pi

λ
JQ i ,1(Yi). (4.2)

Proof. In the notation of Definition 3.1 and the subsequent discussion, writing F (i) = P1 ∗ . . .∗ Pi−1 ∗
Pi+1 ∗ . . . ∗ Pm, so that P(i) = F (i) ∗ CQ i

R#
i , the right-hand side of the projection identity (4.1) equals,

n
∑

i=1

∑

x

Pi(x)F (i)(s− x)
P(s)

 

pi

λ

 

CQ i
R#

i (x)

Pi(x)
− 1

!!

=
1

λP(s)

 

n
∑

i=1

∑

x
piCQ i

R#
i (x)F

(i)(s− x)

!

− 1

=
1

λP(s)

 

n
∑

i=1

pi P
(i)(s)

!

− 1

= r1(s; P,Q),

as required. The subadditivity result follows using the conditional Jensen inequality, exactly as in
the proof of Proposition 3 of [23].

Corollary 4.2. Under the assumptions of Proposition 4.1, if each Yi = BiX i , where Bi ∼ Bern(pi) and
X i ∼Q i where pi = Pr{Yi 6= 0} and Q i(k) = Pr{Yi = k|Yi ≥ 1}, then,

JQ,1(Sn)≤
1

λ

n
∑

i=1

p3
i

1− pi
,

where λ=
∑

i pi .

Proof. Consider Y = BX , where B ∼ R = Bern(p) and X ∼ Q. Since R# = δ0 then CQ(R#) = δ0.
Further, Y takes the value 0 with probability (1− p) and the value X with probability p. Thus,

r1(x; CQR,Q) =
CQ(R#)(x)

CQR(x)
− 1

=
δ0(x)

(1− p)δ0(x) + pQ(x)
− 1

=

¨ p
1−p

for x = 0

−1 for x > 0.

Consequently,

JQ,1(Y ) =
p2

1− p
, (4.3)

and using Proposition 4.1 yields,

JQ,1(Sn)≤
n
∑

i=1

pi

λ
JQ i ,1(Yi) =

1

λ

n
∑

i=1

p3
i

1− pi
,

as claimed.
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4.2 Subadditivity of the Katti-Panjer information

When Sn is supported on the whole of Z+, the score r2 satisfies a convolution identity and the
functional JQ,2 is subadditive. The following Proposition contains the analogs of (4.1) and (4.2) in
Proposition 4.1 for the Katti-Panjer information JQ,2(Y ). These can also be viewed as generalizations
of the corresponding results for the Johnstone-MacGibbon functional I(Y ) established in [21].

Proposition 4.3. Consider a sum Sn =
∑n

i=1 Yi of independent random variables Yi = BiX i , where each
X i has distribution Q i on N with mean qi , and each Bi ∼ Bern(pi). Let λ=

∑n
i=1 pi and Q =

∑n
i=1

pi

λ
Q i .

If each Yi is supported on the whole of Z+, then,

r2(s; Sn,Q) = E





n
∑

i=1

r2(Yi; Pi ,Q i)

�

�

�

�

�

Sn = s



 ,

and hence,

JQ,2(Sn)≤
n
∑

i=1

JQ i ,2(Yi).

Proof. Write r2,i(·) for r2(·; Pi ,Q i), and note that E(Yi) = piqi , for each i. Therefore, E(Sn) =
∑

i piqi

which equals λ times the mean of Q. As before, let F (i) denote the distribution of the leave-one-out
sum

∑

j 6=i Yj , and decompose the distribution PSn
of Sn as PSn

(s) =
∑

x Pi(x)F (i)(s− x). We have,

r2(s; Sn,Q) =
λ
∑∞

j=1 jQ( j)PSn
(s− j)

PSn
(s)

− s

=
n
∑

i=1

pi
∑∞

j=1 jQ i( j)PSn
(s− j)

PSn
(s)

− s

=
n
∑

i=1

∑

x

pi
∑∞

j=1 jQ i( j)Pi(x − j)F (i)(s− x)

PSn
(s)

− s

=
n
∑

i=1

∑

x

Pi(x)F (i)(s− x)
PSn
(s)





pi
∑∞

j=1 jQ i( j)Pi(x − j)

Pi(x)



− s

= E





n
∑

i=1

r2,i(Yi)

�

�

�

�

�

Sn = s





proving the projection identity. And using the conditional Jensen inequality, noting that the cross-
terms vanish because E[r2(X ; P,Q) = 0] for any X ∼ P with full support (cf. the discussion in
Section 3.2), the subadditivity result follows, as claimed.

5 Information functionals dominate total variation

In the case of Poisson approximation, the modified log-Sobolev inequality (2.3) directly relates the
relative entropy to the scaled Fisher information Jπ. However, the known (modified) log-Sobolev in-
equalities for compound Poisson distributions [37; 24], only relate the relative entropy to functionals
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different from JQ,1 or JQ,2. Instead of developing subadditivity results for those other functionals, we
build, in part, on some of the ideas from Stein’s method and prove relationships between the total
variation distance and the information functionals JQ,1 and JQ,2. (Note, however, that Lemma 5.4
does offer a partial result showing that the relative entropy can be bounded in terms of JQ,1.)

To illustrate the connection between these two information functionals and Stein’s method, we
find it simpler to first examine the Katti-Panjer information. Recall that, for an arbitrary function
h : Z+ → R, a function g : Z+ → R satisfies the Stein equation for the compound Poisson measure
CPo(λ,Q) if,

λ

∞
∑

j=1

jQ( j)g(k+ j) = kg(k) +
h

h(k)− E[h(Z)]
i

, g(0) = 0, (5.1)

where Z ∼ CPo(λ,Q). [See, e.g., [15] for details as well as a general review of Stein’s method for
Poisson and compound Poisson approximation.] Letting h= IA for some A⊂ Z+, writing gA for the
corresponding solution of the Stein equation, and taking expectations with respect to an arbitrary
random variable Y ∼ P on Z+,

P(A)− Pr{Z ∈ A}= E







λ

∞
∑

j=1

jQ( j)gA(Y + j)− Y gA(Y )







.

Then taking absolute values and maximizing over all A⊂ Z+,

dTV(P, CPo(λ,Q))≤ sup
A⊂Z+

�

�

�

�

�

�

�

�

E







λ

∞
∑

j=1

jQ( j)gA(Y + j)− Y gA(Y )







�

�

�

�

�

�

�

�

. (5.2)

Noting that the expression in the expectation above is reminiscent of the Katti-Panjer recursion (2.2),
it is perhaps not surprising that this bound relates directly to the Katti-Panjer information functional:

Proposition 5.1. For any random variable Y ∼ P on Z+, any distribution Q on N and any λ > 0,

dTV(P, CPo(λ,Q))≤ H(λ,Q)
p

JQ,2(Y ),

where H(λ,Q) is the Stein factor defined in (1.4).

Proof. We assume without loss of generality that Y is supported on the whole of Z+, since, other-
wise, JQ,2(Y ) =∞ and the result is trivial. Continuing from the inequality in (5.2),

dTV(P, CPo(λ,Q)) ≤
�

sup
A⊂Z+

‖gA‖∞
�
∞
∑

y=0

�

�

�

�

�

�

λ

∞
∑

j=1

jQ( j)P(y − j)− yP(y)

�

�

�

�

�

�

≤ H(λ,Q)
∞
∑

y=0

P(y)|r2(y; P,Q)|

≤ H(λ,Q)

s

∞
∑

y=0

P(y)r2(y; P,Q)2,
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where the first inequality follows from rearranging the first sum, the second inequality follows from
Lemma 5.2 below, and the last step is simply the Cauchy-Schwarz inequality.

The following uniform bound on the sup-norm of the solution to the Stein equation (5.1) is the only
auxiliary result we require from Stein’s method. See [5] or [15] for a proof.

Lemma 5.2. If gA is the solution to the Stein equation (5.1) for g = IA, with A⊂ Z+, then ‖gA‖∞ ≤
H(λ,Q), where H(λ,Q) is the Stein factor defined in (1.4).

5.1 Size-biased information dominates total variation

Next we establish an analogous bound to that of Proposition 5.1 for the size-biased information JQ,1.
As this functional is not as directly related to the Katti-Panjer recursion (2.2) and the Stein equation
(5.2), the proof is technically more involved.

Proposition 5.3. Consider a sum S =
∑n

i=1 Yi ∼ P of independent random variables Yi = BiX i ,
where each X i has distribution Q i on N with mean qi , and each Bi ∼ Bern(pi). Let λ =

∑n
i=1 pi and

Q =
∑n

i=1
pi

λ
Q i . Then,

dTV(P, CPo(λ,Q))≤ H(λ,Q)q
�

p

λJQ,1(S) + D(Q)
�

,

where H(λ,Q) is the Stein factor defined defined in (1.4), q = (1/λ)
∑

i piqi is the mean of Q, and
D(Q) is the measure of the dissimilarity between the distributions Q= (Q i), defined in (1.3).

Proof. For each i, let T (i) ∼ F (i) denote the leave-one-out sum
∑

j 6=i Yi , and note that, as in the proof

of Corollary 4.2, the distribution F (i) is the same as the distribution P(i) of the modified sum S(i) in
Definition 3.1. Since Yi is nonzero with probability pi , we have, for each i,

E[Yi gA(S)] = E[Yi gA(Yi + T (i))]

=
∞
∑

j=1

∞
∑

s=0

piQ i( j)F
(i)(s) j gA( j+ s)

=
∞
∑

j=1

∞
∑

s=0

pi jQ i( j)P
(i)(s)gA(s+ j),

where, for A⊂ Z+ arbitrary, gA denotes the solution of the Stein equation (5.1) with h= IA. Hence,
summing over i and substituting in the expression in the right-hand-side of equation (5.2) with S in
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place of Y , yields,

E
n

λ

∞
∑

j=1

jQ( j)gA(S+ j)
o

− E[SgA(S)]

=
∞
∑

s=0

∞
∑

j=1

gA(s+ j)

 

λ jQ( j)P(s)−
∑

i

pi jQ i( j)P
(i)(s)

!

=
∞
∑

s=0

∞
∑

j=1

gA(s+ j) jQ( j)

 

∑

i

pi(P(s)− P(i)(s))

!

+
∞
∑

s=0

∞
∑

j=1

gA(s+ j)

 

∑

i

pi j(Q( j)−Q i( j))P
(i)(s)

!

= −
∞
∑

s=0

∞
∑

j=1

gA(s+ j) jQ( j)λP(s)

�∑

i pi P
(i)(s)

λP(s)
− 1

�

+
∞
∑

s=0

∞
∑

j=1

gA(s+ j)

 

∑

i

pi j(Q( j)−Q i( j))P
(i)(s)

!

. (5.3)

By the Cauchy-Schwarz inequality, the first term in (5.3) is bounded in absolute value by,

È

λ
∑

j,s

gA(s+ j)2 jQ( j)P(s)

√

√

√

√λ
∑

j,s

jQ( j)P(s)

�∑

i pi P(i)(s)
λP(s)

− 1

�2

,

and for the second term, simply bound ‖gA‖∞ by H(λ,Q) using Lemma 5.2, deducing a bound in
absolute value of

H(λ,Q)
∑

i, j

pi j|Q( j)−Q i( j)|.

Combining these two bounds with the expression in (5.3) and the original total-variation inequality
(5.2) completes the proof, upon substituting the uniform sup-norm bound given in Lemma 5.2.

Finally, recall from the discussion in the beginning of this section that the scaled Fisher information
Jπ satisfies a modified log-Sobolev inequality (2.3), which gives a bound for the relative entropy in
terms of the functional Jπ. For the information functionals JQ,1 and JQ,2 considered in this work,
we instead established analogous bounds in terms of total variation. However, the following partial
result holds for JQ,1:

Lemma 5.4. Let Y = BX ∼ P, where B ∼ Bern(p) and X ∼Q on N. Then:

D(P‖CPo(p,Q))≤ JQ,1(Y ).

Proof. Recall from (4.3) that JQ,1(Y ) =
p2

1−p
. Further, since the CPo(p,Q) mass function at s is at

least e−ppQ(s) for s ≥ 1, we have, D(CQBern(p)‖CPo(p,Q)) ≤ (1− p) log(1− p) + p, which yields
the result.
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6 Comparison with existing bounds

In this section, we compare the bounds obtained in our three main results, Theorems 1.1, 1.2 and
1.4, with inequalities derived by other methods. Throughout, Sn =

∑n
i=1 Yi =

∑n
i=1 BiX i , where the

Bi and the Yi are independent sequences of independent random variables, with Bi ∼ Bern(pi) for
some pi ∈ (0,1), and with X i ∼Q i on N; we write λ=

∑n
i=1 pi .

There is a large body of literature developing bounds on the distance between the distribution PSn

of Sn and compound Poisson distributions; see, e.g., [15] and the references therein, or [33, Sec-
tion 2] for a concise review.

We begin with the case in which all the Q i = Q are identical, when, in view of a remark of Le Cam
[26, bottom of p.187] and Michel [30], bounds computed for the case X i = 1 a.s. for all i are also
valid for any Q. One of the earliest results is the following inequality of Le Cam [25], building on
earlier results by Khintchine and Doeblin,

dTV(PSn
, CPo(λ,Q))≤

n
∑

i=1

p2
i . (6.1)

Barbour and Hall (1984) used Stein’s method to improve the bound to

dTV(PSn
, CPo(λ,Q))≤min{1,λ−1}

n
∑

i=1

p2
i . (6.2)

Roos [32] gives the asymptotically sharper bound

dTV(PSn
, CPo(λ,Q))≤

�

3

4e
+

7
p
θ(3− 2

p
θ)

6(1−
p
θ)2

�

θ , (6.3)

where θ = λ−1
∑n

i=1 p2
i , which was strengthened and simplified in form in Equation (30) of

Čekanavičius and Roos [11] to give

dTV(PSn
, CPo(λ,Q))≤

3θ

4e(1−
p
θ)3/2

. (6.4)

In this setting, the bound (1.6) that was derived from Theorem 1.1 yields

dTV(PSn
, CPo(λ,Q))≤

 

1

2λ

n
∑

i=1

p3
i

1− pi

!1/2

. (6.5)

The bounds (6.2) – (6.5) are all derived using the observation made by Le Cam and Michel, taking Q
to be degenerate at 1. For the application of Theorem 1.4, however, the distribution Q must have
support the whole of N, so Q cannot be replaced by the point mass at 1 in the formula; the bound
that results from Theorem 1.4 can be expressed as

dTV(PSn
, CPo(λ,Q))≤ H(λ,Q)

 

K(Q)
n
∑

i=1

p3
i

!1/2

,

with K(Q) =
∑

y
Q(y)y2

�

Q∗2(y)
2Q(y)

− 1

�2

. (6.6)
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Illustration of the effectiveness of these bounds with geometric Q and equal pi is given in Section 6.2.

For non-equal Q i , the bounds are more complicated. We compare those given in Theorems 1.2
and 1.4 with three other bounds. The first is Le Cam’s bound (6.1) that still remains valid as stated
in the case of non-equal Q i . The second, from Stein’s method, has the form

dTV(PSn
, CPo(λ,Q))≤ G(λ,Q)

n
∑

i=1

q2
i p2

i , (6.7)

see Barbour and Chryssaphinou [6, eq. (2.24)], where qi is the mean of Q i and G(λ,Q) is a Stein
factor: if jQ( j) is non-increasing, then

G(λ,Q) =min
�

1, δ
�

δ

4
+ log+

�

2

δ

���

,

where δ = [λ{Q(1)− 2Q(2)}]−1 ≥ 0. The third is that of Roos [33], Theorem 2, which is in detail
very complicated, but correspondingly accurate. A simplified version, valid if jQ( j) is decreasing,
gives

dTV(PSn
, CPo(λ,Q))≤

α2

(1− 2eα2)+
, (6.8)

where

α2 =
n
∑

i=1

g(2pi)p
2
i min

�

q2
i

eλ
,
νi

23/2λ
, 1

�

,

νi =
∑

y≥1 Q i(y)2/Q(y) and g(z) = 2z−2ez(e−z − 1 + z). We illustrate the effectiveness of these
bounds in Section 6.3; in our examples, Roos’s bounds are much the best.

6.1 Broad comparisons

Because of their apparent complexity and different forms, general comparisons between the bounds
are not straightforward, so we consider two particular cases below in Sections 6.2 and 6.3. However,
the following simple observation on approximating compound binomials by a compound Poisson
gives a first indication of the strength of one of our bounds.

Proposition 6.1. For equal pi and equal Q i:

1. If n> (
p

2p(1− p))−1, then the bound of Theorem 1.1 is stronger than Le Cam’s bound (6.1);

2. If p < 1/2, then the bound of Theorem 1.1 is stronger than the bound (6.2);

3. If 0.012 < p < 1/2 and n > (
p

2p(1− p))−1 are satisfied, then the bound of Theorem 1.1 is
stronger than all three bounds in (6.1), (6.2) and (6.3).

Proof. The first two observations follow by simple algebra, upon noting that the bound of Theo-
rem 1.1 in this case reduces to pp

2(1−p)
; the third is shown numerically, noting that here θ = p.
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Although of no real practical interest, the bound of Theorem 1.1 is also better than (6.4) for 0.27<
p < 1/2.

One can also examine the rate of convergence of the total variation distance between the distribution
PSn

and the corresponding compound Poisson distribution, under simple asymptotic schemes. We
think of situations in which the pi and Q i are not necessarily equal, but are all in some reasonable
sense comparable with one another; we shall also suppose that jQ( j) is more or less a fixed and
decreasing sequence. Two ways in which p varies with n are considered:

Regime I. p = λ/n for fixed λ, and n→∞;

Regime II. p =
Æ

µ

n
, so that λ=pµn→∞ as n→∞.

Under these conditions, the Stein factors H(λ,Q) are of the same order as 1/
p

np. Table 1 compares
the asymptotic performance of the various bounds above. The poor behaviour of the bound in
Theorem 1.2 shown in Table 1 occurs because, for large values of λ, the quantity D(Q) behaves
much like λ, unless the Q i are identical or near-identical.

Bound dTV(PSn
, CPo(λ,Q)) to leading order I II

Le Cam (6.1) np2 n−1 1
Roos (6.8) np2 min(1, 1/(np)) n−1 n−1/2

Stein’s method (6.7) np2 min(1, log(np)/np) n−1 n−1/2 log n
Theorem 1.2 p 1 n1/4

Theorem 1.4 (6.6) p n−1 n−1/2

Table 1: Comparison of the first-order asymptotic performance of the bounds in (6.1), (6.7)
and (6.8), with those of Theorems 1.2 and 1.4 for comparable but non-equal Q i , in the two lim-
iting regimes p � 1/n and p � 1/

p
n.

6.2 Example. Compound binomial with equal geometrics

We now examine the finite-n behavior of the approximation bounds (6.1) – (6.3) in the particular
case of equal pi and equal Q i , when Q i is geometric with parameter α > 0, Q( j) = (1− α)α j−1,
j ≥ 1.

If α < 1
2
, then { jQ( j)} is decreasing and, with δ = [λ(1− 3α+ 2α2)]−1, the Stein factor in (6.6)

becomes

H(λ,Q) =min{1,
p

δ(2−
p

δ)}.

The resulting bounds are plotted in Figures 1 – 3.

6.3 Example. Sums with unequal geometrics

Here, we consider finite-n behavior of the approximation bounds (6.1), (6.7) and (6.8) in the par-
ticular case when the distributions Q i are geometric with parameters αi > 0. The resulting bounds
are plotted in Figures 4 and 5.
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Figure 1: Bounds on the total variation distance dTV(CQBin(p,Q), CPo(λ,Q)) for Q ∼ Geom(α),
plotted against the parameter α, with n = 100 and λ = 5 fixed. The values of the bound in (6.5)
are plotted as ◦; those in (6.6) as 4; those of the Stein’s method bound in (6.2) as 5; Čekanavičius
and Roos’s bounds in (6.4) as × and Roos’ bounds in (6.8) as �. The true total variation distances,
computed numerically in each case, are plotted as �.
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Figure 2: Bounds on the total variation distance dTV(CQBin(p,Q), CPo(λ,Q)) for Q ∼ Geom(α) as
in Figure 1, here plotted against the parameter n, with α= 0.2 and λ= 5 fixed.
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Figure 3: Bounds on the total variation distance dTV(CQBin(p,Q), CPo(λ,Q)) for Q ∼ Geom(α) as
in Figure 1, here plotted against the parameter λ, with α= 0.2 and n= 100 fixed.
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In this case, it is clear that the best bounds by a considerable margin are those of Roos [33] given
in (6.8).
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8

1.
0
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T
V

Figure 4: Bounds on the total variation distance dTV(PSn
, CPo(λ,Q)) for Q i ∼ Geom(αi), where αi

are uniformly spread between 0.15 and 0.25, n varies, and p is as in regime I, p = 5/n. Again,
bounds based on JQ,1 are plotted as ◦; those based on JQ,2 as 4; Le Cam’s bound in (6.1) as 5; the
Stein’s method bound in (6.7) as ×, and Roos’ bound from Theorem 2 of [33] as �. The true total
variation distances, computed numerically in each case, are plotted as �.
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[10] I.S. Borisov, and I.S. Vorozhĕıkin. Accuracy of approximation in the Poisson theorem in terms
of χ2 distance. Sibirsk. Mat. Zh., 49(1):8–22, 2008. MR2400567
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