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Abstract

We study the stochastic spatial model for competing species introduced by Neuhauser and Pacala
in two spatial dimensions. In particular we confirm a conjecture of theirs by showing that there
is coexistence of types when the competition parameters between types are equal and less than,
and close to, the within types parameter. In fact coexistence is established on a thorn-shaped
region in parameter space including the above piece of the diagonal. The result is delicate since
coexistence fails for the two-dimensional voter model which corresponds to the tip of the thorn.
The proof uses a convergence theorem showing that a rescaled process converges to super-
Brownian motion even when the parameters converge to those of the voter model at a very slow
rate.
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1 Introduction and statement of results

Neuhauser and Pacala [12] introduced a stochastic spatial interacting particle model for two com-
peting species. Each site in Zd is occupied by one of two types of plants, designated 0 and 1. The
state of the system at time t is represented by ξt ∈ {0, 1}Z

d
. A probability kernel p on Zd will model

both the dispersal of each type and competition between and within types. We assume through-
out that p is symmetric and irreducible, has covariance matrix σ2 I (for some σ > 0) and satisfies
p(0) = 0. Let

fi(x ,ξ) =
∑

y
p(y − x)1{ξ(y) = i}, i = 0,1

be the local density of type i near x ∈ Zd , and let α0,α1 ≥ 0 be competition parameters. The
Lotka-Volterra model with parameters (α0,α1), denoted LV (α0,α1), is the spin flip system with rate
functions

r0→1(x ,ξ) = f1( f0+α0 f1)(x ,ξ) = f1(x ,ξ) + (α0− 1)( f1(x ,ξ))2

r1→0(x ,ξ) = f0( f1+α1 f0)(x ,ξ) = f0(x ,ξ) + (α1− 1)( f0(x ,ξ))2.

It is easy to verify that these rates specify the generator of a unique {0, 1}Z
d
-valued Feller process

whose law with initial state ξ0 we denote Pαξ0
(or Pξ0

if there is no ambiguity); see the discussion
prior to Theorem 1.3 in [5]. We will be working with d = 2 in this work but for now will allow
d ≥ 2 to discuss our results in a wider context. For d = 1, see the original paper of Neuhauser and
Pacala [12], and also Theorem 1.1 of [5].

The interpretation of the above rates is that f0 + α0 f1(x ,ξ) is the death rate of a 0 at site x in
configuration ξ due to competition from nearby 1’s (α0 f1) and nearby 0’s ( f0). Upon its death,
the site is immediately recolonized by a randomly chosen neighbour. A symmetric explanation
applies to the second rate function. Therefore α0p(y − x) represents the competitive intensity
of a “neighbouring" 1 at y on a 0 at x and α1p(y − x) represents the competitive intensity of a
“neighbouring" 0 at y on a 1 at x , while p(y − x) is the competitive intensity of a particle at y on
one of its own type at x .

Our interest lies in the related questions of survival of a rare type and coexistence of both types in
the biologically important two-dimensional setting.

The case α0 = α1 = 1, where all intensities are the same, reduces to the well studied voter model
(see Chapter V of Liggett [11]). In the second expression of the rates given above, one can therefore
see that for α0 and α1 both close to one, we are dealing with a slight perturbation of the voter model
rates. When both α0 and α1 are above 1, there is an alternative interpretation of the flip rates: as
in the case of the voter model, a particle of type i is at rate 1 colonized by a randomly choosen
neighbour, but in addition, at rate (αi − 1), it is colonized by a randomly choosen neighbour if its
type agrees with that of another randomly and independently choosen neighbour.

The voter model is dual to a system of coalescing random walks. This property makes it straight-
forward to prove that for d ≤ 2, where a finite number of walks almost surely coalesce, the only
invariant measures are convex combinations of the degenerate ones, which give positive proba-
bility only to configurations where all particles are of the same type (see Theorem 1.8 in Section
V.1 of [11]). On the other hand when d ≥ 3, transience of random walks makes it possible for
non-degenerate invariant measures to exist.
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When α0 and α1 are both greater than 1, the flip rate of a particle surrounded mostly by particles of
the other type is increased. Therefore, intuitively, this setting should favour large clusters of particles
of the same type, and at least for d ≤ 2, invariant measures should remain degenerate.

On the other hand, as we will show when α0 and α1 are close to 1, both below 1 and when α0 and
α1 are sufficiently close to one another, our model possesses in d = 2 quite a different asymptotic
behaviour than that of the voter model (see Theorem 1.2 below). Indeed in this case, the death
rate of a particle surrounded by particles of the other type is lowered, making it possible for sparse
configurations to survive and non-degenerate invariant measures to appear.

Let |ξ| =
∑

x ξ(x) and |1− ξ| =
∑

x(1− ξ(x)) denote the total number of 1’s and 0’s, respectively,
in the population.

Definition 1.1. We say that survival of ones (or just survival) holds iff

Pαδ0
(|ξt |> 0 for all t ≥ 0)> 0

and otherwise we say that extinction (of ones) holds. We say that coexistence holds iff there is a
stationary law ν for LV (α0,α1) such that

|ξ|= |1− ξ|=∞ ν − a.s. (1)

Note that αi < 1 encourages coexistence as the interspecies competition is weaker than the in-
traspecies competition, while it is the other way around for αi > 1. The most favourable parameter
values for coexistence should be α0 = α1 < 1 so that neither type is given any advantage over the
other. In fact Conjecture 1 of [12] stated:

Conjecture. For d ≥ 2 coexistence holds for LV (α0,α1) whenever α0 = α1 < 1.

This was verified in [12] for α0 = α1 sufficiently small. For d ≥ 3 coexistence was verified in
Theorem 4 of [6] for αi < 1 and close to 1 as follows, where m0 ∈ (0, 1) is a certain ratio of
non-coalescing probabilities described in (4) below.

For any 0 < η < 1− m0 there exists r(η) > 0 such that coexistence holds in the local cone-shaped
region near (1, 1) given by

Cd≥3
η = {(α0,α1) : 1− r(η)< α0 < 1, (m0+η)

−1(α0− 1)≤ α1− 1≤ (m0+η)(α0− 1)}. (2)

Coexistence in two dimensions is more delicate since it fails for the two-dimensional voter model,
α0 = α1 = 1, and so in Theorem 1.2 below we are establishing coexistence for a class of perturba-
tions of a model for which it fails. We also require an additional moment condition which was not
required in higher dimensions or in [7], and which will be in force throughout this work:

∑

x∈Z2

|x |3p(x)<∞. (3)

Throughout |x | will denote the Euclidean norm of a point x ∈ R2.

Our first result confirms the above Conjecture at least for α0 = α1 < 1 and sufficiently close to 1.
In fact it gives coexistence on a thorn-shaped region including the piece of the diagonal just below
(1,1) (see the Figure below). The thorn actually widens out rather quickly. In the following Theorem
γ and K are specific positive constants, which are determined by certain coalescing asymptotics–see
(5) and (6) below.
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Theorem 1.2. Let d = 2. For 0< η < K, if

Cη =

¨

(α0,α1) ∈ (0,1)2 : |α0−α1| ≤
K −η
γ

1−α0
�

log 1
1−α0

�2

«

,

then there is an r(η) > 0 so that coexistence holds for LV (α0,α0) whenever (α0,α1) ∈ Cη and 1−
r(η)< α0. Indeed in this case there is a translation invariant stationary law ν satisfying (1).

Note that it is plausible that coexistence for α0 = α1 = α implies coexistence for all 0 ≤ α0 = α1 =
α′ ≤ α since decreasing α should increase the affinity for the opposite type. If true, such a result
would show that Theorem 1.2 implies the general Conjecture above.

We first recall the approach in [6] to coexistence for d ≥ 3. Let {β̂ x : x ∈ Zd} be a system of
continuous time rate 1 coalescing random walks with step kernel p and β̂ x

0 = x , and let {ei}i≥1 be
iid random variables with law p, independent of {β̂ x}, all under a probability P̂. In addition we set
e0 = 0. If τ(x , y) = inf{t ≥ 0 : β̂ x

t = β̂
y
t },

q2 = P̂(τ(e1, e2)<∞,τ(0, e1) = τ(0, e2) =∞),

and
q3 = P̂(τ(ei , e j) =∞ for all i 6= j ∈ {0, 1,2}),

then the constant m0 appearing in the definition of Cd≥3
η is

m0 =
q2

q2+ q3
. (4)

Coexistence in Cd≥3
η for d ≥ 3 was proved in [6] as a simple consequence of

Theorem A. (Theorem 1 of [6]) Let d ≥ 3. For 0 < η < m0, there is an r(η) > 0 so that survival
holds if

α1− 1< (m0+η)(α0− 1) and 1− r(η)< α0 < 1.
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Indeed by interchanging 0’s and 1’s it follows that survival of 1’s and survival of 0’s holds for
(α0,α1) ∈ Cd≥3

η . The required stationary law ν is then easily constructed as a weak limit point
of Cesaro averages of ξs over [0, T] as T →∞ where ξ0 has a Bernoulli (1/2) distribution.

In two dimensions we have q2 = q3 = 0. If we write f (t) ∼
t→∞

g(t) when limt→∞
f (t)
g(t) = 1, the time

dependent analogues of q2, q3 satisfy

q2(t)≡ P̂(τ(e1, e2)≤ t,τ(0, e1)∧τ(0, e2)> t) ∼
t→∞

γ

log t
, where γ ∈ (0,∞), (5)

and

q3(t)≡ P̂( min
0≤i 6= j≤2

τ(ei , e j)> t) ∼
t→∞

K

(log t)3
, where K ∈ (0,∞). (6)

Both positive constants γ and K only depend on the kernel p. (5) is proved in Proposition 2.1 of [7]
along with an explicit formula for γ (denoted by γ∗ in [7]), while (6) is a consequence of

Proposition 1.3. Fix n ∈ N, n≥ 2, and x i ∈ Z2, i ∈ {1, ..., n} be such that x i 6= x j for all 1≤ i < j ≤ n.
There exists a constant Kn(x1, ..., xn)> 0 depending only on p, x1, ..., xn such that

qx1,...,xn
(t)≡ P̂( min

0≤i< j≤n
τ(x i , x j)> t) ∼

t→∞

Kn(x1, ..., xn)

(log t)
n(n−1)

2

. (7)

Furthermore, there exists a constant C1.3 depending only on p and n such that

Kn(x1, ..., xn)≤ C1.3

�

max
{1≤i< j≤n}

log
��

�x i − x j

�

�

�n(n−1)/2
+ 1
�

. (8)

Equation (7) above gives the asymptotics of the non-collision probability of n walks started at n
distinct fixed points and is proved in Section 9. Equation (8) allows us to use dominated convergence
and deduce that the first assertion continues to hold when the starting points are randomly chosen
with law p, provided p is supported by at least n− 1 points. In particular by integrating (7) with
respect to the law of {e1, . . . , en} on the event that they are all distinct, we see there is a constant
Kn > 0 depending only on p, n such that

�

log t
�

n(n−1)
2 P̂( min

0≤i< j≤n−1
τ(ei , e j)> t) →

t→∞
Kn, (9)

the case n= 3 corresponding evidently to (6).

In this paper, we only make use of (6) which is also used in [8] in their PDE limit theorem for
general voter model perturbations in two dimensions. However, the general result has the potential
of handling other rescalings leading to different PDE limits.

These asymptotics show that q3(t) � q2(t) as t → ∞ and so suggest that m0 should be 1 in two
dimensions. These heuristics are further substantiated by Theorem 1.3 of [7], where the following
is proved:

Theorem B. If d = 2, the conclusion of Theorem A holds with m0 = 1.
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Note that the above result will not give a coexistence result as it did for d ≥ 3 because the inter-
section of the region in Theorem B with its mirror image across the line α0 = α1 will be the empty
set. Of course one could hope that the result in Theorem B could be improved but in fact the result
in Theorem A was shown to be sharp in [4] and we conjecture that the same ideas will verify the
same is true of Theorem B, although the arguments here will be more involved. More specifically,
introduce the critical curve

h(α0) = sup{α1 : survival holds for LV (α0,α1)}.

As is discussed in Section 1 of [6], LV (α0,α1) is monotone for αi ≥ 1/2, h is non-decreasing on
α0 ≥ 1/2, h(α0) ≥ 1/2, and the region below or to the right of the graph of h are parameter values
for which survival holds and the region above or to the left of the graph of h are parameter values for
which extinction holds. Neuhauser and Pacala proved that h(1) = 1 and the sharpness of Theorem
A mentioned above was proved in Corollary 1.6 of [4] as

d−

dα0−
h(1) = m0.

Given the conjectured sharpness of Theorem B, our only hope for extending the above approach to
coexistence would be to find higher order asymptotics for h near 1 which would show survival holds
on the diagonal α0 = α1 near (1, 1). This is what is shown in the next result which clearly refines
Theorem B.

Theorem 1.4. Let d = 2, and γ and K be as in (5) and (6), respectively. For 0< η < K, if

Sη =
�

(α0,α1) ∈ (0, 1)2 : α1 ≤ α0+
K −η
γ

1−α0
�

log 1
1−α0

�2

�

,

then there exists r(η) > 0 so that survival of ones holds whenever (α0,α1) ∈ Sη and
1− r(η)< α0.

The reasoning described above for d ≥ 3 will now allow us to use Theorem 1.4 to derive Theorem 1.2
(see Section 8.3 below).

Theorem B was proved in [7] using a limit theorem for a sequence of rescaled Lotka-Volterra models.
The limit was a super-Brownian motion with drift and we use a similar strategy here to prove
Theorem 1.4. MF (Rd) is the space of finite measures on Rd with the topology of weak convergence.
A d-dimensional super-Brownian motion with branching rate b > 0, diffusion coefficient σ2 > 0,
and drift θ ∈ R (denoted SBM(b,σ2,θ)) is an MF (Rd)-valued diffusion X whose law is the unique
solution of the martingale problem:

(MP)







∀ φ ∈ C3
b (R

d), Mt(φ) = X t(φ)− X0(φ)−
∫ t

0
Xs

�

σ2

2
∆φ + θφ

�

ds

is a continuous F X
t -martingale such that

〈M(φ)〉t =
∫ t

0
Xs

�

bφ2
�

ds.

(See Theorem II.5.1 and Remark II.5.13 of [13].) Here Ck
b is the space of bounded Ck functions with

bounded derivatives of order k or less, F X
t is the right-continuous completed filtration generated by

X and X t(φ) denotes integration of φ with respect to the random finite measure X t .

1196



Fix β0,β1 ∈ R and assume βN
i , N ∈ [3,∞) satisfies

lim
N→∞

βN
i = βi , i = 0,1, β̄ = sup

N≥3
|βN

0 | ∨ |β
N
1 |<∞. (10)

(It will be convenient at times to have log N ≥ 1, whence the lower bound on N .) Define

αN
i = 1−

(log N)3

N
+ βN

i

log N

N
, i = 0, 1, N ≥ 3. (11)

As we will only be concerned with N large we may assume

αN
i ∈ [1/2, 1]. (12)

Let ξ(N) denote a LV (αN
0 ,αN

1 ) process and consider the rescaled process

ξN
t (x) = ξ

(N)
N t (x

p
N), x ∈ SN := Z2/

p
N .

Finally define the associated measure-valued process

X N
t =

log N

N

∑

x∈SN

ξN
t (x)δx .

Theorem 1.5. Assume X N
0 → X0 in MF (R2). If (10) holds, and γ and K are as in (5) and (6),

respectively, then {X N} converges weakly in the Skorokhod space D(R+, MF (R2)) to two-dimensional
SBM(4πσ2,σ2,θ), where θ = K + γ(β0− β1).

Note that the normalization by log N
(
p

N)2
shows that the 1’s are sparsely distributed over space and in

fact occur with density 1/ log N . Like the other constants in the above theorem, the branching rate
of 4πσ2 also arises from the asymptotics of a coalescing probability, namely

P̂(τ(0, e1)> t) ∼
t→∞

2πσ2

log t
. (13)

See, for example, Lemma A.3(ii) of [3] for the above, and the discussion after Theorem 1.2 of the
same reference for some intuition connecting the above with the limiting branching rate.

A bit of arithmetic shows that (αN
0 ,αN

1 ) ∈ Sη for some η > 0 and N large iff K+γ(β0−β1)> 0, that
is iff the drift of the limiting super-Brownian motion is positive. The latter condition is necessary
and sufficient for longterm survival of the super-Brownian motion and so we see that the derivation
of Theorem 1.4 from Theorem 1.5 requires an interchange of the limits in N and t. This will be
done using the standard comparison with super-critical 2K0-dependent oriented percolation. The
key technical argument here is a bound on the mass killed to ensure the 2K0-dependence, and is
proved in Lemma 8.1 in Section 8.

In [7] a limit theorem similar to Theorem 1.5 is proved but with αN
i = 1+

βN
i log N

N
and limiting drift

θ = γ(β0−β1) (unlike this work, in [7] αN
i > 1 was also considered). In order to analyze the higher

order asymptotics of the survival region we need to consider (αN
0 ,αN

1 ) which are asymptotically
farther from the voter model parameters (1,1). This results in some additional powers of log N mul-
tiplying some drift terms in the martingale decompositions of X N

t (φ) and we must take advantage
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of some cancelative effects especially when dealing with the drift term DN ,3 in (29) below–see, for
example, (39) below in Section 2.3. The delicate nature of the arguments will lead us to a number
of refinements of the arguments in [7], and also will require a dual process which we describe in
Section 2.

We conjecture that the results of Theorems 1.4 and 1.2 are both sharp.

Conjecture 1.6. If 0< η and

Eη =
�

(α0,α1) ∈ (0, 1)2 : α1 ≥ α0+
K +η
γ

1−α0
�

log 1
1−α0

�2

�

,

then there exists r(η) > 0 so that extinction of ones holds whenever (α0,α1) ∈ Eη and 1− r(η) < α0.
In fact infinitely many initial zero’s will drive one’s out of any compact set for large enough time a.s.

The above strengthens Conjecture 2 of Neuhauser and Pacala [12]. Clearly this would also show
that coexistence must fail and so, together with the symmetric result obtained by interchanging
0’s and 1’s, implies the sharpness of the thorn in Theorem 1.2. The analogous results for d ≥ 3
(showing in particular that the coexistence region in (2) and survival region in Theorem A are “best
possible") were proved in [4] using a PDE limit theorem. A corresponding limit theorem is derived
in two dimensions in [8]. There the limit theorem is used to carry out an interesting analysis of the
evolution of seed dispersal range.

Section 2 gives a construction of our particle system as a solution of a system of jump SDE’s which
leads to a description of the dual process mentioned above and the martingale problem solved by
X N . We conclude this Section with a brief outline of the proof of the convergence theorem including
some hints as to why constants like K arise in the limit. Section 3 gives a preliminary analysis of
the new drift term arising from the (log N)3 term and also sets out the first and second moment
bounds required for tightness of {X N}. The first moment bounds are established in Section 4, where
the reader can see how many of the key ideas including the dual are used in a simpler setting. The
more complex second moment bounds are given in Section 5 and tightness of {X N} is proved in
Section 6. The limits of the drift terms are found in Section 7 and the identification of the limiting
super-Brownian motion follows easily, thus completing the proof of Theorem 1.5. Theorems 1.2 and
1.4 are proved in Section 8. Finally Section 9 contains the proof of Proposition 1.3.

We will suppress dependency of constants on the kernel p (as for K and γ) and β̄ , but will mention
or explicitly denote any other dependencies. Constants introduced in formula (k) will be denoted
Ck while constants first appearing in Lemma i.j will be denoted Ci. j . Constants c, C are generic and
may change from line to line.

Acknowledgement. We thank Rick Durrett for a number of very helpful conversations on this work.
We also thank two anonymous referees for their thorough proofreading of the manuscript.
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2 Preliminaries

2.1 Non-coalescing bounds and kernel estimates

Let pN (x) denote the rescaled kernel p(
p

N x) for x ∈ SN , and define

vN := NαN
0 = N − (log N)3+ βN

0 (log N)≥ N/2,

θN := N(1−αN
0 ) = (log N)3− βN

0 (log N)≥ 0,

the inequalities by (12), and
λN := (βN

1 − β
N
0 )(log N).

Let {B̂x ,N , x ∈ SN} denote a system of rate vN coalescing random walks on SN , with jump kernel
pN . For convenience we will drop the dependence in N from the notation B̂x ,N . We slightly abuse
our earlier notation and also let e1, e2 denote iid random variables with law pN , independent of the
collection {B̂x}, all under the probability P̂. Throughout the paper we will work with

tN := (log N)−19. (14)

By (13)
C15 := sup

N≥3
(log N)P̂(B̂0

1 6= B̂e1
1 ) = sup

N≥3
(log N)P̂(τ(0, e1)> N)<∞, (15)

while (6) implies that

K̄ := sup
N≥3
(log N)3 P̂

�

B̂ei ,N
tN
6= B̂

e j ,N
tN
∀i 6= j ∈ {0,1, 2}

�

<∞. (16)

We will also need some kernel estimates. Set pN
t (x) = N P̂(B̂0

t = x). First, it is well-known (see for
example (A7) of [3]) that there exists a constant C17 > 0 such that,

||pN
t ||∞ ≤

C17

t
for all t > 0, N ≥ 1. (17)

The following bound on the spatial increments of pN
t will be proved in Section 9.

Lemma 2.1. There is a constant C2.1 such that for any x , y ∈ SN , t > 0, and N ≥ 1,
�

�pN
t (x)− pN

t (x + y)
�

�≤ C2.1|y|t−3/2.

2.2 Construction of the process, the killed process, and their duals

To help understand our dual process below we construct the rescaled Lotka-Volterra process ξN

as the solution to a system of stochastic differential equations driven by a collection of Poisson
processes. If

f N
i (x ,ξN ) =

∑

y
pN (y − x)1{ξN (y) = i}, i = 0,1,
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the rescaled flip rates of ξN can be written

rN
0→1(x ,ξN ) = N f N

1 (x ,ξN ) + N(αN
0 − 1) f N

1 (x ,ξN )2

= vN f N
1 (x ,ξN ) + θN f N

1 (x ,ξN ) f N
0 (x ,ξN ),

rN
1→0(x ,ξN ) = N f N

0 (x ,ξN ) + N(αN
1 − 1) f N

0 (x ,ξN )2

= vN f N
0 (x ,ξN ) + θN f N

1 (x ,ξN ) f N
0 (x ,ξN ) +λN f N

0 (x ,ξN )
2. (18)

To ensure λN ≥ 0 we assume
βN

1 ≥ β
N
0 (19)

It is easy to modify the construction in the case βN
1 ≤ β

N
0 .

We start at some initial configuration ξN
0 such that |ξN

0 |<∞. Let
Λ = {Λ(x , y) : x , y ∈ SN}, Λr = {Λr(x) : x ∈ SN}, and Λg = {Λg(x) : x ∈ SN} be independent
collections of independent Poisson point processes on R, R×S2

N and R×S2
N , respectively, with rates

vN pN (y − x)ds, θN
2

pN (·)pN (·)ds and λN pN (·)pN (·)ds, respectively. (It will be convenient at times to
allow s < 0.) Let

Ft = ∩ε>0σ(Λ(x , y)(A),Λr(x)(B1),Λg(x)(B2) : A⊂ [0, t + ε], Bi ⊂ [0, t + ε]× S2
N , x , y ∈ SN ).

We consider the system of stochastic differential equations

ξN
t (x) = ξ

N
0 (x)+

∑

y

∫ t

0

(ξN
s−(y)− ξ

N
s−(x))Λ(x , y)(ds) (20)

+

∫ t

0

∫ ∫

1(ξN
s−(x + e1) 6= ξN

s−(x + e2))(1− 2ξN
s−(x))Λr(x)(ds, de1, de2)

−
∫ t

0

∫ ∫

1(ξN
s−(x + e1) = ξ

N
s−(x + e2) = 0)ξN

s−(x)Λg(x)(ds, de1, de2).

Here the first integral represents the rate vN voter dynamics in (18), the second integral incorporates
the rate θN f N

0 f N
1 flips from the current state in (18), and the final integral represents the additional

1 to 0 flips with rate λN ( f N
0 )

2. Note that the rate of Λr is proportional to θN/2 to account for
the fact that the randomly chosen neighbours can be distinct in two different ways. Although the
above equation is not identical to (SDE)(I ′) in Proposition 2.1 of [6], the reasoning in parts (a) and
(c) of that result applies. For example, the rates in (18) satisfy the hypotheses (2.1) and (2.3) of
section 2 of [6]. As a result (20) has a pathwise unique Ft -adapted solution whose law is that of
the {0,1}SN -valued Feller process defined by the rates in (18), that is, our rescaled Lotka-Volterra
process.

We first briefly recall the dual to the rate-vN rescaled voter model ζN on SN defined by solving (20)
without the Λr and Λg terms. We refer the reader to Section III.6 of [11] for more details. For every
s ∈ Λ(x , y) we draw a horizontal arrow from x to y at time s. A particle at (x , t) goes down at
speed one on the vertical lines and jumps along every arrow it encounters. We denote by B̂(x ,t) the
path of the particle started at (x , t). It is clear that for every t > 0, {B̂(x ,t), x ∈ SN} is a system of
rate-vN coalescing random walks on SN with jump kernel pN on a time interval of length t. ζN (x)
adopts the type of y at each time s ∈ Λ(x , y), and so if B̂x

t := B̂(x ,t)(t), then

ζN
t (x) = ζ

N
0 (B̂

x
t ) for any given t > 0. (21)

1200



To construct a branching coalescing dual process to (ξN
t , t ≥ 0) we add arrows to the above dual

corresponding to the points in Λr and Λg . For every (s, e1, e2) ∈ Λr(x), respectively in Λg(x), draw
two horizontal red, respectively green, arrows from (x , s) towards (x + e1, s) and (x + e2, s). The
dual process B̃(x ,t)(s), s ≤ t starting from x = (x1, . . . , xm) ∈ Sm

N at time t is the branching coalescing
system obtained by starting with locations x at time t and following the arrows backwards in time
from t down to 0. Formally the dual takes values in

D = {(B̃1, B̃2, . . . ) ∈ D([0, t], SN ∪ {∞})N :∃K : [0, t]→ N non-decreasing

s.t. B̃k(t) =∞ ∀k > K(t)}.

Here∞ is added as a discrete point to SN and D([0, t], SN ∪ {∞}) is the Skorokhod space of cadlag
paths. The dynamics of the dual are as follows.

1. B̃(x ,t)
s = (B̂(x1,t)

s , . . . , B̂(xm,t)
s ,∞,∞, . . . ) and K(s) = m for s ≤ t ∧ R1, where R1 is the first time

one of these coalescing random walks “meets" a coloured arrow. By this we mean that the
walk is at y and there are coloured arrows from y to y + ei , i = 1,2. If R1 > t we are done.

2. Assume R1 ≤ t and the above coloured arrows have colour c(R1) and go from µ(R1) to µ(R1)+
ei , i = 1, 2. Then K(R1) = K(R1−) + 2 and B(x ,t)

R1
is defined by adding the two locations

µ(R1)+ ei , i = 1,2 to the two new slots. If a particle already exists at such a location, the two
particles at the location coalesce, that is, will henceforth move in unison.

3. For s > R1 B̃(x ,t)
s follows the coalescing system of random walks starting at B̃(x ,t)

R1
until t ∧ R2

where R2 is the next time that one of these coalescing walks meets a coloured arrow. If R2 ≤ t
we repeat the previous step.

Each particle encounters a coloured arrow at rate θN +λN so limm Rm =∞ and the above definition
terminates after finitely many branching events. We slightly abuse our notation and also write
B̃(x ,t)

s for the set of locations {B̃(x ,t),i
s : i ≤ K(s)}. Some may prefer to refer to B̃ as a graphical

representation of ξN but we prefer to use this terminology for the entire Poisson system of arrows
implicit in (Λ,Λr ,Λg).

We will again write P̂, Ê for the probability measure and the expectation with respect to the dual
quantities B̂, B̃. In particular recall that with respect to P̂, e1, e2 will denote random variables chosen
independently according to pN . Also when the context is clear, we will often drop the dependence
on t from the notation B̂(x ,t), B̃(x ,t) and use the shorter B̂x , B̃x .

It should now be clear from (20) how to construct (ξN
t (x1), . . . ,ξN

t (xm)) from
{ξN

0 (y) : y ∈ B̃x
t }, the dual (B̃x

s , s ≤ t) and the sequence of “parent" locations and colours

{(µ(Rm), c(Rm)) : Rm ≤ t}. First, ξN
r (B̃

x , j
t−r) remains constant until the first time a branching time of

the dual (corresponding to a jump in K) is encountered at r = t − Rn. In particular,

ξN
t (x i) =ξ

N
0 (B̂

x i
t ) = ξ

N
0 (B̃

x ,i
t ), i = 1, . . . , m (22)

if no coloured arrows are encountered by any B̂x i on [0, t].

If the above branch time t − Rn is encountered we know the colour of the arrows, c(Rn), and the
locations of its endpoints, corresponding to µ(Rn) and the two last (non-∞) coordinates of the dual
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at time t − Rn. We also know the type at these locations since they are all dual locations at time
Rn. Hence we will know to flip the type at µ(Rn) if the colour is red and the two endpoints have
different types, or set it to 0 if the colour is green and the two endpoints are both 0’s. Otherwise
we keep the type at µ(Rn) and all other sites in B̃x

Rn−
unchanged. Continuing on for r > t − Rn, the

types ξN
r (B̃

x , j
t−r) remain fixed until the next branch time is encountered at r = t−Rn−1 and continue

as above until we arrive at ξN
t (x i) = ξN

t (B̃
(x ,t),i
0 ), i = 1, . . . , m.

If x = (x1, . . . , xm) ∈ Sm
N , let B̂(x ,t)

s = {B̂(x i ,t)
s : i = 1, . . . , m}. Then it is clear from the above

construction that
B̂(x ,t)

s ⊂ B̃(x ,t)
s for all s ≤ t. (23)

It also follows from the above reconstruction of ξN
t that

ξN
0 (y) = 0 for all y ∈ B̃(x ,t)

t implies ξN
t (x i) = 0, i = 1, . . . , m. (24)

The above two results imply that for any x ∈ SN and t ≥ 0,

ξN
t (x)≤

∑

y∈B̃(x ,t)
t

ξN
0 (y) and ξN

0 (B̂
(x ,t)
t )≤

∑

y∈B̃(x ,t)
t

ξN
0 (y).

It follows from the above that if z1 = 1, and z2, z3 ∈ {0,1}, one has

3
∏

i=1

1{ξN
t (x i)=zi} ≤

∑

y∈B̃
x1
t

ξN
0 (y),

3
∏

i=1

1{ξN
0 (B̂

xi
t )=zi}

≤
∑

y∈B̃
x1
t

ξN
0 (y),

and therefore, using (22) as well, we have
�

�

�

�

�

E





3
∏

i=1

1{ξN
t (x i)=zi}



− E





3
∏

i=1

1{ξN
0 (B̂

xi
t )=zi}





�

�

�

�

�

≤ E






1E x1,x2,x3

t

∑

y∈B̃
x1
t

ξN
0 (y)






, (25)

where

E (x i)i∈I
t :=

�

∃i ∈ I s.t. there is at least one coloured arrow encountered by B̂x i on [0, t]
	

.

If we ignore the coalescings in the dual and use independent copies of the random walks for particles
landing on occupied sites, we may construct a branching random walk system with rate

rN := θN + (β
N
1 − β

N
0 )(log N),

denoted {Bx
t , x ∈ SN}, which stochastically dominates our branching coalescing random walk sys-

tem, in the sense that for all t ≥ 0,

∀x = (x1, . . . , xm) ∈ Sm
N B̂x

t ⊆ B̃x
t ⊆ B

x
t := ∪m

i=1B
x i

t . (26)

This observation leads to the following. Recall that Ê takes the expectation over the dual variables
only.
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Lemma 2.2. For all s > 0, for any 0≤ u≤ s,

∑

x∈SN

Ê






1{E x ,x+e1,x+e2

u }

∑

y∈B̃
x ,x+e1,x+e2
u

ξN
s−u(y)






≤ 9rN u exp(3rN u)

∑

y∈SN

ξN
s−u(y).

Proof : We use (26) to see that for all t ≥ 0, B̃x ,x+e1,x+e2
t ⊆ B

x ,x+e1,x+e2

t .

Let N x ,x+e1,x+e2
t := #{Bx ,x+e1,x+e2

t (t)}, and define ρ as the first branching time of the three branch-
ing random walks started at 0, e1, e2. Then, for a fixed y ∈ SN , using the Markov property and
translation invariance of p,

∑

x∈SN

Ê
�

1{E x ,x+e1,x+e2
u }1{y∈B̃

x ,x+e1,x+e2
u }

�

≤
∑

x∈SN

Ê(1{N x ,x+e1,x+e2
u >3}1{y∈B

x ,x+e1,x+e2
u })

=
∑

x∈SN

Ê(1{N0,e1,e2
u >3}1{y−x∈B

0,e1,e2
u })

= Ê(1{N0,e1,e2
u >3}N

0,e1,e2
u )

≤ Ê(1{ρ<u} Ê(N
0,e1,e2
u−ρ |ρ))

≤ P̂(ρ < u)Ê(N0,e1,e2
u )

≤ 3(1− exp(−3rN u))exp(3rN u)

≤ 9rN u exp(3rN u),

and, after multiplying by ξN
s−u(y) and summing over y we obtain the desired result. �

In Section 8 we will need to extend the above constructions to the setting where particles are killed,
i.e., set to a cemetary state ∆, outside of an open rectangle I ′ in SN . We consider initial conditions
ξN

0
such that ξN

0
(x) = 0 for x /∈ I ′ and the rates in (18) are modified so that rN

0→1(x ,ξN ) = 0 if

x /∈ I ′. ξN may be again constructed as a pathwise unique solution of (20) for x ∈ I ′ and ξN
t
(x) = 0

for x /∈ I ′. The argument is again as in Proposition 2.1 of [6].

The killed rescaled voter model ζN , corresponding to the rescaled voter rates on I set to be 0 outside
I ′, may also be constructed as the pathwise unique solution of the above killed equation but now
ignoring the Λr and Λg terms. To introduce its dual process, for each (x , t) ∈ SN ×R+ and s ≤ t let

τ(x ,t) = inf{s ≥ 0 : B̂(x ,t)(s) /∈ I ′},

and define the killed system of coalescing walks by

B̂(x ,t)(s) =

(

B̂(x ,t)(s) if s < τ(x ,t)

∆ otherwise .

If we set ζN
0
(∆) = 0, then the duality relation for ζ is

ζN
t
(x) = ζN

0
(B(x ,t)

t ), t ≥ 0, x ∈ SN .

We also may define the dual {B̃(t,x)s : s ≤ t} of ξN as before but now using the killed coalescing

random walks {B̂(x ,t)} and allowing the dual coordinates to take on the value ∆. In step 2 of the
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above construction of the dual we reset locations µ(R1)+ei to∆ if they are outside I ′. If ξN
s
(∆) = 0,

the reconstruction of ξN
t
(x i) from the dual variables is again valid as is the reasoning which led to

(25). More specifically if z1 = 1, z2, z3 ∈ {0,1}, x i ∈ I ′, for i = 1,2, 3 and we define

E (x i)i≤3
t :=

¦

∃i ≤ 3 there is at least one coloured arrow encountered by B̂x i on [0, t]
©

,

then
�

�

�

�

�

E





3
∏

i=1

1{ξN
t
(x i)=zi}



− E





3
∏

i=1

1{ξN
0
(B̂

xi
t )=zi}





�

�

�

�

�

≤ E






1E x1,x2,x3

t

∑

y∈B̃x1
t

ξN
0
(y)






. (27)

2.3 Martingale problem

By Proposition 3.1 of [7], we have, for any Φ ∈ Cb([0, T]×SN ) such that
�
Φ := ∂Φ

∂ t
∈ Cb([0, T]×SN ),

X N
t (Φ(t, .))=X0(Φ(0, .))+M N

t (Φ)+ DN ,1
t (Φ)+DN ,2

t (Φ)+DN ,3
t (Φ), (28)

where (the reader should be warned that the terms DN ,2 and DN ,3 below do not agree with the
corresponding terms in [7] although their sums do agree)

DN ,1
t (Φ) =

∫ t

0

X N
s (ANΦ(s, .)+

�
Φ(s, .))ds,

ANΦ(s, x) :=
∑

y∈SN

N pN (y − x)
�

Φ(s, y)−Φ(s, x)
�

,

DN ,2
t (Φ) :=

∫ t

0

(log N)2

N

∑

x∈SN

Φ(s, x)
�

βN
0 (1− ξ

N
s (x)) f

N
1 (x ,ξN

s )
2− βN

1 ξ
N
s (x) f

N
0 (x ,ξN

s )
2
�

ds,

DN ,3
t (Φ) :=

∫ t

0

(log N)4

N

∑

x∈SN

Φ(s, x)
�

ξN
s (x) f

N
0 (x ,ξN

s )
2− (1− ξN

s (x)) f
N

1 (x ,ξN
s )

2
�

ds, (29)

and M N
t (Φ) is an F X N

t , L2-martingale such that

〈M N (Φ)〉t = 〈M N (Φ)〉1,t + 〈M N (Φ)〉2,t , (30)

with

〈M N (Φ)〉1,t :=
(log N)2

N

∫ t

0

∑

x∈SN

Φ(s, x)2
∑

y∈SN

pN (y − x)(ξN
s (y)− ξ

N
s (x))

2ds, (31)
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and

〈M N (Φ)〉2,t :=
(log N)2

N

∫ t

0

∑

x∈SN

Φ(s, x)2
�

(αN
0 − 1)(1− ξN

s (x)) f
N

1 (x ,ξN
s )

2

+ (αN
1 − 1)ξN

s (x) f
N

0 (x ,ξN
s )

2
�

ds. (32)

Proposition 3.1 of [7] erroneously had a prefactor of (log N)2

N2 on the final term. The error is insignifi-
cant as the αN

i − 1 terms in the above are still small enough to make this term approach 0 in L1 as
N →∞ both here and in [7].

Comparing (28) with the martingale problem (MP) for the super-Brownian motion limit, we see that
to prove Theorem 1.5 we will need to establish the tightness of the laws of {X N} on D(R+, MF (R2)),
with all limit points continuous, and if X Nk → X weakly, then as N = Nk→∞,

E
h
�

�

�DN ,1
t (Φ)−

∫ t

0

X N
s (
σ2

2
∆Φs + Φ̇s)ds

�

�

�

i

→ 0, (33)

E
h
�

�

�DN ,2
t (Φ)− γ(β0− β1)

∫ t

0

X N
s (Φ)ds

�

�

�

i

→ 0, (34)

E
h
�

�

�DN ,3
t (Φ)− K

∫ t

0

X N
s (Φ)ds

�

�

�

i

→ 0, (35)

E
h
�

�

�〈M N (Φ)〉1,t − 4πσ2

∫ t

0

X N
s (Φ

2)ds
�

�

�

i

→ 0, (36)

E
h

〈M N (Φ)〉2,t

i

→ 0. (37)

Controlling the five terms in (28) in this manner will also be the main ingredients in establishing
the above tightness. As already noted it is the presence of the higher powers of log N in DN ,3 which
will make (35) particularly tricky.

We now give a brief outline of the proof of this particular result which is established in Section 7
(although many of the key ingredients are given in earlier Sections) and relies on the moment
estimates in Sections 4 and 5. The remaining convergences (also treated in Section 7) are closer to
the arguments in [7] although their proofs are also complicated by the greater values of |αN

i −1|. In
fact some of the new ingredients introduced here would have significantly simplified some of those
proofs. Although we will be able to drop the time dependence in Φ for the convergence proof itself,
it will be important for our moment bounds to keep this dependence.

If DN ,3
t (Φ) =

∫ t

0
dN ,3

s (Φ)ds, then a simple L2 argument (see (67) in Section 5) will allow us to

approximate DN ,3
t (Φ) with

∫ t

tN
E(dN ,3

s (Φ)|Fs−tN
) ds (recall that tN = (log N)−19). So we need to
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estimate

E(dN ,3
s (Φ)|Fs−tN

) ds

=
(log N)4

N

∑

x∈SN

Φ(s, x)E(ξN
s (x) f

N
0 (x ,ξN

s )
2− (1− ξN

s (x)) f
N

1 (x ,ξN
s )

2|Fs−tN
)

=
(log N)4

N

∑

x∈SN

Φ(s, x)E(ξN
s (x)

2
∏

1

(1− ξN
s (x + ei))− (1− ξN

s (x))
2
∏

1

ξN
s (x + ei)|Fs−tN

),

where e1, e2 are chosen independently according to pN (·). To proceed carefully we will need to use
the dual B̃ of ξN but note that on the short interval [s− tN , s] we do not expect to find any red or
green arrows since (log N)3 tN � 1, and so we can use the voter dual B̂ and the Markov property
to calculate the above conditional expectation (see Lemma 3.6). This leads to the estimate (here Ê
only integrates out the dual and (e1, e2))

E(dN ,3
s (Φ)|Fs−tN

)≈
(log N)4

N

∑

x∈SN

Φ(s, x)Ê
�

ξN
s−tN
(B̂x

tN
)

2
∏

1

(1− ξN
s−tN
(B̂x+ei

tN
)) (38)

− (1− ξN
s−tN
(B̂x

tN
))

2
∏

1

ξN
s−tN
(B̂x+ei

tN
)
�

.

There is no contribution to the above expectation if B̂x coalesces with B̂x+e1 or B̂x+e2 on [0, tN]. On
the event where B̂x+e1

tN
= B̂x+e2

tN
, the integrand becomes

ξN
s−tN
(B̂x

tN
)(1− ξN

s−tN
(B̂x+e1

tN
))− (1− ξN

s−tN
(B̂x

tN
))ξN

s−tN
(B̂x+e1

tN
) (39)

= ξN
s−tN
(B̂x

tN
)− ξN

s−tN
(B̂x+e1

tN
),

thanks to an elementary and crucial cancellation. Summing by parts and using the regularity of
Φ(s, ·), one easily sees that the contribution to E(dN ,3

s (Φ)|Fs−tN
) from this term is negligible in the

limit. Consider next the contribution from the remaining event {x | x + e1 | x + e2} on which there
is no coalescing of {Bx , B̂x+e1 , B̂x+e2} on [0, tN]. Recall that the density of 1’s in ξN

s−tN
is O(1/ log N)

and so we expect the contribution from the second term in (38), requiring 1’s at both distinct sites
B̂x+ei

tN
, i = 1,2, to be negligible in the limit. The same reasoning shows the product in the first term

in (38) should be close to 1 and so we expect

E(dN ,3
s (Φ)|Fs−tN

)≈
(log N)4

N

∑

x∈SN

Φ(s, x)Ê
�

ξN
s−tN
(B̂x

tN
)1({x | x + e1 | x + e2})

�

≈
(log N)

N

∑

x∈SN

Φ(s, x)ξN
s−tN
(x)(log N)3 P̂({0 | e1 | e2})

≈X N
s−tN
(Φs−tN

)K ,

where the second line is easy to justify by summing over the values of B̂x
tN

, and the last line is
immediate from (6). Integrating over s we arrive at (35). The key ingredient needed to justify the
above heuristic simplification based on the sparseness of 1’s is Proposition 3.10 whose lengthy proof
is in Section 5.
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3 Intermediate results for the proof of Theorem 1.5

We use the classical strategy of proving tightness of {X N} in the space D(R+, MF (R2)), and then
identify the limits. The main difficulty will come from the above drift term DN ,3

t (Φ). Although it
will be convenient to have Theorem 1.5 for a continuous parameter N ≥ 3, it suffices to prove it for
an arbitrary sequence approaching infinity and nothing will be lost by considering N ∈ N≥3. This
condition will be in force thoughout the proof of Theorem 1.5, as will the assumption that ξN

0 is
deterministic and all the conditions of Theorem 1.5.

3.1 Tightness, moment bounds.

Recall that a sequence of processes with sample paths in D(R+, S) for some Polish space S is C-tight
in D(R+, S) iff their laws are tight in D(R+, S) and every limit point is continuous.

Proposition 3.1. The sequence {X N , N ∈ N≥3} is C-tight in D(R+, MF (R2)).

Proposition 3.1 will follow from Jakubowski’s theorem (see e.g. Theorem II.4.1 in [13]) and the
two following lemmas.

Lemma 3.2. For any function Φ ∈ C3
b (R

2), the sequence {X N (Φ), N ∈ N≥3} is C-tight.

Lemma 3.3. For any ε > 0, any T > 0 there exists A> 0 such that

sup
N≥3

P

�

sup
t≤T

X N
t (B(0, A)c)> ε

�

< ε.

Lemma 3.2 will be established by looking separately at each term appearing in (28). The difficulty
will mainly lie in establishing tightness for the last term in (28). The proof of the two lemmas is
given in Section 6.

An important step in proving tightness will be the derivation of bounds on the first and second
moments. It will be assumed that N ∈ N≥3 until otherwise indicated.

Proposition 3.4. There exists a c3.4 > 0, and for any T > 0 constants Ca, Cb, depending on T, such that
for any t ≤ T,

(a) E
�

X N
t (1)

�

≤
�

1+ Ca(log N)−16
�

X N
0 (1)exp

�

c3.4 t
�

,

(b) E
�

(X N
t (1))

2
�

≤ Cb

�

X N
0 (1) + (X

N
0 (1))

2
�

,

Part (a) of the above Proposition is proved in Subsection 4.4, part (b) is proved in Subsection 5.1.

Note that (a) immediately implies the existence of a constant C ′
a

depending on T such that for any
t ≤ T , E

�

X N
t (1)

�

≤ C ′
a
X N

0 (1). Moreover, by (a), (b) and the Markov property, if we set Cab := C ′
a
Cb,

we have for any s, t ∈ [0, T],

E
�

X N
s (1)X

N
t (1)

�

≤ Cab(X
N
0 (1) + X N

0 (1)
2). (40)

For establishing tightness of some of the terms of (28), and also for proving the compact containment
condition, Lemma 3.3, we will need a space-time first moment bound. Recall that tN = (log N)−19.
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Suppose Φ : R+ ×R2 → R. Define |Φ|Lip, respectively |Φ|1/2, to be the smallest element in R+ such
that

(

|Φ(s, x)−Φ(s, y)| ≤ |Φ|Lip|x − y|, ∀s ≥ 0, x ∈ R2, y ∈ R2,

|Φ(s− tN , x)−Φ(s, x)| ≤ |Φ|1/2
p

tN , ∀ s ≥ tN , x ∈ R2,

We will write ||Φ||Lip := ||Φ||∞+ |Φ|Lip, ||Φ||1/2 := ||Φ||∞+ |Φ|1/2 and ||Φ|| := ||Φ||∞+ |Φ|Lip+ |Φ|1/2.
Obviously the definition of ||.||Lip also applies to functions from R2 into R.

Define (PN
t , t ≥ 0) as the semigroup of the rate−N random walk on SN with jump kernel pN .

Lemma 3.5. There exist δ3.5 > 0, c3.5 > 0 and for any T > 0, there is a C3.5(T ), so that for all t ≤ T
and any Ψ : R2→ R+ such that ||Ψ||Lip ≤ T,

E
�

X N
t (Ψ)

�

≤ ec3.5 t X N
0

�

PN
t (Ψ)

�

+ C3.5(log N)−δ3.5(X N
0 (1) + X N

0 (1)
2).

This lemma requires a key second moment estimate (see Proposition 3.10 below), it is proved in
Subsection 5.3.

3.2 On the new drift term

If Φ : R+×R2→ R, let

dN ,3
s (Φ,ξN ) :=

(log N)4

N

∑

x∈SN

Φ(s, x)
�

ξN
s (x) f0(x ,ξN

s )
2− (1− ξN

s (x)) f1(x ,ξN
s )

2
�

,

so that (29) implies DN ,3
t (Φ) =

∫ t

0
dN ,3

s (Φ,ξN )ds. When the context is obvious we will drop ξN from
the notation. For s < tN it will be enough to use the obvious bound

|dN ,3
s (Φ)| ≤ 2(log N)3||Φ||∞X N

s (1). (41)

On the other hand we are able, for s ≥ tN , to get good bounds on the projection of dN ,3
s (Φ) onto

Fs−tN
. Indeed on [s − tN , s], it is very unlikely to see a branching (i.e. red or green arrows) for

the rate vN random walks making up the dual process coming down from a given x at time s, and
therefore, the dynamics of the rescaled Lotka-Volterra model on that scale should be very close to
those of the voter model. Let

ĤN (ξN
s−tN

, x , tN ) := Ê
�

ξN
s−tN
(B̂x

tN
)

2
∏

i=1

�

1− ξN
s−tN
(B̂x+ei

tN
)
�

−(1− ξN
s−tN
(B̂x

tN
))

2
∏

i=1

ξN
s−tN
(B̂x+ei

tN
)
�

.

Lemma 3.6. There exists a constant C3.6 such that for any s ≥ tN , and any Φ : R+×R2→ R,
�

�

�

�

E
�

dN ,3
s (Φ,ξN ) | Fs−tN

�

−
(log N)4

N

∑

x∈SN

Φ(s− tN , x)ĤN (ξN
s−tN

, x , tN )

�

�

�

�

≤ C3.6||Φ||1/2X N
s−tN
(1)(log N)−6.
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We prove Lemma 3.6 in Section 4.

Let us now look a bit more closely at the term arising in Lemma 3.6. Note that in terms of the
voter dual, Ĥ(ξN

s−tN
, x , tN ) disappears whenever the rate vN walk started at x , coalesces before time

tN with either one or both of the rate vN walks started respectively at x + ei , i = 1,2. The non
zero contributions will come from two terms. The first corresponds to the event, which we will
denote {x | x + e1 | x + e2}tN

, that there is no collision between the three rate vN walks started
at x , x + e1, x + e2 up to time tN . The second corresponds to the event, which we will denote
{x | x + e1 ∼ x + e2}tN

, that the rate vN walks started at x + e1, x + e2 coalesce before tN , but that
both do not collide with the walk started at x up to time tN . For convenience, and when the context
is clear, we will drop the subscript from these two notations. We can now write (recall e0 = 0),

ĤN (ξN
s−tN

, x , tN )

= Ê
h�

ξN
s−tN
(B̂x

tN
)
�

1− ξN
s−tN
(B̂x+e1

tN
)
�

− (1− ξN
s−tN
(B̂x

tN
))ξN

s−tN
(B̂x+e1

tN
)
�

1{x |x+e1∼x+e2}tN

i

+Ê
��

ξN
s−tN
(B̂x

tN
) + 2

2
∏

i=0

ξN
s−tN
(B̂x+ei

tN
)−
∑

0≤i< j≤2

ξN
s−tN
(B̂x+ei

tN
)ξN

s−tN
(B̂

x+e j
tN
)
�

1{x |x+e1|x+e2}tN

�

= Ê
h�

ξN
s−tN
(B̂x

tN
)− ξN

s−tN
(B̂x+e1

tN
)
�

1{x |x+e1∼x+e2}tN

i

+ Ê
h

ξN
s−tN
(B̂x

tN
)1{x |x+e1|x+e2}tN

i

+Ê







�

2
2
∏

i=0

ξN
s−tN
(B̂x+ei

tN
)−

∑

0≤i< j≤2

ξN
s−tN
(B̂x+ei

tN
)ξN

s−tN
(B̂

x+e j
tN
)
�

1{x |x+e1|x+e2}tN







=: F N
1 (s− tN , x , tN ) + F N

2 (s− tN , x , tN ) + F N
3 (s− tN , x , tN ) (42)

Lemma 3.7. There is a constant C3.7 such that the following hold for any u, v ≥ 0.
�

�

�

�

�

�

(log N)4

N

∑

x∈SN

Φ(v, x)F N
1 (u, x , tN )

�

�

�

�

�

�

≤ C3.7|Φ|Lip(log N)−6X N
u (1), (43)

�

�

�

�

�

�

(log N)4

N

∑

x∈SN

Φ(v, x)F N
2 (u, x , tN )− (log N)3 P̂({0 | e1 | e2}tN

)X N
u (Φ(v, .))

�

�

�

�

�

�

≤ C3.7|Φ|Lip(log N)−6X N
u (1), (44)

�

�

�

�

�

�

(log N)4

N

∑

x∈SN

Φ(v, x)F N
3 (u, x , tN )

�

�

�

�

�

�

≤ C3.7||Φ||∞X N
u (1). (45)

There exist δ3.7,η3.7 ∈ (0, 1) such that
�

�

�

�

�

�

(log N)4

N

∑

x∈SN

Φ(v, x)F N
3 (u, x , tN )

�

�

�

�

�

�

≤ C3.7||Φ||∞

�

1

tN (log N)
I N
η3.7
(u) + X N

u (1)(log N)−δ3.7

�

, (46)

where I N
η (u) :=

∫∫

1{0<|x−y|<
p

tN (log N)1−η}dX N
u (x)dX N

u (y).
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We prove Lemma 3.7 in Section 4.

Remark 3.8. If we set s = tN in (42) and u = 0 in the above Lemma and combine (42),(43), (44),
and (46) we see there is a δ3.8 > 0 and C3.8 so that for any ξN

0 ∈ SN

�

�

�

(log N)4

N

∑

x Φ(v, x)
�

Ĥ(ξN
0 , x , tN )− ξN

0 (x)P({0|e1|e2}tN
)
�
�

�

�

≤ C3.8‖Φ‖Lip

h

1
tN log N

I N
η3.7
(0) + (log N)−δ3.8 X N

0 (1)
i

. (47)

We now deduce two immediate consequences of the above. Firstly, for any s ≥ tN , combining
Lemma 3.6, (42), the first three estimates of the above Lemma with u= s− tN , and (6), we obtain

�

�

�E
�

dN ,3
s (Φ,ξN ) | Fs−tN

�

�

�

�≤ C48||Φ||X N
s−tN
(1). (48)

This, along with (41), allows us to bound the total mass of this new drift term and conclude that

E
�

DN ,3
t (1)

�

≤ C48E





∫ (t−tN )+

0

X N
s (1)ds



+ 2(log N)3E

�
∫ t∧tN

0

X N
s (1)ds

�

. (49)

Secondly, estimates (43), (44), (46) used with u= s−tN allow us to refine the estimate of Lemma 3.6
on the conditional expectation of dN ,3

s (Φ). That is we have :

Lemma 3.9. There is a positive constant C3.9 such that for any s ≥ tN ,
�

�

�E
�

dN ,3
s (Φ) | Fs−tN

�

− (log N)3 P̂({0 | e1 | e2}tN
)X N

s−tN
(Φ(s− tN , .))

�

�

�

≤ C3.9||Φ||(log N)−δ3.7 X N
s−tN
(1) +

C3.7||Φ||∞
tN (log N)

I N
η3.7
(s− tN ).

3.3 A key second moment estimate

In order to exploit this last result we need to bound the second term arising in the upper bound of
Lemma 3.9.

Proposition 3.10. Let (δN )N≥3 be a positive sequence such that limN→∞δN = 0 and
lim infN→∞

p
NδN > 0. For any T, there exists C3.10 depending on T and {δN} such that for any t ≤ T,

for any N ≥ 3,

E

�
∫ ∫

1{|x−y|≤
p
δN }

dX N
t (x)dX N

t (y)

�

≤ C3.10

�

X N
0 (1) + X N

0 (1)
2
�

�

δN

�

1+ log
�

1+
t

δN

��

+
δN

t +δN

�

.

The proof of Proposition 3.10 is somewhat long and technical. We will address it in Sec-
tion 5. Those familiar with the Hausdorff measure results for planar super-Brownian mo-
tion (see e.g., [10]) should be able to predict the key δN log(1/δN ) term in the above
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bound from the limit theorem we are trying to prove. Although that reference gives
φ(r) = r2 log(1/r) log log log(1/r) as the exact Hausdorff measure function for the limiting super-
Brownian motion, the proofs show that the typical mass in a ball of radius r centered at a point
chosen at random according to super-Brownian motion is r2 log(1/r). The triple log term arises
from the limsup behaviour as r ↓ 0. Now set r =

p
δN to arrive at the above term.

A similar result to the above is proved in [7] (Proposition 7.2) but in that setting one has N |αN
i −1|=

O(log N) and this allows us to bound X N by a rescaled biased voter model. It then suffices to obtain
the above for the biased voter model and this calculation is much easier due to its elementary dual
process. We have N |αN

i − 1| = O((log N)3), making some of the drift terms much harder to bound,
and also forcing us to use the more complicated dual B̃.

Corollary 3.11. If T > 0 and η ∈ (0,1), there exists a constant C3.11 depending on T and η such that
for any t ≤ T,

1

tN (log N)
E





∫ t∨tN

tN

I N
η (s− tN )ds



≤ C3.11(log N)−η/2(X N
0 (1) + X N

0 (1)
2).

Proof : Without loss of generality consider T ≥ 1. Use Proposition 3.10 with
δN = tN (log N)1−η to obtain

1

tN (log N)
E





∫ t∨tN

tN

I N
η (s− tN )ds





≤ C3.10(log N)−η(X N
0 (1)+X N

0 (1)
2)

∫ T

0

�

1+ log
�

1+
s

tN (log N)1−η

�

+
1

s+ tN (log N)1−η

�

ds

= C3.10(log N)−η(X N
0 (1)+X N

0 (1)
2)(T + 1+ (log N)−18−η) log[1+ T (log N)18+η],

and the result follows. �

4 Estimates on the drift terms, first moment bounds

We start this section by establishing the first moment estimates on the new drift term in Lem-
mas 3.6, 3.7, and 3.9. The corresponding estimates for the second drift term DN ,2 are easier, and
follow from a subset of the arguments used for DN ,3. We will state the estimates and outline their
proofs in paragraph 4.3. Finally, we will apply these results to proving the bound on the mean total
mass Proposition 3.4 (a).

4.1 Proof of Lemma 3.6

We first observe that

(log N)
N

∑

x∈SN

�

�ĤN (ξN
s−tN

, x , tN )
�

�≤ 2X N
s−tN
(1). (50)
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Letting

HN (s, x , tN ) := E



Ê



ξN
s (x)

2
∏

i=1

(1− ξN
s (x + ei))− (1− ξN

s (x))
2
∏

i=1

ξN
s (x + ei)





�

�

�

�

Fs−tN



 ,

where the expectation Ê is now only over (e1, e2), we have
�

�

�

�

E
�

dN ,3
s (Φ) | Fs−tN

�

−
(log N)4

N

∑

x∈SN

Φ(s− tN , x)ĤN (ξN
s−tN

, x , tN )

�

�

�

�

≤
(log N)4

N

∑

x∈SN

|Φ(s, x)|
�

�HN (s, x , tN )− ĤN (ξN
s−tN

, x , tN )
�

�

+
(log N)4

N

∑

x∈SN

�

�Φ(s, x)−Φ(s− tN , x)
�

�×
�

�ĤN (ξN
s−tN

, x , tN )
�

� . (51)

By (50) the second sum in (51) is bounded by 2|Φ|1/2(log N)3
p

tN X N
s−tN
(1). Moreover, using (25)

twice and then Lemma 2.2 in the second line below, we obtain

∑

x∈SN

�

�HN (s, x , tN )− ĤN (ξN
s−tN

, x , tN )
�

� ≤
∑

x∈SN

Ê









1{E x ,x+e1,x+e2
tN

}

∑

y∈B̃
x ,x+e1,x+e2
tN

ξN
s−tN
(y)









≤ 9rN tN exp(3rN tN )
∑

y∈SN

ξN
s−tN
(y) .

Since rN ∼N→∞ (log N)3, while tN = (log N)−19, (51) and the above two bounds clearly imply
Lemma 3.6. �
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4.2 Proof of Lemma 3.7

We first establish (43). We have
�

�

�

�

�

�

(log N)4

N

∑

x∈SN

Φ(v, x)F N
1 (u, x , tN )

�

�

�

�

�

�

=

�

�

�

�

(log N)4

N

∑

x ,w∈SN

Φ(v, x)ξN
u (w)

�

P̂
�

B̂x
tN
= w, {x | x + e1 ∼ x + e2}tN

�

−P̂
�

B̂x+e1
tN
= w, {x | x + e1 ∼ x + e2}tN

�

�
�

�

�

�

=

�

�

�

�

(log N)4

N

∑

w∈SN

ξN
u (w)

∑

x∈SN

Φ(v, x)
�

P̂
�

B̂0
tN
= w− x , {0 | e1 ∼ e2}tN

�

−P̂
�

B̂e1
tN
= w− x , {0 | e1 ∼ e2}tN

�

�
�

�

�

�

≤
(log N)4

N

∑

w∈SN

ξN
u (w)

�

�

�Ê
h�

Φ(v, w− B̂0
tN
)−Φ(v, w− B̂e1

tN

�

1{0|e1∼e2}tN

i
�

�

�

≤ (log N)3|Φ|LipX N
u (1)Ê

��

�

�B̂0
tN
− B̂e1

tN

�

�

�

�

≤ C43|Φ|Lip(log N)3
�

p

tN +
1
p

N

�

X N
u (1),

where we used translation invariance at the third line above. The first bound of Lemma 3.7 then
follows from our choice of tN = (log N)−19.

We now turn to proving (44). We have
�

�

�

�

�

�

(log N)4

N

∑

x∈SN

Φ(v, x)F N
2 (u, x , tN )− (log N)3 P̂({0 | e1 | e2}tN

)X N
u (Φ(v, .))

�

�

�

�

�

�

≤
(log N)4

N

�

�

�

�

∑

x ,w∈SN

ξN
u (w)Φ(v, x)P̂

�

B̂x
tN
= w, {x | x + e1 | x + e2}tN

�

−P̂
�

{0 | e1 | e2}tN

�
∑

w∈SN

ξu(w)Φ(v, w)

�

�

�

�

≤
(log N)4

N

∑

w∈SN

ξN
u (w)Ê

��

�

�Φ(v, w− B̂0
tN
)−Φ(v, w)

�

�

�1{0|e1|e2}tN

�

≤ (log N)3|Φ|LipX N
u (1)Ê

��

�

�B̂0
tN

�

�

�

�

≤ C44|Φ|Lip(log N)−6X N
u (1),

which is (44).

We next establish (45). We first observe that F N
3 (u, x , tN ) is a sum of three terms. Ignoring possible

cancellations, we are simply going to bound each one of them separately. In fact, we will prove such

1213



a bound for one of them, the other estimates can be derived in a very similar way. For instance,

TN (Φ) :=
(log N)4

N

�

�

�

�

�

�

∑

x∈SN

Φ(v, x)Ê
h

ξN
u (B̂

x
tN
)ξN

u (B̂
x+e1
tN
)1{x |x+e1|x+e2}tN

i

�

�

�

�

�

�

=
(log N)4

N

�

�

�

�

�

�

∑

x ,w,z∈SN ,w 6=z

Φ(v, x)ξN
u (w)ξ

N
u (z)P̂

h

B̂x
tN
= w, B̂x+e1

tN
= z, {x | x + e1 | x + e2}tN

i

�

�

�

�

�

�

≤ ||Φ||∞
(log N)4

N

∑

w,z∈SN ,w 6=z

ξN
u (w)ξ

N
u (z)P̂

h

B̂0
tN
− B̂e1

tN
= w− z, {0 | e1 | e2}tN

i

, (52)

where we used translation invariance of p to obtain the last equality. From the above and the
definition of K̄ in (16) we get

TN (Φ) ≤ ||Φ||∞
(log N)4

N

∑

w∈SN

ξN
u (w)

∑

z∈SN

P̂
h

B̂0
tN
− B̂e1

tN
= w− z, {0 | e1 | e2}tN

i

≤ K̄ ||Φ||∞X N
u (1).

This and the similar estimates for the three other terms yield (45).

We finally establish (46). As before, we bound each of the three terms summed in F N
3 (u, x) sepa-

rately, and will only give the proof for the term TN (Φ). From (17), we get that for any y ∈ SN \ {0},

P̂(B̂e1
tN/2
− B̂0

tN/2
= y)≤ P̂(B̂e1

tN
= y)≤

C17

N tN
.

Here note that the random walk on the left is absorbed at the origin, whence the inequality and
restriction to y 6= 0. Thus, using the Markov property at time tN/2 for the walks B̂0, B̂e1 along with
(6) and the above inequality, we obtain

P̂(B̂0
tN
− B̂e1

tN
= w− z, {0 | e1 | e2}tN

)

≤
∑

x 6=y,x ,y∈SN

P̂
h

{0 | e1 | e2}tN/2, B̂0
tN/2
= x , B̂e1

tN/2
= y, B̂0

tN
− B̂e1

tN
= w− z

i

≤
C17K̄

N tN
(log N)−3.

Although this bound is valid for any w, z, we will only use it when w and z are close enough that
the above term effectively contributes to TN (Φ). For η ∈ (0,1),

(log N)4

N

∑

w,z∈SN : 0<|w−z|<
p

tN (log N)1−η

ξN
u (w)ξ

N
u (z)P̂(B̂

0
tN
− B̂e1

tN
= w− z, {0 | e1 | e2}tN

)

≤
(log N)

N

C17K̄

N tN

∑

w,z∈SN : 0<|w−z|<
p

tN (log N)1−η

ξN
u (w)ξ

N
u (z) =

C17K̄

tN (log N)
I N
η (u). (53)
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The contribution to TN (Φ) of those w and z that are sufficiently far apart is bounded as follows.
Using (16) we have

(log N)4

N

∑

w,z∈SN , |w−z|>
p
(log N)1−η tN

ξN
u (w)ξ

N
u (z)P̂(B̂

0
tN
− B̂e1

tN
= w− z, {0 | e1 | e2}tN

)

≤ K̄
log N

N

∑

w∈SN

ξN
u (w)

∑

y∈SN

1(|y|>
p

(log N)1−η tN )P̂(B̂
0
tN
− B̂e1

tN
= y|{0 | e1 | e2}tN

)

≤ K̄X N
u (1)P̂

�

�

�

�B̂0
tN
− B̂e1

tN

�

�

�>
p

(log N)1−η tN

�

�

�

�

{0 | e1 | e2}tN

�

≤ K̄C9.1(log N)−(1−η)X N
u (1),

where the last line comes from Lemma 9.1 and the facts that vN ≤ N (by(12)) and (log N) ≥
log(vN tN ). Combining (52), (53) and the above gives the desired bound on TN (Φ). The two other
terms are handled in a similar way, and we finally obtain (46).

4.3 Second drift estimates

We may write DN ,2
t (Φ) =

∫ t

0
dN ,2

s (Φ,ξN )ds, where

dN ,2
s (Φ,ξN ) :=

(log N)2

N

∑

x∈SN

Φ(s, x)
�

βN
0 (1− ξ

N
s (x))( f

N
1 (x ,ξN

s ))
2− βN

1 ξ
N
s (x)( f

N
0 (x ,ξN

s ))
2
�

.

Again, when context is clear we drop ξN from this notation. When s ≤ tN we will use

|dN ,2
s (Φ)| ≤ 2(log N)β ||Φ||∞X N

s (1). (54)

For s ≥ tN , the same reasoning we used to establish Lemma 3.6 yields

�

�

�

�

E
�

dN ,2
s (Φ) | Fs−tN

�

−
(log N)2

N

∑

x∈SN

Φ(s− tN , x)Ê
�

βN
0 (1− ξ

N
s−tN
(B̂x

tN
))

2
∏

i=1

ξN
s−tN
(B̂x+ei

tN
)

−βN
1 ξ

N
s−tN
(B̂x

tN
))

2
∏

i=1

(1− ξN
s−tN
(B̂x+ei

tN
)))
�
�

�

�

�

≤ C55||Φ||1/2X N
s−tN
(1)(log N)−8. (55)
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The summand in the above expression vanishes whenever the walk started at x coalesces before
time tN with either of the two walks started at x + e1, x + e2. We may therefore write

Ê
�

βN
0 (1− ξ

N
s−tN
(B̂x

tN
))

2
∏

i=1

ξN
s−tN
(B̂x+ei

tN
)− βN

1 ξ
N
s−tN
(B̂x

tN
))

2
∏

i=1

(1− ξN
s−tN
(B̂x+ei

tN
)))
�

= Ê
h�

βN
0 ξ

N
s−tN
(B̂x+e1

tN
)− βN

1 ξ
N
s−tN
(B̂x

tN
)
�

1{x |x+e1∼x+e2}tN

i

+Ê
h

(βN
1 − β

N
0 )ξ

N
s−tN
(B̂x

tN
)ξN

s−tN
(B̂x+e1

tN
)1{x |x+e1∼x+e2}tN

i

+Ê

��

− βN
1 ξ

N
s−tN
(B̂x

tN
) + βN

1

 

2
∑

i=1

ξN
s−tN
(B̂x

tN
)ξN

s−tN
(B̂x+ei

tN
)

!

+βN
0 ξ

N
s−tN
(B̂x+e1

tN
)ξN

s−tN
(B̂x+e2

tN
)− (βN

1 + β
N
0 )

2
∏

i=0

ξN
s−tN
(B̂x+ei

tN
)

�

1{x |x+e1|x+e2}tN

�

=: GN
1 (s− tN , x) + GN

2 (s− tN , x) + GN
3 (s− tN , x).

For u ≥ 0, in the expression (log N)2

N

∑

x∈SN
Φ(u, x)

∑3
i=1 Gi(u, x), only the first term gives a non-

negligible contribution. Indeed, an argument similar to the one we used to establish Lemma 3.7
provides the following estimates for some constants δ,η ∈ (0, 1):

�

�

�

�

�

�

(log N)2

N

∑

x∈SN

Φ(u, x)GN
1 (u, x)− (βN

0 − β
N
1 )(log N)P̂({0 | e1 ∼ e2}tN

)X N
u (Φ(u, .))

�

�

�

�

�

�

≤ C56(log N)−8||Φ||LipX N
u (1), (56)

�

�

�

�

�

�

(log N)2

N

∑

x∈SN

Φ(u, x)(GN
2 (u, x) + GN

3 (u, x))

�

�

�

�

�

�

≤ C57||Φ||∞X N
u (1), (57)

�

�

�

�

�

�

(log N)2

N

∑

x∈SN

Φ(u, x)(GN
2 (u, x) + GN

3 (u, x))

�

�

�

�

�

�

≤ C58||Φ||∞

�

1

tN (log N)
I N
η (u) + X N

u (1)(log N)−δ
�

. (58)

We recall from (5) that the quantity (log N)P̂({0 | e1 ∼ e2}tN
), which appears in (56), converges to

a positive limit as N →∞. For s ≥ tN , by (55), and (56)-(57) used with u= s− tN , we obtain
�

�

�E
�

dN ,2
s (Φ) | Fs−tN

�

�

�

�≤ C59||Φ||X N
s−tN
(1) (59)

Along with (54) this provides

E[DN ,2
t (1)]≤ 2β(log N)E

�
∫ t∧tN

0

X N
s (1)ds

�

+ C59E





∫ (t−tN )+

0

X N
s (1)ds



 (60)
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Finally, from (55), and (56), (58) used with u= s− tN we deduce
�

�

�

�

E
�

dN ,2
s (Φ) | Fs−tN

�

− (βN
0 − β

N
1 )(log N)P̂({0 | e1 ∼ e2}tN

)X N
s−tN
(Φ(s− tN , .))

�

�

�

�

(61)

≤ C61(log N)−δ||Φ||X N
s−tN
(1) + C61||Φ||∞

1

tN (log N)
I N
η (s− tN ).

4.4 Bounding the total mass : proof of Proposition 3.4 (a)

Since DN ,1
t (1) = 0, we deduce from (28), (49) and (60) that

E[X N
t (1)]≤ X N

0 (1) + 2(β + 1)E

�
∫ t∧tN

0

(log N)3X N
s (1)ds

�

+ (C59+ C48)E





∫ (t−tN )+

0

X N
s (1)ds



 .

Therefore, whenever t ≤ tN ,

E[X N
t (1)] ≤ X N

0 (1) + 2(1+ β)(log N)3
∫ t

0

E[X N
s (1)]ds

≤ X N
0 (1)exp(2(1+ β)(log N)3 t)≤ C62X

N
0 (1) (62)

where at the last line, we first used Gronwall’s lemma, then the fact that t ≤ tN = (log N)−19.

On the other hand when t > tN , we find, setting c3.4 := C59+ C48,

E[X N
t (1)] ≤ c3.4

∫ t

0

E[X N
s (1)]ds+ 2(β + 1)(log N)3

∫ tN

0

E[X N
s (1)]ds+ X N

0 (1)

≤ c3.4

∫ t

0

E[X N
s (1)]ds+ 2C62(β + 1)X N

0 (1)(log N)−16+ X N
0 (1)

Therefore, using again Gronwall’s lemma, we obtain

E[X N
t (1)]≤ X N

0 (1)(1+ 2C62(β + 1)(log N)−16)exp(c3.4 t),

which is Proposition 3.4 (a).

5 Second moment estimates, proof of Proposition 3.10

5.1 Proof of Proposition 3.4 (b)

Use that for real ai , i ≥ 1,

 

n
∑

i=1

ai

!2

≤ n
n
∑

i=1

a2
i (63)
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to deduce from (28) that

E[X N
t (1)

2]≤ 4
�

E[X N
0 (1)

2] + E[〈M N (1)〉t] + E[DN ,2
t (1)

2] + E[DN ,3
t (1)

2]
�

. (64)

We are going to bound each term on the right-hand side of (64) separately.

We first deal with the expected square predictable function of the martingale. It satisfies a similar
decomposition as that given in Lemma 4.8 of [7]. We give this decomposition for the more general
〈M N (Φ)〉t , as we will also need it later in the proof of tightness. Recall formulas (30), (31) and
(32), which gave the square predictible function of the martingale M N (Φ) as a sum of two terms.

Lemma 5.1. There is a constant C5.1 such that for t ≤ T , and for any Φ : [0, T]× SN → R bounded
measurable,

(a) 〈M N (Φ)〉2,t =

∫ t

0

mN
2,s(Φ)ds, where |mN

2,s(Φ)| ≤ C5.1

||Φ(s, ·)||2∞(log N)4

N
X N

s (1),

(b) 〈M N (Φ)〉1,t = 2

∫ t

0

X N
s ((log N)Φ(s, .)2 f N

0 (ξ
N
s ))ds+

∫ t

0

mN
1,s(Φ)ds,

where |mN
1,s(Φ)| ≤ C5.1

||Φ||2Lip(log N)
p

N
X N

s (1).

The proof is almost identical to that of Lemma 4.8 of [7] (with the missing factor of N mentioned at
the end of Section 2.3 now included). The only difference comes from the fact that, in the formula
for 〈M N (Φ)〉2,t given in Section 2.3, the terms (αN

i − 1) bring in a multiplicative factor of (log N)3

compared to the (log N) factor in [7]. �

We will need to estimate the expectation of the first term of the sum in the right-hand side of
Lemma 5.1 (b). The following bound, corresponding to Proposition 4.5 of [7], is not optimal, but
will be all that we need.

Lemma 5.2. There is a positive constant C5.2 such that for any Φ : R2→ R+ measurable,

E
h

X N
tN
((log N)Φ f N

0 (.,ξ
N
tN
))
i

≤ C5.2

�

||Φ||Lip(log N)−8X N
0 (1) + X N

0 (Φ)
�

.

Proof : Using a reasoning similar to (25), we find

E
h

X N
tN
((log N)Φ f N

0 (.,ξ
N
tN
))
i

=
(log N)2

N

∑

x ,e1∈SN

Φ(x)pN (e1)E
h

ξN
tN
(x)(1− ξN

tN
(x + e1))

i

≤
(log N)2

N

∑

x∈SN

Φ(x)Ê
h

ξN
0 (B̂

x
tN
)(1− ξN

0 (B̂
x+e1
tN
))
i

+
(log N)2||Φ||∞

N

∑

x∈SN

Ê









1E x ,x+e1
tN

∑

y∈B̃x
tN

ξN
0 (y)









For the first term in the sum above, we can use the voter model estimate (5.8) of [7] (when applying
this result note that our scale change leads to a factor of 1/

p
N in front of the Lipschitz constant
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of Φ). The second term in the sum above is bounded using Lemma 2.2. This leads to the desired
conclusion. �

We return to the proof of Proposition 3.4 (b) and to bounding the square predictable function of the
martingale term. We have

E

�
∫ t

0

X N
s

�

(log N) f N
0 (ξ

N
s )
�

ds

�

≤ E

�
∫ t∧tN

0

X N
s

�

(log N) f N
0 (ξ

N
s )
�

ds

�

+ E





∫ t

t∧tN

E
h

X N
s

�

(log N) f N
0 (ξ

N
s ) | F

N
s−tN

�i

ds



 .

By Proposition 3.4 (a), the first term in the sum above is bounded by C ′
a
tN (log N)X N

0 (1). Moreover,
by the Markov property and Lemma 5.2 we see that, for any s ≥ tN ,

E
h

X N
s

�

(log N) f N
0 (ξ

N
s )
�

| F N
s−tN

i

≤ 2C5.2E[X N
s−tN
(1)].

We finally deduce from Lemma 5.1 and the above bounds, then Proposition 3.4 (a) that there exists
C65 depending on T such that for t ≤ T ,

E[〈M N (1)〉t]≤ C ′
a
tN (log N)X N

0 (1) + 2(C5.1+ C5.2)

∫ t

0

E[X N
s (1)]ds ≤ C65X

N
0 (1). (65)

It remains to deal with the drift terms. Our goal is to bound E[(DN ,i
t (1))

2], for i = 2,3. Here again,
anticipating the proof of tightness, we will rather consider the more general DN ,i

t (Φ), i = 2, 3, for a
Φ : [0, T]× SN → R such that ||Φ||Lip <∞.
We first observe, using (54), (41) and Jensen’s inequality, that

E
�

DN ,i
t∧tN
(Φ)2

�

≤ (2β ∨ 1)2||Φ||2∞(log N)6 tN E

�
∫ t∧tN

0

(X N
s (1))

2ds

�

. (66)

For tN ≤ t1 < t2 ≤ T , we are then going to bound E
h

�

DN ,i
t2
(Φ)− DN ,i

t1
(Φ)
�2i

.

Whenever s2 > s1+ tN ,
�

dN ,i
s1
(Φ)− E[dN ,i

s1
(Φ) | Fs1−tN

]
�

is Fs2−tN
-measurable, and therefore in this

case,
E
h�

dN ,i
s1
(Φ)− E[dN ,i

s1
(Φ) | Fs1−tN

]
��

dN ,i
s2
(Φ)− E[dN ,i

s2
(Φ) | Fs2−tN

]
�i

= 0.

For t2 > t1 ≥ tN , it follows that

E







 

∫ t2

t1

dN ,i
s (Φ)− E[dN ,i

s (Φ) | Fs−tN
]ds

!2






= 2

∫ t2

t1

∫ (s1+tN )∧t2

s1

E
h�

dN ,i
s1
(Φ)− E[dN ,i

s1
(Φ) | Fs1−tN

]
��

dN ,i
s2
(Φ)− E[dN ,i

s2
(Φ) | Fs2−tN

]
�i

ds1ds2.

1219



Using again (54), (41) in the above, we deduce

E







 

∫ t2

t1

dN ,i
s (Φ)− E[dN ,i

s (Φ) | Fs−tN
]ds

!2






≤ 32(β ∨ 1)2||Φ||2∞(log N)6E





∫ ∫

t1≤s1<s2≤(s1+tN )∧t2

X N
s1
(1)X N

s2
(1)ds1ds2





Moreover

E[X N
s1
(1)X N

s2
(1)] = E[E[X N

s2
(1) | Fs1

]X N
s1
(1)]≤

�

1+ Ca(log N)−16
�

ec(s2−s1)E[(X N
s1
(1))2],

by using the Markov property at time s1 along with Proposition 3.4 (a). Using this last inequality in
the preceding one leads to

E







 

∫ t2

t1

dN ,i
s (Φ)− E[dN ,i

s (Φ) | Fs−tN
]ds

!2






≤ C67||Φ||2∞(log N)6E





∫ t2

t1

X N
s (1)

2(tN ∧ (t2− s))ds



 . (67)

Moreover, using Cauchy-Schwarz inequality,

E







 

∫ t2

t1

E[dN ,i
s (Φ) | Fs−tN

]ds

!2





≤ E





∫ t2

t1

�

E[dN ,i
s (Φ) | Fs−tN

]
�2

ds



 (t2− t1).

Using (59) for i = 2, (48) for i = 3, we deduce

E







 

∫ t2

t1

E[dN ,i
s (Φ) | Fs−tN

]ds

!2





≤ (C59 ∨ C48)

2||Φ||2(t2− t1)

∫ t2

t1

E
�

Xs−tN
(1)2

�

ds. (68)

Combining (67) and (68), we obtain, for i = 2, 3 and t2 > t1 ≥ tN ,

E
h

�

DN ,i
t2
(Φ)− DN ,i

t1
(Φ)
�2i

≤ C69

�

||Φ||2(t2− t1) + ||Φ||2∞(log N)6(tN ∧ (t2− t1))
�
∫ t2

t1

E[X N
s (1)

2]ds. (69)

By plugging (65), (66) and the above into (64) it follows in particular that there exists C70 depending
on T such for any t ≤ T ,

E[X N
t (1)

2]≤ 4X N
0 (1)

2+ C65X
N
0 (1) + C70

∫ t

0

E[X N
s (1)

2]ds, (70)

and a simple use of Gronwall’s lemma finishes the proof of Proposition 3.4 (b).
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5.2 Proof of Proposition 3.10

Recall that pN
t (x) = N P(B̂N ,0

t = x) and set pN ,z
t (x) := pN

t (z − x). By assumption NδN → ∞ as
N →∞ so we can use the local limit theorem for the walk B̂N (see e.g., Lemma 7.3 (c) of [7]) to
obtain the existence of a constant C71 such that

1{|x−y|≤
p
δN }
≤ C71δN pN

2δN
(y − x). (71)

Therefore the desired result will follow if we can bound

E

�
∫

R2

δN pN
2δN
(y − x)dX N

t (x)dX N
t (y)

�

as in the Proposition. By Chapman-Kolmogorov we have

δN

N

∑

z∈SN

E
�

�

X N
t (p

N ,z
δN
)
�2
�

= E





(log N)2

N2

∑

x ,y∈SN

ξN
t (x)ξ

N
t (y)δN





1

N

∑

z∈SN

pN
δN
(z− x)pN

δN
(z− y)









= E





(log N)2

N2

∑

x ,y∈SN

ξN
t (x)ξ

N
t (y)δN pN

2δN
(y − x)





= E

�
∫

R2

δN pN
2δN
(y − x)dX N

t (x)dX N
t (y)

�

. (72)

Set φz
s = pN ,z

t−s+δN
, which satisfies ANφ

z
s + φ̇

z
s = 0, so that, from (28), we deduce that

E
�

�

X N
t (p

N ,z
δN
)
�2
�

≤ 4
�

E[(X N
0 (φ

z
0))

2] + 〈M(φz)〉t + (D
N ,2
t (φ

z))2+ (DN ,3
t (φ

z))2
�

.

Using (72) and the above, then again Chapman-Kolmogorov, we obtain the bound:

E

�
∫

R2

δN pN
2δN
(y − x)dX N

t (x)dX N
t (y)

�

≤ 4[T0+T1+T2+T3+T4],
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where

T0 :=
δN

N

∑

z∈SN

E
�

�

X N
0 (p

N ,z
t+δN
)
�2
�

= E

�
∫

R2

δN pN
2(t+δN )

(y − x)dX N
0 (x)dX N

0 (y)

�

,

T1 :=
δN

N

∑

z∈SN

E[〈M(φz)〉1,t]

= E





δN (log N)2

N

∫ t

0

pN
2(t−s+δN )

(0)
∑

x ,y∈SN

pN (y − x)(ξN
s (x)− ξ

N
s (y))

2ds



 ,

T2 :=
δN

N

∑

z∈SN

E[〈M(φz)〉2,t],

T3 := E
�

δN (log N)4

N2

∫ t

0

∫ t

0

ds1ds2

∑

x1,x2∈SN

pN
2t−s1−s2+2δN

(x2− x1)

×
2
∏

i=1

�

βN
0 (1− ξ

N
si
(x i)) f

N
1 (x i ,ξ

N
si
)2− βN

1 ξ
N
si
(x i) f

N
0 (x i ,ξ

N
si
)2
�

�

,

T4 := E
�

δN (log N)8

N2

∫ t

0

∫ t

0

ds1ds2

∑

x1,x2∈SN

pN
2t−s1−s2+2δN

(x2− x1)

×
2
∏

i=1

�

ξN
si
(x i) f

N
0 (x i ,ξ

N
si
)2− (1− ξN

si
(x i)) f

N
1 (x i ,ξ

N
si
)2
�

�

.

We will handle each of these terms separately. Using (17), we immediately obtain

T0 ≤
C17δN

t +δN
X N

0 (1)
2. (73)

We then consider T1 which will turn out to be the main contribution, although not the most difficult
to handle. As we already did before, we will condition back a bit in order to be able to use the voter
estimates. This time however, we will need to condition back by uN := δN

2
∧ (log N)−11. Let

∆N (s, x) :=

�

�

�

�

E





∑

e∈SN

pN (e)ξ
N
s (x)(1− ξ

N
s (x + e))

�

� Fs−uN





−Ê





∑

e∈SN

pN (e)ξ
N
s−uN
(B̂x

uN
)(1− ξN

s−uN
(B̂x+e

uN
))





�

�

�

�

.

By the obvious analogues of (25) and Lemma 2.2,

(log N)
N

∑

x∈SN

∆N (s, x) ≤
(log N)

N

∑

x∈SN

Ê









1(E x ,x+e
uN )

∑

y∈B̃x
uN

ξN
s−uN
(y)









≤ 4uN rN exp(2uN rN )X
N
s−uN
(1)

≤ C74(log N)−8X N
s−uN
(1). (74)
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Moreover, from the fact that ξN
s (x) ∈ {0, 1},

∑

x ,e∈SN

pN (e)(ξ
N
s (x)− ξ

N
s (x + e))2 = 2

∑

x ,e∈SN

pN (e)ξ
N
s (x)(1− ξ

N
s (x + e))≤ 2

N

(log N)
X N

s (1).

Therefore, using (17),

T1 ≤ C17δN (log N)E





∫ t

0

(t − s+δN )
−1 (log N)

N
2

∑

x∈SN ,e∈SN

pN (e)ξ
N
s (x)(1− ξ

N
s (x + e))ds





≤ 2C17δN (log N)E

�
∫ uN

0

(t − s+δN )
−1X N

s (1)ds

�

+2C17δN (log N)E





∫ t∨uN

uN

(t − s+δN )
−1 (log N)

N

∑

x∈SN

Ê
h

ξN
s−uN
(B̂x

uN
)(1− ξN

s−uN
(B̂x+e

uN
))
i

ds





+2C17C74δN (log N)−7E





∫ t∨uN

uN

(t − s+δN )
−1X N

s−uN
(1)ds





=: T1,1+T1,2+T1,3, (75)

where we used (74) for s ≥ uN in the last inequality. Then using Proposition 3.4 (a), we obtain

T1,1 ≤ C17C
′
a
(log N)uN X N

0 (1),

and as we will see this term is negligible compared to the bound we will obtain for T1,2.

Notice that
ξN

s−uN
(B̂x

uN
)(1− ξN

s−uN
(B̂x+e

uN
))≤

∑

w∈SN

ξN
s−uN
(w)1{B̂x

uN
=w}1{x |x+e}uN

.

Thus, by translation invariance of our kernel pN ,

T1,2 ≤ 2C17δN (log N)E





∫ t∨uN

uN

(t − s+δN )
−1X N

s−uN
(1)

∑

y∈SN

P̂
�

B̂0
uN
= y, {0 | e}uN

�





≤ C76δN log
�

1+
T

δN

�

X N
0 (1), (76)

where the above line was obtained using Proposition 3.4 (a) and (13). Finally, using once again
Proposition 3.4 (a),

T1,3 ≤ 2C17C74C
′
a
δN (log N)−7 log

�

1+
T

δN

�

X N
0 (1),

so that this term is also negligible compared to T1,2. From (75) and the above estimates we deduce

T1 ≤ C77δN log
�

1+
T

δN

�

X N
0 (1). (77)

We now turn to bound T2. By summing over z in (32), and then using (17) and Lemma 5.1 (a), we
easily see that

T2 ≤
C5.1C17(log N)4

N2

∫ t

0

X N
s (1)

1

t − s+δN
ds
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Therefore, using Proposition 3.4 (a) we obtain

T2 ≤
C78(log N)4

N2 log
�

1+
T

δN

�

X N
0 (1), (78)

which is negligible compared to the right-hand side of (77) as N → ∞, by our assumption that
lim infN→∞

p
NδN > 0.

We turn to bound T4, which comes from the new drift term. We have

T4 ≤ 2
δN

N

∑

z∈SN

E







 

∫ t∨uN

uN

�

dN ,3
s (φz

s )− E[dN ,3
s (φz

s ) | Fs−uN
]
�

ds

!2






+2
δN

N

∑

z∈SN

E







 

∫ t∨uN

uN

E[dN ,3
s (φz

s ) | Fs−uN
] ds

!2






+2E
�
∫ uN

0

∫ s1

0

δN (log N)8

N2

∑

x1∈SN ,x2∈SN

pN
2(t+δN )−s1−s2

(x2− x1)

×
2
∏

i=1

dsi

h

ξN
si
(x i) f

N
0 (x i ,ξ

N
si
)2− (1− ξN

si
(x i)) f

N
1 (x i ,ξ

N
si
)2
i

�

=: T4,1+T4,2+T4,3.

We first handle T4,1. Note that if s2− uN > s1,

E





2
∏

i=1

�

dN ,3
si
(φz

si
)− E

h

dN ,3
si
(φz

si
) | Fsi−uN

i�



= 0,

therefore

T4,1 = 4
δN

N

∑

z∈SN

E
h

∫ t∨uN

uN

∫ s1+uN

s1

ds1ds2

2
∏

i=1

�

dN ,3
si
(φz

si
)− E

h

dN ,3
si
(φz

si
) | Fsi−uN

i�i

.

We have the evident bound on dN ,3 :

|dN ,3
s (φz

s )| ≤
(log N)4

N

∑

x∈SN

φz
s (x)Ξ

N
s (x). (79)

where we wrote ΞN
s (x) := ξN

s (x) +
∑

e∈SN
pN (e)ξN

s (x + e). Therefore, using Chapman-Kolmogorov
once again, and then (17), we find

T4,1 ≤ 4C17δN E
�
∫ t∨uN

uN

∫ s1+uN

s1

(log N)8

N2

∑

x1,x2

(2(t +δN )− s1− s2)
−1

×
2
∏

i=1

�

ΞN
si
(x i) + E

h

ΞN
si
(x i) | Fsi−uN

i�

�

ds1ds2. (80)
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Using the Markov property and Proposition 3.4 (a) it comes easily that

(log N)
N

∑

x i∈SN

E
h

ΞN
si
(x i) | Fsi−uN

i

≤ 2C ′
a
X N

si−uN
(1).

We may therefore expand the product in (80) and bound each of the terms using the Markov prop-
erty and Proposition 3.4. It follows that there exist constants C81, C ′

81
depending on T such that, if

t ≥ uN ,

T4,1 ≤ C81δN (log N)6(X N
0 (1) + X N

0 (1)
2)

∫ t

uN

∫ s1+uN

s1

ds1ds2(2(t +δN )− s1− s2)
−1

≤ C81δN uN (log N)6(X N
0 (1) + X N

0 (1)
2)

∫ t

uN

ds1(2(t +δN )− 2s1− uN )
−1

≤ C81u
2/3
N (log N)6δN (X

N
0 (1) + X N

0 (1)
2)δ1/3

N log
�

2t + 2δN − 3uN

2δN − uN

�

≤ C81(log N)−1δN (X
N
0 (1) + X N

0 (1)
2)δ1/3

N log
�

1+
2(t − uN )
δN

�

≤ C ′
81
(log N)−1δN (X

N
0 (1) + X N

0 (1)
2), (81)

where we used that uN ≤ (δN/2) ∧ (log N)−11 in the third line above, and the assumption δN → 0
in the last.

We now turn to the more difficult bound on T4,2. Recall the notation ĤN (ξN
s−uN

, x , uN ) from Subsec-
tion 3.2, and HN (s, x , uN ) from Subsection 4.1. Using Chapman-Kolmogorov again, we see that

T4,2 = E



2

∫ t

uN

∫ s1

uN

ds1ds2
(log N)8δN

N2

∑

x1,x2∈SN

pN
2(t+δN )−s1−s2

(x2− x1)
2
∏

i=1

HN (si , x i , uN )



 . (82)

However, by (25),

�

�

�HN (s, x , uN )− ĤN (ξN
s−uN

, x , uN )
�

�

�≤ Ê









1{Ex ,x+e1,x+e2
}

∑

y∈B̃
x ,x+e1
uN

ξN
s−uN
(y)









,

and Lemma 2.2 thus implies

(log N)
N

∑

x∈SN

�

�

�HN (s, x , uN )− ĤN (ξN
s−uN

, x , uN )
�

�

�≤ C83X
N
s−uN
(1)uN (log N)3. (83)

From Proposition 3.4 (a) and (50), we see that

(log N)N−1
∑

x∈SN

|HN (s, x , uN )| ≤ C ′
a
X N

s−uN
(1).
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Using this, (17) and (83), we deduce

E
�

2

∫ t

uN

∫ s1

uN

ds2ds1
(log N)8δN

N2

∑

x1,x2∈SN

pN
2(t+δN )−s1−s2

(x2− x1)|HN (s1, x1, uN )|

×
�

�

�HN (s2, x2, uN )− ĤN (ξN
s2−uN

, x2, uN )
�

�

�

�

≤ 2C17C83C
′
a
(log N)9uNδN

∫ t

uN

∫ s1

uN

ds2ds1(2(t +δN )− s1− s2)
−1E[X N

s1−uN
(1)X N

s2−uN
(1)].

Therefore by Proposition 3.4 and the fact that (log N)9uN ≤ (log N)−2, the above is bounded by

2C17C83C
′
a
Cab(log N)−2δN (X

N
0 (1) + X N

0 (1)
2).

Similarly,

(log N)
N

∑

x∈SN

|Ĥ(ξN
s−uN

, x , uN )| ≤
(log N)

N

∑

x∈SN

Ê
h

ξN
s−uN
(B̂x

uN
) + ξN

s−uN
(B̂x+e1

uN
)
i

≤ 2X N
s−uN
(1),

so that, using (17) and (83),

E
�

2

∫ t

uN

∫ s1

uN

ds12ds1
(log N)8δN

N2

∑

x1,x2∈SN

pN
2(t+δN )−s1−s2

(x2− x1)|ĤN (ξN
s2−uN

, x2, uN )|

×
�

�HN (s1, x1, uN )− ĤN (s1, x1, uN )
�

�

�

≤ 2C ′
a
C17C83(log N)9uNδN

∫ t

uN

∫ s1

uN

ds2ds1(2(t +δN )− s1− s2)
−1E[X N

s1−uN
(1)X N

s2−uN
(1)]

≤ C(T )(log N)−2δN (X
N
0 (1) + X N

0 (1)
2).

Therefore, we see from (82) and the above bounds, for C84 = C84(T ), that

T4,2 ≤ C84(X
N
0 (1) + X N

0 (1)
2)(log N)−2δN (84)

+E





∫ t

uN

∫ s1

uN

(log N)8δN

N2

∑

x1,x2∈SN

pN
2(δN+t)−s1−s2

(x2− x1)
2
∏

i=1

dsi Ĥ
N (ξN

si−uN
, x i , uN )



 .

Recall from Subsection 3.2 that ĤN (ξN
s−uN

, x , uN ) =
∑3

i=1 F N
i (s − uN , x , uN ). First, by translation
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invariance of p, for i = 1, 2,

(log N)
N

�

�

�

�

�

�

∑

x i∈SN

pN
2(t+δN )−s1−s2

(x2− x1)F
N
1 (si − uN , x i , uN )

�

�

�

�

�

�

=
(log N)

N

�

�

�

�

∑

w∈SN

ξN
si−uN

(w)
∑

x i∈SN

pN
2(t+δN )−s1−s2

(x2− x1)

×
�

P̂(B̂0
uN
= w− x i , {0 | e1 ∼ e2}uN

)− P̂(B̂e1
uN
= w− x i , {0 | e1 ∼ e2}uN

)
�
�

�

�

�

≤
(log N)

N

∑

w∈SN

ξN
si−uN

(w)Ê
�

1{0|e1∼e2}uN

�

�

�

�

pN
2(t+δN )−s1−s2

(w− B̂0
uN
− x3−i)

−pN
2(t+δN )−s1−s2

(w− B̂e1
uN
− x3−i)

�

�

�

�

�

Hence, by Lemma 2.1, for i = 1,2,

(log N)
N

�

�

�

�

�

�

∑

x i∈SN

pN
2(t+δN )−s1−s2

(x2− x1)F
N
1 (si − uN , x i , uN )

�

�

�

�

�

�

≤ C2.1

(log N)
N

∑

w∈SN

ξN
si−uN

(w)Ê
��

�

�B̂0
uN
− B̂e1

uN

�

�

�

�

(2(t +δN )− s1− s2)
−3/2

≤ C85

p
uN X N

si−uN
(1)(2(t +δN )− s1− s2)

−3/2. (85)

Furthermore, using again translation invariance of p and (13),

(log N)
N

∑

x1∈SN

�

�F N
1 (s1− uN , x1, uN )

�

�

≤
(log N)

N

∑

x1∈SN

Ê
h

(ξN
s1−uN

(B̂x1
uN
) + ξN

s1−uN
(B̂x1+e1

uN
))1{x1|x1+e1∼x1+e2}uN

i

≤
(log N)

N

∑

w∈SN

ξN
s1−uN

(w)
�

∑

x1∈SN

P̂(B̂0
uN
= w− x1, {0 | e1 ∼ e2}uN

)

+P̂(B̂e1
uN
= w− x1, {0 | e1 ∼ e2}uN

)
�

≤ 2C15X
N
s1−uN

(1)(log(NuN ))
−1 ≤ C86X

N
s1−uN

(1)(log N)−1. (86)

We next handle F N
2 (s− uN , x , uN ) and F N

3 (s− uN , x , uN ) together. Using translation invariance of p
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and (17),

(log N)
N

∑

x2∈SN

pN
2(t+δN )−s1−s2

(x2− x1)(|F N
2 (s2− uN , x2, uN )|+ |F N

3 (s2− uN , x2, uN )|)

≤
(log N)

N

∑

x2∈SN

pN
2(t+δN )−s1−s2

(x2− x1)

×9Ê
h�

ξN
s2−uN

(B̂x2
uN
) + ξN

s2−uN
(B̂x2+e1

uN
)
�

1{x2|x2+e1|x2+e2}uN

i

≤ 9C17(2(t +δN )− s1− s2)
−1 (log N)

N

∑

w∈SN

ξN
s2−uN

(w)

×
∑

x2∈SN

1
∑

i=0

P̂(B̂ei
uN
= w− x2, {0 | e1 | e2}uN

)

≤ C87(log N)−3(2(t +δN )− s1− s2)
−1X N

s2−uN
(1), (87)

where we used (6) in the last inequality above, and have set C87 := 9C17K̄ , K̄ as in (16). For i = 1, 2,
a similar argument leads to

(log N)
N

∑

x i∈SN

(|F N
2 (si − uN , x i , uN )|+ |F N

3 (si − uN , x i , uN )|)≤ C88(log N)−3X N
si−uN

(1). (88)

We now use equation (85), first for i = 2, then for i = 1, and then equation (87) to obtain

(log N)8δN

N2

∫ t

uN

∫ s1

uN

ds2ds1

�

�

�

�

E
�

∑

x1,x2∈SN

pN
2(t+δN )−s1−s2

(x2− x1)
2
∏

i=1

�
3
∑

j=1

F N
j (si − uN , x i , uN )

�

�
�

�

�

�

≤ (log N)6δN

∫ t

uN

∫ s1

uN

E
�

(log N)
N

∑

x1∈SN







�

�F N
1 (s1− uN , x1, uN )

�

�+

�

�

�

�

�

�

3
∑

j=2

F N
j (s1− uN , x1, uN )

�

�

�

�

�

�







×C85

p
uN X N

s2−uN
(1)
�

�

2(t +δN )− s1− s2
�−3/2ds2ds1

+(log N)6δN

∫ t

uN

∫ s1

uN

E
�

(log N)
N

∑

x2∈SN

�

�

�

�

�

�

3
∑

j=2

F N
j (s2− uN , x2, uN )

�

�

�

�

�

�

C85

p
uN X N

s1−uN
(1)
�

×
�

2(t +δN )− s1− s2
�−3/2ds2ds1

+C87(log N)3δN

∫ t

uN

∫ s1

uN

E
�

X N
s2−uN

(1)
(log N)

N

∑

x1∈SN

�

�

�

�

�

�

3
∑

j=2

F N
j (s1− uN , x1, uN )

�

�

�

�

�

�

�

×
�

2(t +δN )− s1− s2
�−1ds2ds1.
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Using (86), (88) it follows from the above inequality that

(log N)8δN

N2

∫ t

uN

∫ s1

uN

ds1ds2

�

�

�

�

E
�

∑

x1,x2∈SN

pN
2(t+δN )−s1−s2

(x2− x1)
2
∏

i=1

�
3
∑

j=1

F N
j (si − uN , x i , uN )

�

�
�

�

�

�

≤ C85

�

C86

(log N)
+

2C88

(log N)3

�

p
uN (log N)6δN

∫ t

uN

∫ s1

uN

E
h

X N
s1−uN

(1)X N
s2−uN

(1)
i

�

2(t +δN )− s1− s2
�3/2

ds2ds1

+C87C88δN

∫ t

uN

∫ s1

uN

E
h

X N
s1−uN

(1)X N
s2−uN

(1)
i

�

2(t +δN )− s1− s2
�−1ds2ds1.

Using Proposition 3.4 and the subsequent (40) in the above, it then follows from (84) that

T4,2 ≤ C89(X
N
0 (1) + X N

0 (1)
2)δN

�

(log N)−2+ (log N)5
p

uN + 1
�

≤ 2C89(X
N
0 (1) + X N

0 (1)
2)δN . (89)

The term T4,3 is much easier to handle. Indeed, using (17) and the trivial bound

2
∏

i=1

�

�

�

h

ξN
si
(x i) f

N
0 (x i ,ξ

N
si
)2− (1− ξN

si
(x i)) f

N
1 (x i ,ξ

N
si
)2
i
�

�

�≤
2
∏

i=1

(ξN
si
(x i) + f N

1 (x ,ξN
si
)),

we find

T4,3 ≤ 8C17(log N)6δN

∫ uN

0

∫ s1

0

�

2(t +δN )− s1− s2
�−1E

h

X N
s1
(1)X N

s2
(1)
i

ds2ds1.

Using uN ≤ δN/2, we see that
∫ uN

0

∫ s1

0

ds2ds1(2(t +δN )− s1− s2)
−1 ≤ uN log

�

2(t +δN )
2(t +δN − uN )

�

≤ uN log
�

2(t +δN )
2t +δN

�

.

Thus, using (40) and our choice of uN ,

T4,3 ≤ 8C17Cab(log N)6δN (X
N
0 (1) + X N

0 (1)
2)uN log

�

2t + 2δN

2t +δN

�

≤ C90(log N)−5δN (X
N
0 (1) + X N

0 (1)
2). (90)

Recall T4 =
∑3

i=1T4,i . By grouping (81), (89), (90), we finally obtain

T4 ≤ C(T )δN (X
N
0 (1) + X N

0 (1)
2). (91)

We finish by providing an upper bound for T3. We give less details, because the method is very
similar to the one we used for T4, and the smaller power of (log N) makes this term easier to
handle. As we did for T4, we may bound T3 by the sum of three terms :
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T3 ≤ C
δN

N

∑

z∈SN

�

E







 

∫ t∨uN

uN

�

dN ,2
s (φz

s )− E[dN ,2
s (φz

s ) | Fs−uN
]
�

ds

!2






+E







 

∫ t∨uN

uN

E[dN ,2
s (φz

s ) | Fs−uN
]ds

!2






�

+C E





∫ uN

0

∫ s1

0

(log N)4

N2 δN

∑

x1∈SN ,x2∈SN

pN
2(t+δN )−s1−s2

(x2− x1)
2
∏

i=1

dsiΞ
N
si
(x i)





=: T3,1+T3,2+T3,3,

where ΞN is defined after (79), and we used f N
0 (x ,ξN

s )
2 ≤ 1, f N

1 (x ,ξN
s )

2 ≤ f N
1 (x ,ξN

s ) to bound the
integral on [0, uN]2.

As for T4,1, we have

T3,1 = C
δN

N

∑

z∈SN

E
h

∫ t∨uN

uN

∫ s1+uN

s1

ds1ds2

2
∏

i=1

�

dN ,2
s (φz

si
)− E

h

dN ,2
s (φz

si
) | Fsi−uN

i�i

.

We then use the following bound on dN ,2 (compare (79)):

|dN ,2
s (φz

s )| ≤ β
(log N)2

N

∑

x∈SN

φz
s (x)Ξ

N
s (x).

Now we may reason exactly as for T4,1 to obtain (compare (81))

T3,1 ≤ C92(log N)−5δN (X
N
0 (1) + X N

0 (1)
2). (92)

Let us now deal with T3,2. For s ≥ uN , we let

H N (s, x , uN ) := E
�

ξN
s (x) f

N
0 (x ,ξN

s ) + (1− ξ
N
s (x)) f

N
1 (x ,ξN

s ) | Fs−uN

�

,

Ĥ N (s, x , uN ) := Ê
h

ξN
s−uN
(B̂x

uN
)(1− ξN

s−uN
(B̂x+e1

uN
)) + (1− ξN

s−uN
(B̂x

uN
))ξN

s−uN
(B̂x+e1

uN
)
i

.

As for H, Ĥ, we get by the analogues of (25) and Lemma 2.2 that

(log N)
N

∑

x∈SN

�

�H N (s, x , uN )−Ĥ N (s, x , uN )
�

�≤ C93X
N
s−uN
(1)uN (log N)3. (93)

Argue as when dealing with T4,2 to get that for some C(T )> 0,

E
�

2

∫ t

uN

∫ s1

uN

ds1ds2
(log N)4δN

N2

∑

x1,x2∈SN

pN
2(t+δN )−s1−s2

(x2− x1)H N (s1, x1, uN )

×
�

�H N (s2, x2, uN )−Ĥ N (s2, x2, uN )
�

�

�

≤ C(T )(log N)−6δN (X
N
0 (1) + X N

0 (1)
2),
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and

E
�

2

∫ t

uN

∫ s1

uN

ds1ds2
(log N)4δN

N2

∑

x1,x2∈SN

pN
2(t+δN )−s1−s2

(x2− x1)Ĥ N (s1, x1, uN )

×
�

�H N (s2, x2, uN )−Ĥ N (s2, x2, uN )
�

�

�

≤ C(T )(log N)−6δN (X
N
0 (1) + X N

0 (1)
2),

and therefore

T3,2 ≤ C94(X
N
0 (1) + X N

0 (1)
2)(log N)−6δN (94)

+C94E





∫ t

uN

∫ s1

uN

(log N)4δN

N2

∑

x1,x2∈SN

pN
2(δN+t)−s1−s2

(x2− x1)
2
∏

i=1

dsiĤ N (si , x i , uN )



 .

Then,

(log N)2

N

∑

x∈SN

Ĥ N (s, x , uN )

= 2
(log N)2

N

∑

x∈SN

Ê
h

ξN
s−uN
(B̂x

uN
)(1− ξN

s−uN
(B̂x+e1

uN
))1{x |x+e1}uN

i

≤ 2
(log N)2

N

∑

x ,w∈SN

ξN
s−uN
(w)P̂(B̂0

uN
= w− x , {0 | e1}uN

)

≤ 2C15 log N(log(NuN ))
−1X N

s−uN
(1),

by the definition of C15 in (15). We deduce from the above, (94) and (17) that

T3,2 ≤ C94(X
N
0 (1) + X N

0 (1)
2)(log N)−6δN

+C95δN E





∫ t

uN

∫ s1

uN

X N
s1−uN

(1)X N
s2−uN

(1)ds1ds2





≤ C ′
95
(X N

0 (1) + X N
0 (1)

2)δN , (95)

where we used Proposition 3.4 in the last line.

Finally, using the same method as for bounding T4,3,

T3,3 ≤ C96(log N)−9δN (X
N
0 (1) + X N

0 (1)
2). (96)

Grouping (92), (95) and (96), we find

T3 ≤ C97δN (X
N
0 (1) + X N

0 (1)
2). (97)

We may now conclude the proof of Proposition 3.10. Indeed, using (73), (77), (78), (91), (97),

E

�
∫ ∫

δN pN
2δN
(y − x)dX N

t (x)dX N
t (y)

�

≤ C(T )(X N
0 (1) + X N

0 (1)
2)δN

�

1+ log
�

1+
T

δN

�

+
1

t +δN

�

,

which, as explained in the beginning of the proof, is the desired bound.
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5.3 Space-time first moment bound : proof of Lemma 3.5

Let Ψ : R2 → R be bounded Lipschitz. Recall that PN is the semigroup of the rate-N random walk
on SN with jump kernel pN , and introduce the function

Φ(s, x) := PN
t−sΨ(x)exp(−c3.5s),

where c3.5 := 1∨σ∨(K̄+
�

supN≥3(β
N
0 − β

N
1 )
+
�

C15), and K̄ , C15 were introduced in Section 2.1. Note
that Ψ(x) = exp(c3.5 t)Φ(t, x).

It is straightforward that ||Φ|| ≤ 2c3.5||Ψ||Lip. Indeed, we first obviously have that
||Φ||∞ ≤ ||Ψ||∞. Furthermore, on the one hand,

|Φ(s, x + h)−Φ(s, x)| ≤ exp(−c3.5s)E
��

�Ψ(x + h+ B0
t−s)−Ψ(x + B0

t−s)
�

�

�

≤ exp(−c3.5s)|Ψ|Lip|h|,

hence |Φ|Lip ≤ |Ψ|Lip. On the other hand,

|Φ(s+ h, x)−Φ(s, x)| ≤ exp(−c3.5(s+ h))E
��

�Ψ(x + B0
t−s−h)−Ψ(x + B0

t−s)
�

�

�

+
�

�exp(−c3.5(s+ h))− exp(−c3.5s)
�

� E
��

�Ψ(x + B0
t−s

�

�

�

≤ |Ψ|Lipσ
p

h+ c3.5|h|||Ψ||∞,

and it follows that
|Φ|1/2 ≤ σ|Ψ|Lip+ c3.5||Ψ||∞ ≤ c3.5||Ψ||Lip.

Use Lemma 3.9 to obtain, for some η,δ > 0 and T ≥ s ≥ tN ,

E[dN ,3
s (Φ)]≤ (log N)3 P̂({0 | e1 | e2}tN

)E[X N
s−tN
(Φ(s− tN , .))] + C3.9||Φ||(log N)−δE[X N

s−tN
(1)]

+
C3.7||Φ||∞
tN (log N)

E[I N
η (s− tN )].

From (61) we can get a similar bound for the expected first drift integrand, E[dN ,2
s (Φ)]. Only the

first term in the right-hand side above should be replaced with
�

sup
N∈N
(βN

0 − β
N
1 )
+
�

× (log N)P̂({0 | e1 ∼ e2}tN
)E[X N

s−tN
(Φ(s− tN , .))].

From our definition of c3.5, these two bounds and Proposition 3.4 (a), we deduce that for large
enough N ,

E[dN ,3
s (Φ)+ dN ,2

s (Φ)]≤ c3.5E[X N
s−tN
(Φ(s− tN , .))] + 2C3.9C

′
a
c3.5||Ψ||Lip(log N)−δE[X N

0 (1)]

+
(C3.7+ C61)||Φ||∞

tN (log N)
E[I N

η (s− tN )].

We now integrate and use Corollary 3.11 to conclude that there is a constant C98, depending on T
and ||Ψ||Lip, such that for tN ≤ t ≤ T ,

E





∫ t

tN

(dN ,3
s (Φ)+ dN ,2

s (Φ))ds





≤ c3.5

∫ t

0

E[X N
s (Φ(s, .))]ds+ C98(log N)−δ2(X N

0 (1) + X N
0 (1)

2), (98)
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where δ2 := η/2∧ δ. On the other hand, when t ≤ tN , we use (41), (54), and Proposition 3.4 (a)
to get

E

�
∫ t

0

(dN ,3
s (Φ)+ dN ,2

s (Φ))ds

�

≤ C ||Φ||∞(log N)3
∫ t

0

E[X N
s (1)]ds

≤ C ′||Ψ||∞(log N)3 tN X N
0 (1).

Combining the above and (98), we obtain

E

�
∫ t

0

�

dN ,3
s (Φ)+ dN ,2

s (Φ)
�

ds

�

≤ c3.5

∫ t

0

E[X N
s (Φ(s, .))]ds+ C98(log N)−δ2(X N

0 (1)+X N
0 (1)

2)

+C ′||Ψ||∞(log N)−16X N
0 (1). (99)

We have chosen Φ so it satisfies ANΦ(s, .)+Φ̇(s, .) =−c3.5Φ(s, .). Therefore using the above inequality
and (28) we obtain that for any t ≤ T ,

E[X N
t (Φ(t, .))]≤ X N

0 (Φ(0, .)) + (C98+ C ′||Ψ||∞)(log N)−δ2(X N
0 (1) + X N

0 (1)
2),

which yields (C3.5 may depend on T)

E[X N
t (Ψ)]≤ exp(c3.5 t)X N

0 (P
N
t Ψ)+ C3.5(log N)−δ2(X N

0 (1) + X N
0 (1)

2),

and completes the proof of Lemma 3.5. �

6 Proof of the tightness of the sequence

In this paragraph we establish Lemmas 3.2 and 3.3. We already explained how Proposition 3.1
follows from these two results.

By (28), Lemma 3.2 is a simple consequence of the following.

Lemma 6.1. For any bounded Lipschitz Φ : R2→ R,

(a) the sequences (DN ,2(Φ))N∈N, (DN ,3(Φ))N∈N are C-tight,

(b) if in addition Φ is in C3
b (R

2), the sequence (DN ,1(Φ))N is C-tight,

(c) the sequence (M N (Φ))N∈N is C-tight.

Proof (a) Plugging in Proposition 3.4 (b) into equation (69), we deduce that
for T ≥ t2 > t1 ≥ tN , i = 2, 3,

E
h

�

DN ,i
t2
(Φ)− DN ,i

t1
(Φ)
�2i

≤ C69Cb||Φ||2Lip(X
N
0 (1)

2+ X N
0 (1))

�

((t2− t1)
2+ (log N)6(tN ∧ (t2− t1))(t2− t1)

�

.

1233



Recall tN = (log N)−19 so that,

(log N)6(tN ∧ (t2− t1))≤ (log N)6
p

tN

p

t2− t1 ≤
p

t2− t1.

It follows that for tN ≤ t1 ≤ t2 ≤ T , i = 2,3,

E
h

�

DN ,i
t2
(Φ)− DN ,i

t1
(Φ)
�2i

≤ C100||Φ||2Lip(X
N
0 (1)

2+ X N
0 (1))(t2− t1)

3/2. (100)

Moreover,

E

�
∫ tN

0

|dN ,i
s (Φ)|ds

�

≤ (β ∨ 1)(log N)3||Φ||∞E

�
∫ tN

0

X N
s (1)ds

�

≤ C101 tN (log N)3||Φ||∞X N
0 (1) −→N→∞

0, (101)

where we used Proposition 3.4 (a) in the last line. Lemma 6.1 (a) thus follows from (100), (101)
and Kolmogorov’s criterion (see Theorem 12.4 in [1]). Here note that for a sequence of R-valued
processes {Y N}, if {Y N

·∨tN
} is C-tight and supt≤tN

|Y N
t | → 0 in probability, then {Y N} is C-tight.

(b) By Lemma 2.6 of [3] we have

sup
N
||ANΦ||∞ ≤ C102(Φ).

Therefore, using Cauchy-Schwarz, we obtain that for 0≤ t1 < t2 ≤ T ,

E







 

∫ t2

t1

X N
s (ANΦ)ds

!2





≤ C102(Φ)(t2− t1)E





∫ t2

t1

X N
s (1)

2ds



 , (102)

and the conclusion follows from Proposition 3.4 and Kolmogorov’s criterion (see Theorem 12.4 in
[1]).

(c) We now turn to the martingale term. As in the proof of Proposition 3.7 of [5], it is enough to
show that for any bounded Lipschitz Φ, {〈M N (Φ)〉}N is C-tight.
Let tN ≤ t1 ≤ t2 ≤ T . Using Lemma 5.1 along with (30) and (63), we obtain

E[
�

〈M N (Φ)〉t2
− 〈M N (Φ)〉t1

�2
] ≤ 3E







 

∫ t2

t1

mN
1,s(Φ)ds

!2





+ 3E







 

∫ t2

t1

mN
2,s(Φ)ds

!2






+12E







 

∫ t2

t1

X N
s ((log N)Φ2 f N

0 (ξ
N
s ))ds

!2






≤ C103

||Φ||4Lip(log N)2

N
(X N

0 (1) + X N
0 (1)

2)(t2− t1)
2

+12||Φ||4∞E







 

∫ t2

t1

X N
s ((log N) f N

0 (ξ
N
s ))ds

!2





. (103)
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To bound the last term in the right-hand side above, we proceed in a very similar fashion as when
dealing with the drift terms. More precisely, writing Y (s) := X N

s ((log N) f N
0 (ξ

N
s )), we obtain

E







 

∫ t2

t1

X N
s ((log N) f N

0 (ξ
N
s ))ds

!2





:= E







 

∫ t2

t1

Y (s)ds

!2






≤ E



4

∫ t2

t1

∫ (s1+tN )∧t2

s1

ds2ds1

2
∏

i=1

�

Y (si)− E[Y (si) | Fsi−tN
]
�





+2E







 

∫ t2

t1

E[Y (s) | Fs−tN
]ds

!2





. (104)

We may proceed as in the proof of (100). First, use the fact that Y (s) ≤ (log N)X N
s (1) and Proposi-

tion 3.4 to get

E



4

∫ t2

t1

∫ (s1+tN )∧t2

s1

ds2 ds1

2
∏

i=1

�

Y (si)− E[Y (si) | Fsi−tN
]
�



≤C105(X
N
0 (1) + X N

0 (1)
2)(t2− t1)

3/2. (105)

Then, use Cauchy-Schwarz, Lemma 5.2 and Proposition 3.4 to see that

2E







 

∫ t2

t1

E[Y (s) | Fs−tN
]ds

!2





≤ C106(X

N
0 (1) + X N

0 (1)
2)(t1− t2)

2. (106)

Finally, it is straightforward that 〈M N (Φ)〉tN
→ 0 in probability as N → ∞. Therefore by the Kol-

mogorov criterion, {〈M N (Φ)〉}N is C-tight, and the proof of Lemma 6.1 is complete. �

In order to finish the proof of Proposition 3.1, it remains to establish the compact containment
condition Lemma 3.3.

Let T > 0 and
¦

hn : R2→ R, n≥ 0
©

be bounded Lipschitz functions such that

1{|x |>n+1} ≤ hn(x)≤ 1{|x |>n}, sup
n∈N
||hn||Lip ≤ C107. (107)

Our goal is to show that

lim
n→∞

sup
N∈N

P(sup
t≤T

X N
T (hn)≥ ε) = 0 for all ε > 0. (108)

By (28),

sup
t≤T

X N
t (hn)≤ sup

t≤T
M N

t (hn) + sup
t≤T

Y N
t (hn), (109)

where

Y N
t (hn) := X N

0 (hn) +

∫ t

0

X N
s (AN hn)ds+ DN ,2

t (hn) + DN ,3
t (hn) =: X N

0 (hn) +

∫ t

0

yN
s (hn)ds.
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We let {εN} and {ηn} denote sequences converging to 0, which may depend on T and may change
from line to line. Let us first handle the martingale part. By Lemma 5.1 and Proposition 3.4 (a), we
deduce that

E(〈M N (hn)〉T )≤ E





∫ T

0

X N
s

�

2(log N)h2
n f N

0 (ξ
N
s )
�

ds



+ εN .

We also may bound the first term in the above by

2

(

E

�
∫ tN

0

X N
s

�

h2
n(log N) f N

0 (ξ
N
s )
�

ds

�

+ E





∫ T

tN

E
h

X N
s

�

h2
n(log N) f N

0 (ξ
N
s )
�

| F N
s−tN

i

ds





)

≤ 2
n

Ca(log N)−18X N
0 (1) +

C5.2||h2
n||Lip

(log N)8

∫ T

tN

E[X N
s−tN
(1)]ds+ C5.2

∫ T

tN

E[X N
s−tN
(h2

n)]ds
o

,

where we used Lemma 5.2 and the Markov property to bound the second term of the first line above.
Now use Proposition 3.4 (a), Lemma 3.5, and the convergence of {X N

0 } to deduce there exists C110,
depending on T , such that

E(〈M N (hn)〉T )≤ εN + C110

∫ T

0

X N
0 (P

N
s (h

2
n))ds. (110)

The tightness of {X N
0 } shows that

lim
n→∞

sup
N

sup
t≤T

X N
0 (P

N
t (h

2
n)) = 0. (111)

It follows from (110), (111), and Doob’s strong L2 inequality that

lim
n→∞

sup
N

E(sup
t≤T

M N
t (hn)

2) = 0. (112)

Consider now the other terms of the sum in (109).

Claim 6.2. Let T > 0, and Φ be bounded Lipschitz on R2 such that ||Φ||Lip ≤ C107. There exists
N0(ω, N) ∈ N and a positive constant C6.2 ≥ 1 depending only on T, C107 and supN X N

0 (1) such that

• ∀t1, t2 ∈ [tN , T], |t1− t2| ≤ 2−N0(ω,N)⇒
�

�

�Y N
t1
(Φ)− Y N

t2
(Φ)
�

�

�≤ |t1− t2|1/8

• sup
N

E[2N0(ω,N)/8]≤ C6.2.

Proof of Claim. By equations (100) and (102), there is a constant C113 depending only on T, C107 and
supN X N

0 (1) such that for any N , for any tN ≤ t1 ≤ t2 ≤ T ,

E[
�

�

�Y N
t1
(Φ)− Y N

t2
(Φ)
�

�

�

2
]≤ C113|t2− t1|3/2. (113)

The result follows from the usual dyadic expansion proof of Kolmogorov’s criterion. �
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We now return to the compact containment proof. We have

E(1{N0<M} sup
t≤T
|Y N

t (hn)|)

≤ X N
0 (hn) + E

�

sup
t≤tN

|Y N
t (hn)− X N

0 (hn)|
�

+ E

�

max
tN≤ j2−M≤T

|Y N
j2−M (hn)|

�

+E

 

1{N0<M} max
tN≤ j2−M≤T

sup
s∈[ j2−M ,( j+1)2−M ]

|Y N
s (hn)− Y N

j2−M (hn)|

!

≤ X N
0 (hn) + E

�
∫ tN

0

|yN
s (hn)|ds

�

+ 2M T max
0< j2−M≤T

E[|Y N
j2−M (hn)|] + 2−M/8,

where, to obtain the last inequality, we used Claim 6.2 to bound the last term. Using (101), and
the corresponding easier bound on DN ,1

t (hn) we see that the second term in the above sum will be
bounded, uniformly in n, by εN . The tightness of {X N

0 } bounds the first term, uniformly in N , by ηn.
Next use

|Y N
t (hn)| ≤ |M N

t (hn)|+ X N
t (hn),

(112), and Lemma 3.5 to see that

max
0< j2−M≤T

E[|Y N
j2−M (hn)|]≤ ηn+ εN + ec3.5T sup

t≤T
X N

0 (P
N
t (hn)).

An application of (111) shows that the last term above may also be bounded uniformly in N by ηn
and so combining the above bounds gives us

E(1{N0<M} sup
t≤T
|Y N

t (hn)|)≤ (ηn+ εN )(1+ 2M ) + 2−M/8, (114)

and from Claim 6.2 and Markov’s inequality we have

P(N0 ≥ M)≤ C6.22−M/8.

The above two bounds easily imply

lim
n→∞

sup
N

P(sup
t≤T
|Y N

t (hn)|> ε) = 0 for all ε > 0. (115)

To see this fix ε,δ > 0 and then choose M so that P(N0 ≥ M) < δ/2 (by the above bound). For n
large enough and N ≥ N1 the upper bound in (114) is at most εδ/2. It then follows that for n large
enough,

sup
N≥N1

P(sup
t≤T
|Y N

t (hn)|> ε)< δ

and (115) follows since the limit in (115) is trivially 0 for each fixed N . Finally, use (115) and (112)
in (109) to complete the derivation of (108) and hence Lemma 3.3. �

7 Identifying the limit

In the previous section we established that the sequence (X N )N∈N is C-tight in the space
D(R+, MF (R2)). It remains to identify possible limit points.
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Using the Skorokhod representation we may suppose without loss of generality that on an appropri-
ate probability space and for an increasing sequence of integers (Nk) we have

X Nk
a.s.−→

k→∞
X ∈ C(R+, MF (R2)).

Furthermore, if we write q̂3(N) := (log N)3 P̂({0|e1|e2}tN
) we have (cf (6)) that

limN→∞ q̂3(N) = K .

Dropping the dependence in k in the notation, we have for 0≤ t ≤ T and Φ ∈ C3
b (R

2),

E





�

�

�

�

�

DN ,3
t (Φ)− K

∫ t

0

X N
s (Φ)ds

�

�

�

�

�





≤ E





�

�

�

�

�

∫ tN∧t

0

dN ,3
s (Φ)ds

�

�

�

�

�



+ E







 

∫ tN∨t

tN

dN ,3
s (Φ)− E[dN ,3

s (Φ) | Fs−tN
]ds

!2






1/2

+E





∫ tN∨t

tN

�

�

�E[dN ,3
s (Φ) | Fs−tN

]− q̂3(N)X
N
s−tN
(Φ)
�

�

� ds





+
�

�q̂3(N)− K
�

� ||Φ||∞E





∫ (t−tN )+

0

X N
s (1)ds



+ K ||Φ||∞E





∫ t

(t−tN )+
X N

s (1)ds



 ,

where we used Cauchy-Schwarz to get the second term in the sum above. Use (101) to bound
the first term in the sum above, (67) and Proposition 3.4 (b) to bound the second, Lemma 3.9,
Proposition 3.4 (a) and Corollary 3.11 to handle the third, and finally Proposition 3.4 (a) to deal
with the two last. We obtain for some constants C116, C ′

116
depending on T , that for any t ≤ T ,

E





�

�

�

�

�

DN ,3
t (Φ)− K

∫ t

0

X N
s (Φ)ds

�

�

�

�

�





≤ C116||Φ||
�

tN (log N)3X N
0 (1) +

p

tN (log N)3(X N
0 (1) + X N

0 (1)
2)1/2+ (log N)−δ2 X N

0 (1)

+C3.11(log N)−η/2(X N
0 (1) + X N

0 (1)
2) +

�

�q̂3(N)− K
�

�X N
0 (1) + K tN X N

0 (1)
�

≤ C ′
116
||Φ||(X N

0 (1) + X N
0 (1)

2+ 1)
�

(log N)−η/2+
�

�q̂3(N)− K
�

�

�

. (116)

The above clearly goes to 0 as N = Nk goes to infinity.

The drift term DN ,2(Φ) is handled in a similar manner; use (61) in place of Lemma 3.9. We find that

E





�

�

�

�

�

DN ,2
t (Φ)− γ(β0− β1)

∫ t

0

X N
s (Φ)ds

�

�

�

�

�



 −→
k→∞

0.

For the term
∫ t

0
X N

s (ANΦ)ds we have by Lemma 2.6 of [3] :

sup
s≤T

�

�

�

�

�

�

�

�

ANΦ−σ2∆Φ
2

�

�

�

�

�

�

�

�

∞
−→
N→∞

0,
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and therefore

E





�

�

�

�

�

∫ t

0

X N
s (ANΦ)ds−

∫ t

0

Xs

�

σ2∆Φ
2

�

ds

�

�

�

�

�



 −→
k→∞

0.

It finally remains to deal with the predictable square function of the martingale term. By Lemma 5.1
there is an εN = εN (t)→ 0 as N →∞ so that

E(|〈M N (Φ)〉t −
∫ t

0

4πσ2X N
s (Φ

2)ds|)

≤ E
�
�

�

�2

∫ t

0

X N
s (log NΦ2 f N

0 (ξ
N
s ))− 4πσ2X N

s (Φ
2)ds

�

�

�

�

+ εN .

The proof that the first term goes to zero as N →∞ proceeds as in the argument above for DN ,2(Φ).
In the analogue of (61) one gets (log N)P({0|e1}tN

)→ 2πσ2 (see (13)) in place of (log N)P({0|e1 ∼
e2})→ γ. It is now routine to take limits in (28) for Φ as above to obtain the martingale problem
(MP) characterizing super-Brownian motion. The details are just as in the proof of Proposition 3.2
of [5]. We have completed the proof of Theorem 1.5. �

8 Proof of Theorems 1.4, 1.2.

8.1 Outline of the proof of survival, Theorem 1.4

We proceed as in Section 9 of [7] and we establish analogues of Lemma 9.1 and Proposition 9.2
of that reference. Given these results, the proof of Theorem 4.1 of [6] then goes through to give
Theorem 1.4 just as before.

The stochastic equation for ξN and the associated process ξN , killed outside of an open square I ′,
used in Subsection 2.2 was convenient to define the duals but does not give the natural ordering of
the two processes. For this we use the equation in Proposition 2.1 of [6]. Let {N x ,i , x ∈ SN , i = 0, 1}
be independent Poisson point processes on R+ ×R+ with intensity Nds× du (Lebesgue measure).
N x ,i will be used to switch the type at x from i to 1−i. Let {Ft , t ≥ 0} be the natural right-continuous
filtration generated by these processes and recall the flip rates in (18). Let ξN

0 be a deterministic
initial condition with |ξN

0 | <∞. By Proposition 2.1 of [6] there is a unique (Ft)-adapted solution
to

ξN
t (x) = ξ

N
0 (x) +

1
∑

i=0

(−1)1−i

∫ t

0

∫ ∞

0

1{ξN
s−(x) = i}1{u≤ rN

i→(1−i)(x ,ξs−)}N x ,i(ds, du) (117)

for all t ≥ 0, x ∈ SN which is the unique Feller process associated with the rates in (18). ξN is
defined in the same filtration and still satisfies equation (117) for all t ≥ 0, x ∈ I ′, but satisfies
ξN

t
(x) = 0 for all t ≥ 0, x ∈ SN \ I ′. It follows from the monotonicity of LV (α0,α1) for αi ≥ 1/2 (see

Section 1 of [6]) and (12) that we may apply Proposition 2.1(b)(i) of [6] to conclude that

if ξN
0
≤ ξN

0 then ξN
t
≤ ξN

t ∀t ≥ 0 almost surely. (118)
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Let K0 > 2, L > 3, I = [−L, L]2 and I ′ = (−K0 L, K0 L)2. Assume {ξN
t (x), x ∈ SN , t ≥ 0} and

{ξN
t
(x), x ∈ SN , t ≥ 0} are as above with ξN

0
(x) = ξN

0 (x) if x ∈ SN ∩ I ′, and ξN
0
(x) = 0 otherwise.

Therefore by the above ξN
t
≤ ξN

t for all t ≥ 0 a.s. We still write Pα for the joint distribution of

(ξN ,ξN ). We let Bx ,N be a rate-vN continuous time random walk with step distribution pN , started

at x . If T ′x = inf{t ≥ 0 : Bx ,N
t /∈ I ′} then define

Bx ,N
t =

(

Bx ,N
t if t < T ′x
∆ if t ≥ T ′x .

The associated semigroup is denoted
¦

PN
t , t ≥ 0

©

. We will often drop the dependence in N from
these notations. We define the measure-valued process X N

t ∈ MF (R2) as before, and X N
t ≤ X N

t by

X N
t =
(log N)

N

∑

x∈SN

ξN
t
(x)δx .

Although we are now using a different stochastic equation to couple ξN and ξN than those in
Section 2.2, we may still use the distributional results derived in Section 2.2 for each separately,
such as (25) and (27), since the individual laws of ξN and ξN remain unchanged.

Here is the version of Lemma 9.1 of [7] we will need.

Lemma 8.1. Let T > 0. There is a C8.1, depending on T,β , and a universal constant δ8.1, such that if
X N

0 = X N
0 is supported on I, then for N > 1, K0 > 2, L > 3, and 0≤ t ≤ T,

E
�

X N
t (1)−X N

t (1)
�

≤C8.1X
N
0 (1)

�

P(sup
s≤t
|B0

s |>(K0−1)L−3) + (1∨X N
0 (1))(log N)−δ8.1

�

.

For α0 ∈ [
1
2
, 1), a bit of calculus shows there exists a unique N = N(α0)> e3 so that

1−α0 =
(log N)3

N
. (119)

Let I−1 = (−2L, 0)e1 + I , I1 = (0,2L)e1 + I . Here is the analogue of Proposition 9.2 of [7] we will
need. It will imply that the Lotka-Volterra process dominates a 2K0-dependent supercritical oriented
percolation and therefore, survives. The role of the additional killing for X N is to ensure the finite
range of dependence need for the associated oriented percolation. Recall that K is as in (6).

Proposition 8.2. Assume 0< η < K. There are L > 3, K0 > 2, J ≥ 1 all in N, T ≥ 1, and r ∈ (0, e−4),
all depending on η such that if

α0 ≤ α1 ≤ α0+
K −η
γ

1−α0
�

log 1
1−α0

�2 , 0< 1−α0 < r and N = N(α0),

then X N
0 (1) = X N

0 (I)≥ J implies

Pα
�

X N
T (I1)∧ X N

T (I−1)≥ J
�

≥ 1− 6−4(2K0+1)2 .
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Remark: The parameters βN
0 ,βN

1 are now defined by N ,α0,α1 and (11). Indeed our choice of
N = N(α0) in the above implies βN

0 = 0 and

βN
1 =

N

(log N)
(α1−α0) ∈

�

0,
K −η
γ

(log N)2

((log N)− 3(log(log N)))2

�

.

Therefore, for r(η) small enough we will have

βN
1 ∈

�

0,
K −η/2
γ

�

.

Proof : Given Lemma 8.1, Proposition 8.2 is proved by making trivial changes to the proof of
Proposition 9.2 in [7]. We omit the details but the intuition should be clear. By Theorem 1.5, X N

converges to a super-Brownian motion with drift θ = K − γβ1. By the above remark this quantity is
bounded below by η/2 > 0 for a good choice of r. Super-Brownian motion with positive drift and
large enough initial mass will continue to grow exponentially up to time T with high probability,
and so the same should be true for X N for N large. Finally, Lemma 8.1 bounds X N

T − X N
T and allows

us to make the same conclusion for X N
T . �

To complete the proof of survival it remains to establish Lemma 8.1.

8.2 Proof of Lemma 8.1.

Choose h : R2 ∪∆→ [0,1] such that

[−K0 L+ 3, K0 L− 3]2 ⊆ {h= 1} ⊆ Supp(h)⊆ [−K0 L+ 2, K0 L− 2]2, |h|Lip ≤ 1. (120)

We then define for s ≤ t, x ∈ SN the function

Ψ(s, x) := PN
t−sh(x) = E[h(Bx

t−s)] = E[h(Bx
(t−s)∧T ′x

)].

As in the proof of Lemma 3.2 of [6], if f : SN ∪∆→ R and Φ(s, x) = PN
t−s f (x), s ≤ t we have

X N
t ( f ) = X N

0 (P
N
t f ) +M N

t (Φ)+

∫ t

0

�

dN ,2
s (Φ,ξN

s
) + dN ,3

s (Φ,ξN
s
)
�

ds, (121)

where M N
t (Φ) is a square-integrable, mean zero martingale. Apply (28) and (121) to obtain

E
�

X N
t (1)− X N

t (1)
�

≤ E
�

X N
t (1)− X N

t (h)
�

= X N
0 (1− PN

t (h)) + E





∫ t

0

3
∑

i=2

(dN ,i
s (1,ξN

s )− dN ,i
s (Ψ,ξN

s
))ds



 . (122)

We now state and prove four intermediate results.

Lemma 8.3. Let {Sn} be a mean zero random walk on Z starting at x ∈ Z under Px and such that
E0(|S1|3)<∞. There is a C8.3 > 0 such that if

UM = inf{n≥ 0 : Sn /∈ (0, M)}, M ∈ N,

then

Px(SUM
≥ M)≤

x + C8.3

M
for all x ∈ Z∩ [0, M].
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Proof. Let p( j) = P0(|S1| = j). The inequality in the middle of p. 255 of [14] and the inequality P7
on p. 253 of the same reference imply that for x as in the statement, and some c > 0,

�

�

�Px(SUM
≥ M)−

x

M

�

�

�≤
c

M

h
M
∑

s=0

(1+ s)E0(|S1|1{|S1|>s})
i

=
c

M

h
M+1
∑

j=1

∑

k≥ j

jkp(k)
i

≤
c

M

h
∞
∑

k=1

k2(k+ 1)
2

p(k)
i

≤
c

M
E0(|S1|3).

The result follows.

To use Lemma 3.5 and (61), we need the following.

Lemma 8.4. There exists a constant C8.4 such that

|Ψ|1/2 ≤
p

2σ, |Ψ|Lip ≤ C8.4.

Proof : The first statement is easy to verify. Indeed, if s < s′ ≤ t, x ∈ SN , then using |h|Lip ≤ 1,
applying the Markov property to Bx at time t − s′ and then Cauchy-Schwarz,

�

�Ψ(s′, x)−Ψ(s, x)
�

� ≤ E
��

�

�Bx
(t−s′)∧T ′x

− Bx
(t−s)∧T ′x

�

�

�1{T ′x>t−s′}

�

≤ sup
z∈I ′∩SN

E
�

�

�

�Bz
(s′−s)∧T ′z

− z
�

�

�

2
�1/2

≤
p

2σ|s′− s|1/2.

Let us now turn to the proof of the second statement of Lemma 8.4. Let x , x ′ ∈ I ′ ∩ SN be such that
0< |x − x ′| ≤ 1. In this argument we couple the walk Bx ′ with Bx by setting Bx ′

s := x ′− x + Bx
s . We

have

�

�Ψ(t − s, x)−Ψ(t − s, x ′)
�

�=

�

�

�

�

E
�

h(Bx
s∧T ′x
)− h(Bx ′

s∧T ′
x′
)
�
�

�

�

�

≤ E
h

1{T ′x∧T ′
x′
≥s}|h(Bx

s )− h(Bx ′
s )|
i

+ E
h

1{T ′x<s≤T ′
x′
}h(B

x ′
s ) + 1{T ′

x′
<s≤T ′x}h(B

x
s )
i

≤ |x − x ′|+ E
h

1{T ′x<s≤T ′
x′
}h(B

x ′
s )
i

+ E
h

1{T ′
x′
<s≤T ′x}h(B

x
s )
i

, (123)

where we used |h|Lip ≤ 1 to bound the first term in the sum. The other two terms are symmetric, so
we may as well only handle the first of the two.

On the event {T ′x < s ≤ T ′x ′}, since
�

�

�Bx ′
T ′x
− Bx

T ′x

�

�

�= |x ′− x | ≤ 1, it is easy to see that

Bx ′
T ′x
∈ I ′, inf

z∈(I ′)c

�

�

�Bx ′
T ′x
− z
�

�

�≤ |x − x ′|.

So one of the components, say i, of Bx ′
T ′x

is within |x − x ′| of (−K0 L, K0 L)c . Let us assume without

loss of generality (by symmetry) that Bx ′,i
T ′x
∈ [K0 L−|x − x ′|, K0 L], and let Mu = Bx ′,i

T ′x+u. From (120),
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for h(Bx ′
s ) to be positive we need that M hits (−∞, K0 L − 2] before [K0 L,∞). Therefore if we set

ν := inf{u ≥ 0 : Mu /∈ (K0 L − 2, K0 L)} and Sn is the embedded discrete time rescaled random walk
on Z, then

E
h

1{T ′x<s≤T ′
x′
}h(B

x ′
s )
i

≤ P
�

Mν ≤ K0 L− 2|M0 ≥ K0 L− |x − x ′|
�

≤ PdpN |x−x ′|e(SUd2
p

Ne
≥ d2
p

Ne)

≤
C8.3p

N
+ |x − x ′| ≤ (C8.3+ 1)|x ′− x |, (124)

where we used Lemma 8.3 and then |x ′− x | ≥ N−1/2 in the last line. Therefore by (123) and (124)
we deduce that for any x , x ′ ∈ SN ∩ I ′ such that |x − x ′| ≤ 1 we have

�

�Ψ(s, x)−Ψ(s, x ′)
�

�≤ (2C8.3+ 3)|x − x ′|.

Since Ψ(s, .) is supported on I ′ the second assertion of Lemma 8.4 follows. �
The next intermediate result we need for proving Lemma 8.1 is a version of Lemma 3.6 for the killed
process. Let

Ĥ(ξN
s−tN

, x , tN ) := Ê



ξN
s−tN
(B̂x

tN
)

2
∏

i=1

(1− ξN
s−tN
(B̂x+ei

tN
))





−Ê



(1− ξN
s−tN
(B̂x

tN
))

2
∏

i=1

ξN
s−tN
(B̂x+ei

tN
)



 .

Lemma 8.5. There is a C8.5 such that for any s ≥ tN and Φ : R2→ R bounded measurable,
�

�

�

�

E
h

dN ,3
s (Φ,ξN

s
) | Fs−tN

i

−
(log N)4

N

∑

x∈SN

Φ(s− tN , x)Ĥ(ξN
s−tN

, x , tN )

�

�

�

�

≤ C8.5||Φ||1/2X N
s−tN
(1)(log N)−6.

Proof : This is the same as the proof of Lemma 3.6, only we use (27) in place of (25). �

One can similarly obtain the obvious analogue of (55) for the killed process. We leave details to the
reader.

We will finally need an alternative form of Lemma 3.5. It is a cruder estimate but gives better bounds
for test functions which are small in an L1 sense. Let log+(x) := log(1∨ x).

Lemma 8.6. Assume f : SN → [0, 1] and | f |1 =
1
N

∑

x∈SN
f (x) < ∞. There exist constants c8.6 and

C8.6, depending on β , such that

E[X N
t ( f )]≤ X N

0 (P
N
t f ) + C8.6 exp(c8.6 t)X N

0 (1)(log N)3| f |1

�

1+ log+
�

1

| f |1

��

.

Proof : Let Φ(s, x) = PN
t−s f (x) and use (28) to get

E[X N
t ( f )]≤ X N

0 (P
N
t ( f )) + E





3
∑

i=2

|DN ,i
t (Φ)|



 . (125)
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Moreover,

E





3
∑

i=2

|DN ,i
t (Φ)|





≤ E





∫ t

0

(log N)2

N





∑

x∈SN

Φ(s, x)((log N)2+ β)(ξN
s (x) +

∑

e∈SN

pN (e)ξ
N
s (x + e))









≤ (1+ β)E
�
∫ t

0

(log N)3
�

X N
s (P

N
t−s f ) + X N

s (pN ∗ (PN
t−s f ))

�

�

.

By (A7) of [3], there exists C126 such that

PN
t−s f (x)≤





∑

y∈SN

C126(1+ N(t − s))−1 f (y)



∧ 1≤
�

C126(t − s)−1| f |1
�

∧ 1. (126)

Therefore,

E





3
∑

i=2

|DN ,i
t (Φ)|





≤ C126(2+ 2β)(log N)3
∫ t

0

�

[(t − s)−1| f |1]∧ 1
�

E[X N
s (1)]ds

≤ C126(2+ 2β)(1+ Ca(log N)−16)exp(c3.4 t)(log N)3X N
0 (1)





∫ t

| f |1∧t

| f |1
u

du+ | f |1



 ,

where we used Proposition 3.4 (a) at the last line. Lemma 8.6 now easily follows from (125) and
the above. �

We now turn to the actual proof of Lemma 8.1. By (122),

E
�

X N
t (1)− X N

t (1)
�

≤ X N
0 (1− PN

t (h)) + E





∫ tN∧t

0

3
∑

i=2

(dN ,i
s (1,ξN

s )− dN ,i
s (Ψ,ξN

s
))



 ds

+E





3
∑

i=2

∫ t

tN∧t

dN ,i
s (1−Ψ,ξN

s )ds



+E





∫ t

tN∧t

(dN ,2
s (Ψ,ξN

s )− dN ,2
s (Ψ,ξN

s
))ds





+E





∫ t

tN∧t

dN ,3
s (Ψ,ξN

s )− dN ,3
s (Ψ,ξN

s
)ds





=:U0+U1+U2+U3+U4. (127)

Below we establish bounds on each of the above terms, and |.|∞ denotes the L∞-norm on R2. We
claim there is a constant C129, depending on T , and a δ130 > 0 such that for any t ≤ T ,

U0 ≤ X N
0 (1)P(sup

u≤t
|B0

u |∞ > (K0− 1)L− 3), (128)

�

�U1

�

�≤ C129X
N
0 (1)(log N)3 tN , (129)
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�

�U2

�

�≤ C129(X
N
0 (1) + X N

0 (1)
2)

�

(log N)−δ130 + P(sup
u≤t
|B0,N

u |∞ > (K0− 1)L− 3)

�

, (130)

�

�U3

�

�≤ C129

�

(log N)−δ130(X N
0 (1) + X N

0 (1)
2) +

∫ t

0

E[X N
s (1)− X N

s (1)]ds

�

, (131)

�

�U4

�

�≤ C129

�

(log N)−δ130(X N
0 (1) + X N

0 (1)
2) +

∫ t

0

E[X N
s (1)− X N

s (1)]ds

�

. (132)

We start with a bound which will be useful for proving both (128) and (130). We have

0≤ 1−Ψ(s, y) = 1− PN
t−sh(y) ≤ P(T ′y ≤ t − s) + P(T ′y > t − s, |B y

t−s|∞ > K0 L− 3)

≤ P( sup
u≤t−s

|B y
u |∞ > K0 L− 3). (133)

Since we assumed supp(X N
0 )⊂ I , it follows that for any s ≥ 0

X N
0

�

PN
s (1−Ψ(s, .))

�

≤ X N
0 (1)P(sup

u≤t
|B0

u |∞ > (K0− 1)L− 3) (134)

Using (134) for s = 0 we obtain

U0 = X N
0 (1−Ψ(0, .))≤ X N

0 (1)P(sup
u≤t
|B0

u |∞ > (K0− 1)L− 3),

which is (128).

We next show (129). Using (54) for i = 2, (41) for i = 3, and then Proposition 3.4 (a), we obtain

|U1| ≤ 2(1∨ β)E
�
∫ tN∧t

0

((log N)3+ (log N))X N
s (1)ds

�

≤ C129X
N
0 (1)(log N)3 tN ,

and we are done. Here the fact that ξN ≤ ξN means the above bounds trivially apply to ξN as well.

Let us turn to the proof of (130). Use (61) for i = 2, Lemma 3.9 for i = 3 to get for suitable δ,η > 0
and K̄ as in (16),

|U2| ≤ (2βC15+ K̄)

∫ (t−tN )+

0

E[X N
s (1−Ψ(s, .))]ds

+(C3.9+ C61)||1−Ψ||Lip(log N)−δ
∫ (t−tN )+

0

E[X N
s (1)]ds

+
(C3.7+ C61)||1−Ψ||∞

tN (log N)
E





∫ t∨tN

tN

I N
η (s− tN )ds



 . (135)
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Use Lemma 3.5 to bound the first term in (135) :

∫ (t−tN )+

0

E[X N
s (1−Ψ(s, .))]ds

≤
∫ (t−tN )+

0

exp(c3.5s)X
N
0 (P

N
s (1−Ψ(s, .))) + C3.5(log N)−δ3.5(X N

0 (1) + X N
0 (1)

2)ds

≤
∫ (t−tN )+

0

�

exp(c3.5s)X
N
0 (1)(P(sup

u≤t
|B0,N

u |∞ > (K0− 1)L− 3))

+C3.5(log N)−δ3.5(X N
0 (1) + X N

0 (1)
2)
�

ds,

where, to obtain the last inequality, we applied (134). Inequality (130) then follows by using the
above, Proposition 3.4 (a), Corollary 3.11 and Lemma 8.4 in (135).

We now turn to the proof of the critical (132), and leave the proof of (131) to the reader, as it uses
a similar method.

Use the fact that X N
s ≤ X N

s with Lemmas 3.9 and 8.5 to get

|U4|≤
�

C3.9(log N)−δ3.7 + C8.5(log N)−6
�

||Ψ||
∫ (t−tN )+

0

E(X N
s (1))ds

+
C3.7||Ψ||∞
tN (log N)

∫ (t−tN )+

0

E[I N
η3.7
(s)]ds

+(log N)3P({0 | e1 | e2}tN
)

∫ (t−tN )+

0

E(X N
s (Ψ(s, .))− X N

s (Ψ(s, .)))ds

+

�

�

�

�

�

�

(log N)4

N
E
h
∑

x∈SN

∫ (t−tN )+

0

Ψ(s, x)
�

ξN
s
(x)P({0 | e1 | e2}tN

)− ĤN (ξN
s

, x , tN )
�

ds
i

�

�

�

�

�

�

.

Using the above, Lemma 8.4, Proposition 3.4 (a) and Corollary 3.11 together with X N ≤ X N , we
deduce there exists a C136 and δ136 > 0 such that

|U4| ≤ C136

�

(log N)−δ136(X N
0 (1) + X N

0 (1)
2) + K̄

∫ t

0

E[X N
s (1)− X N

s (1)]ds

+

�

�

�

�

�

�

E





(log N)4

N

∑

x∈SN

∫ (t−tN )+

0

Ψ(s, x)
�

ĤN (ξN
s

, x , tN )− ĤN (ξN
s

, x , tN )
�

ds





�

�

�

�

�

�

+

�

�

�

�

�

�

E





(log N)4

N

∑

x∈SN

∫ (t−tN )+

0

Ψ(s, x)
�

ξN
s
(x)P({0 | e1 | e2}tN

)− ĤN (ξN
s

, x , tN )
�

ds





�

�

�

�

�

�

�

.(136)

By (47) in Remark 3.8 with ξN
0 = ξ

N
s

, along with the fact that X N ≤ X N , the last term in the sum in
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(136) is
�

�

�

�

�

�

E





(log N)4

N

∑

x∈SN

∫ (t−tN )+

0

Ψ(s, x)
�

ξN
s
(x)P({0 | e1 | e2}tN

)− ĤN (ξN
s

, x , tN )
�

ds





�

�

�

�

�

�

≤ C3.8(log N)−δ3.8 ||Ψ||E
h

∫ t

0

X N
s (1)ds

i

+
C3.8||Ψ||

tN (log N)
E

�
∫ t

0

I N
η3.7
(s)ds

�

(137)

≤ C137(X
N
0 (1) + X N

0 (1)
2)(log N)−(δ3.8∧η3.7/2), (138)

where we used Proposition 3.4 (a), Corollary 3.11 and Lemma 8.4 to get the second inequality
above.

Let us now turn to bound the next-to-last term in the sum in (136). For δ ≥ 0 we let

A (δ) := {x ∈ SN ∩ I ′ : inf
y∈(I ′)c

|x − y| ≤ δ}, A (δ)′ := {x ∈ SN ∩ I ′ : inf
y∈(I ′)c

|x − y|> δ}

For x ∈A (t1/3
N ), it is enough to use the straightforward bound

�

�

�ĤN (ξN
s

, x , tN )− ĤN (ξN
s

, x , tN )
�

�

�≤ 2Ê(ξN
s
(B̂x

tN
) + ξN

s
(B̂x+e1

tN
))

to obtain
�

�

�

�

�

�

�

E









(log N)4

N

∑

x∈A (t1/3
N )

∫ (t−tN )+

0

Ψ(s, x)
�

ĤN (ξN
s

, x , tN )− ĤN (ξN
s

, x , tN )
�

ds









�

�

�

�

�

�

�

≤ 2E









∫ t

0

(log N)4

N

∑

x∈A (t1/3
N )

∑

w∈SN

ξN
s
(w)
�

P̂(B̂0
tN
= w− x) + P̂(B̂e1

tN
= w− x)

�

ds









≤ 2E

�
∫ t

0

(log N)4

N

�

∑

w∈A (2t1/3
N )

c

ξN
s
(w)
�

P̂(|B̂0
tN
|∞ > t1/3

N ) + P(|B̂e1
tN
|∞ > t1/3

N )
�

+
∑

w∈A (2t1/3
N )

2ξN
s
(w)
�

�

≤ C139E

�

(log N)3
∫ t

0

�

X N
s (1)(N

−1+ tN )t
−2/3
N + X N

s (A (2t1/3
N ))

�

ds

�

, (139)

where we used X N ≤ X N and Chebychev’s inequality to obtain the last line above. Use Lemma 8.6,
then the fact that supp(X N

0 )⊂ I and the bound (17) to get for any t ≤ T ,

E

�

(log N)3
∫ t

0

X N
s (A (2t1/3

N ))ds

�

≤ C(T )(log N)3
∫ t

0

�

X N
0 (P(B

�
s ∈A (2t1/3

N ))) + (log N)3X N
0 (1)t

1/3
N [1+ log+(t−1/3

N )]
�

ds

≤ C(T )X N
0 (1)(log N)3

∫ t

0

t1/3
N

s
∧ P(B0

s > (K0− 1)L− 2t1/3
N )ds

+t(log N)6X N
0 (1)t

1/3
N (1+ 7 log(log N))

≤ C140X
N
0 (1)

 

(log N)3
∫ t

0

 

t1/3
N

s
∧ s

!

ds+ (log N)−1/6

!

, (140)
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for some C140 depending on T . We then use (140) in (139) to deduce
�

�

�

�

�

�

�

E









(log N)4

N

∑

x∈A (t1/3
N )

∫ (t−tN )+

0

Ψ(s, x)
�

ĤN (ξN
s

, x , tN )− ĤN (ξN
s

, x , tN )
�

ds









�

�

�

�

�

�

�

≤ C141X
N
0 (1)(log N)−1/6 (141)

For x ∈A (t1/3
N )

′, we claim that
�

�

�ĤN (ξN
s

, x , tN )− ĤN (ξN
s

, x , tN )
�

�

�

≤
2
∑

i=0

Ê

�

ξN
s
(B̂x+ei

tN
)1

¨

sup
u≤tN

|B̂x+ei
u − x |> t1/3

N

«�

(142)

First the obvious coupling shows that for i = 0,1, 2,ξN
s
(B̂x+ei

tN
) ≤ ξN

s
(B̂x+ei

tN
). Furthermore, if the left

side of (142) is non zero, we must have 0 = ξN
s
(B̂x+ei

tN
) < ξN

s
(B̂x+ei

tN
) = 1 for some i ∈ {0,1, 2}. For

this choice of i we must have B̂x+ei
u /∈ I ′ for some u ≤ tN , and since we supposed x ∈ A (t1/3

N )
′ this

implies supu≤tN
|B̂x+ei

u − x | > t1/3
N . As the left side of (142) is at most 1, (142) is proved. Now use

(142), then Proposition 3.4(a), and finally the weak L1-inequality for submartingales to obtain for
t ≤ T ,

�

�

�

�

�

�

�

E









(log N)4

N

∑

x∈A (t1/3
N )

′

∫ (t−tN )+

0

Ψ(s, x)
�

ĤN (ξN
s

, x , tN )− ĤN (ξN
s

, x , tN )
�

ds









�

�

�

�

�

�

�

≤ E









(log N)4

N

∫ t

0

∑

w∈SN

∑

x∈A (t1/3
N )

′

2
∑

i=0

ξN
s
(w)P̂(B̂ei

tN
= w− x , sup

u≤tN

|B̂ei
u |> t1/3

N )ds









≤ C ′
a
tX N

0 (1)(log N)3
2
∑

i=0

P̂( sup
u≤tN

|B̂ei
u |

2 > t2/3
N )≤ C143X

N
0 (1)(log N)−3. (143)

We finally combine (136), (137), (141), and (143) to deduce (132).

Finally, use (127)—(132) to conclude

E
�

X N
t (1)− X N

t (1)
�

≤ C144(X
N
0 (1) + X N

0 (1)
2)
�

P(sup
u≤t
|B0,N

t |∞ > (K0− 1)L− 3)

+(log N)−(δ130∧(1/6))+

∫ t

0

E
�

X N
s (1)− X N

s (1)
�

ds
�

, (144)

and therefore Gronwall’s lemma completes the proof of Lemma 8.1. �

8.3 Proof of coexistence, Theorem 1.2.

This follows from Theorem 1.4 just as in the proof of Theorem 6.1 of [6]. Let (α0,α1) ∈ R2
+ and

(1− α0) ∧ (1− α1) < r(η) where r(η) is as in Theorem 1.4. Let 0 < q < 1 and ξq be the Lotka-
Volterra process such that ξq

0(x), x ∈ Z2 are independent Bernoulli(q). By Theorem I.1.8 in [11]
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there is a sequence vn→∞ such that 1
vn

∫ vn

0
ξ

q
s ds

(w)
⇒ ξ∞ as n→∞, and ξ∞ is a translation invariant

stationary law. Arguing just as in Lemma 8.4 of [6] we see that Theorem 1.4 and its proof imply
∑

x∈Z2 ξ∞(x) =∞ almost surely.

Now interchange the roles of 0’s and 1’s. This means we interchange α0 with α1 and replace q with
1− q. All the hypotheses of the previous case still hold and so we also get

∑

x∈Z2(1− ξ∞(x)) =∞
almost surely. �

9 Asymptotics of the non-collision probability for n planar walks

Our main goal in this section is to establish Proposition 1.3 which gives the asymptotic behaviour of
the non-collision probability for n≥ 2 independent walks started at fixed points.

For x1, ..., xn elements of Z2, we write Px1,...,xn
for the probability measure under which B1, ..., Bn are

independent rate-1 continuous-time random walks on Z2, with jump kernel p, started at x1, ..., xn.
When the context is clear we drop x1, ..., xn from the notation.

We let B = (B1, ..., Bn), and Y = (Y 1, ..., Y n(n−1)/2) = (B1 − B2, ..., B1 − Bn, B2 − B3, ..., B2 −
Bn, ..., Bn−1 − Bn), whose starting points are denoted y1, ..., yn(n−1)/2. With a slight abuse we will
sometimes write Py1,...,yn(n−1)/2

for Px1,...,xn
when working with the differences Y . Note that for any

i ∈ {1, ..., n(n − 1)/2}, Y i is a rate-2 continuous-time random walk with jump kernel p, but the
coordinates of Y are no longer independent.

Define the non-collision events :

D(n)[t ′,t] :=
¦

∀ 1≤ i < j ≤ n, ∀s ∈ [t ′, t], Bi
s 6= B j

s

©

, D(n)t = D(n)[0,t] =
�

min
0≤i< j≤n

τ(x i , x j)> t
�

Clearly, Px1,...,xn
(D(n)t ) decreases as t increases, and, since we are in Z2, goes to 0 as t →∞.

As noted prior to Proposition 1.3, the case n= 2 of Proposition 1.3 is well-known. Since D(n)t requires
the non-collision of n(n− 1)/2 pairs of random walks, the log(t)−n(n−1)/2 decay in this Proposition
is perhaps not surprising heuristically. However, even getting a rather crude power law lower bound
requires some work; see Claim 9.7 below. The logarithmic decay for n = 2 suggests that walks will
not collide between large times t and 2t with probability close to one (see Claim 9.4 for a proof).
Conditioning not to collide in the first time interval should only help this event–see Lemma 9.10
for a preliminary and quantitative version of this. These facts suggest, and help show, that walks
conditioned to avoid one another behave at large times, roughly speaking, like independent ones;
Claim 9.11 gives a coupling of these walks which provides a precise and quantitative version of
this result. The fact that on this large interval, [t, 2t], collision events involving only one pair are
far more likely than collision events involving at least three walks will allow us to give a precise
asymptotic expansion of P(D(n)[t,2t]) as t → ∞ (see Lemma 9.12 below), through a careful study of
the case n = 2, which will be our first task in subsection 9.1.3 below. Proposition 1.3 will follow
easily from this expansion.

Finally, we used the following result in the proof of Lemma 3.7 (and would have used it in the
omitted proof of (58)). Its own proof will use the coupling mentioned above to provide information
on the distribution of the non-colliding walks at a large time.
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Lemma 9.1. Let n ≥ 2. For any δ ∈ (0, 1/2] there is a constant C9.1 depending only on p, n,δ such
that for all t ≥ e

P̂(|Y 1
t | ≥

p
t(log t)δ | D(n)t )≤ C9.1(log t)−2δ.

We prove Lemma 9.1 in subsection 9.3.

9.1 Preliminaries

Before starting the proof of Proposition 1.3, we need some preliminary results. A key tool is a strong
version of a local limit theorem for the walk with jump kernel p (see subsection 9.1.1 below). It will
allow us to establish bounds on the jump kernel and on its spatial increments, and in particular we
will prove Lemma 2.1 in subsection 9.1.2. In subsection 9.1.3, we first use the local limit theorem
to show the usual asymptotic bounds on the collision probability of two walks up to time t, when
started at points whose distance is a function of t. Second, although the case n = 2 of assertion (9)
is well-known, we also need a bound on the error.

Although these preliminaries are either direct easy adaptations of classical results, or follow from
well known ones in a straightforward way, we provide short proofs, for the sake of completeness.

9.1.1 Local limit theorem

Let

pt(x , y)=pt(x − y)=P(B1
t = x − y), pt(x , y)=pt(x − y)=

1

2πσ2 t
exp

�

−
|x − y|2

2σ2 t

�

,

and E(t, x) = |pt(x)− pt(x)|. It is well known that uniformly in x , E(t, x) goes to 0 as t →∞, but
we need an error bound.

Proposition 9.2. There exists a constant C9.2 depending only on p such that for any x ∈ Z2, for any
t > 0,

E(t, x)≤
C9.2

t3/2
.

Proposition 9.2 is a simple adaptation of the first assertion of Theorem 1.2.1 in [9], and its proof
goes along the same lines. The proof also extends to d dimensions leading to a bound of C t−(d+1)/2.

Proof : We may assume t ≥ 1. For θ ∈ Z2, let φ(θ) :=
∑

x∈Z2 p(x)exp(iθ x) be the characteristic
function of the step distribution. Since p is symmetric, the function φ takes real values, and the fact
that p is irreducible guarantees that {θ ∈ [−π,π]2 : φ(θ) = 1} = {0}. Furthermore, since p has
three moments, φ has a Taylor expansion about the origin:

φ(θ) = 1−
σ2|θ |2

2
+O(|θ |3). (145)

Thus, there exists r ∈ (0,π) and ρ < 1 depending on r such that

φ(θ)≤ 1−
σ2|θ |2

4
∀|θ | ∈ (−r, r)2 := B(0, r), |φ(θ)| ≤ ρ ∀θ ∈ [−π,π]2 \ B(0, r). (146)
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By the inversion formula,

pt(x) =
1

4π2

∫

[−π,π]2
exp(−i x · θ)exp(−t(1−φ(θ)))dθ . (147)

Therefore

pt(x) =
1

4π2 t

∫

[−π
p

t,π
p

t]2
exp
�

−i t−1/2 x ·α
�

exp(−t(1−φ(αt−1/2)))dα

=:
1

4π2 t
(I(t, x) + J(t, x))

where I(t, x) =
∫

B(0,r t1/8)
exp
�

−i t−1/2 x ·α
�

exp(−t(1−φ(αt−1/2)))dα and, using (146),

|J(t, x)| ≤
∫

B(0,r
p

t)\B(0,r t1/8)
exp(−σ2|α|2/4)dα+

∫

[−π
p

t,π
p

t]2\B(0,r
p

t)
exp(−(1−ρ)t)dα

= O(exp(−σ2r2 t1/4/4)) +O(t exp(−(1−ρ)t)).

Recall t ≥ 1. For |α| ≤ r t1/8, using (145) leads to

exp(−t(1−φ(αt−1/2))) = exp(−σ2|α|2/2)(1+ |α|3O(t−1/2)),

and thus

I(t, x) =

∫

B(0,r t1/8)
exp
�

−i t−1/2 x ·α
�

exp(−σ2|α|2/2)dα

+

∫

B(0,r t1/8)
exp
�

−i t−1/2 x ·α
��

exp(−t(1−φ(αt−1/2))))− exp(−σ2|α|2/2)
�

dα

=
2π

σ2 exp

�

−
|x |2

2σ2 t

�

+O(exp(−σ2r2 t1/4/2))

+O(t−1/2)

∫

B(0,r t1/8)
|α|3 exp(−σ2|α|2/2)exp

�

−i t−1/2 x ·α
�

dα

=
2π

σ2 exp

�

−
|x |2

2σ2 t

�

+O(t−1/2),

where the last display holds because
∫

R2 |α|3 exp(−σ2|α|2/2)<∞ and O(ec t1/4
)≤ O(t−1/2) as t ≥ 1.

Combining the bound on |J(t, x)| and the estimate on |I(t, x)| we deduce Proposition 9.2. �

9.1.2 Further kernel estimates

It follows directly from Proposition 9.2 that for any t > 0,

pt(x)≤
C9.2

t3/2
+

1

2πσ2 t
exp(−

|x |2

2σ2 t
), (148)

which refines (17). Lemma 2.1 is also a direct consequence of Proposition 9.2.
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Proof of Lemma 2.1 : Recall, for x ∈ Z2/
p

N , that pN
t (x) = N pN t(

p
N x), and observe that pN

t (x) :=
N pN t(

p
N x) = pt(x). For x , y ∈ Z2/

p
N , we deduce from Proposition 9.2 that

�

�pN
t (x)− pN

t (x + y)
�

�≤
�

�pt(x)− pt(x + y)
�

�+
2C9.2p
N t3/2

. (149)

Moreover, a bit of calculus leads to the existence of a constant C150 such that
�

�

�

�

�

exp

�

−
|x |2

2σ2 t

�

− exp

�

−
|x + y|2

2σ2 t

�

�

�

�

�

�

≤ C150

|y|
p

t
. (150)

Combining (149) and (150) yields Lemma 2.1. �

9.1.3 The case n=2

We use the notation

At := D(2)t = {Y
1

s 6= 0 ∀s ≤ t}, A[t ′,t] := D(2)[t ′,t].

Assertion (9) in this case is well known, and K2 = 2πσ2 (see for instance Lemma A3 (ii) in [3]).
The proof of (9) in the case n = 2 relies on the last-exit formula at the origin, for the rate−2 walk
Y 1 started at a point y ∈ Z2 (see, e.g., Lemma A.2(ii) of [3]),

1= Py(∀s ≤ t Y 1
s 6= 0) + p2t(y) + 2

∫ t

0

p2s(y)P̂(At−s)ds. (151)

Note that when y = 0 the first term on the right side of the above sum disappears. Also, note that
for any x1, x2 such that x1− x2 = y ,

Py(∀s ≤ t Y 1
s 6= 0) = Px1,x2

(∀s ≤ t X 1
s 6= X 2

s ) = Px1,x2
(At).

We first provide a bound on the collision probability for two walks started at arbitrary points.

Claim 9.3. There exist a constant C9.3 depending only on p such that for any x1, x2 ∈ Z2, for any t > 1,

Px1,x2
((D(2)t )

c)≤
C9.3

log t

�

1+ (log t − 2 log(|x2− x1|))+
�

.

The above claim only will be useful when the starting points vary with t and are such that |x1(t)−
x2(t)|>> tβ for some β > 0.

We introduce
τ(t) = t − t(log t)−2. (152)

Proof of Claim 9.3 : Let y = x1 − x2 6= 0 (or the result is trivial). For a rate-2 random walk with
jump kernel p, note that

P(Y 1
s = x − y) =: p(2)s (x − y) = p2s(x − y).
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The last-exit formula (151) yields

Px1,x2
((D(2)t )

c) = Py(∃s ≤ t Y 1
s = 0)

= p2t(y) + 2

∫ t

0

p2s(y)P̂(At−s)ds.

We may use (17) to bound the first term as required, and proving the claim therefore reduces to
bounding the above integral. By (9) for n = 2, for any s ≤ τ(t), we have P̂(At−s) ≤ C(log t)−1. By
Chebychev’s inequality, p2s(y)≤ 4σ2s|y|−2, and so

∫ |y|1/2∧τ(t)

0

p2s(y)P̂(At−s)ds ≤ Cσ2|y|−1(log t)−1.

Moreover, by Proposition 9.2,

∫ τ(t)

|y|1/2∧τ(t)
|p2s(y)− p2s(y)|P̂(At−s)ds ≤

C

log t
|y|−1/4 ≤

C

log t
,

and by (17),
∫ t

τ(t)
p2s(y)ds ≤ C17(log t)−2.

A change of variables shows that
∫ |y|2

|y|1/2∧τ(t) p2s(y)ds is bounded by a constant, while
∫ τ(t)

|y|2∧τ(t) p2s(y)ds is bounded by C(log t − 2 log(|y|)) (use p2s ≤ C/s). We deduce the claim from
the above bounds. �

One can adapt the proof in [3] of (9) in the case n= 2 to get sharper asymptotics.

Claim 9.4. There exists a constant C9.4 depending only on p such that for every t ≥ e,
�

�

�

�

�

P̂(At)−
2πσ2

log t

�

�

�

�

�

≤
C9.4

(log t)3/2
.

Proof of Claim 9.4 : Let G(2t) := 2
∫ t

0
p(2)s (0)ds =

∫ 2t

0
ps(0)ds. Proposition 9.2 yields

G(2t) =
log t

2πσ2

�

1+O
�

(log t)−1
��

. (153)

On the one hand, we have by (151) that 1≥ G(2t)P̂(At), thus (153) yields the desired upper bound
on P̂(At).

On the other hand, applying the last-exit formula (151) at the origin and at time 2t, we find

1≤ G(2t)P̂(At) + p4t(0) + 2

∫ 2t

t

p2s(0)P̂(A2t−s)ds. (154)
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By (17), p4t(0) is negligible in the above sum, and we need to bound the above integral. Using the
fact that P̂(A2t−s) increases with s and (17), we get

∫ 2t−exp(
p

log t)

t

p2s(0)P̂(A2t−s)ds ≤
∫ 2t−exp(

p
log t)

t

p2s(0)P̂(Aexp(
p

log t))ds ≤
C155

(log t)1/2
, (155)

where we also used the well-known case n = 2 of (9) in the last inequality above. Moreover, using
(17), we have

∫ 2t

2t−exp(
p

log t)
p2s(0)ds ≤

C17 exp(
p

log t)

t
.

We therefore obtain the desired lower bound on P̂(At), and hence Claim 9.4, from the above integral
bounds, (153), and (154). �

A first consequence of Claim 9.4 is an asymptotic expansion of Px1,x2
(A[t,2t]).

Claim 9.5. There exists a constant C9.5 depending only on p such that for any x1 6= x2 ∈ Z2, t ≥
|x1− x2|4 ∨ e4,

�

�

�

�

Px1,x2
(A[t,2t])− 1+

log(2)
log t

�

�

�

�

≤
C9.5

(log t)3/2
.

Proof of Claim 9.5 : Recall y = x1− x2. In terms of the difference walk,
Px1,x2

(A[t,2t]) = Py(∀s ∈ [t, 2t] Y 1
s 6= 0). The last-exit formula (151) for the difference walk started

at x1− x2 = y , over the time interval [t, 2t] (use the Markov property at time t), yields

1− Py(∀s ∈ [t, 2t] Y 1
s 6= 0) = p4t(y) + 2

∫ t

0

p2t+2s(y)P̂(At−s)ds. (156)

By (17), uniformly in y , p4t(y) is O(t−1), and the contribution to the above integral for s between
τ(t) and t is O((log t)−2), uniformly in y . Therefore we only need to find an asymptotic expansion

of 2
∫ τ(t)

0
p2t+2s(y)P̂(At−s)ds.

By Claim 9.4, uniformly in s ∈ [0,τ(t)], P̂(At−s) = 2πσ2(log t)−1 +O((log t)−3/2) (t ≥ e4 ensures

that t − τ(t) ≥ e), thus, thanks to (17) again we may as well look at 4πσ2

log t

∫ τ(t)

0
p2t+2s(y)ds. Then,

by Proposition 9.2, and the definition of τ(t),
�

�

�

�

�

4πσ2

log t

∫ τ(t)

0

p2t+2s(y)ds−
4πσ2

log t

∫ t

0

p2t+2s(y)ds

�

�

�

�

�

≤
4πσ2C9.2p

t(log t)
+

1

(log t)3
.

Using our assumption that t ≥ |y|4 and a Taylor expansion of the exponential yields
�

�

�

�

�

4πσ2

log t

∫ t

0

p2t+2s(y)ds−
log(2)
log t

�

�

�

�

�

≤
1

4σ2pt
.

Claim 9.5 follows. �

Finally, we we will need a bound on certain spatial increments of P0,x(At).
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Claim 9.6. There is a constant C9.6 depending only on p so that if x , y are such that |x | ≥
p

t(log t)−1,
|x − y| ≤ 2

p
t(log t)−2 and t ≥ e, then

|P0,x(At)− P0,y(At)| ≤ C9.6

1

(log t)3/2
.

Proof of Claim 9.6 : By (151) and the remark which follows it, we see that

|P0,x(At)− P0,y(At)| ≤
�

�p2t(x)− p2t(y)
�

�+ 2

∫ t

0

|p2s(x)− p2s(y)|P̂(At−s)ds.

As usual we may use (17) to see that the first term in the above sum is less than the required bound,
and we can focus on the integral. Fix α ∈ (0,1/2), and let us look at the above integral for values of
s smaller than tα. By Chebychev’s inequality and the case n= 2 of (9),

∫ tα

0

|p2s(x)− p2s(y)|P̂(At−s)ds ≤
C157 t2α

(|x |2 ∧ |y|2) log t
≤ C ′

157
(log t)−2, (157)

where we used our assumptions on |x |, |x − y| to deduce the last inequality above.

For larger values of s, we use Proposition 9.2 to obtain
∫ t

tα
|p2s(x)− p2s(y)|P̂(At−s)ds

≤
∫ t

tα
|p2s(x)− p2s(y)|P̂(At−s)ds+

∫ t

tα

�

�E(2s, x)− E(2s, y)
�

� P̂(At−s)ds

≤
∫ t

tα
|p2s(x)− p2s(y)|P̂(At−s)ds+ C t−α/2.

It remains to bound the above integral. Values of s ∈ [tα, (|x |2(log t)−1) ∧ t] are easy to deal
with, as the exponential factors produce a negative power of t. The integral over s ∈ [τ(t), t]
will be O((log t)−2). We are left with values of s ∈ [|x |2(log t)−1,τ(t)], for which we know that
P̂(At−s)≤ C(log t)−1. To finish the proof, it remains to check that (set the integrals below to 0 if the
lower bound of integration exceeds the upper bound)
∫ σ−2|x |2(log log t)−1/8

|x |2(log t)−1

|p2s(x)− p2s(y)|ds+

∫ τ(t)

σ−2|x |2(log log t)−1/8

|p2s(x)− p2s(y)|ds = O((log t)−1/2).

The first term is easy, since each of the exponential terms produce a term of O((log t)−2+δ) for
t ≥ t(δ) (use the conditions on x , y here). For the second term, our hypotheses on x , y and lower
bound on s give s−1||x |2 − |y|2| ≤ K(log log t)(log t)−1, and then use a Taylor expansion and the
lower bound on |x | to obtain the desired bound. �

9.2 Proof of Proposition 1.3.

In this section when the context is clear we write P for Px1,...,xn
, and drop the exponent n from the

notation D(n)t .

We first obtain a crude lower bound on P(Dt).
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Claim 9.7. There exist a positive constant α depending only on p, n such that for any t ≥ 2, for any
distinct x1, ..., xn,

Px1,...,xn
(Dt)≥ t−α.

Proof of Claim 9.7 : Let w1, ..., wn ∈ Z denote the first coordinates of x1, ..., xn respectively. Without
loss of generality we may assume that w1 ≤ w2 ≤ ... ≤ wn. We also let W 1

t , ...,W n
t denote the first

coordinates of B1
t , ..., Bn

t respectively. Our assumptions on p guarantee that for all j ∈ {1, ..., n},
(W j

t , t ≥ 0) is a rate-1 one-dimensional symmetric random walk whose jump kernel has finite vari-
ance.
We are going to argue that if W 1, ...,W n do not collide, neither can X 1, ..., X n. There is a small tech-
nical obstruction in the fact that w1, ..., wn are not necessarily distinct even if x1, ..., xn are. However,
irreducibility of p ensures that there is a positive constant C158 depending only on p, n such that

P

�

D1, ∀ j ∈ {1, ..., n} W j
1 ∈ (w j +

4 j

2
, w j + 2 · 4 j)

�

≥ C158. (158)

We now bound the probability that the one-dimensional walks W 1, ..., W n do not collide on the time
interval [1, 2k] by placing them in sequences of disjoint intervals. For j ∈ {1, ..., n}, n ∈ N, and
i ∈ {1, ..., n}, we let

E (k, i, j) :=
�

∀s ∈ [2k−i , 2k−i+1], W j
s ∈



w j +
4 jp2

k−i

2
, w j + 2 · 4 j

p
2

k−i



 ,

W j
2k−i+1 ∈



w j +
(10/9)4 jp2

k−i+1

2
, w j + 2 · 4 j

p
2

k−i





�

.

Clearly, on the event
⋂k

i=1

⋂n
j=1 E (k, i, j), the n walks do not collide on the time interval [1, 2k]. By

the Functional Central Limit Theorem, there is a positive constant C159 depending only on p, n such
that for any k ≥ 2, for any i ∈ {1, ..., k− 1}, for any j ∈ {1, ..., n},

P
�

E (k, i, j) | E (k, i+ 1, j)
�

≥ C159. (159)

By redefining C158 we may also assume that

P(∩k
j=1E (k, k, j))≥ C158.

It follows from the above that for any k ∈ N,

P(D2k)≥ C2
158

k−1
∏

i=1

(C159)
n = C2

158
(C159)

n(k−1).

For t ≥ 2 let k(t) = blog t/ log(2)c. Since t → P(Dt) is decreasing we have

P(Dt)≥ P(D2k(t)+1)≥ C2
158
(C159)

n(k(t)),

which yields Claim 9.7. �

Claim 9.7 only provides a rather bad lower bound on the non-collision probability, but it is sufficient
to prove that some events which are very unlikely for independent walks, are also very unlikely for
non-colliding walks.

We introduce Zt := infk∈{1,...,n(n−1)/2} |Y k
t |.
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Lemma 9.8. Suppose that the positive h satisfies

lim
t→∞

h(t)3/2 log t = 0, lim
t→∞

th(t)2 =+∞.

For t > 0, we introduce the stopping time Th(t) := inf{s ≥ 0 : Zs ≥
p

th(t)}. There exists a constant
C9.8 depending only on p, n, h such that for any distinct starting points and any t > 0,

P(Th(t)> t
p

h(t) | Dt)≤ C9.8 t−2.

Proof of Lemma 9.8: Let t > 0, and A= 5n(n−1)C17. We may assume t ≥ 2 and
p

th(t)≥ 1 without
loss of generality. For this choice of A we have

sup
y1,...,yn(n−1)/2∈Z2

Py1,...,yn(n−1)/2

�

∃i ∈ {1, ..., n(n− 1)/2} : |Y i
Ath(t)2 | ≤

p
th(t)

�

≤ n(n− 1)/2 sup
x∈Z2

∑

|y|≤
p

th(t)

p2Ath(t)2(0, y − x)≤
(2
p

th(t) + 1)2

20th(t)2
≤

1

2
,

where we used (17) to obtain the second inequality above. Thus, using the Markov property at
times kAth(t)2, k ∈ {2, ..., bh(t)−3/2/Ac},

P(Th(t)> t
p

h(t)) = P( sup
s∈[0,t

p
h(t)]

Zs <
p

th(t))

≤ P
�

∀k ∈
¦

1, ..., bh(t)−3/2/Ac
©

, ZkAth(t)2 ≤
p

th(t)
�

≤
bh(t)−3/2/Ac
∏

k=1

P
�

ZkAth(t)2 ≤
p

th(t) | Z(k−1)Ath(t)2 ≤
p

th(t)
�

≤
bh(t)−3/2/Ac
∏

k=1

sup
y1,...,yn(n−1)/2∈Z2

Py1,...,yn(n−1)/2

�

∃i ∈ {1, ..., n(n− 1)/2} : |Y i
Ath(t)2 | ≤

p
th(t)

�

≤
�

1

2

�bh(t)−3/2/Ac
.

The above and our assumption on h imply P(Th(t) > t
p

h(t)) ≤ t−β for any β > 0, which, along
with Claim 9.7, yields Lemma 9.8. �

As a consequence of the above, we will be able to bound the probability that two of the non-colliding
walks find themselves unusually close at time t.

Lemma 9.9. There exists a constant C9.9 depending only on p, n such that for all initial points and any
t ≥ e,

P

�

Zt ≤
p

t

log t
| Dt

�

≤
C9.9

(log t)2
.

Proof of Lemma 9.9 : Using Lemma 9.8 with h(t) = (log t)−1, then the fact that
¦

Dt , Th(t)≤ t(log t)−1/2} ⊂ {DTh(t), Th(t)≤ t(log t)−1/2
©

,
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we see that for t ≥ e,

P(Zt ≤
p

t(log t)−1 | Dt) (160)

≤ C9.8 t−2+
P(Zt ≤

p
t(log t)−1, Th(t)≤ t(log t)−1/2, Dt)

P(Dt)

≤ C9.8 t−2+
P(Zt ≤

p
t(log t)−1, Th(t)≤ t(log t)−1/2, DTh(t))

P(Dt)

= C9.8 t−2+ P(Zt ≤
p

t(log t)−1 | Th(t)≤ t(log t)−1/2, DTh(t))
P(DTh(t), Th(t)≤ t(log t)−1/2)

P(Dt)
.

Using the strong Markov property at time Th(t), we have

P(Zt ≤
p

t(log t)−1 | Th(t)≤ t(log t)−1/2, DTh(t))

≤ sup
y1,...,yn∈(B(0,

p
t(log t)−1)c )

s∈[t−t(log t)−1/2,t]

Py1,...,yn(n−1)/2

�

Zs ≤
p

t(log t)−1
�

≤ sup
y1∈Z,s∈[t−t(log t)−1/2,t]

n(n− 1)
2

Py1

�

|Y 1
s | ≤

p
t(log t)−1

�

≤ C(log t)−2, (161)

where we have used (17) in the last line. Recall the notation At = D(2)t from the beginning of
Section 9.1.3 and again use the strong Markov property at time Th(t) to see that

P(Dt)/P(DTh(t), Th(t)≤ t(log t)−1/2)

≥ P(Dt |DTh(t), Th(t)≤ t(log t)−1/2)

≥ inf
x1,...,xn∈B(0,

p
t(log t)−1)c

Px1,...,xn
(Dt)

≥ 1− sup
x1∈B(0,

p
t(log t)−1)c

n(n− 1)
2

Px1
(Ac

t)

≥ 1−
C

log t

h

1+ log t − 2 log
h

p
t

log t
∨ 1
ii

(by Claim 9.3 )

≥ 1−
C

log t
[1+ 2 log log t]≥ 1/2, (162)

providing t ≥ t0. Use (161) and (162) in (160) to obtain the required inequality for t ≥ t0 and
hence for t ≥ e by adjusting C9.9. �

Lemma 9.10. Fix δ ∈ (0,1) and let g : (1,∞)→ (0,∞) be such that g(t)t−δ→∞ and
t − g(t)→∞ when t →∞. There exists a constant C9.10 ≥ 0 depending on p, q, g such that for any t
such that g(t)≥ 2e and for any starting points x1, ..., xn,

P(Dc
t | Dg(t))≤

C9.10(log t − log(g(t)) + 2 log log(g(t)))
log t

.
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Proof of Lemma 9.10 : By Lemma 9.9, applied at time g(t), there is a constant C163 such that for
g(t)≥ e,

P(Zg(t) ≤
p

g(t)(log(g(t)))−1 | Dg(t))≤ C163(log t)−2. (163)

Therefore,

P(Dc
t | Dg(t)) ≤ C163(log t)−2+ P(Dc

t , Zg(t) >
p

g(t)(log(g(t)))−1 | Dg(t))

≤ C163(log t)−2+ P(Dc
t | Zg(t) >

p

g(t)(log(g(t)))−1, Dg(t)). (164)

Denote by A(i)t , i ∈ {1, ..., n(n−1)
2
} the event that there is no collision for the i-th pair up to time t, that

is A(i)t := {∀s ∈ [0, t] Y i
s 6= 0}. We have Dc

t =
⋃n(n−1)/2

i=1 (A(i)t )
c , and it follows that

P(Dc
t | Dg(t))≤ C163(log t)−2+

n(n− 1)
2

sup
y /∈B(0,

p
g(t)(log(g(t)))−1)

P0,y((A
(i)
t−g(t))

c).

where we used the Markov property at time g(t). Using Claim 9.3 in the above, we get Lemma 9.10
. In the last we may assume without loss of generality that t is large enough so that t − g(t)> 1. �

Choose β ∈ (0,1) such that 2C9.10(1− β) = 1 and apply Lemma 9.10 with g(t) = tβ to see that
for any t ≥ (2e)1/β , P(Dc

t | Dtβ ) ≤ 1/2. For t ≥ 2e define the sequence u0 = t, up+1 = (up)β and
N(t) = inf{p : up < 2e}. We have P(Dt) ≥

1
2N(t) , and it is straightforward to deduce that there exist

constants k ≥ 2, C165 depending only on p, n such that for any t > 1,

P(Dt)≥ C165(log t)−k. (165)

Choose γ≥ 2k+ 4. Applying Lemma 9.10 with g(t) = t(log t)−γ, we obtain that for a constant C166

depending only on p, n,

P(Dc
t | Dt(log t)−γ)≤

C166 log log t

log t
whenever g(t)≥ 2e. (166)

Both independent and non-colliding walks should not travel very far up to time t(log t)−γ. First,
using Markov’s inequality and the fact that p has two moments, we obtain that for constants C167, C168

depending only on p, n, for any t > 1,

Py1,...,yn(n−1)/2

�

sup
j∈{1,...,n(n−1)/2}

|Y j
t(log t)−γ − y j|>

p
t(log t)−γ/4

�

≤
n(n− 1)

2
log(t)−γ/2E









�

Y 1
t(log t)−γ − y1

�2

t(log t)−γ









≤ C167(log t)−γ/2. (167)

Then, from (167), (165), and our choice of γ, for all t ≥ e,

Py1,...,yn(n−1)/2

�

sup
j∈{1,...,n(n−1)/2}

|Y j
t(log t)−γ − y j|>

p
t(log t)−γ/4 | Dt(log t)−γ

�

≤ C168(log t)−2. (168)

Fix t > e. We may couple walks B, B̃ in the following way :
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• both are started at points x1, ..., xn, which we suppose distinct.

• over the time interval [0, t(log t)−γ], B, B̃ are run independently, and respectively under P(· |
Dt(log t)−γ), and P.

• the increments of B and B̃ over the time interval [t(log t)−γ, t] coincide.

This coupling, along with (167) and (168), then yields the following observation. Note that these
two assertions guarantee that the constant C9.11 below only depends on p, n.

Claim 9.11. For any t > e there exists a probability measure Qt
1 on the set of 2n-tuplets of walk paths

such that the following holds. Let (B, B̃) be defined under Qt
1, and both started at x1, ..., xn. Let Y ,

respectively Ỹ be the corresponding n(n− 1)/2-tuplet of differences. Then,

• the distribution of B under Qt
1 is Px1,...,xn

(· | Dt(log t)−γ), that is, the n first coordinates are walks
which do not collide up to t(log t)−γ.

• the distribution of B̃ under Qt
1 is Px1,...,xn

, that is, the n last coordinates are independent walks.

• Qt
1

�

|Yt − Ỹt |∞ >
2
p

t
(log t)2

�

≤ C9.11

(log t)2 .

For the last, recall that γ≥ 8.

We are now in position to compute an asymptotic expansion of P(D2t | Dt).

Lemma 9.12. There exists a constant C9.12 depending only on p, n such that for any distinct x1, ..., xn,
for any t ≥max j∈{1,...,n(n−1)/2} |y j|4 ∨ e4,

∀i ∈
�

1, ...,
n(n− 1)

2

�

,

�

�

�

�

P(A(i)2t | Dt)− 1+
log(2)
log t

�

�

�

�

≤
C9.12

(log t)3/2
, (169)

∀(i1, i2) ∈
�

1, ...,
n(n− 1)

2

�2

, i1 6= i2, P







2
⋂

j=1

(A
(i j)
2t )

c | Dt






≤

C9.12

(log t)3/2
, (170)

�

�

�

�

P(D2t | Dt)− 1+
n(n− 1) log(2)

2 log t

�

�

�

�

≤
C9.12

(log t)3/2
. (171)

Proof of Lemma 9.12 : We start by proving (169). We choose γ as above and use the notation
g(t) := t(log t)−γ throughout the proof. Without loss of generality we may take t large enough that
g(t)≥ e, and only consider the case when i = 1.

We are looking for an asymptotic expansion of 1−P(A(1)2t | Dt) = P((A(1)[t,2t])
c | Dt). In order to exploit

the coupling Claim 9.11, we are first going to establish that there exists a constant C172 depending
only on p, n,γ such that

P
�
�

A(1)[t,2t]

�c
| Dg(t)

�

−
C172

(log t)3/2
≤ P
�
�

A(1)[t,2t]

�c
| Dt

�

≤ P
�
�

A(1)[t,2t]

�c
| Dg(t)

�

�

1−
C166 log(log t)
(log t)

�−1

(172)
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The upper bound in (172) follows directly from (166). Let us now establish the lower bound. We
have

P
�
�

A(1)[t,2t]

�c
| Dt

�

≥ P
�
�

A(1)[t,2t]

�c
∩ D[g(t),t] | Dg(t)

�

= P
�
�

A(1)[t,2t]

�c
| Dg(t)

�

− P
�
�

A(1)[t,2t]

�c
∩ Dc

[g(t),t] | Dg(t)

�

.

Since Dc
[g(t),t] =

⋃n(n−1)/2
j=1

�

A( j)[g(t),t]

�c
,

P
�

Dc
[g(t),t] ∩

�

A(1)[t,2t]

�c
| Dg(t)

�

≤
n(n−1)/2
∑

j=1

P
�
�

A( j)[g(t),t]

�c
∩
�

A(1)[t,2t]

�c
| Dg(t)

�

.

Denote Υt := {Y = (y1, ..., yn(n−1)/2) ∈ (Z2)n(n−1)/2 : min |yi| ≥
p

t(log t)−γ} and fix
j ∈ {1, ..., n(n− 1)/2}. Using Lemma 9.9 at time g(t) and the Markov property at time g(t),

P
�
�

A( j)[g(t),t]

�c
∩
�

A(1)[t,2t]

�c
| Dg(t)

�

≤
C ′

9.9

log(t)2
+ sup
Y ∈Υt

PY
�
�

A( j)[0,t−g(t)]

�c
∩
�

A(1)[t−g(t),2t−g(t)]

�c�

for some C ′
9.9

depending only on p, q,γ.

On
�

A( j)[0,t−g(t)]

�c
, either the j-th pair of walks collides on the time interval [0, t − 2g(t)] or on

[t − 2g(t), t − g(t)]. Thus for any Y ∈Υt ,

PY
�
�

A( j)[0,t−g(t)]

�c
∩
�

A(1)[t−g(t),2t−g(t)]

�c�

≤ PY
�
�

A( j)[t−2g(t),t−g(t)]

�c�

+ PY
�
�

A( j)[0,t−2g(t)]

�c�

× sup
Y ′∈(Z2)n(n−1)/2

PY ′
�
�

A(1)[g(t),t+g(t)]

�c�

where we used the Markov property under PY at time t − 2g(t). The first term above is easily
bounded by C17(log t)−γ, by using a last-exit formula and (17). More specifically, use the analogue
of (156) with [t − 2g(t), t − g(t)] in place of [t, 2t]. Moreover, by Claim 9.3 and our definition of
Υt , for any Y ∈Υt ,

PY
�
�

A( j)[0,t−2g(t)]

�c�

≤
3γC9.3 log(log t)

log t
.

Furthermore, by (17)

sup
Y ′∈(Z2)n(n−1)/2

PY ′
�

|Y 1
g(t)| ≤

p
t(log t)−γ

�

≤ C(log t)−γ.

Therefore, using the Markov property under PY ′ at time g(t) and Claim 9.3 we get

sup
Y ′∈(Z2)n(n−1)/2

PY ′
�
�

A(1)[g(t),t+g(t)]

�c�

≤ C(log t)−γ+
C log(log t)

log t
.

Since γ > 2, combining the above inequalities yields the existence of a constant C173 depending only
on p, n,γ such that

sup
Y ∈Υt

PY
�
�

A( j)[0,t−g(t)]

�c
∩
�

A(1)[t−g(t),2t−g(t)]

�c�

≤
C173 log(log t)2

(log t)2
, (173)
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which completes the proof of (172).

Now using Claim 9.11, P
�
�

A(1)[t,2t]

�c
| Dt(log t)−γ

�

= EQt
1

h

PBt

�

(A(1)t )
c
�i

, and

EQt
1

��

�

�PBt

�

(A(1)t )
c
�

− PB̃t

�

(A(1)t )
c
�
�

�

�

�

≤ C9.11(log t)−2+Qt
1[Z̃t ≤

p
t(log t)−1]

+EQt
1

��

�

�PB̃t

�

(A(1)t )
c
�

− PBt

�

(A(1)t )
c
�
�

�

�1{Z̃t>
p

t(log t)−1}1{|Yt−Ỹt |∞≤2
p

t(log t)−2}

�

. (174)

The second term of the sum above is bounded by C(log t)−2, by (17). The third term is bounded by

C(log t)−3/2 thanks to Claim 9.6. Finally, EQt
1
[PB̃t

�

(A(1)t )
c
�

] = Px1,x2
(Ac
[t,2t]), and our assumptions

on t guarantee we can use Claim 9.5 to deduce that
�

�

�

�

EQt
1

h

PB̃t

�

(A(1)t )
c
�i

−
log(2)
log(t)

�

�

�

�

≤ C9.5(log t)−3/2.

By (172), (174) and the above bound, we conclude to (169).

We now turn to the proof of (170). Without loss of generality we can treat the case i1 = 1, i2 ∈
{2, ..., n(n− 1)/2}, so that Y i1 = B1 − B2 and Y i2 = Bk1 − Bk2 with k2 ≥ 3, k1 6= k2. Either k1 6= 1 or
k1 6= 2. For definiteness assume the latter. Then

Bk2 is independent of (Y i1 , Bk1) and B2 is independent of (Y i2 , B1). (175)

By Lemma 9.9,
P(Zt ≤

p
t(log t)−1 | Dt)≤ C9.9(log t)−2.

Therefore, to establish (170), by the Markov property at time t it suffices to consider n independent
walks started at points further apart from each other than

p
t(log t)−1, and bound the probability

that the first and i2th pairs of walks collide by time t. More precisely, if we let

Ξt :=
�

(y1, ..., yn(n−1)/2) ∈ (Z2)n(n−1)/2 : min |yi| ≥
p

t

log t

�

,

we need to establish

sup
ξ∈Ξt

Pξ((A
(1)
t )

c ∩ (A(i2)t )
c)≤

C176

(log t)3/2
∀t ≥ e4. (176)

Let us define the stopping times

τ j := inf{t ≥ 0 : Y
i j
t = 0}, j = 1, 2, τ= τ1 ∧τ2.

Note that {τ ≤ t} = (A(1)t )
c ∪ (A(i2)t )

c , and thus, by Claim 9.3, there exists a constant C177 such that
for any ξ ∈ Ξt ,

Pξ(τ≤ t)≤
C177 log log t

log t
for all t ≥ e2. (177)
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By Doob’s weak maximal inequality for ξ ∈ Ξt ,

Pξ(τ≤ t(log t)−4)≤ 2 sup
|y1|≥

p
t(log t)−1

Py1
(|Ys|= 0 for some s ≤ t(log t)−4)

≤ 2P0( sup
s≤t(log t)−4

(|Ys| ≥
p

t(log t)−1)

≤ C(log t)−2.

Therefore for ξ ∈ Ξt and t ≥ e2, using the independence in (175), we have

Pξ
�

max(|Y 1
τ |, |Y

i2
τ |)≤

p
t(log t)−3

�

≤ Pξ(τ≤ t(log t)−4) + E(1(τ1 > t(log t)−4)P(Bk2
τ1
∈ B(Bk1

τ1
,
p

t(log t)−3)|Y i1 , Bk1))

+ E(1(τ2 > t(log t)−4)P(B2
τ2
∈ B(B1

τ2
,
p

t(log t)−3)|Y i2 , B1))

≤ C(log t)−2+ sup
s>t(log t)−4,x∈Z2

P(Bk2
s ∈ B(x ,

p
t(log t)−3)

+ sup
s>t(log t)−4,x∈Z2

P(B2
s ∈ B(x ,

p
t(log t)−3)

≤ C(log t)−2, (178)

the last by (17). Thus, by (178), and the strong Markov property at time τ, it follows that for any
ξ ∈ Ξt and t ≥ e2, we have

Pξ((A
(1)
t )

c ∩ (A(i2)t )
c) ≤ C178(log t)−2+ Pξ(τ≤ t)

�

max
y∈B(0,

p
t(log t)−3)c

P0,y(A
c
t)

�

≤
C179(log log t)2

(log t)2
, (179)

where we used (177) and Claim 9.3 to get the last inequality above. This completes the proof of
(170).

Finally, inequality (171) is a simple consequence of (169), (170), and the inclusion-exclusion for-

mula applied to Dc
2t =

⋃

n(n−1)
2

i=1 (A
(i)
2t )

c . This finishes the proof of Lemma 9.12. �

It remains to show how Proposition 1.3 follows from Lemma 9.12.

Define f (t) := (log t)
n(n−1)

2 P(Dt), and k(t) := max{i ∈ N : 2i ≤ t}. Since P(Dt) is a decreasing
function of t, an easy consequence of (171) is that f (t)/ f (2k(t)) →

t→∞
1.

Therefore, to establish the first assertion of Proposition 1.3, it suffices to show that the sequence
( f (2m))m∈N converges to a positive limit.

Let m0 := inf{m ∈ N : 2m ≥max j∈{1,...,n(n−1)/2} |y j|4 ∨ e4}. If m ∈ N, m≥ m0, and m′ ∈ N,

f (2m+m′) = f (2m)Πm′−1
i=0

((m+ i+ 1))
n(n−1)

2

((m+ i))
n(n−1)

2

P(D2m+i+1 | D2m+i ).
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We may use (171) since m≥ m0, and we deduce that uniformly in x1, ..., xn,

f (2m+m′) = f (2m)
m′−1
∏

i=0

�

1+
n(n− 1)

2

1

(m+ i)
+O((m+ i)−2)

�

×
�

1−
n(n− 1)

2

1

(m+ i)
+O((m+ i)−3/2)

�

.

The first term in the product comes from a second order expansion of (1+ x)p for x near 0 and
p = n(n− 1)/2. It follows easily that the sequence ( f (2m)) is Cauchy. Since f (2m0) > 0, we see by
applying the above to m= m0, m′→∞ that the limit of ( f (2m)) has to be positive.

Moreover, f (2m0) ≤ cn max j∈{1,...,n(n−1)/2}(4 log |y j|)n(n−1)/2 + 1), which establishes the second part
of Proposition 1.3. �

We end this section with an interesting coupling between non-colliding and independent walks.
Although we do not use it here, we feel it may be of future use and is natural in view of the
construction in Claim 9.11. Choose γ as in the paragraph preceding Claim 9.11. The constant C9.13

below depends only on p, n,γ.

Claim 9.13. For any t > e there exists a probability measure Qt
2 on the set of 2n-tuplets of walk paths

such that the following holds. Let (B, B̃) be defined under Qt
2, and both started at x1, ..., xn. Let Y ,

respectively Ỹ be the corresponding n(n− 1)/2-tuplet of differences. Then,

• the distribution of B under Qt
2 is Px1,...,xn

(· | Dt), that is, the n first coordinates are walks which
do not collide up to t.

• the distribution of B̃ under Qt
2 is Px1,...,xn

, that is, the n last coordinates are independent walks.

• Qt
2

�

|Yt − Ỹt |∞ >
2
p

t
(log t)γ/4

�

≤ C9.13 log log t
log t

.

Proof of Claim 9.13 : Fix t > e, and distinct x1, ..., xn. We construct B, B̃ in the following way :

• Both are started at x1, ..., xn.

• Over the time interval [0, t], we run B̃ under P.

• Over [0, t(log t)−γ], we run B under P(. | Dt).

• Define B on [0, t] as follows.
For all s ∈ [0, t(log t)−γ], Bs := Bs.
For all s ∈ [t(log t)−γ, t], Bs − B t(log t)−γ := B̃s − B̃t(log t)−γ .
Furthermore introduce the non-collision event
Dt := {∀s ∈ [0, t] ∀i, j ∈ {1, ..., n}2, i 6= j, B

i 6= B
j}.

• On Dt set B = B on [0, t].

• On D
c
t , we run B on [t(log t)−γ, t] under P(· | Dt), independently of B̃.
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The second assertion of the claim is obvious from the construction. The first follows from the fact
that the distribution of B conditioned on Dt is, thanks to the Markov property at time t(log t)−γ,
precisely P(· | Dt). It remains to establish the last assertion of the claim.

Let Z s := infi, j∈{1,...,n}2,i 6= j

§�

�

�B
i
s − B

j
s

�

�

�

ª

. By (17), (165), and our choice of γ,

P
�

Z t(log t)−γ ≤
p

t(log t)−γ
�

≤ C180(log t)−k−4. (180)

Using the same method as for establishing Lemma 9.10 we deduce that

P(D
c
t) = P

�

∃s ∈ [t(log t)−γ, t] ∃i 6= j : B
i
s = B

j
s

�

≤
C181 log(log t)

log t
. (181)

Moreover, by (168), (166), and our choice of γ, for all t ≥ e2,

Py1,...,yn(n−1)/2

�

sup
j∈{1,...,n(n−1)/2}

|Y j
t(log t)−γ − y j|>

p
t(log t)−γ/4 | Dt

�

≤ C182(log t)−2. (182)

From the above construction, (Bt − B̃t)1Dt
=
�

Bt log(t)−γ − B̃t log(t)−γ
�

1Dt
. Therefore, (167), (182)

and (181) imply the last assertion of Claim 9.13. �

9.3 Proof of Lemma 9.1

Let Qt
1 be as in Claim 9.11 and γ be as in (167) and (168). Then (166) shows that for any starting

points x1, ..., xn

P(Dt |Dt(log t)−γ)≥
1

2
for t ≥ t0 ≥ e4.

So for t ≥ t0 and δ ∈ (0, 1
2
], and any starting points x1, ..., xn

P(|Y 1
t − y1| ≥

p
t(log t)δ/2 | Dt)

≤ P(|Y 1
t − y1| ≥

p
t(log t)δ/2 | Dt(log t)−γ)P(Dt(log t)−γ)/P(Dt)

≤ Qt
1(|Y

1
t − y1| ≥

p
t(log t)δ/2)× 2

≤
2C9.11

(log t)2
+ 2Qt

1

�

|Ỹ 1
t − y1| ≥

p
t(log t)δ/2−

2
p

t

(log t)2
�

≤
2C9.11

(log t)2
+ C(log t)−2δ,

where Chebychev’s inequality is used in the last line and the constant C depends only on p. It
follows from the above that for some constant C ′ depending only on p, n, for any δ ∈ (0, 1/2] and
t ≥ e,

P(|Y 1
t | ≥

p
t(log t)δ | Dt)≤ C ′ log(|y1|)(log t)−2δ.

Here note that the inequality is trivial if |y1| >
p

t/2 as δ ≤ 1/2. Lemma 9.1 follows by dominated
convergence. �
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