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Abstract

The paper establishes a functional version of the Hoeffding combinatorial central limit theorem.
First, a pre-limiting Gaussian process approximation is defined, and is shown to be at a distance
of the order of the Lyapounov ratio from the original random process. Distance is measured by
comparison of expectations of smooth functionals of the processes, and the argument is by way
of Stein’s method. The pre-limiting process is then shown, under weak conditions, to converge
to a Gaussian limit process. The theorem is used to describe the shape of random permutation
tableaux.
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1 Introduction

Let a
(n)

0 := (a(n)0 (i, j), 1 ≤ i, j ≤ n), n ≥ 1, be a sequence of real matrices. Hoeffding’s (1951) com-
binatorial central limit theorem asserts that if π is a uniform random permutation of {1,2, . . . , n},
then, under appropriate conditions, the distribution of the sum

S
(n)

0 :=
n∑

i=1

a
(n)

0 (i,π(i)),

when centered and normalized, converges to the standard normal distribution. The centering is
usually accomplished by replacing a

(n)

0 (i, j) with

ã(n)(i, j) := a
(n)

0 (i, j)− ā
(n)

0 (+, j)− ā
(n)

0 (i,+)+ ā
(n)

0 (+,+),

where

ā
(n)

0 (+, j) := n−1
n∑

i=1

a0(i, j); ā
(n)

0 (i,+) := n−1
n∑

j=1

a0(i, j);

ā
(n)

0 (+,+) := n−2
n∑

i=1

a0(i, j).

This gives eS(n) = S
(n)

0 −ES
(n)

0 , and the variance Var eS(n) = Var S
(n)

0 is then given by

{s̃(n)(a)}2 := (n− 1)−1
n∑

i, j=1

{ã(n)(i, j)}2.

Bolthausen (1984) proved the analogous Berry–Esseen theorem: that, for any n× n matrix a,

sup
x∈R
|P[S0−m(a)≤ xs̃(a)]−Φ(x)| ≤ CeΛ(a),

for a universal constant C , where Φ denotes the standard normal distribution function,

S0 :=
n∑

i=1

a0(i,π(i)), m(a) := n−1
n∑

i, j=1

a0(i, j) = ES0,

s̃2(a) := (n− 1)−1
n∑

i, j=1

ã2(i, j) = Var S, (1.1)

(we tacitly assume n≥ 2 when necessary) and

eΛ(a) :=
1

ns̃3(a)

n∑

i, j=1

|ã(i, j)|3

is the analogue of the Lyapounov ratio.

In this paper, we begin by proving a functional version of Bolthausen’s theorem, again with an
error expressed in terms of a Lyapounov ratio. When centering the functional version S0(t) :=
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∑⌊nt⌋
i=1 a0(i,π(i)), 0≤ t ≤ 1, it is however no longer natural to make the double standardization that

is used to derive ã from a0. Instead, we shall at each step center the random variables a0(i,π(i))
individually by their means ā0(i,+). Equivalently, in what follows, we shall work with matrices a

satisfying ā(i,+) = 0 for all i, but with no assumption as to the value of ā(+, j). For example, if we
have a0(i, j) = b(i)+ c( j), then ã(i, j) = 0 for all i, j, and hence S0 = ES0 = nā0(+,+) = n( b̄+ c̄) is
a.s. constant. However, we are interested instead in

S(t) :=
⌊nt⌋∑

i=1

{a0(i,π(i))− ā0(i,+)},

giving S(t) =
∑⌊nt⌋

i=1 {c(π(i))− c̄}, a non-trivial process with a Brownian bridge as natural approxi-
mation.

We thus, throughout the paper, define the matrix a by

a(i, j) := a0(i, j)− ā0(i,+), (1.2)

so that ā(i,+) = 0. Correspondingly, we define

S(t) :=
⌊nt⌋∑

i=1

a(i,π(i)) = S0(t)−ES0(t).

We then normalize by a suitable factor s(a)> 0, and write

Y (t) := s(a)−1S(t) = s(a)−1�S0(t)−ES0(t)
�
; (1.3)

this can equivalently be expressed as

Y := Y (π) :=
1

s(a)

n∑

i=1

a(i,π(i))Ji/n, (1.4)

where Ju(t) := 1[u,1](t). In Theorem 2.1, we approximate the random function Y by the Gaussian
process

Z :=
n∑

i=1

WiJi/n, (1.5)

in which the jointly Gaussian random variables (Wi, 1 ≤ i ≤ n) have zero means and covariances
given by

Var Wi =
1

ns2(a)

n∑

l=1

a2(i, l) =: σii;

Cov (Wi,Wj) = −
1

n(n− 1)s2(a)

n∑

l=1

a(i, l)a( j, l) =: σi j , i 6= j.

(1.6)

A simple calculation shows that Cov
�
a(i,π(i)), a( j,π( j))

�
= s2(a)σi j for all i, j, and thus the covari-

ance structures of the processes Y and Z are identical. The error in the approximation is expressed
in terms of a probability metric defined in terms of comparison of expectations of certain smooth
functionals of the processes, and it is bounded by a multiple of the Lyapounov ratio

Λ(a) :=
1

ns3(a)

n∑

i, j=1

|a(i, j)|3. (1.7)
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The normalization factor s(a) may be chosen in several ways. One obvious possibility is to choose
s(a) = s̃(a) defined in (1.1), which makes Var Y (1) = Var Z(1) = 1. At other times this is inappropri-
ate; for example, as seen above, s̃(a) may vanish, although we have a non-trivial Brownian bridge
asymptotic. A canonical choice of normalization is

s2(a) :=
1

n− 1

n∑

i, j=1

a2(i, j), (1.8)

or, for simplicity, n−1
∑n

i, j=1 a2(i, j), which makes no difference asymptotically. In the special case

where ā(+, j) = 0 for each j, as with the matrix ã, this gives s2(a) = s̃2(a), so Var Y (1) = Var Z(1) =
1, but in general this does not hold. In specific applications, some other choice may be more
convenient. We thus state our main results for an arbitrary normalization.

In most circumstances, such an approximation by Z = Z (n) depending on n is in itself not particularly
useful; one would prefer to have some fixed, and if possible well-known limiting approximation.
This requires making additional assumptions about the sequence of matrices a(n) as n → ∞. In
extending Bolthausen’s theorem, it is enough to assume that eΛ(n)(a)→ 0, since the approximation
is already framed in terms of the standard normal distribution. For functional approximation, even
if we had standardized to make Var Y (1) = 1, we would still have to make some further assumptions
about the a(n), in order to arrive at a limit. A natural choice would be to take a(n)(i, j) := α(i/n, j/n)

for a continuous function α: [0,1]2 → R which does not depend on n. We shall make a somewhat
weaker assumption, enough to guarantee that the covariance function of Z (n) converges to a limit,
which itself determines a limiting Gaussian process. The details are given in Theorem 3.3. Note that
we require that Λ(n)(a) log2 n→ 0 for process convergence, a slightly stronger condition than might
have been expected. This is as a result of the method of proof, using the approach in Barbour (1990),
in which the probability metric used for approximation is perhaps not strong enough to metrize
weak convergence in the Skorohod topology. Requiring the rate of convergence of Λ(n)(a) to zero
to be faster than 1/ log2 n is however enough to ensure that weak convergence also takes place: see
Proposition 3.1.

The motivation for proving the theorems comes from the study of permutation tableaux. In Sec-
tion 5, we show that the boundary of a random permutation tableau, in the limit as its size tends to
infinity, has a particular shape, about which the random fluctuations are approximately Gaussian.
The main tool in proving this is Theorem 3.3, applied to the matrices a

(n)

0 (i, j) := 1{i≤ j}.

2 The pre-limiting approximation

We wish to show that the distributions of the processes Y and Z of (1.4) and (1.5) are close. To
do so, we adopt the approach in Barbour (1990). We let M denote the space of all twice Fréchet
differentiable functionals f : D := D[0,1]→ R for which the norm

‖ f ‖M := sup
w∈D

{| f (w)|/(1+ ‖w‖3)}+ sup
w∈D

{‖D f (w)‖/(1+ ‖w‖2)} (2.1)

+ sup
w∈D

{‖D2 f (w)‖/(1+ ‖w‖)}+ sup
w,h∈D

{‖D2 f (w + h)− D2 f (w)‖/‖h‖}

is finite; here, ‖ · ‖ denotes the supremum norm on D, and the norm of a (symmetric) k-linear
form B on function in D is defined to be ‖B‖ := suph∈D : ‖h‖=1 |B[h(k)]|, where h(k) denotes the k-
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tuple (h,h, . . . ,h). Our aim is to show that |Eg(Y )− Eg(Z)| is small for all g ∈ M . We do this by
Stein’s method, observing that, for any g ∈ M , there exists a function f ∈ M satisfying

g(w)−Eg(Z) = (A f )(w) := −D f (w)[w] +

n∑

i, j=1

σi j D
2 f (w)[Ji/n, J j/n], (2.2)

and that
‖ f ‖M ≤ C0‖g‖M , (2.3)

where C0 does not depend on the choice of g: see, for example, Barbour (1990, (2.24), Re-
mark 7 after Theorem 1 and the remark following Lemma 3.1). Hence it is enough to prove that
|E(A f )(Y )| ≤ ǫ‖ f ‖M for all f ∈ M and for some small ǫ.

Theorem 2.1. Let Y = Y (π) and Z be defined as in (1.4) and (1.5), with π a uniform random

permutation of {1,2, . . . , n}, and Λ(a) as in (1.7), for some n× n matrix a(i, j) with ā(i,+) = 0 and

some s(a)> 0. Then there exists a universal constant K such that, for all f ∈ M,

|E(A f )(Y )| ≤ KΛ(a)‖ f ‖M .

Thus, for all g ∈ M,

|Eg(Y )−Eg(Z)| ≤ C0KΛ(a)‖g‖M ,

with C0 as in (2.3).

Proof. We begin by noting that

ED f (Y )[Y ] =
1

s(a)

n∑

i=1

E{X i D f (Y )[Ji/n]}, (2.4)

where X i := a(i,π(i)). We then write

E{X i D f (Y )[Ji/n]} =
1

n

n∑

l=1

a(i, l)E{D f (Y (π))[Ji/n] |π(i) = l}. (2.5)

Now realize π′ with the distribution L (π |π(i) = l) by taking π to be a uniform random permuta-
tion, and setting

π′ = π, if π(i) = l;

π′(i) = l; π′(π−1(l)) = j; π′(k) = π(k), k /∈ {i,π−1(l)},
if π(i) = j 6= l.

This gives
Y (π′) = Y (π) +∆il(π) =: Y ′(π), (2.6)

where

s(a)∆il(π) := {a(i, l)− a(i,π(i))}Ji/n+ {a(π−1(l),π(i))− a(π−1(l), l)}Jπ−1(l)/n, (2.7)
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and Y ′(π) has the distribution L (Y (π) |π(i) = l). Hence, putting (2.6) into (2.5), it follows that

1

s(a)
E{X i D f (Y )[Ji/n]} =

1

ns(a)

n∑

l=1

a(i, l)E{D f (Y (π) +∆il(π))[Ji/n]}. (2.8)

Using Taylor’s expansion, and recalling the definition (2.1) of ‖ · ‖M , we now have

|E{D f (Y +∆il)[Ji/n]} −E{D f (Y )[Ji/n]} −E{D2 f (Y )[Ji/n,∆il]}|
≤ ‖ f ‖ME‖∆il‖2, (2.9)

where, from (2.7),

‖∆il(π)‖ ≤ {s(a)}−1{|a(i, l)|+ |a(i,π(i))|+ |a(π−1(l),π(i))|+ |a(π−1(l), l)|}, (2.10)

and thus

‖∆il(π)‖2 ≤
4

{s(a)}2 {a
2(i, l) + a2(i,π(i)) + a2(π−1(l),π(i)) + a2(π−1(l), l)}.

Laborious calculation now shows that

1

ns(a)

n∑

i=1

n∑

l=1

|a(i, l)|E‖∆il‖2 ≤ C1
1

ns3(a)

n∑

i=1

n∑

l=1

|a(i, l)|3 = C1Λ(a), (2.11)

for a universal constant C1; for instance,

1

ns(a)

n∑

i=1

n∑

l=1

|a(i, l)|
4

s2(a)
E{a2(π−1(l),π(i))}

≤
4

ns3(a)

n∑

i=1

n∑

l=1

|a(i, l)|
n1

n
a2(i, l) +

1

n(n− 1)

∑

j 6=l

∑

k 6=i

a2(k, j)
o

≤
4

ns3(a)

n∑

i=1

n∑

l=1

n1
n
|a(i, l)|3+

1

n(n− 1)

∑

j 6=l

∑

k 6=i

1
3
{|a(i, l)|3+ 2|a(k, j)|3}

o

=
4

ns3(a)

n∑

i=1

n∑

l=1

|a(i, l)|3.

Thus, in view of (2.8), when evaluating the right hand side of (2.4), we have

ED f (Y )[Y ] (2.12)

=
1

ns(a)

n∑

i=1

n∑

l=1

a(i, l)
�
E{D f (Y )[Ji/n]}+E{D2 f (Y )[Ji/n,∆il]}

�
+η1,

where |η1| ≤ C1Λ(a)‖ f ‖M .

Now, because ā(i,+) = 0, the first term on the right hand side of (2.12) is zero, so we have only the
second to consider. We begin by writing

D2 f (Y )[Ji/n,∆il] = D2 f (Y )[Ji/n,E∆il] + D2 f (Y )[Ji/n,∆il −E∆il]. (2.13)
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From (2.7), it follows easily that

E{D2 f (Y )[Ji/n,E∆il]} = {s(a)}−1a(i, l)E{D2 f (Y )[J
(2)
i/n
]} (2.14)

−
1

(n− 1)s(a)

∑

r 6=i

a(r, l)E{D2 f (Y )[Ji/n, Jr/n]}.

Substituting this into (2.12) gives a contribution to ED f (Y )[Y ] of

φ1 :=
1

ns2(a)

n∑

i=1

n∑

l=1

a2(i, l)E{D2 f (Y )[J
(2)
i/n
]}

−
1

n(n− 1)s2(a)

n∑

i=1

n∑

l=1

a(i, l)
∑

r 6=i

a(r, l)E{D2 f (Y )[Ji/n, Jr/n]}

=

n∑

i=1

σiiE{D2 f (Y )[J
(2)
i/n
]}+

n∑

i=1

∑

r 6=i

σirE{D2 f (Y )[Ji/n, Jr/n]}, (2.15)

from (1.6). Thus, from (2.2), (2.12) and (2.13), and noting that (2.15) cancels the second term in
(2.2), we deduce that

|E(A f )(Y )| ≤ |η1|+ |η2|, (2.16)

where

|η2| ≤
1

ns(a)

n∑

i=1

n∑

l=1

|a(i, l)| |E{D2 f (Y )[Ji/n,∆il −E∆il]}|. (2.17)

It thus remains to find a bound for this last expression.

To address this last step, we write

E{D2 f (Y )[Ji/n,∆il −E∆il]}

=

n∑

j,k=1

p jkE{D2 f (Y )[Ji/n,∆il −E∆il] |π(i) = j,π−1(l) = k},

where p jk := P[π(i) = j,π−1(l) = k]; note that pl i = 1/n, and that p jk = 1/n(n−1) for j 6= l, k 6= i.
We then observe that, much as for (2.6),

Y ′′(π) := Y (π) +∆′il; jk(π) ∼ L (Y (π) |π(i) = j,π−1(l) = k), (2.18)

where, for j 6= l, k 6= i,

s(a)∆′il; jk(π) :=
�
[a(i, j)− a(i,π(i))]Ji/n+ [a(k, l)− a(k,π(k))]Jk/n

+ [a(π−1(l),π(k))− a(π−1(l), l)]Jπ−1(l)/n

+ [a(π−1( j),π(i))− a(π−1( j), j)]Jπ−1( j)/n

	
1{π(i) 6=l,π(k) 6= j}

+
�
[a(i, j)− a(i,π(i))]Ji/n+ [a(k, l)− a(k, j)]Jk/n

+ [a(π−1(l),π(i))− a(π−1(l), l)]Jπ−1(l)/n

	
1{π(i) 6=l,π(k)= j}

+
�
[a(i, j)− a(i, l)]Ji/n+ [a(k, l)− a(k,π(k))]Jk/n

+ [a(π−1( j),π(k))− a(π−1( j), j)]Jπ−1( j)/n

	
1{π(i)=l},

(2.19)
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and

s(a)∆′il;l i(π) := [a(i, l)− a(i,π(i))]Ji/n+ [a(π
−1(l),π(i))− a(π−1(l), l)]Jπ−1(l)/n. (2.20)

Then ∆il =∆il(π(i),π
−1(l)) is measurable with respect to σ(π(i),π−1(l)), and

n∑

j=1

n∑

k=1

p jkE{D2 f (Y )[Ji/n,∆il −E∆il] |π(i) = j,π−1(l) = k}

=

n∑

j=1

n∑

k=1

p jkE{D2 f (Y +∆′il; jk)[Ji/n,∆il( j, k)−E∆il]}

=

n∑

j=1

n∑

k=1

p jkE{D2 f (Y )[Ji/n,∆il( j, k)−E∆il]}

+

n∑

j=1

n∑

k=1

p jkE{D2 f (Y +∆′il; jk)[Ji/n,∆il( j, k)−E∆il]

− D2 f (Y )[Ji/n,∆il( j, k)−E∆il]}. (2.21)

Now, since
∑n

j=1

∑n
k=1 p jk∆il( j, k) = E∆il , the first term in (2.21) is zero, by bilinearity. For the

remainder, we have

‖D2 f (Y +∆′il; jk)[Ji/n,∆il( j, k)−E∆il]− D2 f (Y )[Ji/n,∆il( j, k)−E∆il]‖
≤ ‖ f ‖M‖∆′il; jk‖{‖∆il( j, k)‖+ ‖E∆il‖}, (2.22)

so that, from (2.17),

|η2| ≤ ‖ f ‖M
1

ns(a)

n∑

i=1

n∑

l=1

|a(i, l)|
n∑

j=1

n∑

k=1

p jkE‖∆′il; jk‖{‖∆il( j, k)‖+ ‖E∆il‖}. (2.23)

Here, from (2.7), (2.10) and (2.19), each of the norms can be expressed as 1/s(a) times a sum of
elements of |a|. Another laborious calculation shows that indeed

|η2| ≤ C2Λ(a)‖ f ‖M ,

and the theorem is proved. �

3 A functional limit theorem

The pre-limiting approximation is simpler than the original process, inasmuch as it involves only
jointly Gaussian random variables with prescribed covariances. However, if the matrix a can be
naturally imbedded into a sequence a(n) exhibiting some regularity as n varies, and if n is large, it
may be advantageous to look for an n-independent limiting approximation, in the usual sense of
weak convergence. Unfortunately, the approximation given in Theorem 2.1 is not naturally compat-
ible with weak convergence with respect to the Skorohod metric, and something extra is needed.
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With this in mind, we prove the following extension of Theorem 2 of Barbour (1990). To do so, we
introduce the class of functionals g ∈ M0 ⊂ M for which

‖g‖M0 := ‖g‖M + sup
w∈D

|g(w)|+ sup
w∈D

‖Dg(w)‖+ sup
w∈D

‖D2 g(w)‖ < ∞.

Proposition 3.1. Suppose that, for each n ≥ 1, the random element Yn of D := D[0,1] is piecewise

constant, with intervals of constancy of length at least rn. Let Zn, n ≥ 1, be random elements of D

converging weakly in D to a random element Z of C[0,1]. Then, if

|Eg(Yn)−Eg(Zn)| ≤ Cτn‖g‖M0 (3.1)

for each g ∈ M0, and if τn log2(1/rn)→ 0 as n→∞, then Yn→ Z in D.

Proof. First note that, by Skorohod’s representation theorem, we may assume that the processes Zn

and Z are all defined on the same probability space, in such a way that Zn→ Z in D a.s. as n→∞.
Since Z is continuous, this implies that ‖Zn− Z‖ → 0 a.s.

As in the proof of Barbour (1990, Theorem 2), it is enough to show that

P[Yn ∈ B]→ P[Z ∈ B] (3.2)

for all sets B of the form
⋂

1≤l≤L Bl , where Bl = {w ∈ D : ‖w − sl‖< γl} for sl ∈ C[0,1], and P[Z ∈
∂ Bl] = 0. To do so, we approximate the indicators I[Yn ∈ Bl] from above and below by functions
from a family g := g{ǫ, p,ρ,η, s} in M0, and use (3.1). We define

g{ǫ, p,ρ,η, s}(w) := φρ,η(hǫ,p(w − s)),

where

hǫ,p(y) :=
�∫ 1

0

(ǫ2+ y2(t))p/2 d t
�1/p

=: ‖(ǫ2+ y2)1/2‖p,

and φρ,η(x) := φ((x − ρ)/η), for φ : R+ → [0,1] non-increasing, three times continuously differ-
entiable, and such that φ(x) = 1 for x ≤ 0 and φ(x) = 0 for x ≥ 1. Note that each such function g

is in M0, and that ‖g‖M0 ≤ C ′p2ǫ−2η−3 for a constant C ′ not depending on ǫ, p,ρ,η, s, and that the
same is true for finite products of such functions, if the largest of the p’s and the smallest of the ǫ’s
and η’s is used in the norm bound.

Now, if x ∈ Bl , it follows that gl(x) = 1, for

gl := g{ǫγl , p,γl(1+ ǫ
2)1/2,η, sl},

for all ǫ, p,η. Hence, for all ǫ, p,η,

P

h
Yn ∈
⋂

1≤l≤L

Bl

i
≤ E
n L∏

i=1

gl(Yn)
o
≤ E
n L∏

i=1

gl(Zn)
o
+ Cτn C ′B p2(ǫγ)−2η−3, (3.3)

where γ :=min1≤l≤L γl . Then, by Minkowski’s inequality,

hǫ,p(Z − sl) ≤ hǫ,p(Zn− sl) + ‖Zn− Z‖p ≤ hǫ,p(Zn− sl) + ‖Zn− Z‖.
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Hence, if pn→∞ as n→∞ and ǫ is fixed,

lim inf
n→∞

hǫ,pn
(Zn− sl) ≥ lim inf

n→∞
{hǫ,pn

(Z − sl)−‖Zn− Z‖} = ‖(ǫ2+ |Z − sl |2)1/2‖

a.s. It thus follows that, if ‖Z − sl‖> γl , and if ηn→ 0 as n→∞, then

lim inf
n→∞
{hǫγl ,pn

(Zn− sl)−ηn} ≥ ‖(ǫ2γ2
l + |Z − sl |2)1/2‖ > γl(1+ ǫ

2)1/2

a.s., and so gln(Zn) = 0 for all n sufficiently large, where

gln := g{ǫγl , pn,γl(1+ ǫ
2)1/2,ηn, sl}.

Applying Fatou’s lemma to 1−
∏L

l=1 gln(Zn), and because P[Z ∈ ∂ Bl] = 0 for each l, we then have,

lim sup
n→∞
E

n L∏

i=1

gln(Zn)
o
≤ E
n

lim sup
n→∞

L∏

i=1

gln(Zn)
o

≤ E
� L∏

i=1

1{‖Z − sl‖ ≤ γl}
�
= P[Z ∈ B].

Thus, letting pn → ∞ and ηn → 0 in such a way that τnp2
nη
−3
n → 0, it follows from (3.3) that

lim supn→∞ P[Yn ∈ B]≤ P[Z ∈ B], and we have proved one direction of (3.2).

For the other direction, fix θ > 0 small, and let δ > 0 be such that, if ‖Yn− sl‖ ≥ γl , then

leb
�

t : |Yn(t)− sl | ≥ γl(1− θ )
	
≥
�
δ ∧ 1

2
rn

�
, (3.4)

where leb{·} denotes Lebesgue measure. Such a δ exists, because the collection (sl , 1 ≤ l ≤ L)

is uniformly equicontinuous, and because the functions Yn are piecewise constant on intervals of
length at least rn. Hence, for such Yn,

hǫγl ,p(Yn− sl) ≥ γl{ǫ2+ (1− θ )2}1/2
�
δ ∧ 1

2
rn

�1/p,

and thus g∗
l
(Yn) = 0, where, for any p and η,

g∗l := g
�
ǫγl , p,γl(ǫ

2+ (1− θ )2)1/2
�
δ ∧ 1

2
rn

�1/p −η,η, sl

	
.

Thus, for any p and h, I[Yn ∈ Bl]≥ g∗
l
(Yn), and hence

P

h
Yn ∈
⋂

1≤l≤L

Bl

i
≥ E
n L∏

i=1

g∗l (Yn)
o
≥ E
n L∏

i=1

g∗l (Zn)
o
− Cτn C ′B p2(ǫγ)−2η−3. (3.5)

Now suppose that ‖Z − sl‖ < γl(1 − θ ). Then there exists an α > 0 such that a.s. ‖Zn − sl‖ <
γl(1− θ )−α for all n sufficiently large. This in turn implies that

hǫγl ,pn
(Zn− sl) ≤ {ǫ2γ2

l + ‖Zn− sl‖2}1/2 ≤ γl{ǫ2+ (1− θ −αγ−1
l
)2}1/2

< γl{ǫ2+ (1− θ )2}1/2
�
δ ∧ 1

2
rn

�1/pn −ηn
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for all n large enough, if ηn→ 0 and pn→∞ in such a way that r
1/pn
n → 1. This in turn implies that

g∗
ln
(Zn) = 1 for all n large enough, where

g∗ln := g
�
ǫγl , pn,γl(ǫ

2+ (1− θ )2)1/2
�
δ ∧ 1

2
rn

�1/pn −ηn,ηn, sl

	
. (3.6)

Hence

E

n
lim inf

n→∞

L∏

i=1

g∗ln(Zn)
o
≥ P
h ⋂

1≤l≤L

�
‖Z − sl‖< γl(1− θ )

	i
. (3.7)

Applying Fatou’s lemma, and recalling (3.5), we now have a.s.

lim inf
n→∞
P

h
Yn ∈
⋂

1≤l≤L

Bl

i
≥ lim inf

n→∞
E

n L∏

i=1

g∗ln(Zn)
o
≥ E
n

lim inf
n→∞

L∏

i=1

g∗ln(Zn)
o

, (3.8)

provided that also τnp2
nη
−3
n → 0: this can be arranged by judicious choice of pn →∞ and ηn → 0

if, as assumed, τn log2(1/rn) → 0. Hence, since θ was chosen arbitrarily, it follows from (3.7)
and (3.8) that

lim inf
n→∞
P[Yn ∈ B]≥ P[Z ∈ B],

and the theorem is proved. �

Note that, in Barbour (1990, Theorem 2), restricting to functions g satisfying (2.32) of that paper is
not permissible: the bound (3.1) is needed for functions in M0 that do not necessarily satisfy (2.32).

Remark 3.2. The assumption that Yn is piecewise constant can be relaxed to Yn being piecewise
linear, with intervals of linearity of length at least rn; in particular, this allows processes Yn obtained
by linear interpolation. The only difference in the proof is that, if ‖Yn − sl‖ ≥ γl , then |Yn(t0) −
sl(t0)| > (1− θ/4)γl for some t0. Thus, by the assumption on Yn and the continuity of sl , there
exists an interval I0 of length at least ln := 1

2
rn∧δ, with t0 as an endpoint, on which Yn is linear and

|sl(t)−sl(t0)|< θγl/4. A simple geometrical argument now shows that |Yn(t)−sl(t0)|> (1−θ/2)γl

in a subinterval of length at least θ ln/8, at one or other end of I0. Hence, (3.4) can be replaced by

leb
�

t : |Yn(t)− sl | ≥ γl(1− θ )
	
≥ θ

16

�
δ ∧ rn

�
,

and the rest of the proof is the same.

We now turn to proving a functional limit theorem for the sums derived from a sequence of matri-
ces a(n), n≥ 1. Supposing that s(n)(a)> 0, we define functions

fn(t) :=
1

n(s(n)(a))2

⌊nt⌋∑

i=1

n∑

l=1

(a(n)(i, l))2;

gn(t,u) :=
1

(ns(n)(a))2

⌊nt⌋∑

i=1

⌊nu⌋∑

j=1

n∑

l=1

a(n)(i, l)a(n)( j, l),

(3.9)

for 0 ≤ t,u ≤ 1. Note that if we choose s(n)(a) by (1.8), then fn(1) = (n− 1)/n→ 1. Conversely,
if fn(1) converges to a limit c > 0, then s(n)(a) differs from the value in (1.8) only by a factor
c−1/2+ o(1).
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Theorem 3.3. Suppose that fn → f and gn → g pointwise, with f continuous, and that

Λ(n)(a) log2 n → 0. Then there exists a zero mean continuous Gaussian process Z on [0,1] with

covariance function given by

Cov (Z(t), Z(u)) = σ(t,u) := f (t ∧ u)− g(t,u), (3.10)

and Yn→ Z in D[0,1].

Proof. Fix n ≥ 2. We begin by realizing the random variables W
(n)

i
as functions of a collection

(X il , i, l ≥ 1) of independent standard normal random variables. Writing X l := n−1
∑n

i=1 X il , we set

W
(n)

il
:=

1

s(n)(a)
p

n− 1
a(n)(i, l)(X il − X l); W

(n)

i
:=

n∑

l=1

W
(n)

il
. (3.11)

Direct calculation shows that, with δi j the Kronecker delta,

Cov (W (n)

i
,W (n)

j
) =

n∑

l=1

Cov (W (n)

il
,W (n)

jl
) (3.12)

=

n∑

l=1

1

(n− 1)(s(n)(a))2
a(n)(i, l)a(n)( j, l)(δi j − n−1),

in accordance with (1.6), so we can set

Zn :=
n∑

i=1

W
(n)

i
Ji/n. (3.13)

Now Theorem 2.1 shows that |E{g(Yn)− g(Zn)}| ≤ CΛ(n)(a)‖g‖M0 for any g ∈ M0; furthermore, the
process Yn is piecewise constant on intervals of lengths 1/n, and, by assumption, Λ(n)(a) log2 n→ 0.
Hence, in order to apply Proposition 3.1, it is enough to show that Zn→ Z for a continuous Gaussian
process.

Write Zn = Z (1)n − Z (2)n , where

Z (1)n (t) :=
1

s(n)(a)
p

n− 1

⌊nt⌋∑

i=1

n∑

l=1

a(n)(i, l)X il ,

Z (2)n (t) :=
1

s(n)(a)
p

n− 1

⌊nt⌋∑

i=1

n∑

l=1

a(n)(i, l)X l .

(3.14)

The process Z (1)n is a Gaussian process with independent increments, and can be realized as W ( f̃n(·)),
where W is a standard Brownian motion and f̃n(t) := nfn(t)/(n − 1). Now f is continuous, by
assumption, and each f̃n is non-decreasing, so f̃n → f uniformly on [0,1], and hence W ( f̃n(·)) →
W ( f (·)) in D[0,1]. Since the latter process is continuous, it follows that the sequence Z (1)n is C-tight
in D[0,1].
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To show that Z (2)n is also C-tight, we use criteria from Billingsley (1968). For 0 ≤ t ≤ u ≤ 1, it
follows from (3.14) and Hölder’s inequality that

E|Z (2)n (u)− Z (2)n (t)|
2 =

1

(n− 1)(s(n)(a))2

n∑

l=1

� ⌊nu⌋∑

i=⌊nt⌋+1

a(n)(i, l)
�2 1

n

≤
1

n(n− 1)(s(n)(a))2
(⌊nu⌋ − ⌊nt⌋)

n∑

l=1

⌊nu⌋∑

i=⌊nt⌋+1

(a(n)(i, l))2

≤ fn(1)
⌊nu⌋ − ⌊nt⌋

n− 1
.

Hence, since Z (2)n is Gaussian, we have

E|Z (2)n (u)− Z (2)n (t)|
4 = 3(E|Z (2)n (u)− Z (2)n (t)|

2)2 ≤ 3
�

fn(1)
⌊nu⌋ − ⌊nt⌋

n− 1

�2
. (3.15)

Thus, if 0≤ t ≤ v ≤ u≤ 1 and u− t ≥ 1/n, it follows that

E

¦
|Z (2)n (v)− Z (2)n (t)|

2|Z (2)n (u)− Z (2)n (v)|
2
©

≤
Æ
E|Z (2)n (v)− Z

(2)
n (t)|4E|Z (2)n (u)− Z

(2)
n (v)|4

≤ 3 f 2
n (1)
�⌊nv⌋ − ⌊nt⌋

n− 1

⌊nu⌋ − ⌊nv⌋
n− 1

�
≤ 12 f 2

n (1)(u− t)2; (3.16)

the inequality is immediate for u− t < 1/n, since then ⌊nv⌋ ∈ {⌊nt⌋, ⌊nu⌋}.
Now, for any 0≤ t ≤ u≤ 1, we have

Cov (Z (2)n (t), Z (2)n (u)) =
n

n− 1
gn(t,u) → g(t,u).

Hence there exists a zero mean Gaussian process Z (2) with covariance function g, and the finite
dimensional distributions of Z (2)n converge to those of Z (2). By (3.15) and Fatou’s lemma, E|Z (2)(u)−
Z (2)(t)|4 ≤ 3 f 2

n (1)(u− t)2 for any 0≤ t ≤ u≤ 1, so that, from Billingsley (1968, Theorem 12.4), we
may assume that Z (2) ∈ C[0,1]. From (3.16) and Billingsley (1968, Theorem 15.6), it now follows
that Z (2)n → Z (2) in D[0,1]. Thus Z (2)n is C-tight also.

Now, since both {Z (1)n } and {Z (2)n } are C-tight, so is their difference {Zn}. From (3.9) and (3.12), for
t,u ∈ [0,1],

Cov (Zn(t), Zn(u)) =
n

n− 1
fn(t ∧ u)−

n

n− 1
gn(t,u) → f (t ∧ u)− g(t,u),

so that the finite dimensional distributions of Zn converge to those of a random element Z of
C[0,1] with covariance function σ(t,u), as required. �
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4 Rate of convergence

Under more stringent assumptions, the approximation of Zn by Z can be made sharper. To start
with, note that it follows from the representation (3.11) and (3.13) that Zn can be written as a two
dimensional stochastic integral

Zn(t) =
n

s(n)(a)
p

n− 1

∫

In(t)×I

αn(v, w)K(dv, dw) (4.1)

with respect to a Kiefer process K , where In(t) := [0, n−1⌊nt⌋], I := [0,1] and
αn(v, w) := a(n)(⌈nv⌉, ⌈nw⌉). Recall that the Kiefer process K has covariance function
Cov (K(v1, w1), K(v2, w2)) = (v1∧ v2− v1v2)(w1∧w2) and can be represented in the form K(v, w) =

W (v, w)− vW (1, w), where W is the two-dimensional Brownian sheet (Shorack & Wellner 1986, (5)
p. 30 and Exercise 12, p. 32). Thus K is like a Brownian bridge in v, and a Brownian motion in w.

In this section, we let s(a(n)) be given by (1.8). Hence if, for example, the functions αn converge
in L2 to a square integrable limit α (not a.e. 0), then,

n− 1

n2 {s
(n)(a)}2 = ‖αn‖22 → σ

2
a :=

∫ 1

0

dv

∫ 1

0

dwα2(v, w) = ‖α‖22,

and the limiting process Z can be represented as

Z(t) = σ−1
a

∫

[0,t]×I

α(v, w)K(dv, dw), (4.2)

enabling a direct comparison between Zn and Z to be made. Since αn→L2
α, it follows that

fn(t)→ f (t) := σ−2
a

∫ t

0

dv

∫ 1

0

dwα2(v, w);

gn(t,u)→ g(t,u) := σ−2
a

∫ t

0

dv

∫ u

0

d x

∫ 1

0

dwα(v, w)α(x , w),

(4.3)

with f continuous, as required for Theorem 3.3, and that Z has covariance function σ(t,u) as
defined in (3.10). For the following lemma, we work under silghtly stronger assumptions.

Lemma 4.1. Suppose that αn → α in L2, where α is bounded and not a.e. 0, and that, for some

0< β ≤ 2,

|g(t, t) + g(u,u)− 2g(t,u)| ≤ C2
g |u− t|β , 0≤ t ≤ u≤ 1. (4.4)

Define α+ := ‖α‖∞/‖α‖2 <∞ and ǫn(v, w) := ‖α‖−1
2 {αn(v, w)−α(v, w)}. Then, for any r > 0, there

is a constant c(r) such that

P
�

sup
t∈I

|Zn(t)− Z(t)|> c(r)
�
‖ǫn‖2+ (α++ Cg)n

−(β∧1)/2	plog n
�
≤ n−r ,

where Z is as defined in (4.2).
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Proof. Define ǫ̃n(v, w) := n

s(n)(a)
p

n−1
αn(v, w) − σ−1

a α(v, w). We start by considering t of the form

i/n, 1≤ i ≤ n, so that

Zn(t)− Z(t) =

∫

[0,t]×I

ǫ̃n(v, w)K(dv, dw).

From this and the representation K(v, w) = W (v, w)− vW (1, w), it follows that maxt∈I E{Zn(t)−
Z(t)}2 ≤ ‖ǫ̃n‖22, and hence, from the Borell–TIS maximal inequality for Gaussian processes (Adler
and Taylor 2007, Theorem 2.1.1), we have

P

h
max

t∈n−1{1,2,...,n}

���
∫

[0,t]×I

ǫ̃n(v, w)K(dv, dw)

���> c1(r)‖ǫ̃n‖2
p

log n
i
≤ 1

2
n−r ,

if c1(r) is chosen large enough. However,

ǫ̃n =
αn

‖αn‖2
−
α

‖α‖2
,

from which it follows that
‖ǫ̃n‖2 ≤ 2‖ǫn‖2.

It thus remains to consider the differences Zn(t)− Z(t) for t not of the form i/n. Between n−1⌊nt⌋
and t, the process Zn remains constant, whereas Z changes; hence it is enough to control the
maximal fluctuation of Z over intervals of the form [(i − 1)/n, i/n], 1 ≤ i ≤ n. Here, we use the
Fernique–Marcus maximal inequality for Gaussian processes (Leadbetter et al. 1983, Lemma 12.2.1),
together with the inequality

|σ(u,u) +σ(t, t)− 2σ(t,u)| ≤ C2
g |t − u|β + (α+)2|t − u|,

to give the bound

P

�
max
1≤i≤n

sup
i−1

n
≤v≤ i

n

|Z(v)− Z((i− 1)/n)|> c2(r)(Cg +α
+)n−(β∧1)/2
p

log n

�
≤ 1

2
n−r ,

if c2(r) is chosen large enough, and the proof is now complete. �

Note that, under the conditions of Lemma 4.1, the requirements for Theorem 3.3 are fulfilled,
provided that Λ(n)(a)→ 0 fast enough. This is true if also, for instance, for some c <∞, ‖αn‖∞ ≤
c‖α‖∞ for all n, since then Λ(n)(a) ≤ 2cα+n−1/2 for all n large enough. Combining Theorems 2.1
and 3.3 with Lemma 4.1 then easily gives the following conclusions.

Theorem 4.2. Under the conditions of Lemma 4.1, and if also ‖αn‖∞/‖α‖∞ is bounded, then Yn→d Z

in D[0,1], for Z as defined in (4.2), and, for any functional g ∈ M0,

|Eg(Yn)−Eg(Z)|
≤ C
�
Λ(n)(a) + n−1+ {‖ǫn‖2+ (α++ Cg)n

−(β∧1)/2}
p

log n
	
‖g‖M0 ,

for some constant C.
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Proof. We note that

|Eg(Yn)−Eg(Z)| ≤ |Eg(Yn)−Eg(Zn)|+E|g(Zn)− g(Z)|.

The first term is bounded using Theorem 2.1, whereas, for any a > 0,

E|g(Zn)− g(Z)| ≤ 2 sup
w∈D

|g(w)|P[‖Zn− Z‖∞ > a] + a sup
w∈D

‖Dg(w)‖

≤ ‖g‖M0
{2P[‖Zn− Z‖∞ > a] + a},

and the theorem follows by taking a = c(1)
�
‖ǫn‖2 + (α+ + Cg)n

−(β∧1)/2	plog n and applying
Lemma 4.1 with r = 1. �

5 The shape of permutation tableaux

We begin by studying the number of weak exceedances in a uniform random permutation π on
{1,2, . . . , n}; we shall suppress the index n where possible. The number of weak exceedances is

defined to be the sum
∑n

i=1 Ii , where Ii := 1{π(i)≥i}. The process S0(t) :=
∑⌊nt⌋

i=1 Ii is thus of the kind
studied in the introduction, with a0(i, j) := 1{i≤ j}. Simple calculations show that EIi = ā0(i,+) =
(n− i + 1)/n, and thus

a(i, j) = a(n)(i, j) = 1{i≤ j}− 1+ (i − 1)/n, (5.1)

ES0(k/n) =
k(2n− k+ 1)

2n
. (5.2)

Hence, as n→∞,

ES0(t) = nt(1− t/2) +O(1). (5.3)

Further, although we will not need it, for i < j,

E{Ii | I j = 1} =
n− i

n− 1
, E{Ii I j} =

(n− i)(n− j + 1)

(n− 1)n
,

which makes it possible to calculate variances and covariances exactly. Higher moments can be
computed exactly, too.

We now turn to the approximation of S(t) := S0(t)−ES0(t). We first note that

|a(i, j)−α(i/n, j/n)| ≤ n−1,

where α(t,u) := 1{t≤u} − 1 + t, so that |αn(t,u) − α(t,u)| ≤ 2n−1 for |t − u| > n−1, and that
|αn(t,u)−α(t,u)| ≤ 1 for all t,u ∈ I . Thus αn→ α in L2, with

‖α‖22 = 1/6; ‖ǫn‖22 ≤ 18/n; α+ =
p

6,
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and ‖αn‖∞/‖α‖∞ is bounded. Calculation based on (4.3) shows also that, for 0≤ t ≤ u≤ 1,

f (t) = 6

∫ t

0

x(1− x) d x = 3t2− 2t3;

g(t,u) = 6

∫ t

0

∫ u

0

{(1− x ∨ y)− (1− x)(1− y)} d xd y

= 3t2u− t3− 3
2

t2u2,

and that we can take β = 2 in (4.4). Hence we can apply Theorem 4.2, and defining Yn by (1.3)
with (1.8), conclude that Yn → Z in D[0,1], with convergence rate O

�
n−1/2
p

log n
�

as measured
by M0-functionals, where Z is the Gaussian process given by (4.2):

Z(t) =
p

6

∫

[0,t]×I

{1{v≤w} − 1+ v}K(dv, dw).

Note also that
Yn(t) =
p

6/n{S0(t)− nt(1− t/2)}+O(n−1/2), (5.4)

indicating that the approximation can be simplified, as in the following theorem.

Theorem 5.1. Let S
(n)

0 (t) :=
∑⌊nt⌋

i=1 I
(n)

i
, where I

(n)

i
:= 1{π(n)(i)≥i} and π(n) is a uniform random per-

mutation on {1,2, . . . , n}. Write µ(t) := t(1− t/2). Then

bYn := n−1/2 {S(n)0 − nµ} →d
bZ in D[0,1],

where bZ is a zero mean Gaussian process with covariance function bσ given by

bσ(t,u) = 1
6
σ(t,u) = 1

6
( f (t)− g(t,u)) = 1

2
t2(1− u+ 1

2
u2)− 1

6
t3,

0≤ t ≤ u≤ 1.

The number of weak exceedances of a permutation is one of a number of statistics that can be
deduced from the permutation tableaux introduced by Steingrímsson and Williams (2007). Such a
tableau is a Ferrers diagram (a representation of a partition of an integer n= r1+ · · ·+ rm with parts
in decreasing order, in which the i’th row consists of ri cells; here, rows of length 0 are permitted)
with elements from the set {0,1} assigned to the cells, under the following restrictions:

1. Each column of the rectangle contains at least one 1;

2. There is no 0 that has a 1 above it in the same column and a 1 to its left in the same row.

The length of a tableau is defined to be the sum of the numbers of its rows and columns, and the set
of possible tableaux of length n is in one-to-one correspondence with the permutations of n objects.
In particular, under the bijection between tableaux and permutations defined by Steingrímsson and
Williams (2007, Lemma 5), the lower right boundary, which consists of a sequence of n unit steps
down or to the left, has its i-th step down if I

(n)

i
= 1 and to the left if I

(n)

i
= 0. Hence the Theo-

rem 5.1 above, together with (5.3), provides information about the asymptotic shape of the lower
right boundary Γn of the tableau corresponding to a randomly chosen permutation. Let the upper
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left corner of the Ferrers diagram represent the origin with the x-axis to the right and the y-axis
vertically downward, so that the lower right boundary runs from (n−S0(1), 0) to (0,S0(1)): then Γn

consists of the set {(n− S0(1)− l + S0(l),S0(l)), 0 ≤ l ≤ n}, linearly interpolated. Hence, n−1Γn is
approximated within O(n−1) by the curve

{(1
2
[1− t2] + n−1/2 (bYn(t)− bYn(1)),

1
2
[1− (1− t)2] + n−1/2 bYn(t)), 0≤ t ≤ 1},

where bYn is as defined in Theorem 5.1.

Corollary 5.2. As n→∞, n−1Γn can be approximated in distribution by

�
(1

2
[1− t2] + n−1/2 (bZn(t)− bZn(1)),

1
2
[1− (1− t)2] + n−1/2 bZn(t)),

0≤ t ≤ 1
	
,

with an error o(n−1/2).

In particular, as can also be seen more directly, n−1Γn converges in probability to the deterministic
curve

�
(1

2
[1− t2], 1

2
[1− (1− t)2], 0≤ t ≤ 1

	
=
�
(x , y) ∈ [0,∞)2 : x + y = 3

4
− (x − y)2
	
,

an arc of a parabola.

Another statistic of interest is the area An of such a tableau, which is given by the formula
An :=
∑n

i=1 Ii

∑n
j=i+1(1− I j), again because of the bijection above. Direct computation yields the

expression

An =

n∑

i=1

S0(i/n)− 1
2
S2

0(1)−
1
2
S0(1)

=

n∑

i=1

{i(1− i/2n) +
p

n bYn(i/n)} − 1
2
{(n/2) +

p
n bYn(1)}2

− 1
2
{(n/2) +

p
n bYn(1)}

=
5n2− 2

24
+ n3/2
n

n−1
n∑

i=1

bYn(i/n)− 1
2
bYn(1)
o

− 1
2
{
p

n bYn(1) + nbYn(1)
2}.

This leads to the following limiting approximation.

Corollary 5.3. As n→∞,

n−3/2

�
An−

5n2

24

�
→d N (0, 1

144
).

Proof. By the continuous mapping theorem and Slutsky’s lemma, it is immediate from Theorem 5.1
that

n−3/2
�

An−
5n2

24

�
→d

∫ 1

0

bZ(t) d t − 1
2
bZ(1).
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Now the random variable {
∫ 1

0
bZ(t) d t − 1

2
bZ(1)} has mean zero and variance

∫ 1

0

∫ 1

0

bσ(t,u) du d t −
∫ 1

0

bσ(t, 1) d t + 1
4
bσ(1,1),

with bσ as in Theorem 5.1, and this gives the value 1/144. The corollary follows. �

Note also that the number of rows in the permutation tableau Rn = S0(1); hence Theorem 5.1
implies also, using bσ(1,1) = 1/12,

n−1/2
�

Rn− 1
2
n
�
→d N (0, 1

12
).

This, however, does not require the functional limit theorem; it follows by the arguments above from
Hoeffding’s (1951) combinatorial central limit theorem, and it can also be shown in other ways, see
Hitczenko and Janson (2009+).
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