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Abstract

Wiener process with instantaneous reflection in narrow tubes of width ε ≪ 1 around axis x is

considered in this paper. The tube is assumed to be (asymptotically) non-smooth in the follow-

ing sense. Let V ε(x) be the volume of the cross-section of the tube. We assume that 1

ε
V ε(x)

converges in an appropriate sense to a non-smooth function as ε ↓ 0. This limiting function can

be composed by smooth functions, step functions and also the Dirac delta distribution. Under

this assumption we prove that the x-component of the Wiener process converges weakly to a

Markov process that behaves like a standard diffusion process away from the points of disconti-

nuity and has to satisfy certain gluing conditions at the points of discontinuity.
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1 Introduction

For each x ∈ R and 0 < ε << 1, let Dεx be a bounded interval in R that contains 0. To be more

specific, let Dεx = [−V l,ε(x), V u,ε(x)], where V l,ε(x), V u,ε(x) are sufficiently smooth, nonnegative

functions, where at least one of the two is a strictly positive function. Consider the state space

Dε = {(x , y) : x ∈ R, y ∈ Dεx} ⊂ R2. Assume that the boundary ∂ Dε of Dε is smooth enough and

denote by γε(x , y) the inward unit normal to ∂ Dε. Assume that γε(x , y) is not parallel to the x-axis.

Denote by V ε(x) = V l,ε(x) + V u,ε(x) the length of the cross-section Dεx of the stripe. We assume

that Dε is a narrow stripe for 0 < ε << 1, i.e. V ε(x) ↓ 0 as ε ↓ 0. In addition, we assume that
1

ε
V ε(x) converges in an appropriate sense to a non-smooth function, V (x), as ε ↓ 0. The limiting

function can be composed for example by smooth functions, step functions and also the Dirac delta

distribution. Next, we state the problem and we rigorously introduce the assumptions on V ε(x) and

V (x). At the end of this introduction we formulate the main result.

Consider the Wiener process (X εt , Y εt ) in Dε with instantaneous normal reflection on the boundary

of Dε. Its trajectories can be described by the stochastic differential equations:

X εt = x +W 1
t +

∫ t

0

γε1(X
ε
s , Y εs )d Lεs

Y εt = y +W 2
t +

∫ t

0

γε2(X
ε
s , Y εs )d Lεs . (1)

Here W 1
t and W 2

t are independent Wiener processes in R and (x , y) is a point inside Dε; γε1 and

γε2 are both projections of the unit inward normal vector to ∂ Dε on the axis x and y respectively.

Furthermore, Lεt is the local time for the process (X εt , Y εt ) on ∂ Dε, i.e. it is a continuous, non-

decreasing process that increases only when (X εt , Y εt ) ∈ ∂ Dε such that the Lebesgue measure Λ{t >
0 : (X εt , Y εt ) ∈ ∂ Dε} = 0 (eg. see [12]).

Our goal is to study the weak convergence of the x−component of the solution to (1) as ε ↓ 0.

The y−component clearly converges to 0 as ε ↓ 0. The problem for narrow stripes with a smooth

boundary was considered in [4] and in [5]. There, the authors consider the case 1

ε
V ε(x) = V (x),

where V (x) is a smooth function. It is proven that X εt converges to a standard diffusion process X t ,

as ε ↓ 0. More precisely, it is shown that for any T > 0

sup
0≤t≤T

Ex |X εt − X t |2→ 0 as ε→ 0, (2)

where X t is the solution of the stochastic differential equation

X t = x +W 1
t +

∫ t

0

1

2

Vx(Xs)

V (Xs)
ds (3)

and Vx(x) =
dV (x)

d x
.

In this paper we assume that 1

ε
V ε(x) converges to a non-smooth function as described by (5)-(9)

below, as ε ↓ 0. Owing to the non smoothness of the limiting function, one cannot hope to obtain

a limit in mean square sense to a standard diffusion process as before. In particular, as we will see,

the non smoothness of the limiting function leads to the effect that the limiting diffusion may have
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points where the scale function is not differentiable (skew diffusion) and also points with positive

speed measure (points with delay).

For any ε > 0, we introduce the functions

uε(x) :=

∫ x

0

2
ε

V ε(y)
d y and vε(x) :=

∫ x

0

V ε(y)

ε
d y. (4)

Now, we are in position to describe the limiting behavior of 1

ε
V ε(x).

1. We assume that V l,ε, V u,ε ∈ C 3(R) for every fixed ε > 0 and that V ε(x) ↓ 0 as ε ↓ 0 (in

particular V 0(x) = 0). Moreover, there exists a universal positive constant ζ such that

1

ε
V ε(x)> ζ > 0 for every x ∈ R and for every ε > 0. (5)

2. We assume that the functions

u(x) := lim
ε↓0

uε(x), x ∈ R

v(x) := lim
ε↓0

vε(x), x ∈ R \ {0}, (6)

are well defined and the limiting function u(x) is continuous and strictly increasing whereas

the limiting function v(x) is right continuous and strictly increasing. In general, the function

u(x) can have countable many points where it is not differentiable and the function v(x) can

have countable many points where it is not continuous or not differentiable. However, here

we assume for brevity that the only non smoothness point is x = 0. In other words, we assume

that for x ∈ R \ {0}
V (x) =

∂ V ε(x)

∂ ε
|ε=0 > 0, (7)

and that the function V (x) is smooth for x ∈ R \ {0}.
In addition, we assume that the first three derivatives of V l,ε(x) and V u,ε(x) (and in conse-

quence of V ε(x) as well) behave nicely for |x | > 0 and for ε small. In particular, we assume

that for any connected subset K of R that is away from an arbitrarily small neighborhood of

x = 0 and for ε sufficiently small

|V l,ε
x (x)|+ |V

l,ε
x x (x)|+ |V

l,ε
x x x(x)|+ |V

u,ε
x (x)|+ |V

u,ε
x x (x)|+ |V

u,ε
x x x(x)| ≤ C0ε (8)

uniformly in x ∈ K . Here, C0 is a constant.

After the proof of the main theorem (at the end of section 2), we mention the result for the

case where there exist more than one non smoothness point.

3. Let gε(x) be a smooth function and let us define the quantity

ξε(gε) := sup
|x |≤1

[|
1

ε
[gεx(x)]

3|+ |gεx(x)g
ε
x x(x)|+ |εgεx x x(x)|]

We assume the following growth condition

ξε := ξε(V ε) + ξε(V l,ε) + ξε(V u,ε) ↓ 0, as ε ↓ 0. (9)
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Remark 1.1. Condition (9), i.e. ξε ↓ 0, basically says that the behavior of V l,ε(x) and V u,ε(x) in the

neighborhood of x = 0 can be at most equally bad as described by ξε(·) for ε small. This condition will

be used in the proof of Lemma 2.4 in section 4. Lemma 2.4 is essential for the proof of our main result.

In particular, it provides us with the estimate of the expectation of the time it takes for the solution to

(1) to leave the neighborhood of the point 0, as ε ↓ 0. At the present moment, we do not know if this

condition can be improved and this is subject to further research.

In this paper we prove that under assumptions (5)-(9), the X εt component of the process (X εt , Y εt )

converges weakly to a one-dimensional strong Markov process, continuous with probability one. It

behaves like a standard diffusion process away from 0 and has to satisfy a gluing condition at the

point of discontinuity 0 as ε ↓ 0. More precisely, we prove the following Theorem:

Theorem 1.2. Let us assume that (5)-(9) hold. Let X be the solution to the martingale problem for

A= {( f , L f ) : f ∈ D(A)} (10)

with

L f (x) = Dv Du f (x) (11)

and

D(A) = { f : f ∈ Cc(R), with fx , fx x ∈ C (R \ {0}),
[u′(0+)]−1 fx(0+)− [u′(0−)]−1 fx(0−) = [v(0+)− v(0−)]L f (0)

and L f (0) = lim
x→0+

L f (x) = lim
x→0−

L f (x)}. (12)

Then we have

X ε· −→ X · weakly in C0T , for any T <∞, as ε ↓ 0, (13)

where C0T is the space of continuous functions in [0, T].

�

As proved in Feller [2] the martingale problem for A, (10), has a unique solution X . It is an asym-

metric Markov process with delay at the point of discontinuity 0. In particular, the asymmetry is due

to the possibility of having u′(0+) 6= u′(0−) (see Lemma 2.5) whereas the delay is because of the

possibility of having v(0+) 6= v(0−) (see Lemma 2.4).

For the convenience of the reader, we briefly recall the Feller characterization of all one-dimensional

Markov processes, that are continuous with probability one (for more details see [2]; also [13]).

All one-dimensional strong Markov processes, that are continuous with probability one, can be

characterized (under some minimal regularity conditions) by a generalized second order differential

operator Dv Du f with respect to two increasing functions u(x) and v(x); u(x) is continuous, v(x)

is right continuous. In addition, Du, Dv are differentiation operators with respect to u(x) and v(x)

respectively, which are defined as follows:

Du f (x) exists if Du f (x+) = Du f (x−), where the left derivative of f with respect to u is defined as

follows:

Du f (x−) = lim
h↓0

f (x − h)− f (x)

u(x − h)− u(x)
provided the limit exists.
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The right derivative Du f (x+) is defined similarly. If v is discontinuous at y then

Dv f (y) = lim
h↓0

f (y + h)− f (y − h)

v(y + h)− v(y − h)
.

A more detailed description of these Markov processes can be found in [2] and [13].

Remark 1.3. Notice that if the limit of 1

ε
V ε(x), as ε ↓ 0, is a smooth function then the limiting process

X described by Theorem 1.2 coincides with (3).

We conclude the introduction with a useful example. Let us assume that V ε(x) can be decomposed

in three terms

V ε(x) = V ε1 (x) + V ε2 (x) + V ε3 (x), (14)

where the functions V εi (x), for i = 1,2,3, satisfy the following conditions:

1. There exists a strictly positive, smooth function V1(x)> 0 such that

1

ε
V ε1 (x)→ V1(x), as ε ↓ 0, (15)

uniformly in x ∈ R.

2. There exists a nonnegative constant β ≥ 0 such that

1

ε
V ε2 (x)→ βχ{x>0}, as ε ↓ 0, (16)

uniformly for every connected subset of R that is away from an arbitrary small neighborhood

of 0 and weakly within a neighborhood of 0. Here χA is the indicator function of the set A.

3.
1

ε
V ε3 (x)→ µδ0(x), as ε ↓ 0, (17)

in the weak sense. Here µ is a nonnegative constant and δ0(x) is the Dirac delta distribution

at 0.

4. Condition (9) holds.

Let us define α = V1(0). In this case the operator (11) and its domain of definition (12) for the

limiting process X become

L f (x) =

(

1

2
fx x(x) +

1

2

d

d x
[ln(V1(x))] fx(x), x<0

1

2
fx x(x) +

1

2

d

d x
[ln(V1(x) + β)] fx(x), x>0,

(18)

and

D(A) = { f : f ∈ Cc(R), with fx , fx x ∈ C (R \ {0}),
[α+ β] fx(0+)−α fx(0−) = [2µ]L f (0) (19)

and L f (0) = lim
x→0+

L f (x) = lim
x→0−

L f (x)}.

For instance, consider 0< δ = δ(ε)≪ 1 a small ε−dependent positive number and assume that:
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1. V l,ε(x) = 0 and V u,ε(x) = V ε(x) = V ε1 (x) + V ε2 (x) + V ε3 (x) where

2. V ε1 (x) = εV1(x), where V1(x) is any smooth, strictly positive function,

3. V ε2 (x) = εV2(
x

δ
), such that V2(

x

δ
)→ βχ{x>0}, as ε ↓ 0

4. V ε3 (x) =
ε

δ
V3(

x

δ
), such that 1

δ
V3(

x

δ
)→ µδ0(x), as ε ↓ 0

5. and with δ chosen such that ε

δ3 ↓ 0 as ε ↓ 0.

Then, it can be easily verified that (15)-(17) and (9) are satisfied. Moreover, in this case, we have

µ=
∫∞
−∞ V3(x)d x .

In section 2 we prove our main result assuming that we have all needed estimates. After the proof

of Theorem 1.2, we state the result in the case that limε↓0
1

ε
V ε(x) has more than one point of

discontinuity (Theorem 2.6). In section 3 we prove relative compactness of X εt (this follows basically

from [8]) and we consider what happens outside a small neighborhood of x = 0. In section 4 we

estimate the expectation of the time it takes for the solution to (1) to leave the neighborhood of

the point 0. The derivation of this estimate uses assumption (9). In section 5 we: (a) prove that

the behavior of the process after it reaches x = 0 does not depend on where it came from, and

(b) calculate the limiting exit probabilities of (X εt , Y εt ), from the left and from the right, of a small

neighborhood of x = 0. The derivation of these estimates is composed of two main ingredients. The

first one is the characterization of all one-dimensional Markov processes, that are continuous with

probability one, by generalized second order operators introduced by Feller (see [2]; also [13]).

The second one is a result of Khasminskii on invariant measures [11].

Lastly, we would like to mention here that one can similarly consider narrow tubes, i.e. y ∈ Dεx ⊂ Rn

for n> 1, and prove a result similar to Theorem 1.2.

2 Proof of the Main Theorem

Before proving Theorem 1.2 we introduce some notation and formulate the necessary lemmas. The

lemmas are proved in sections 3 to 5.

In this and the following sections we will denote by C0 any unimportant constants that do not

depend on any small parameter. The constants may change from place to place though, but they

will always be denoted by the same C0.

For any B ⊂ R, we define the Markov time τ(B) = τεx ,y(B) to be:

τεx ,y(B) = inf{t > 0 : X
ε,x ,y
t /∈ B}. (20)

Moreover, for κ > 0, the term τεx ,y(±κ) will denote the Markov time τεx ,y(−κ,κ). In addition, Eεx ,y

will denote the expected value associated with the probability measure Pεx ,y that is induced by the

process (X
ε,x ,y
t , Y

ε,x ,y
t ).

For the sake of notational convenience we define the operators

L− f (x) = Dv Du f (x) for x < 0

L+ f (x) = Dv Du f (x) for x > 0 (21)
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Furthermore, when we write (x , y) ∈ A× B we will mean (x , y) ∈ {(x , y) : x ∈ A, y ∈ B}.
Most of the processes, Markov times and sets that will be mentioned below will depend on ε. For

notational convenience however, we shall not always incorporate this dependence into the notation.

So the reader should be careful to distinguish between objects that depend and do not depend on ε.

Throughout this paper 0 < κ0 < κ will be small positive constants. We may not always mention the

relation between these parameters but we will always assume it. Moreover κη will denote a small

positive number that depends on another small positive number η.

Moreover, one can write down the normal vector γε(x , y) explicitly:

γε(x , y) =







1p
1+[V

u,ε
x (x)]

2
(V u,ε

x (x),−1), y = V u,ε(x)

1
p

1+[V
l,ε
x (x)]

2
(V l,ε

x (x), 1), y =−V l,ε(x).

Lemma 2.1. For any (x , y) ∈ Dε, let Qεx ,y be the family of distributions of X ε· in the space C [0,∞)
of continuous functions [0,∞) → R that correspond to the probabilities Pεx ,y . Assume that for any

(x , y) ∈ Dε the family of distributions Qεx ,y for all ε ∈ (0,1) is tight. Moreover suppose that for any

compact set K ⊆ R, any function f ∈ D(A) and for every λ > 0 we have:

Eεx ,y

∫ ∞

0

e−λt[λ f (X εt )− L f (X εt )]d t − f (x)→ 0, (22)

as ε ↓ 0, uniformly in (x , y) ∈ K × Dεx .

The measures Qεx ,y corresponding to Pεx ,y converge weakly to the probability measure Px that is induced

by X · as ε ↓ 0.

�

Lemma 2.2. The family of distributions Qεx ,y in the space of continuous functions [0,∞)→ R corre-

sponding to Pεx ,y for small nonzero ε is tight.

�

Lemma 2.3. Let 0 < x1 < x2 be fixed positive numbers and f be a three times continuously differen-

tiable function in [x1, x2]. Then for every λ > 0:

Eεx ,y[e
−λτε(x1,x2) f (X ε

τε(x1,x2)
) +

∫ τε(x1,x2)

0

e−λt[λ f (X εt )− L f (X εt )]d t]→ f (x),

as ε ↓ 0, uniformly in (x , y) such that (x , y) ∈ [x1, x2] × Dεx . The statement holds true for

τε(−x2,−x1) in place of τε(x1, x2) as well.

�
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Lemma 2.4. Define θ =
v(0+)−v(0−)

[u′(0+)]−1+[u′(0−)]−1 . For every η > 0 there exists a κη > 0 such that for every

0< κ < κη and for sufficiently small ε

|Eεx ,yτ
ε(±κ)− κθ | ≤ κη,

for all (x , y) ∈ [−κ,κ]× Dεx . Here, τε(±κ) = τε(−κ,κ) is the exit time from the interval (−κ,κ).

�

Lemma 2.5. Define p+ =
[u′(0+)]−1

[u′(0+)]−1+[u′(0−)]−1 and p− =
[u′(0−)]−1

[u′(0+)]−1+[u′(0−)]−1 . For every η > 0 there

exists a κη > 0 such that for every 0 < κ < κη there exists a positive κ0 = κ0(κ) such that for

sufficiently small ε

|Pεx ,y{X
ε
τε(±κ) = κ} − p+| ≤ η,

|Pεx ,y{X
ε
τε(±κ) = −κ} − p−| ≤ η,

for all (x , y) such that (x , y) ∈ [−κ0,κ0]× Dεx .

�

Proof of Theorem 1.2. We will make use of Lemma 2.1. The tightness required in Lemma 2.1 is the

statement of Lemma 2.2. Thus it remains to prove that (22) holds.

Let λ > 0, (x , y) ∈ Dε and f ∈ D(A) be fixed. In addition let η > 0 be an arbitrary positive number.

Choose 0< x∗ <∞ so that

Eεx ,y e−λτ̃
ε

<
η

‖ f ‖+λ−1‖λ f − L f ‖ (23)

for sufficiently small ε, where τ̃ε = inf{t > 0 : |X εt | ≥ x∗}. It is Lemma 2.2 that makes such a choice

possible. We assume that x∗ > |x |.
To prove (22) it is enough to show that for every η > 0 there exists an ε0 > 0, independent of (x , y),

such that for every 0< ε < ε0:

|Eεx ,y[e
−λτ̃ f (X ετ̃)− f (x) +

∫ τ̃

0

e−λt[λ f (X εt )− L f (X εt )]d t]|< η. (24)

Choose ε small and 0 < κ0 < κ small positive numbers. We consider two cycles of Markov times

{σn} and {τn} such that:

0= σ0 ≤ τ1 ≤ σ1 ≤ τ2 ≤ . . .

where:

τn = τ̃∧ inf{t > σn−1 : |X εt | ≥ κ}
σn = τ̃∧ inf{t > τn : |X εt | ∈ {κ0, x∗}} (25)

In figure 1 we see a trajectory of the process Zεt = (X
ε
t , Y εt ) along with its associated Markov chains

{Zεσn
} and {Zετn

}. We will also write z = (x , y) for the initial point.
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Figure 1: z = (x , y) is the initial point and Zεt = (X
ε
t , Y εt ).

We denote by χA the indicator function of the set A. The difference in (24) can be represented as

the sum over time intervals from σn to τn+1 and from τn to σn. It is equal to:

Eεz[e
−λτ̃ f (X ετ̃)− f (x) +

∫ τ̃

0

e−λt[λ f (X εt )− L f (X εt )]d t] = (26)

= Eεz

∞
∑

n=0

[e−λτ
ε
n+1 f (X ετε

n+1
)− e−λσ

ε
n f (Xσεn) +

∫ τεn+1

σεn

e−λt[λ f (X εt )− L f (X εt )]d t]] +

+ Eεz

∞
∑

n=1

[e−λσ
ε
n f (X εσεn

)− e−λτ
ε
n f (Xτεn) +

∫ σεn

τεn

e−λt[λ f (X εt )− L f (X εt )]d t]

The formally infinite sums are finite for every trajectory for which τ̃ < ∞. Assuming that we can

write the expectation of the infinite sums as the infinite sum of the expectations, the latter equality

becomes

Eεz[e
−λτ̃ f (X ετ̃)− f (x) +

∫ τ̃

0

e−λt[λ f (X εt )− L f (X εt )]d t] = (27)

=

∞
∑

n=0

Eεz[e
−λτεn+1 f (X ετε

n+1
)− e−λσ

ε
n f (Xσεn) +

∫ τεn+1

σεn

e−λt[λ f (X εt )− L f (X εt )]d t]] +

+

∞
∑

n=1

Eεz[e
−λσεn f (X εσεn

)− e−λτ
ε
n f (Xτεn) +

∫ σεn

τεn

e−λt[λ f (X εt )− L f (X εt )]d t]

The aforementioned calculation can be done if

∞
∑

n=0

Eεz[e
−λσnχσn<τ̃

],

∞
∑

n=1

Eεz[e
−λτnχτn<τ̃

]<∞.
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Indeed, by Markov property we have:

Eεz[e
−λσnχσn<τ̃

] ≤ Eεz[e
−λτnχτn<τ̃

] max
|x |=κ,y∈Dεx

φε1(x , y)≤

≤ Eεz[e
−λσn−1χσn−1<τ̃

] max
|x |=κ,y∈Dεx

φε1(x , y), (28)

where φε1(x , y) = Eεx ,y[e
−λσ1χ|X εσ1

|=κ0
]. So by induction we have

∞
∑

n=1

Eεz[e
−λτnχτn<τ̃

]≤
∞
∑

n=0

Eεz[e
−λσnχσn<τ̃

]≤
1

1−max|x |=κ,y∈Dεx
φε1(x , y)

. (29)

Clearly max|x |=κ,y∈Dεx
φε1(x , y)< 1 for κ ∈ (κ0, x∗). Therefore equality (27) is valid.

However we need to know how the sums in (29) behave in terms of κ. To this end we apply Lemma

2.3 to the function g that is the solution to

λg − L±g = 0 in x ∈ (±κ0,±x∗)

g(±κ0) = 1

g(±x∗) = 0 (30)

By Lemma 2.3 we know that g(x) approximates φε1(x , y) for |x | ∈ [κ0, x∗] as ε ↓ 0. The idea is to

bound φε1(x , y) using g(x). It follows by (30) (for more details see the related discussion in section

8.3 of [6], page 306) that there exists a positive constant C0 that is independent of ε and a positive

constant κ
′

such that for every κ < κ
′

and for all κ0 < κ
′
0(κ) we have g(±κ)≤ 1− C0κ.

So we conclude for ε and κ sufficiently small that

∞
∑

n=1

Eεz[e
−λτnχτn<τ̃

]≤
∞
∑

n=0

Eεz[e
−λσnχσn<τ̃

]≤
C0

κ
. (31)

By the strong Markov property with respect to the Markov times τn and σn equality (27) becomes

Eεz[e
−λτ̃ f (X ετ̃)− f (x) +

∫ τ̃

0

e−λt[λ f (X εt )− L f (X εt )]d t] =

=

∞
∑

n=0

Eεz[e
−λσnχσn<τ̃

Eε
Zε
σεn

[e−λτ
ε
1 f (X ετε

1
)− f (Xσεn) +

∫ τε1

0

e−λt[λ f (X εt )− L f (X εt )]d t]] +

+

∞
∑

n=1

Eεz[e
−λτnχτn<τ̃

EεZετn

[e−λσ
ε
1 f (X εσε

1
)− f (Xτεn) +

∫ σε1

0

e−λt[λ f (X εt )− L f (X εt )]d t]]

=

∞
∑

n=0

Eεz[e
−λσnχσn<τ̃

φε2(Z
ε
σεn
)] +

∞
∑

n=1

Eεz[e
−λτnχτn<τ̃

φε3(Z
ε
τn
)] (32)

where

φε2(x , y) = Eεx ,y[e
−λτ1 f (X ετ1

)− f (x) +

∫ τ1

0

e−λt[λ f (X εt )− L f (X εt )]d t] (33)

and

φε3(x , y) = Eεx ,y[e
−λσ1 f (X εσ1

)− f (x) +

∫ σ1

0

e−λt[λ f (X εt )− L f (X εt )]d t] (34)
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Because of (31), equality (32) becomes

|Eεx ,y[e
−λτ̃ f (X ετ̃)− f (x) +

∫ τ̃

0

e−λt[λ f (X εt )− L f (X εt )]d t]| ≤

≤ |φε2(x , y)|+
C0

κ

�

max
|x |=κ0,y∈Dεx

|φε2(x , y)|+ max
|x |=κ,y∈Dεx

|φε3(x , y)|
�

(35)

By Lemma 2.3 we get that max|x |=κ,y∈Dεx
|φε3(x , y)| is arbitrarily small for sufficiently small ε, so

C0

κ
max

|x |=κ,y∈Dεx

|φε3(x , y)| ≤
η

3
(36)

Therefore, it remains to consider the terms |φε2(x , y)|, where (x , y) is the initial point, and
1

κ
max|x |=κ0,y∈Dεx

|φε2(x , y)|.
Firstly, we consider the term |φε2(x , y)|, where (x , y) is the initial point. Clearly, if |x | > κ, then

Lemma 2.3 implies that |φε2(x , y)| is arbitrarily small for sufficiently small ε, so

|φε2(x , y)| ≤
η

3
. (37)

We consider now the case |x | ≤ κ. Clearly, in this case Lemma 2.3 does not apply. However, one can

use the continuity of f and Lemma 2.4, as the following calculations show. We have:

|φε2(x , y)| ≤ Eεx ,y | f (X
ε
τ1
)− f (x)|+ |λ‖ f ‖+ ‖λ f − L f ‖|Eεx ,y

∫ τ1

0

e−λt d t.

Choose now a positive κ′ so that

| f (x)− f (0)|<
η

6
, for all |x | ≤ κ′

and that

Eεx ,y

∫ τ1

0

e−λt d t ≤
η

6[λ‖ f ‖+ ‖λ f − L f ‖]

for sufficiently small ε and for all |x | ≤ κ′. Therefore, for κ≤ κ′ and for sufficiently small ε we have

|φε2(x , y)| ≤
η

3
, for all (x , y) ∈ [−κ,κ]× Dεx . (38)

Secondly, we consider the term 1

κ
max|x |=κ0,y∈Dεx

|φε2(x , y)|. Here, we need a sharper estimate be-

cause of the factor 1

κ
. We will prove that for (x , y) ∈ {±κ0} × Dε±κ0

and for ε sufficiently small

|φε2(x , y)| ≤ κ
η

3C0

. (39)

2021



For (x , y) ∈ {±κ0} × Dε±κ0
we have

|φε2(x , y)| = |Eεx ,y[e
−λτ1 f (X ετ1

)− f (x) +

∫ τ1

0

e−λt[λ f (X εt )− L f (X εt )]d t]|

≤ |Eεx ,y[ f (X
ε
τ1
)− f (x)− κθ L f (0)]|+

+|Eεx ,y[τ1 L f (0)−
∫ τ1

0

e−λt L f (X εt )d t]|+

+|Eεx ,y[κθ L f (0)−τ1 L f (0)|+

+|Eεx ,y[e
−λτ1 f (X ετ1

)− f (X ετ1
) +

∫ τ1

0

e−λtλ f (X εt )d t]|, (40)

where θ =
v(0+)−v(0−)

[u′(0+)]−1+[u′(0−)]−1 .

Since the one-sided derivatives of f exist, we may choose, a positive κη such that for every 0< κ1 ≤
κη

|
f (w)− f (0)

w
− fx(0+)|, |

f (−w)− f (0)

−w
− fx(0−)| ≤

η

C0

, (41)

for all w ∈ (0,κ1).

Furthermore, by Lemma 2.5 we can choose for sufficiently small κ2 > 0, a κ0(κ2) ∈ (0,κ2) such that

for sufficiently small ε

|Pεx ,y{X
ε
τε1(±κ2)

= ±κ2} − p±| ≤
η

C0

(42)

for all (x , y) such that (x , y) ∈ [−κ0,κ0]× Dεx .

In addition, by Lemma 2.4 we can choose for sufficiently small κη > 0, a κ3 ∈ (0,κη) such that for

sufficiently small ε

|Eεx ,yτ
ε
1(±κ3)− κ3θ | ≤ κ3

η

C0

(43)

for all (x , y) ∈ [−κ3,κ3]× Dεx .

Choose now 0< κ≤min{κ1,κ2,κ3} and 0< κ0 <min{κ0(κ2),κ}.
For sufficiently small ε and for all (x , y) ∈ {±κ0} × Dε±κ0

we have

|Eεx ,y f (X ετ1
)− f (x)− κθ L f (0)| ≤

≤ |p+[ f (κ)− f (0)] + p−[ f (−κ)− f (0)]− κθ L f (0)|+
+ |Pεx ,y{X

ε
τε1(±κ)

= κ} − p+|| f (κ)− f (0)|+
+ |Pεx ,y{X

ε
τε1(±κ)

=−κ} − p−|| f (−κ)− f (0)|+
+ | f (0)− f (x)| (44)

Because of (41) and the gluing condition p+ fx(0+)− p− fx(0−) = θ L f (0), the first summand on

the right hand side of (44) satisfies

|p+[ f (κ)− f (0)] + p−[ f (−κ)− f (0)]− κθ L f (0)| ≤

≤ |p+κ fx(0+)− p−κ fx(0−)− κθ L f (0)|+ κ
η

C0

=

= κ
η

C0

. (45)
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Moreover, for small enough x ∈ {±κ0,±κ} we also have that

| f (x)− f (0)| ≤ |x || fx(0±)|+ |x |η. (46)

The latter together with (42) imply that for sufficiently small ε the second summand on the right

hand side of (44) satisfies

|Pεx ,y{X
ε
τε1(±κ)

= κ} − p+|| f (κ)− f (0)| ≤ κ
η

C0

. (47)

A similar expression holds for the third summand on the right hand side of (44) as well. Therefore

(45)-(47) and the fact that we take κ0 to be much smaller than κ imply that for all (x , y) ∈ {±κ0}×
Dε±κ0

and for ε sufficiently small, we have

|Eεx ,y f (X ετ1
)− f (x)− κθ L f (0)| ≤ κ

η

C0

. (48)

The second term of the right hand side of (40) can also be bounded by κ
η

C0
for κ and ε sufficiently

small, as the following calculations show. For (x , y) ∈ {±κ0} × Dε±κ0
we have

|Eεx ,y[τ1 L f (0)−
∫ τ1

0

e−λt L f (X εt )d t]| ≤

≤ |L f (0)||Eεx ,y[τ1−
∫ τ1

0

e−λt d t]|+ sup
|x |≤κ
|L f (x)− L f (0)|Eεx ,yτ1 ≤ (49)

≤ λ|L f (0)|Eεx ,yτ1






sup

(x ,y)∈{±κ0}×Dε±κ0

Eεx ,yτ1






+ sup
|x |≤κ
|L f (x)− L f (0)|Eεx ,yτ1

Therefore, Lemma 2.4 (in particular (43)) and the continuity of the function L f give us for κ and ε

sufficiently small that

|Eεx ,y[τ1 L f (0)−
∫ τ1

0

e−λt L f (X εt )d t]| ≤ κ
η

C0

. (50)

The third term of the right hand side of (40) is clearly bounded by κ
η

C0
for ε sufficiently small by

Lemma 2.4. As far as the fourth term of the right hand side of (40) is concerned, one can use the

continuity of f together with Lemma 2.4.

The latter, (48), (50) and (40) finally give us that

1

κ
max

|x |=κ0,y∈Dεx

|φε2(x , y)]| ≤
η

3C0

. (51)

Of course, the constants C0 that appear in the relations above are not the same, but for notational

convenience they are all denoted by the same symbol C0.

So, we finally get by (51), (36), (37), (38) and (35) that

|Eεx ,y[e
−λτ̃ f (X ετ̃)− f (x) +

∫ τ̃

0

e−λt[λ f (X εt )− L f (X εt )]d t]| ≤ η. (52)

This concludes the proof of Theorem 1.2.
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In case limε↓0
1

ε
V ε(x) has more than one points of discontinuity, one can similarly prove the follow-

ing theorem. Hence, the limiting Markov process X may be asymmetric at some point x1, have delay

at some other point x2 or have both irregularities at another point x3.

Theorem 2.6. Let us assume that 1

ε
V ε(x) has a finite number of discontinuities, as described by (5)-

(9), at x i for i ∈ {1, · · · , m}. Let X be the solution to the martingale problem for

A= {( f , L f ) : f ∈ D(A)}

with

L f (x) = Dv Du f (x)

and

D(A) = { f : f ∈ Cc(R), with fx , fx x ∈ C (R \ {x1, · · · , xm})
[u′(x i+)]

−1 fx(x i+)− [u′(x i−)]−1 fx(x i−) = [v(x i+)− v(x i−)]L f (x i)

and L f (x i) = lim
x→x+

i

L f (x) = lim
x→x−

i

L f (x) for i ∈ {1, · · · , m}},

Then we have

X ε· −→ X · weakly in C0T , for any T <∞, as ε ↓ 0.

�

3 Proof of Lemmata 2.1, 2.2 and 2.3

Proof of Lemma 2.1. The proof is very similar to the proof of Lemma 8.3.1 in [6], so it will not be

repeated here.

Proof of Lemma 2.2. The tool that is used to establish tightness of Pε is the martingale-problem

approach of Stroock-Varadhan [15]. In particular we can apply Theorem 2.1 of [8]. The proof is

almost identical to the part of the proof of Theorem 6.1 in [8] where pre-compactness is proven for

the Wiener process with reflection in narrow-branching tubes.

Before proving Lemma 2.3 we introduce the following diffusion process. Let X̂ εt be the one-

dimensional process that is the solution to:

X̂ εt = x +W 1
t +

∫ t

0

1

2

V εx (X̂
ε
s )

V ε(X̂ εs )
ds, (53)

where V εx (x) =
dV ε(x)

d x
. The process X̂ ε is solution to the martingale problem for Âε = {( f , L̂ε f ) : f ∈

D(Âε)} with

L̂ε =
1

2

d2

d x2
+

1

2

V εx (·)
V ε(·)

d

d x
. (54)

and

D(Âε) = { f : f ∈ C 2
c (R)} (55)
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A simple calculation shows that

L̂ε f (x) = DvεDuε f (x).

where the uε(x) and vε(x) functions are defined by (4). This representation of uε(x) and vε(x) is

unique up to multiplicative and additive constants. In fact one can multiply one of these functions

by some constant and divide the other function by the same constant or add a constant to either of

them.

Using the results in [9] one can show (see Theorem 4.4 in [10]) that

X̂ ε· −→ X · weakly in C0T , for any T <∞, as ε ↓ 0, (56)

where X is the limiting process with operator defined by (10).

Proof of Lemma 2.3. We prove the lemma just for x ∈ [x1, x2]. Clearly, the proof for x ∈ [−x2,−x1]

is the same.

We claim that it is sufficient to prove that

|Eεx ,y[e
−λτε(x1,x2) f (X ε

τε(x1,x2)
) +

∫ τε(x1,x2)

0

e−λt[λ f (X εt )− L̂ε f (X εt )]d t]− f (x)| → 0, (57)

as ε ↓ 0, where L̂ε is defined in (54). The left hand side of (57) is meaningful since f is sufficiently

smooth for x ∈ [x1, x2].

We observe that:

|Eεx ,y[e
−λτε(x1,x2) f (X ε

τε(x1,x2)
) +

∫ τε(x1,x2)

0

e−λt[λ f (X εt )− L f (X εt )]d t]− f (x)|

≤ |Eεx ,y[e
−λτε(x1,x2) f (X ε

τε(x1,x2)
) +

∫ τε(x1,x2)

0

e−λt[λ f (X εt )− L̂ε f (X εt )]d t]− f (x)|

+|Eεx ,y

∫ τε(x1,x2)

0

e−λt[L f (X εt )− L̂ε f (X εt )]d t| (58)

Now we claim that

‖ L̂ε f − L f ‖[x1,x2]
→ 0, as ε ↓ 0, (59)

where for any function g we define ‖g‖[x1,x2]
= supx∈[x1,x2]

|g(x)|. This follows directly by our

assumptions on the function V ε(x). Therefore, it is indeed enough to prove (57).

By the Itô formula applied to the function e−λt f (x) we immediately get that (57) is equivalent to

|Eεx ,y[

∫ τε(x1,x2)

0

e−λu fx(X
ε
u)γ

ε
1(X

ε
u , Y εu )d Lεu −
∫ τε(x1,x2)

0

1

2
e−λu[ fx

V εx

V ε
](X εu)du]| → 0, (60)

as ε ↓ 0. We can estimate the left hand side of (60) as in Lemma 2.1 of [5]:

Consider the auxiliary function

vε(x , y) =
1

2
y2 fx(x)

V εx (x)

V ε(x)
+ y fx(x)

V u,ε
x (x)V

l,ε(x)− V l,ε
x (x)V

u,ε(x)

V ε(x)
. (61)

2025



It is easy to see that vε is a solution to the P.D.E.

vεy y(x , y) = fx(x)
V εx (x)

V ε(x)
, y ∈ Dεx

∂y vε(x , y)

∂ nε(x , y)
= − fx(x)

γε1(x , y)

|γε2(x , y)| , y ∈ ∂ Dεx , (62)

where nε(x , y) =
γε2(x ,y)

|γε2(x ,y)| and x ∈ R is a parameter.

If we apply Itô formula to the function e−λt vε(x , y) we get that e−λt vε(X εt , Y εt ) satisfies with proba-

bility one:

e−λt vε(X εt , Y εt ) = vε(x , y) +

∫ t

0

e−λs[
1

2
△ vε(X εs , Y εs )−λvε(X εs , Y εs )]ds

+

∫ t

0

e−λsvεx(X
ε
s , Y εs )dW 1

s +

∫ t

0

e−λsvεy(X
ε
s , Y εs )dW 2

s

+

∫ t

0

e−λsvεx(X
ε
s , Y εs )γ

ε
1(X

ε
s , Y εs )d Lεs

+

∫ t

0

e−λsvεy(X
ε
s , Y εs )γ

ε
2(X

ε
s , Y εs )d Lεs (63)

Since vε(x , y) satisfies (62) we have:

|Eεx ,y[

∫ τε(x1,x2)

0

e−λu fx(X
ε
u)γ

ε
1(X

ε
u , Y εu )d Lεu −
∫ τε(x1,x2)

0

1

2
e−λu[ fx

V εx

V ε
](X εu)du]| ≤

≤ |Eεx ,y e−λτ
ε(x1,x2)vε(X ε

τε(x1,x2)
, Y ε
τε(x1,x2)

)|+ |vε(x , y)|+

+ |Eεx ,y[

∫ τε(x1,x2)

0

e−λs[
1

2
vεx x(X

ε
s , Y εs )−λvε(X εs , Y εs )]ds]|+

+ |Eεx ,y[

∫ τε(x1,x2)

0

e−λsvεx(X
ε
s , Y εs )γ

ε
1(X

ε
s , Y εs )d Lεs ]| (64)

For any time t ∈ [0,τε(x1, x2)] the x-component of the process (X εt , Y εt ) satisfies x1 ≤ X εt ≤ x2, i.e.

it is far away from the point of discontinuity. Taking into account the latter and the definition of

vε(x , y) by (61) we get that the first three terms in the right hand side of (64) are bounded by ε2C0

for ε small enough. So, it remains to consider the last term, i.e. the integral in local time. First of

all it is easy to see that there exists a C0 > 0 such that

|Eεx ,y[

∫ τε(x1,x2)

0

e−λsvεx(X
ε
s , Y εs )γ

ε
1(X

ε
s , Y εs )d Lεs ]| ≤ ε

2C0E
ε
x ,y

∫ τε(x1,x2)

0

e−λtεd Lεt (65)

As far as the integral in local time on the right hand side of (65) is concerned, we claim that there

exists an ε0 > 0 and a C0 > 0 such that for all ε < ε0

Eεx ,y

∫ τε(x1,x2)

0

e−λtεd Lεt ≤ C0. (66)
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Hence, taking into account (65) and (66) we get that the right hand side of (64) converges to zero.

So the convergence (60) holds.

It remains to prove the claim (66). This can be done as in Lemma 2.2 of [5]. In particular, one

considers the auxiliary function

wε(x , y) = y2
1

V ε(x)
+ y

V l,ε(x)− V u,ε(x)

V ε(x)
.

It is easy to see that wε is a solution to the P.D.E.

wεy y(x , y) =
2

V ε(x)
, y ∈ Dεx

∂y wε(x , y)

∂ nε(x , y)
= −1, y ∈ ∂ Dεx , (67)

where nε(x , y) =
γε2(x ,y)

|γε2(x ,y)| and x ∈ R is a parameter.

The claim follows now directly by applying Itô formula to the function e−λt wε(x , y).

4 Proof of Lemma 2.4

Proof of Lemma 2.4. Let τ̂ε = τ̂ε(±κ) be the exit time of X̂ εt (see (53)) from the interval (−κ,κ).

Denote also by Êx the mathematical expectation related to the probability law induced by X̂
ε,x
t .

Let η be a positive number, κ > 0 be a small positive number and consider x0 with |x0| < κ and

y0 ∈ Dεx0
. We want to estimate the difference

|Eεx0,y0
τε(±κ)− Êεx0

τ̂ε(±κ)|.

As it can be derived by Theorem 2.5.1 of [3] the function φε(x , y) = Eεx ,yτ
ε(±κ) is solution to

1

2
△φε(x , y) = −1 in (x , y) ∈ (−κ,κ)× Dεx

φε(±κ, y) = 0

∂ φε

∂ γε
(x , y) = 0 on (x , y) ∈ (−κ,κ)× ∂ Dεx (68)

Moreover, φ̂ε(x) = Êεx τ̂
ε(±κ) is solution to

1

2
φ̂εx x(x) +

1

2

V εx (x)

V ε(x)
φ̂εx(x) = −1 in x ∈ (−κ,κ)

φ̂ε(±κ) = 0 (69)

Let f ε(x , y) = φε(x , y)− φ̂ε(x). Then f ε will satisfy

1

2
△ f ε(x , y) =

1

2

V εx (x)

V ε(x)
φ̂εx(x) in (x , y) ∈ (−κ,κ)× Dεx

f ε(±κ, y) = 0 (70)

∂ f ε

∂ γε
(x , y) = −φ̂εx(x)γ

ε
1(x , y) on (x , y) ∈ (−κ,κ)× ∂ Dεx
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By applying Itô formula to the function f ε and recalling that f ε satisfies (70) we get that

| f ε(x , y)| ≤ |Eεx ,y[

∫ τε(±κ)

0

φ̂εx(X
ε
u)γ

ε
1(X

ε
u , Y εu )d Lεu −
∫ τε(±κ)

0

1

2
[φ̂εx

V εx

V ε
](X εu)du]| (71)

We can estimate the right hand side of (71) similarly to the left hand side of (60) of Lemma 2.3 (see

also Lemma 2.1 in [5]). Consider the auxiliary function

wε(x , y) =
1

2
y2φ̂εx(x)

V εx (x)

V ε(x)
+ yφ̂εx(x)

V u,ε
x (x)V

l,ε(x)− V l,ε
x (x)V

u,ε(x)

V ε(x)
(72)

It is easy to see that w is a solution to the P.D.E.

wεy y(x , y) = φ̂εx(x)
V εx (x)

V ε(x)
, y ∈ Dεx

∂y wε(x , y)

∂ nε(x , y)
= −φ̂εx(x)

γε1(x , y)

|γε2(x , y)| , y ∈ ∂ Dεx , (73)

where nε(x , y) =
γε2(x ,y)

|γε2(x ,y)| and x ∈ R is a parameter.

Then if we apply Itô formula to the function wε(x , y) and recall that wε satisfies (73), we get an

upper bound for the right hand side of (71) that is the same to the right hand side of (64) with

λ = 0, vε replaced by wε and τε(x1, x2) replaced by τε(±κ). Namely, for (x , y) = (x0, y0), we have

the following

|Eεx0,y0
[

∫ τε(±κ)

0

φ̂εx(X
ε
u)γ

ε
1(X

ε
u , Y εu )d Lεu −
∫ τε(±κ)

0

1

2
[φ̂εx

V εx

V ε
](X εu)du]| ≤

≤ sup
(x ,y)∈{±κ}×Dε±κ

|wε(x , y)|+ sup
(x ,y)∈{x0}×Dεx0

|wε(x , y)|+ (74)

+ |Eεx0,y0

∫ τε(±κ)

0

1

2
wεx x(X

ε
s , Y εs )ds|+ |Eεx0,y0

∫ τε(±κ)

0

wεx(X
ε
s , Y εs )γ

ε
1(X

ε
s , Y εs )d Lεs |

Now one can solve (69) explicitly and get that for x ∈ [−κ,κ]

φ̂ε(x) =

∫ x

−κ

−2

V ε(y)

∫ y

−κ
V ε(z)dzd y + [

∫ κ

−κ
2

V ε(y)

∫ y

−κ V ε(z)dzd y
∫ κ

−κ
1

V ε(y)
d y

]

∫ x

−κ

1

V ε(y)
d y. (75)

Using (75) and the form of V ε(x) as described by (5)-(9) we get that the first two terms of the right

hand side of (74) can be made arbitrarily small for ε sufficiently small. For ε small enough the two

integral terms of the right hand side of (74) are bounded by C0ξ
εEεx0,y0

τε(±κ), where ξε is defined

in (9). The local time integral can be treated as in Lemma 2.2 of [5], so it will not be repeated

here (see also the end of the proof of Lemma 2.3). In reference to the latter, we mention that the

singularity at the point x = 0 complicates a bit the situation. However, assumption (9) allows one to

follow the procedure mentioned and derive the aforementioned estimate for the local time integral.

Hence, we have the following upper bound for f ε(x0, y0)

| f ε(x0, y0)| ≤ C0[κη+ ξ
εEεx0,y0

τε(±κ)]. (76)
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Moreover, it follows from (75) (see also [10]) that for η > 0 there exists a κη > 0 such that for

every 0< κ < κη, for sufficiently small ε and for all x with |x | ≤ κ

1

κ
|Êεx τ̂

ε(±κ)− κθ | ≤ η (77)

,where θ =
v(0+)−v(0−)

[u′(0+)]−1+[u′(0−)]−1 .

Therefore, since ξε ↓ 0 (by assumption (9)), (76) and (77) give us for sufficiently small ε that

1

κ
|Eεx0,y0

τε(±κ)− Êεx0
τ̂ε(±κ)| ≤ C0η.

The latter and (77) conclude the proof of the lemma.

5 Proof of Lemma 2.5

In order to prove Lemma 2.5 we will make use of a result regarding the invariant measures of the

associated Markov chains (see Lemma 5.2) and a result regarding the strong Markov character of

the limiting process (see Lemma 5.4 and the beginning of the proof of Lemma 2.5).

Of course, since the gluing conditions at 0 are of local character, it is sufficient to consider not the

whole domain Dε, but just the part of Dε that is in the neighborhood of x = 0. Thus, we consider

the process (X εt , Y εt ) in

Ξε = {(x , y) : |x | ≤ 1, y ∈ Dεx}

that reflects normally on ∂Ξε.

Recall that 0< κ0 < κ. Define the set

Γκ = {(x , y) : x = κ, y ∈ Dεκ} (78)

For notational convenience we will write Γ±κ = Γκ ∪ Γ−κ.

Define∆κ = Γ±κ∪Γ±(1−κ) and∆κ0
= Γ±κ0

∪Γ±(1−κ0)
. We consider two cycles of Markov times {τn}

and {σn} such that:

0= σ0 ≤ τ0 < σ1 < τ1 < σ2 < τ2 < . . .

where:

τn = inf{t ≥ σn : (X εt , Y εt ) ∈∆κ}
σn = inf{t ≥ τn−1 : (X εt , Y εt ) ∈∆κ0

} (79)

We will use the relations

µε(A) =

∫

∆κ

νκε (d x , d y)Eεx ,y

∫ τ1

0

χ[(X εt ,Y εt )∈A]d t

=

∫

∆κ0

νκ0
ε (d x , d y)Eεx ,y

∫ σ1

0

χ[(X εt ,Y εt )∈A]d t (80)
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and

νκε (B) =

∫

∆κ0

νκ0
ε (d x , d y)Pεx ,y[(X

ε
τ0

, Y ετ0
) ∈ B]

νκ0
ε (C) =

∫

∆κ

νκε (d x , d y)Pεx ,y[(X
ε
σ1

, Y εσ1
) ∈ C] (81)

between the invariant measures µε of the process (X εt , Y εt ) in Dε, νκε and ν
κ0
ε of the Markov chains

(X ετn
, Y ετn
) and (X εσn

, Y εσn
) on ∆κ and ∆κ0

respectively (see [11]; also [6]). It is clear that the first

invariant measure is, up to a constant, the Lebesgue measure on Dε.

Formula (80) implies the corresponding equality for the integrals with respect to the invariant mea-

sure µε. This means that if Ψ(x , y) is an integrable function, then

∫ ∫

R2

Ψ(x , y)µε(d x , d y) =

∫ ∫

Ξε
Ψ(x , y)d xd y

=

∫

∆κ

νκε (d x , d y)Eεx ,y

∫ τ1

0

Ψ(X εt , Y εt )d t

=

∫

∆κ0

νκ0
ε (d x , d y)Eεx ,y

∫ σ1

0

Ψ(X εt , Y εt )d t (82)

The following simple lemma will be used in the proof of Lemmata 5.2 and 5.4.

Lemma 5.1. Let 0 < x1 < x2, ψ be a function defined in [x1, x2] and φ be a function defined on x1

and x2. Then

lim
ε↓0
Eεx ,y[φ(X

ε
τ(x1,x2)

) +

∫ τ(x1,x2)

0

ψ(X εt )d t] = g(x),

uniformly in (x , y) ∈ [x1, x2]× Dεx and

g(x) =
u(x2)− u(x)

u(x2)− u(x1)
[φ(x1) +

∫ x

x1

(u(y)− u(x1))ψ(y)dv(y)]

+
u(x)− u(x1)

u(x2)− u(x1)
[φ(x2) +

∫ x2

x

(u(x2)− u(y))ψ(y)dv(y)]

A similar result holds for (x , y) ∈ [−x2,−x1]× Dεx .

Proof. This lemma is similar to Lemma 8.4.6 of [6], so we briefly outline its proof. First one proves

that Eεx ,yτ(x1, x2) is bounded in ε for ε small enough and for all (x , y) ∈ [x1, x2]× Dεx . The latter

and the proof of Lemma 2.3 show that in this case we can take λ = 0 in Lemma (2.3) and apply it

to the function g that is the solution to

Dv Du g(x) = −ψ(x), x1 < x < x2

g(x i) = φ(x i), i = 1,2.

This gives the desired result.
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Lemma 5.2 below characterizes the asymptotics of the invariant measures νκε and ν
κ0
ε .

Lemma 5.2. Let v be the function defined by (6). The following statements hold

lim
ε↓0

1

ε
νκε (Γκ)[u(κ)− u(κ0)] = 1

lim
ε↓0

1

ε
νκε (Γ1−κ)[u(1− κ0)− u(1− κ)] = 1 (83)

Similar statements are true for νκε (Γ−κ),ν
κ
ε (Γ−(1−κ)) and ν

κ0
ε .

Proof. We calculate the asymptotics of the invariant measures νκε and ν
κ0
ε by selecting Ψ properly.

For this purpose let us choose Ψ(x , y) = Ψ(x) (i.e. it is a function only of x) that is bounded,

continuous and is 0 outside κ < x < 1− κ.

With this choice for Ψ the left hand side of (82) becomes:
∫ ∫

Ξε
Ψ(x , y)d xd y =

∫ 1−κ

κ

Ψ(x)V ε(x)d x = ε

∫ 1−κ

κ

Ψ(x)dvε(x), (84)

where we recall that vε(x) =
∫ x

0

V ε(y)

ε
d y (see (4)).

Moreover, the particular choice if Ψ, also implies that
∫ τ1

σ1
Ψ(X εt )d t = 0. Then, the right hand side

of (82) becomes:
∫

∆κ

νκε (d x , d y)Eεx ,y

∫ τ1

0

Ψ(X εt )d t =

∫

∆κ

νκε (d x , d y)Eεx ,y

∫ σ1

0

Ψ(X εt )d t (85)

=

∫

Dεκ

νκε (κ, d y)Eεκ,y

∫ σ1

0

Ψ(X εt )d t +

∫

Dε
1−κ

νκε (1− κ, d y)Eε1−κ,y

∫ σ1

0

Ψ(X εt )d t

Next, we express the right hand side of (85) through the v and u functions (defined by (6)) using

Lemma 5.1. We start with the term Eεκ,y

∫ σ1

0
Ψ(X εt )d t. Use Lemma 5.1 with φ = 0 andψ(x) = Ψ(x).

For sufficiently small ε we have

Eεκ,y

∫ σ1

0

Ψ(X εt )d t =
u(1− κ0)− u(κ)

u(1− κ0)− u(κ0)

∫ κ

κ0

(u(y)− u(κ0))Ψ(y)dv(y)

+
u(κ)− u(κ0)

u(1− κ0)− u(κ0)

∫ 1−κ0

κ

(u(1− κ0)− u(y))Ψ(y)dv(y) + o(1)

=
u(κ)− u(κ0)

u(1− κ0)− u(κ0)

∫ 1−κ

κ

(u(1− κ0)− u(y))Ψ(y)dv(y) + o(1) (86)

where the term o(1) ↓ 0 as ε ↓ 0. Similarly for the term Eε1−κ,y

∫ σ1

0
Ψ(X εt )d t we have

Eε1−κ,y

∫ σ1

0

Ψ(X εt )d t =
u(1− κ0)− u(1− κ)

u(1− κ0)− u(κ0)

∫ 1−κ

κ0

(u(y)− u(κ0))Ψ(y)dv(y)

+
u(1− κ)− u(κ0)

u(1− κ0)− u(κ0)

∫ 1−κ0

1−κ
(u(1− κ0)− u(y))Ψ(y)dv(y) + o(1)

=
u(1− κ0)− u(1− κ)

u(1− κ0)− u(κ0)

∫ 1−κ

κ

(u(y)− u(κ0))Ψ(y)dv(y) + o(1) (87)
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Taking into account relations (82) and (84)-(87) and the particular choice of the function Ψ we get

the following relation for sufficiently small ε

ε

∫ 1−κ

κ

Ψ(x)dvε(x) = (88)

= νκε (Γκ)





u(κ)− u(κ0)

u(1− κ0)− u(κ0)

∫ 1−κ

κ

(u(1− κ0)− u(y))Ψ(y)dv(y) + o(1)





+ νκε (Γ1−κ)





u(1− κ0)− u(1− κ)
u(1− κ0)− u(κ0)

∫ 1−κ

κ

(u(y)− u(κ0))Ψ(y)dv(y) + o(1)





At each continuity point of v(x) we have v(x) = limε↓0 vε(x), so the equality above is true for an

arbitrary continuous function Ψ if the following hold:

lim
ε↓0

1

ε
νκε (Γκ)[u(κ)− u(κ0)] = 1

lim
ε↓0

1

ε
νκε (Γ1−κ)[u(1− κ0)− u(1− κ)] = 1

Thus, the proof of Lemma 5.2 is complete.

Remark 5.3. Equalities (81) immediately give us that νκε (Γ±κ) = ν
κ0
ε (Γ±κ0

) and νκε (Γ±(1−κ)) =

ν
κ0
ε (Γ±(1−κ0)

) (see also the related discussion in chapter 8 of [6]). Finally, it is easy to see that

νκε (Γ±κ) = ν
κ
ε (Γκ) + ν

κ
ε (Γ−κ).

�

Lemma 5.4. Let us consider fixed numbers 0< x1 < x2 and let x0 ∈ (x1, x2). For every x0 we have

lim
ε↓0

max
f :‖ f ‖≤1

|Eεx0,y01
f (X ε

τ(x1,x2)
, Y ε
τ(x1,x2)

)−Eεx0,y02
f (X ε

τ(x1,x2)
, Y ε
τ(x1,x2)

)|= 0,

uniformly in y01, y02 ∈ Dεx0
and for functions f (x , y) that are well defined on (x , y) ∈ {x1, x2} × Dεx .

Proof. We only need to observe that (a): Lemma 5.1 applied to φ(x) = f (x , 0) and ψ(x) = 0

immediately gives us that

lim
ε↓0

max
f :‖ f ‖≤1

|Eεx0,y01
f (X ε

τ(x1,x2)
, 0)−Eεx0,y02

f (X ε
τ(x1,x2)

, 0)|= 0,

and (b): the y−component of the process converges to zero.

Proof of Lemma 2.5. Firstly, we prove (using Lemma 5.4) that Pεx ,y(X
ε
τ(±κ) = κ) has approximately

the same value for all x that belong to a small neighborhood of zero for ε small enough. Secondly,

we identify (using (80) and Lemma 5.2) that this value is
[u′(0+)]−1

[u′(0+)]−1+[u′(0−)]−1 .

We begin by showing that for any (x i , yi) ∈ Γ±κ0
with i = 1,2

|Eεx1,y1
χ(X ε

τ(±κ)=κ)
−Eεx2,y2

χ(X ε
τ(±κ)=κ)

| → 0 as ε ↓ 0, (89)
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uniformly in y1, y2.

Let us define for notational convenience

Fε(x , y) = Eεx ,y[χ(X ετ(±κ)=κ)
]

Firstly, we prove that (89) holds for (κ0, y1), (κ0, y2) ∈ Γκ0
. Let κ1,κ2 be such that 0 < κ1 < κ0 <

κ2 < κ. Using strong Markov property with respect to τ(κ1,κ2)< τ(±κ) we get

Eεκ0,yχ(X ετ(±κ)=κ)
= Eεκ0,yE

ε
Xτ(κ1,κ2)

,Yτ(κ1,κ2)
[χ(X ε

τ(±κ)=κ)
] (90)

Equation (90) and Lemma 5.4 imply that (89) holds for (κ0, y1), (κ0, y2) ∈ Γκ0
uniformly in y1, y2 ∈

Dεκ0
.

Hence, we have

|Fε(κ0, y1)− Fε(κ0, y2)| → 0 as ε ↓ 0. (91)

Similarly, it can be shown that (91) holds for (−κ0, y1), (−κ0, y2) ∈ Γ−κ0
as well.

Secondly, we observe that if (89) holds for (x1, y1) = (κ0, 0) and (x2, y2) = (−κ0, 0) then it will

hold for any (x i, yi) ∈ Γ±κ0
with i = 1,2. Indeed, we have

|Fε(κ0, y1)− Fε(−κ0, y2)| ≤ |Fε(κ0, 0)− Fε(−κ0, 0)|+ |Fε(κ0, y1)− Fε(κ0, 0)|
+|Fε(−κ0, y2)− Fε(−κ0, 0)|

The last two terms in the right hand side of the inequality above converge to zero as ε ↓ 0 by the

discussion above. Hence, it remains to prove that

|Fε(κ0, 0)− Fε(−κ0, 0)| → 0 as ε ↓ 0. (92)

Let us choose some κ
′
0 such that 0 < κ0 < κ

′
0 < κ. Obviously, if the process starts from some point

on Γx with x ∈ [−κ,κ0] then τ(−κ,κ
′
0)≤ τ(±κ). So, by applying the strong Markov property with

respect to τ(−κ,κ
′
0)≤ τ(±κ) we have

inf
y∈Dε

κ
′
0

Fε(κ
′

0, y)Pεx ,0[(X
ε

τ(−κ,κ
′
0
)
, Y ε
τ(−κ,κ

′
0
)
) ∈ Γ

κ
′
0

] ≤ Fε(x , 0)≤

≤ sup
y∈Dε

κ
′
0

Fε(κ
′

0, y)Pεx ,0[(X
ε

τ(−κ,κ
′
0
)
, Y ε
τ(−κ,κ

′
0
)
) ∈ Γ

κ
′
0

] (93)

Using the latter, we have

|Fε(κ0, 0)− Fε(−κ0, 0)| ≤
≤ | sup

y∈Dε

κ
′
0

Fε(κ
′

0, y)− inf
y∈Dε

κ
′
0

Fε(κ
′

0, y)| max
x=κ0,−κ0

{Pεx ,0[(X
ε

τ(−κ,κ
′
0
)
, Y ε
τ(−κ,κ

′
0
)
) ∈ Γ

κ
′
0

]}

+ |Pεκ0,0[(X
ε

τ(−κ,κ
′
0
)
, Y ε
τ(−κ,κ

′
0
)
) ∈ Γ

κ
′
0

]− Pε−κ0,0[(X
ε

τ(−κ,κ
′
0
)
, Y ε
τ(−κ,κ

′
0
)
) ∈ Γ

κ
′
0

]| ×

×max{ sup
y∈Dε

κ
′
0

Fε(κ
′

0, y), inf
y∈Dε

κ
′
0

Fε(κ
′

0, y)}

≤ | sup
y∈Dε

κ
′
0

Fε(κ
′

0, y)− inf
y∈Dε

κ
′
0

Fε(κ
′

0, y)|+

+ |Pεκ0,0[(X
ε

τ(−κ,κ
′
0
)
, Y ε
τ(−κ,κ

′
0
)
) ∈ Γ

κ
′
0

]− Pε−κ0,0[(X
ε

τ(−κ,κ
′
0
)
, Y ε
τ(−κ,κ

′
0
)
) ∈ Γ

κ
′
0

]| (94)
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Relation (91) holds with κ
′
0 in place of κ0 as well. Namely, for (κ

′
0, y1), (κ

′
0, y2) ∈ Γκ′0 we have

|Fε(κ′0, y1)− Fε(κ
′

0, y2)| → 0 as ε ↓ 0,

uniformly in y1, y2 ∈ Dε
κ
′
0

. This implies that the first term on the right hand side of (94) can be made

arbitrarily small.

We show now how the second term on the right hand side of (94) can be made arbitrarily

small. For ε sufficiently small and for κ
′
0 much smaller than a small κ, it can be shown that

Pεκ0,0[(X
ε

τ(−κ,κ
′
0
)
, Y ε
τ(−κ,κ

′
0
)
) ∈ Γ

κ
′
0

] and Pε−κ0,0[(X
ε

τ(−κ,κ
′
0
)
, Y ε
τ(−κ,κ

′
0
)
) ∈ Γ

κ
′
0

] are arbitrarily close to 1.

This can be done by an argument similar to the one that was used to prove Lemma 2.4. Similarly to

there, one estimates the difference

|Pεκ0,0[(X
ε

τ(−κ,κ
′
0)

, Y ε
τ(−κ,κ

′
0)
) ∈ Γ

κ
′
0

]− P̂εκ0
[X̂ ε
τ̂(−κ,κ

′
0)
= κ

′

0]|

and uses the corresponding estimate for P̂εκ0
[X̂ ε
τ̂(−κ,κ

′
0)
= κ

′
0] for ε sufficiently small, where

X̂ εt is the process defined by (53). One also needs to use Lemma 2.4. The treatment of

Pε−κ0,0[(X
ε

τ(−κ,κ
′
0
)
, Y ε
τ(−κ,κ

′
0
)
) ∈ Γ

κ
′
0

] is almost identical with the obvious changes. We will not re-

peat the lengthy, but straightforward calculations here. Hence, the second term on the right hand

side of (94) can be made arbitrarily small.

Using the above we finally get that

|Fε(κ0, 0)− Fε(−κ0, 0)| → 0 as ε ↓ 0. (95)

Therefore, we have established that (89) holds for any (x1, y1), (x2, y2) ∈ Γ±κ0
.

Next, we prove that

max
(x ,y)∈Ω0

Pεx ,y(X
ε
τ(±κ) = κ)− min

(x ,y)∈Ω0

Pεx ,y(X
ε
τ(±κ) = κ)→ 0 as ε ↓ 0, (96)

where Ω0 = {(x , y) : x ∈ [−κ0,κ0], y ∈ Dεx}. We use again the strong Markov property. Let us

choose some (x , y) such that |x | < κ0 and y ∈ Dεx . By strong Markov property with respect to the

exit time from {(x , y) : |x |< κ0, y ∈ Dεx} we have:

inf
(x ,y)∈Γ±κ0

Eεx ,yχ(X ετ(±κ)=κ)
≤ Pεx ,y(X

ε
τ(±κ) = κ)≤ sup

(x ,y)∈Γ±κ0

Eεx ,yχ(X ετ(±κ)=κ)

The latter implies that for any (x1, y1), (x2, y2) ∈ Ω0:

|Pεx1,y1
(X ε
τ(±κ) = κ) − P

ε
x2,y2
(X ε
τ(±κ) = κ)| ≤

≤ | sup
(x ,y)∈Γ±κ0

Eεx ,yχ(X ετ(±κ)=κ)
− inf
(x ,y)∈Γ±κ0

Eεx ,yχ(X ετ(±κ))
|

The latter inequality and (89) imply (96). Therefore Pεx ,y(X
ε
τ(±κ) = κ) has approximately the same

value for all (x , y) ∈ Ω0 for ε small enough. Let us now identify this value. In order to do this we

use the machinery with the invariant measures. In particular, we consider again the two cycles of

Markov times {σn} and {τn} that are defined by (79).
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The numbers ν
κ0
ε (Γ±κ0

) and νκε (Γ±κ) are strictly positive. This is because, starting from each of

these sets, there is a positive probability to reach every other Γ±κ0
,Γ±κ in a finite number of cycles.

We introduce the averages:

p+(ε) =

∫

∆κ0

ν
κ0
ε (d x , d y)Pεx ,y[(X

ε
τ1

, Y ετ1
) ∈ Γκ]

νκε (Γ±κ)
. (97)

By relation (96) we know that

|Pεx ,y(X
ε
τ(±κ) = κ)− p+(ε)| ≤ η (98)

for all (x , y) such that (x , y) ∈ [−κ0,κ0]× Dεx for ε sufficiently small.

Moreover using the first of equations (81) we see that (97) can be written as

p+(ε) =
νκε (Γκ)

νκε (Γ±κ)
. (99)

Furthermore, we for 0< κ0 < κ sufficiently small we have

u(κ)− u(κ0)∼ u′(0+)(κ− κ0).

The latter and Lemma 5.2 imply for sufficiently small 0< κ0 < κ and sufficiently small ε that

νκε (Γκ)∼
1

u′(0+)

ε

κ− κ0

. (100)

Similarly, we have for sufficiently small 0< κ0 < κ and sufficiently small ε that

νκε (Γ−κ)∼
1

u′(0−)
ε

κ− κ0

. (101)

Therefore, we finally get for sufficiently small 0< κ0 < κ and sufficiently small ε that

νκε (Γ±κ)∼ [
1

u′(0+)
+

1

u′(0−)]
ε

κ− κ0

. (102)

Hence, by equations (99)-(102) we get for sufficiently small 0< κ0 < κ and sufficiently small ε that

|p+(ε)−
[u′(0+)]−1

[u′(0+)]−1+ [u′(0−)]−1
|< η

Similarly, we can prove that

max
(x ,y)∈Ω0

Pεx ,y(X
ε
τ(±κ) = −κ)− min

(x ,y)∈Ω0

Pεx ,y(X
ε
τ(±κ) =−κ)→ 0 as ε ↓ 0.

Then for

p−(ε) =
νκε (Γ−κ)

νκε (Γ±κ)
,

we can obtain that

|p−(ε)−
[u′(0−)]−1

[u′(0+)]−1+ [u′(0−)]−1
|< η

and that the corresponding relation (98) holds, i.e.

|Pεx ,y(X
ε
τ(±κ) = −κ)− p−(ε)| ≤ η

for all (x , y) such that (x , y) ∈ [−κ0,κ0]× Dεx for ε sufficiently small.

The latter concludes the proof of the Lemma.
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