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Abstract

We propose a simple model for the behaviour of longterm investors on a stock market. It consists

of three particles that represent the stock’s current price and the buyers’, respectively sellers’,

opinion about the right trading price. As time evolves, both groups of traders update their

opinions with respect to the current price. The speed of updating is controled by a parameter

γ; the price process is described by a geometric Brownian motion. We consider the market’s

stability in terms of the distance between the buyers’ and sellers’ opinion, and prove that the

distance process is recurrent/transient in dependence on γ.
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1 Introduction

In this article, we suggest a simple model for the behaviour of longterm investors on a share market.

We observe the evolution of three particles. One of them represents the share’s current price, the

second one the shareholders’ opinion about the share’s value and the last one the opinion of potential

buyers. As longterm investors do not speculate on fast returns, it is reasonable to assume two

features: first, the share’s value is much higher than the current price in the shareholders’ eyes,

but it is much lower in the eyes of potential buyers. However, both groups of investors do not wait

forever. They modify their opinions in dependence on the price development. Yet, as second feature,

the traders adapt to price changes only slowly. As opposed to short-time traders, who gamble on

returns on short time intervals, there is no need for longterm investors to react on small fluctuations.

Eventually, as the price changes and the investors adjust their opinions, the price reaches the value

that is expected by the traders. We assume a symmetric behaviour of buyers and sellers, and thus,

need to consider only what happens if the price reaches the right value in the shareholders’ opinion.

Because the price has reached a fair level, the investors sell their shares. At the very moment, there

are new shareholders, namely the buyers of the shares. Eventually, the price drops, and there is again

a group of individuals not willing to follow this decrement. This means, although the individuals in

the group of longterm investors change in time, the group itself persists. Figure 1 shows an example

for the system’s evolution on a logarithmic scale. The price is denoted by B, the opinion of buyers

by X , and the one of sellers by Y .
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Figure 1: The price B (black), and the opinions X (red) and Y (blue) evolving in time on a logarith-

mic scale.

We are interested in the evolution of the distance between X and Y . In illiquid markets, i.e. in

markets with few supply, already smaller demands can be satisfied in connection with a strong

price change only. Thus, a large group of traders willing to trade for a certain price provides some
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resistance against further price evolution into this direction. Consequently, it is of great interest

how longterm investors adapt to strong price changes, since they provide resistance on levels which

are normally on some distance from the price. If these investors react too slow, the price can

fluctuate between these levels without much resistance which leads to strong volatility. The theory

of trading strategies on illiquid markets is a very active field of research, and there are many different

approaches to model these markets and their reactions on trading [1; 5; 8]. However, the question

if large orders on illiquid markets can destabilize the markets seems to be open.

Bovier et al. describe in [4] the opinion game, a class of Markovian agent-based models for the

evolution of a share price. Therein, they present the idea of a virtual order book, which keeps

track of the traders’ opinions about the share’s value irrespective of whether the traders have placed

an order or not. For practical purposes, the model is stated in a discrete time setting, and in every

round, one agent updates his or her opinion. As a main feature, the probability to be chosen depends

on the agent’s distance to the price. In particular, in a market with N traders and current price p,

the probability for agent i with current opinion pi to be chosen is given by

h(|pi − p|)
∑N

j=0 h(|p j − p|)
. (1.1)

The function h is assumed to be positive and decreasing. This assumption reflects the idea that

traders with opinions far away from the price react to price changes more slowly. The model is

stated in a very general setting, but the authors are able to reproduce several qualitative statistical

properties of the price process, sometimes called stylized facts, by choosing

h(x) =
1

(1+ x)γ
. (1.2)

We pick up on this choice for our model. The logarithmic price process B is a Brownian motion; the

opinions of buyers, X , and sellers, Y , are described by ordinary differential equations in dependence

on parameter γ > 0 and the Brownian motion B.

The buyers’ opinion at time t is given by the solution of

d

d t
f (t) =

1
�

1+ Bt − f (t)
�γ (1.3)

whenever X t < Bt . By the argumentation above that the individuals within the group may change,

but the group itself remains, X can hit B, but it is not allowed to cross it, and thus, it describes the

same movement as B until B goes up too fast for X to follow (observe that 1 is an upper bound

for the speed of X ). This happens immediately after the two processes have met, because B is

fluctuating almost everywhere. As soon as the distance is positive, X is driven by (1.3) again. Since

B is differentiable almost nowhere, some work is needed to give a rigorous construction of this

process.

For the shareholders’ opinion, Y , we assume the same construction with a changed sign on the right

hand side of (1.3). −B is also a Brownian motion, and thus, we can define

Y (B) := −X (−B). (1.4)

Notice that the speed of adaption to price fluctuations is governed by the parameter γ. Therefore,

we are interested in the longterm behaviour of Y − X as a function of γ. In particular, we would
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like to know when Y − X is recurrent and when it is transient. A heuristic argument suggests that

γ = 1 is a critical value. For a constant c > 0, we scale time by c2 and space by c. We denote the

processes’ scaled versions by adding superscript c. By Brownian scaling, we have that Bc is equal to

B in distribution. On the other hand, X c solves

d

d t
X c

t =
c1−γ
�

1/c + Bc
t − X c

t

�γ . (1.5)

If one assumes c to be large and Bc
t − X c

t to be positive, the slope tends to infinity for γ < 1 and to 0

for γ > 1. This observation suggests that Y −X remains stable for γ < 1 only. In this paper, we show

that this first guess is right, and prove a rigorous statement about the stability in dependence on γ.

The remainder of this article is organized as follows: in section 2, we define the particle system

formally. X , or Y respectively, are constructed pathwisely as a sequence of processes. The existence

of these limits is stated in lemma 2.1, its lengthy proof is given in appendix A. In section 3, we

present the main theorem and its proof, and in section 4, we discuss what our results mean for the

opinion game from [4].

2 Construction

In this section, we introduce the processes B, X and Y formally. B := (Bt)t≥0 is defined to be a Brow-

nian motion on a probability space {Ω,F , (Ft)t≥0, P}; the construction of X is more complicated,

thus, we first give a short summary of the procedure in the next paragraph.

We introduce a sequence of random step functions Bε(ω) such that the distance between Bε(ω) and

B(ω) is uniformly smaller than, respectively equal to, ε. The construction of X ε that is attracted to

Bε in the sense as explained in the introduction turns out to be easy. At last, we show that X ε has

a limit as ε tends to zero, and call this limit process X . The construction of Y follows immediately

afterwards. The advantage of a step function approach is the simple transition to a discrete setting

that we use extensively in the proof of the main theorem later on.

For any ε > 0, we define jump times by σ̄ε0 := 0 and

σ̄εi :=min

§

t > σ̄εi−1 :

¯

¯

¯Bt − Bσ̄ε
i−1

¯

¯

¯≥ ε
ª

, i ∈ N, (2.1)

neglecting the ε-index whenever no confusion is caused. Furthermore, we define step functions

Bε : [0,∞)→ R by

Bεt := Bσ̄i
for t ∈
�

σ̄i , σ̄i+1

�

. (2.2)

Observe that

sup
t≥0

¯

¯Bt − Bεt

¯

¯= ε a.s. (2.3)

by definition, and thus, Bε converges to B on [0,∞) in sup-norm. As already mentioned in the

introduction, we basically want X to fulfil

d

d t
X t =
�

1+ Bt − X t

�−γ
(2.4)
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as long as X t < Bt . If we substitute B by a fixed number b ≥ 0, the ode (2.4) is explicitly solvable.

The solution of
d

d t
f (t) =
�

1+ b− f (t)
�−γ

, f (0) = 0, (2.5)

is

h̄(t, b) := b+ 1−
�

(b+ 1)γ+1−
�

γ+ 1
�

t
�

1

γ+1 . (2.6)

We call h̄(t, b) well-defined if

b ≥ 0 and t ≤
(b+ 1)γ+1− 1

γ+ 1
. (2.7)

Observe that the bound on t ensures h̄(t, b) ≤ b. As we will be mainly interested in the distance

from h̄ to b at time t, we set

h(t, b) :=

¨

b− h̄(t, b) if h̄(t, b) is well-defined

0 else
. (2.8)

We define X ε in the following way: for t ∈ [σ̄i , σ̄i+1), i ∈ N0, we set

X εt := Bεσ̄i
− h(t − σ̄i , Bεσ̄i

− X εσ̄i−) (2.9)

with X ε0− := 0 (figure 2). This means we first consider X εσ̄i− for t ∈ [σ̄i , σ̄i+1). If Bεσ̄i
is smaller than

this value, we set X εt := Bεσ̄i
; else we can apply function h̄ to calculate the movement of X ε torwards

Bε. If X ε reaches Bε before time t, it remains on this level.
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Figure 2: The three processes Bε (black), X ε (red) and Y ε (blue); B is displayed beneath in grey.

ε= 1/2 in this figure.
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Lemma 2.1. Let S ⊂ [0,∞) be a compact set and ε≪ exp(−γ · sup S). Then

sup
t∈S

¯

¯

¯X ε
′

t − X εt

¯

¯

¯≤ εKS a.s. (2.10)

with KS being a finite, deterministic constant that depends on S, and ε′ < ε.

Proof. See appendix A.

Lemma 2.1 shows that (X εt )ε>0 is a Cauchy sequence in the set of all bounded functions from S to

R equipped with the sup-norm. As this space is complete, (X εt )ε>0 converges. We denote the limit

process by X . Equivalently, we define

Y ε(Bε(ω)) := −X ε(−Bε(ω)) and Y (B(ω)) := −X (−B(ω)). (2.11)

3 The main theorem

3.1 The theorem

Theorem 3.1. Let B, X and Y be defined as before, and let

θr := sup
¦

t ≥ 0 :
¯

¯Yt − X t

¯

¯≤ r
©

(3.1)

be the last exit time from an r-ball with respect to the || · ||1-norm. Then,

1. for γ < 1,

(∀r > 0) θr =∞ a.s., (3.2)

2. and for γ > 1,

(∀r > 0) θr <∞ a.s. (3.3)

The theorem confirms our guess that 1 is a critical value for γ. For the critical case, there is no

statement at all, but as the proof of transience in the supercritical case seems to be sharp, our

conjecture is null-recurrence if γ= 1.

We prove theorem 3.1 by discretising the process Y − X . This results in a Markov chain which we

examine in detail in subsection 3.2. In 3.3, we prove the subcritical case by reducing it to a one-

dimensional random walk problem. For the transient case (γ > 1), we basically use that a Markov

chain is transient if we can find a bounded subharmonic function with respect to the generator of

the chain. The particular theorem and its application in the proof can be found in subsection 3.4.

3.2 Discretising the problem and facts about Markov chains

Let us look at the problem from another perspective. We consider the two-dimensional process

(Bε − X ε, Y ε − Bε) and interprete it in the following as particle moving in [0,∞)2. Observe that

Y ε− X ε is just the sum of both coordinates. Furthermore, because Y ε− X ε can only increase at the

times σ̄i and decreases afterwards, we have

inf
t∈[σ̄i ,σ̄i+1)

(Y ε− X ε)t = (Y
ε− X ε)σ̄i+1− . (3.4)
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For all ε > 0, we define a two-dimensional Markov chain Φε = Φ(Bε) :=
�

Φ(Bε)i
�

i∈N with state

space [0,∞)2, equipped with the Borel-σ-algebra B([0,∞)2), by

Φεi := (Bε− X ε, Y ε− Bε)σ̄i− (3.5)

with σ̄0− := 0. The j-step transition probabilities from x ∈ [0,∞)2 to A⊂ [0,∞)2 are denoted by

P
j
x(A), but we neglect the index for j = 1. The generator L is given by

Lg(x) :=

∫

[0,∞)2
Px(d y)g(y)− g(x) (3.6)

for suitable functions g : [0,∞)2→ [0,∞).
In the following, it is of great importance to understand how the particle moves exactly while

Φεi = (x , y) jumps to Φεi+1 (figure 3). At first, a jump of size ε happens at time σ̄i . The position

afterwards is either (x + ε, (y − ε) ∨ 0) or ((x − ε) ∨ 0, y + ε) with probability 1/2 each. Let us

call this new position (x ′, y ′). Before the next jump happens at time σ̄i+1, the particle drifts into the

origin’s direction. If it reaches one of the axes, it remains there and only drifts torwards the other axis

until it reaches (0,0). Thus, the coordinates of Φεi+1 are given by (h(σ̄i+1−σ̄i , x ′), h(σ̄i+1−σ̄i , y ′)).
Observe that Φε can only increase (in || · ||1-sense) on the axes.

Bε− X ε

Y ε− Bε

Figure 3: The particle’s jumps (red arrows) are parallel to the level lines of the || · ||1-norm. In the

sense of this norm, it can increase on the axes only. The drift consists of two independent compo-

nents (blue dashed arrows), which are orthogonal to the axes. The resulting drift is illustratetd by

the solid blue arrow.

Next, we need to understand the distribution of σ̄i+1− σ̄i . Thus, we set

σi := σ̄i+1− σ̄i
d
= inf
�

t > 0 : Bt = ε
	

. (3.7)

As already suggested in the equation above, allσi are i.i.d. with support on (0,∞) and Eσ = ε2. The

distribution is not known explicitly, but it can be expressed as a series with alternating summands
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with decreasing absolute values (refer to section C.2 in [2]). Calculating the first two summands

results in

4

π
e−π

2/(8ε)

�

1−
1

3
e−π

2/ε

�

(3.8)

≤ P (σ > ε) = P

�

sup
0≤s≤ε

¯

¯Bs

¯

¯< ε

�

(3.9)

≤
4

π
e−π

2/(8ε). (3.10)

For our purposes, it is sufficient to know that both bounds are of order exp(−1/ε).

As we are operating on a continuous state space, the question for irreducibilty is a question for

reaching sets instead of single states. Formally, Φε is called ϕ-irreducible if there exists a measure ϕ

on B([0,∞)2) such that

ϕ(A)> 0⇒ Px (Φ
ε ever reaches A)> 0 for all x ∈ [0,∞)2. (3.11)

In our case,

Px ({0})> 0 for all x ∈ [0,∞)2, (3.12)

because the support of σ’s density function is unbounded. Thus, Φε is δ0-irreducible. The existence

of an irreducibility measure ensures that there is also a maximal irreducibility measure Ψ (compare

with [7], proposition 4.2.2) on B([0,∞)2) with the properties:

1. Ψ is a probability measure.

2. Φε is Ψ-irreducible.

3. Φε is ϕ′-irreducible iff Ψ≻ ϕ′ (i.e. Ψ(A) = 0⇒ ϕ′(A) = 0).

4. Ψ(A) = 0 ⇒ Ψ
��

x : Px(Φ
ε ever enters A)

	�

= 0.

5. Here, Ψ is equivalent to

Ψ′(A) =
∞
∑

j=0

P
j

0(A)2
− j . (3.13)

We denote the set of measurable, Ψ-irreducible sets by

B
+([0,∞)2) := {A∈B([0,∞)2) :Ψ(A)> 0}. (3.14)

Because the density of σ̄i+1− σ̄i has support on (0,∞), it is easy to see that

µ(A) := Leb(A) +δ0(A) 6= 0 ⇒ Ψ(A) 6= 0, (3.15)

and therefore, Ψ≻ µ with Leb denoting the Lebesgue measure.

Since Φε is a Markov chain on the (possible) local minima of Y ε − X ε in the sense of (3.4), it is

obvious that transience of Φε implies transience of Y ε − X ε. On the other hand, ||Φε||1 can only

increase by ε, at most, in every step. Thus,

sup
t∈[σ̄i ,σ̄i+1)

(Y ε− X ε)t ≤
¯

¯

¯

¯Φεi

¯

¯

¯

¯

1
+ ε, (3.16)
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and recurrence of Φε also implies recurrence of Y ε − X ε. However, observe that the proof of re-

currence/transience for Y ε − X ε, ε > 0, does not directly imply recurrence/transience for the limit

process, Y − X , because we have convergence on compact sets only. Thus, we explain in the end of

both parts of the proof shortly how to deduce the desired result.

3.3 Proof of the subcritical case: γ < 1

For the subcritical case, we reduce the movement of Φε to a nearest neighbour random walk on

certain level sets

M(k) :=
¦
�

x , y
�

∈ [0,∞)2
¯

¯ x + y = 4k
©

, k ∈ Z, (3.17)

of || · ||1 : [0,∞)2→ [0,∞), and show that the probability to jump to M(k−1) is larger than 1/2+δ,

δ > 0, for small ε and all k ≥ k∗ for a k∗ ∈ Z. Then it is well-known that ||Φε· ||1 < 4k∗ infinitely

often. Recurrence for Φε follows from irreducibility.

In particular, we introduce

M−(k) :=
¦
�

x , y
�

∈ [0,∞)2
¯

¯ x + y ≤ 4k−1
©

, (3.18)

M+(k) :=
¦
�

x , y
�

∈ [0,∞)2
¯

¯ x + y ≥ 4k+1
©

(3.19)

for k ∈ Z, and the hitting time of Φε

τεM :=min
¦

i : Φεi ∈ M
©

(3.20)

for a set M ⊆ [0,∞)2; we neglect the ε whenver possible. Then we have to show

�

∃k∗
��

∀k ≥ k∗
�

lim
ε→0

inf
m∈M(k)

Pm

�

τε
M−(k) < τ

ε
M+(k)

�

> 1/2+δ, δ > 0. (3.21)

The proof works in four steps (figure 4).

1. We show that Pm(τM−(k) < τM+(k)) is minimized for m∗ ∈ {(4k, 0), (0,4k)}. As the model is

symmetric, we may assume m∗ = (0,4k) without loss of generality.

2. We show

Pm∗
�

τ{(x ,y):x=y} < τM+(k)

�

> 1− e−6/7 ≈ 0.576 (3.22)

as ε tends to 0.

3. We assume the particle has been successful in the last step and has reached (x , x) /∈ M+(k).

In the worst case, it is at position (2 · 4k, 2 · 4k) or arbitrarily close to it (as ε becomes small).

Since the jumps’ directions and the drift times σi are mutually indpendent, we can treat the

jumps and drift phases independently. We use this feature to determine the diameter of a tube

around the bisector. As long as the particle is located within this area, it does not drift to the

axes too fast. When we know the diameter, we can calculate the probability that the jumps do

not take the particle out of the tube within a certain time period. Knowing this time and the

speed torwards the origin, we can calculate how close it gets to the origin before hitting the

axes.
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Bε− X ε

Y ε− Bε

M(k)M−(k) M+(k)

Figure 4: The idea of the proof: the particle starts in M(k) (black line). We show that the probability

to get to M−(k) (left dark grey area) before it gets to M+(k) (right dark grey area) is larger than

1/2. This probability is bounded from below by the product of the probability to reach the bisector

(dotted line) before reaching M+(k) and the probability to get back to M−(k) before hitting the

axes. In particular, we calculate the probability of a random walk with step size
p

2ε to stay in

the white slot around the bisector. Its diameter (green line), diam(A4k+1), is a lower bound for the

diameter of the area enclosed by g(x) and g−1(x) (red lines).

4. Finally, we combine steps 2 and 3. It will turn out that the probability to stay in the tube for a

certain time (step 3) can be chosen large enough such that it is still strictly larger than 1/2 if

multiplied with the probability to reach the bisector (step 2). On the other hand, the time Φε

stays in the tube is sufficient to reach M−(k).

For step 1, we consider a realisation Bε(ω) of the Brownian step function, X ε(Bε(ω)) with starting

distance |Bε0 − X ε0 |= d, and X̄ ε(Bε(ω)) that is constructed like X ε and attracted to the same realisa-

tion, but starts with initial distance |Bε0 − X̄ ε0 |= d̄, d̄ > d. Since X ε is Markovian, we can extend our

construction of X ε to initial values different from 0 easily. Then

(∀t ≥ 0)
h

�

Bε(ω)− X̄ ε
�

t ≥
�

Bε(ω)− X ε
�

t

i

(3.23)

with equality for all t ≥ r ≥ 0 whereby r fulfils

�

Bε(ω)− X̄ ε
�

r = 0=
�

Bε(ω)− X ε
�

r
. (3.24)
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The respective statement holds also for Y ε − Bε due to symmetry. Thus, if Φεi (ω) is smaller than or

equal to a copy Φ̄εi (ω) in both coordinates for some time i, this (in)equality remains for all times

afterwards. We can conclude that

P(x ,0)

�

τM−(k) < τM+(k)

�

≥ P(x ′,0)
�

τM−(k) < τM+(k)

�

(3.25)

for x < x ′, because every realisation of Bε fulfiling the event on the right side also fulfils the one on

the left side.

As Φε can only increase on the axes, starting it from a point inside the quadrant results in a decrease

of both coordinates until one of the axes is hit. But then (3.25) applies, and therefore step 1 is

proven.

In step 2, we show

Pm∗
�

τ{(x ,y):x=y} > τM+(k)

�

< e−6/7. (3.26)

We assume m∗ = (0,4k). The particle has two possibilities: either it jumps upwards the axis to

(0,4k + ε), or it jumps into the quadrant to (ε, 4k − ε); afterwards, it drifts. In this step, we ignore

the drift phase for two reasons. First, the change of position by jumping is of order ε, but it is of

order ε2 by drifting, because Eσ = ε2. Furthermore, the drift direction is different from the jump

direction, and for every change of position in jump direction by drifting, there is also a drift down,

orthogonal to the jump direction, by the same amount at least. Thus, considering the drift would

help us in reaching our aim to drift down.

We introduce the following game: sitting on the axis, the particle can either reach the bisector, or

it can move up the axis by ε. As the particle needs 4k/(2ε)1 steps to reach the bisector but only

one step to go up, the success probability is small. If we do not success, we have another, smaller,

chance at (0,4k + ε) and so on until we reach M+(k). It is well known that the probability of an

one-dimensional, symmetric random walk to reach −1 before reaching k ∈ N is given by k/(k+ 1)

if the random walk is started in 0. Thus,

Pm∗
�

τ{(x ,y):x=y} > τM+(k)

�

=

(4k+1−4k)/ε−1
∏

i=0

(4k/2+ iε)/ε

(4k/2+ iε)/ε+ 1
(3.27)

=

3·4k/ε−1
∏

i=0

4k/2+ iε

4k/2+ iε+ ε
(3.28)

<

�

4k/2+ 3 · 4k − ε
4k/2+ 3 · 4k

�3·4k/ε

(3.29)

=

�

1−
2ε

7 · 4k

�3·4k/ε

(3.30)

→ e−6/7 as ε tends to 0. (3.31)

For part 3, we assume that the particle has reached the bisector and is at position (2 ·4k, 2 ·4k). First,

1Here we neglect that the expression is meaningful for integers only, because the difference does not play a role as ε

tends to zero.
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we are interested in the particle’s speed when it drifts. In particular, we are looking for a uniform

lower bound for the speed orthogonal to the || · ||1-level sets on [0,∞)2\M+(k). If we denote the

particle’s current position by (x , y), its speed in x-direction is given by (1+ x)−γ and in y-direction

by (1+ y)−γ because of equation (2.5). Thus, the speed orthogonal to the level sets is given by

v(x ,y) :=

Æ

(1+ x)−2γ +
�

1+ y
�−2γ

. (3.32)

Differentiation of v shows that the speed has a minimum at (2 ·4k, 2 ·4k) on the set {(x , y) : x+ y ≤
4k+1}. This minimum amounts

vmin :=
p

2
�

1+ 2 · 4k
�−γ

. (3.33)

Next, let us take a closer look at the drifting particle’s movement. Observe that the paths of two

drifting particles started in different positions can meet on the axes only. This follows from our

argumentation in step 1. Let us assume that x ≤ y; the other case will follow by symmetry. If x ≤ y ,

the particle hits the x-axis first, which happens at time

tx :=min{t : h(x , t) = 0}=
(x + 1)γ+1− 1

γ+ 1
(3.34)

following from the definition of h in (2.8). What constraints must hold for y such that the particle

will hit the axes in M−(k)? Clearly, y must fulfil

h(y, tx)≤ 4k−1 or, equivalently, (3.35)

y ≤
�

�

4k−1 + 1
�γ+1

+ (x + 1)γ+1− 1
�1/(γ+1)

− 1. (3.36)

Let us denote the right side of inequality (3.36) by g(x). By differentiation, we see that g(x)− x

is a positive, strictly decreasing function tending to 0 as x becomes large. On the other hand, if we

consider the starting position (x , y), y ≤ x , the calculation is the same with exchanged roles of y

and x , and we end up with g(y). Thus, as long as the particle starts in

(x , y) ∈ A :=
¦

(x , y) :
�

x + y ≤ 4k+1
�

∧
�

g−1(x)≤ y ≤ g(x)
�©

, (3.37)

it reaches M−(k) first and hit the axes only afterwards. Thus, as long as the particle jumps to

positions (x , y) ∈ A only, we do not have to worry that the particle will reach the axes before

reaching M−(k).

Let us define the level sets of A by

Al := A∩
�

(x , y) : x + y = l
	

. (3.38)

We can interprete Al as an one-dimensional interval or a piece of a line, and because g(x) − x

and g−1(x) − x are tending to zero, the length of this interval, denoted by diam(Al), decreases

as l increases. We need to know diam(A4k+1), as it is a lower bound for all l we are interested

in. Because the particle’s jump direction is parallel to Al , we can estimate afterwards how much

time the particle will spend in A when performing jumps. However, it is not possible to calculate

diam(A4k+1) explicitly, but by the Pythagorean Theorem, the symmetry of g(x) and g−1(x), and the

decrement of g(x)− x , we have

diam(A4k+1)≥
p

2
�

g(2 · 4k)− 2 · 4k
�

=: dk. (3.39)
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Our ansatz is

dk ≥ D4k (3.40)

for a constant D independent of k provided k is large enough. Notice that function g as defined

in (3.36) is basically the || · ||γ+1-norm of (4k−1, x) and decreases in γ. We may assume that γ = 1

without loss of generality.

p
2

�

�

�

4k−1 + 1
�2
+
�

2 · 4k + 1
�2− 1
�1/2
− 1− 2 · 4k

�

≥ D4k (3.41)

transforms to
p

2D ≤
�p

65− 8

2
−O(4−k)

�

. (3.42)

Finally, we have to answer the question how long we remain in an interval of diameter
p

2D4k when

we start in the centre and perfom a random walk with step size
p

2ε. Denoting a standard random

walk with step size 1 by R, we are looking for the hitting time

ξε(k) :=min
¦

n : Rn /∈ (−D4k/ε, D4k/ε)
©

. (3.43)

It is well known that

Eξε(k) =

�

D4k

ε

�2

. (3.44)

We would like to have a lower bound for the probability to stay in the interval for cEξε(k) steps

at least with c ∈ (0,1) being arbitrary small. For our purposes, it is sufficient to show that this

probability tends to 1 if c goes to 0. As ε tends to zero, Donsker’s principle (see chapter 2.4.D of

[6]) tells us

lim
ε→0

D4k

ε
R̃(D4k/ε)2 t

d
= Bt (3.45)

with R̃ being the linear interpolation of R. We define the exit time of a Brownian motion B from

(−1,1) by

ξ̄ := inf
�

t : Bt /∈ (−1,1)
	

. (3.46)

For ε tending to zero and a constant α > 0, we use Donsker’s principle to get

P (ξε(k)< cEξε(k)) = P
�

ξ̄ < c
�

(3.47)

= P
�

exp
�

−αξ̄
�

> exp (−αc)
�

(3.48)

<
Ee−αξ̄

e−αc
(3.49)

=
eαc

cosh
�p

2α
� . (3.50)

In line (3.49), we use the Markov inequality, in line (3.50) the explicit formula for the Laplace

transform of ξ̄ (refer to formula 3.0.1 in [3]). As α is chosen arbitrarily, we would like to minimize

line (3.50) as a function of α. Differentiation shows that the optimizing α fulfils

cosh
�p

2α
�

=
sinh
�p

2α
�

c
p

2α
(3.51)
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Using equality (3.51) in (3.50) results in

P (ξε(k)< cEξε(k))<
c
p

2αeαc

sinh
�p

2α
� (3.52)

which tends to zero when c tends to zero. Let us call

pc := P (ξε(k)≥ cEξε(k)) , (3.53)

and observe that one can choose c such that pc is arbitrarily close to one.

In step 4, we summarise the results from the steps before. When the particle starts in M(k),

the probability to reach the bisector before reaching M+(k) is larger than 1− exp(−6/7) by steps

1 and 2. By step 3, we can find a c∗ > 0 such that (1− exp(−6/7))pc∗ > 1/2. This means we stay

within A for c∗(D4k/ε)2 steps at least. As the particle drifts with the minimal speed vmin, defined in

(3.33), its distance to the origin in terms of the || · ||1-norm decreases by

c∗(D4k/ε)2
∑

i=1

p
2
�

1+ 2 · 4k
�−γ
σi (3.54)

= c∗D242k
p

2
�

1+ 2 · 4k
�−γ

(3.55)

= O
�

4(2−γ)k
�

(3.56)

for ε tending to zero. In line (3.55), we use the LLN for the i.i.d. σi , which have expectation ε2.

Thus, the distance covered by the particle is of order 4(2−γ)k. On the other hand, the distance that

the particle has to cover to get to M−(k) is smaller than or equal to

4k+1− 4k−1 ∈ O
�

4k
�

(3.57)

by the proof’s construction. Obviously, (3.56) dominates (3.57) for γ < 1 such that the proof in the

subcritical case is finished for Y ε− X ε.

To see that the result transfers to Y − X , we consider the process X̃ ε constructed like X ε but

with the modified ode
d

d t
f (t) =
�

(1+ 2ε) + b− f (t)
�−γ

; f (0) = 0 (3.58)

instead of the original ode (2.5). Equivalently, we define Ỹ ε(Bε) := −X̃ ε(−Bε). The proof shows

easily that the change of the constant from 1 to 1+2ε in (3.58) does not change the calculations or

the result in an essential way. Thus, Ỹ ε − X̃ ε is also recurrent for γ < 1. The crucial observation is

that these auxiliary processes sandwich the original processes:

X ε
′

t ≥ X̃ εt − ε and Y ε
′

t ≤ Ỹ εt + ε (3.59)

for all ε′ < ε. This holds due to the fact that |X ε′
σ̄ε

1
−X ε

σ̄ε
1
|< ε and |Bε−Bε

′ |< ε. Thus, the difference

in speed cannot be larger than 2ε. This argument extends to all later times σ̄i inductively. It follows

Yt − X t = lim
ε→0
(Y εt − X εt ) (3.60)

≤ Ỹ εt − X̃ εt + 2ε (3.61)

which proves recurrence for Y − X .
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3.4 Proof of the supercritical case: γ > 1

We define first what transience of Markov chains means.

Definition 3.2. For any A⊂ [0,∞)2, let

ηA :=

∞
∑

i=0

1{Φεi ∈A} (3.62)

be the number of visits of Φε in A. A set A is called uniformly transient if there exists M <∞ such

that E(x ,y)(ηA) ≤ M for all (x , y) ∈ A. We call Φε transient if there is a countable cover of [0,∞)2
with uniformly transient sets.

We use the next theorem to show that Φε is transient in the upper sense. It is stated as a more

general result in [7], 8.0.2(i).

Theorem 3.3. The chain Φε is transient if and only if there exists a bounded, non-negative function

g : [0,∞)2→ [0,∞) and a setB ∈B
+([0,∞)2) such that, for all

�

x̄ , ȳ
�

∈ [0,∞)2\B ,

Lg( x̄ , ȳ) =

∫

[0,∞]2
P( x̄ , ȳ)(d(x , y))g(x , y)≥ g( x̄ , ȳ) (3.63)

and

D :=

(

(x , y) ∈ [0,∞)2
¯

¯

¯

¯

¯

g(x , y)> sup
( x̄ , ȳ)∈B

g( x̄ , ȳ)

)

∈B
+([0,∞)2). (3.64)

Basically, we have to find a certain function g such that the particle jumps away from the origin in

expectation with respect to g. This must hold outside a compact set B containing the origin. To

find a properB , we set

Bz :=
n

�

x , y
�

∈ [0,∞)2
¯

¯

¯

¯

¯

¯

�

x + 1, y + 1
�
¯

¯

¯

¯

γ+1
= z
o

(3.65)

for all z > 0. For g, we choose

g(x , y) := 1−
¯

¯

¯

¯

�

x + 1, y + 1
�
¯

¯

¯

¯

−1

γ+1
. (3.66)

If we can find a z̄ remaining finite as ε tends to zero such that equation (3.63) holds for all
�

x , y
�

∈
Bz , z ≥ z̄, we are done. Recall what happens in one step of Φε in the underlying process as described

on page 145. Equation (3.63) becomes

1

2

∫ ∞

0

P (σ ∈ d t) g(h(t, x̄ + ε),h(t, ȳ − ε)) (3.67)

+
1

2

∫ ∞

0

P (σ ∈ d t) g(h(t, x̄ − ε),h(t, ȳ + ε)) ≥ g( x̄ ȳ)

with ( x̄ , ȳ) ∈ Bz̄ . Because of the ε-jump of Bε at time σ̄, the integral splits into two parts. Within

both integrals, the only source of randomness is σ. If its value is given, we can calculate the next

position of Φε by using function h and finally apply g to this value.
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Using the definition of g and observing that the integral of the density, P(σ̄ ∈ d t), is 1, we transform

(3.67) to

1

2

∫ ∞

0

P (σ ∈ d t)
¯

¯

¯

¯(h(t, x̄ + ε) + 1,h(t, ȳ − ε) + 1)
¯

¯

¯

¯

−1

γ+1
(3.68)

+
1

2

∫ ∞

0

P (σ ∈ d t)
¯

¯

¯

¯(h(t, x̄ − ε) + 1,h(t, ȳ + ε)) + 1
¯

¯

¯

¯

−1

γ+1
≤ z̄−1.

As already argued, σ is small, or rather we can change the upper bound of the integrals from∞ to

ε at the expense of order exp(−1/ε). Furthermore, let us assume for the moment that x̄ , ȳ ≥ 2ε.

As jump size and drift time are ε at most, and the drift speed is bounded from above by 1, this

condition avoids that we have to handle cases in which the axes are reached. Observe that the only

special cases to check later on are (0, ȳ) and ( x̄ , 0), because we can choose an ε > 0 for every pair

x̄ , ȳ > 0 such that the condition above is fulfiled, and we let ε tend to zero. Now, we can use Taylor

approximations for ε and t to get

1

2

�

¯

¯

¯

¯(h(t, x̄ + ε) + 1,h(t, ȳ − ε) + 1)
¯

¯

¯

¯

−1

γ+1
(3.69)

+
¯

¯

¯

¯(h(t, x̄ − ε) + 1,h(t, ȳ + ε) + 1)
¯

¯

¯

¯

−1

γ+1

�

=
1

2

�

�

( x̄ + ε+ 1)γ+1 +
�

ȳ − ε+ 1
�γ+1− 2
�

γ+ 1
�

t
�− 1

γ+1 (3.70)

+
�

( x̄ + ε+ 1)γ+1+
�

ȳ − ε+ 1
�γ+1− 2
�

γ+ 1
�

t
�− 1

γ+1

�

= z̄−1 + 2z̄−(γ+2) t −
γ

2

�

( x̄ + 1)γ−1 +
�

ȳ + 1
�γ−1
�

z̄−(γ+2)ε2 (3.71)

+ (1+ t)O(z̄−(2γ+3)ε2).

Because
∫ ε

0

P (σ ∈ d t) t ≤ Eσ = ε2, (3.72)

we can rewrite (3.68) as

z̄−1 + 2z̄−(γ+2)ε2+O(z̄−(2γ+3)ε2) (3.73)

≤ z̄−1 +
γ

2

�

( x̄ + 1)γ−1 +
�

ȳ + 1
�γ−1
�

z̄−(γ+2)ε2

which holds if

γ
�

( x̄ + 1)γ−1 +
�

ȳ + 1
�γ−1
�

≥ 4. (3.74)

Equation (3.74) is fulfiled for z̄ large enough and γ > 1 only.

It remains to show the special case for x̄ or ȳ being zero. Because of symmetry, it is suffi-

cient to treat one of these cases. We assume x̄ = 0, and thus ȳ = (z̄γ+1 − 1)1/(γ+1) − 1. Then

condition (3.67) becomes

z̄−1 ≥
1

2

∫ ∞

0

P (σ̄ ∈ d t)
¯

¯

¯

¯(h(t,ε) + 1,h(t, ȳ − ε) + 1)
¯

¯

¯

¯

−1

γ+1
(3.75)

+
1

2

∫ ∞

0

P (σ̄ ∈ d t)
¯

¯

¯

¯(1,h(t, ȳ + ε) + 1)
¯

¯

¯

¯

−1

γ+1
.
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Applying Taylor approximation in the same way as above results in

z̄−1 ≥ z̄−1 − z̄−(γ+2)ε+O(ε2) (3.76)

which is true for all γ and arbitrary z̄.

The idea how to transfer the transient result to Y − X is basically equal to the recurrent case

on page 152. This time, we consider the process X̂ ε constructed like X ε but with the modified ode

d

d t
f (t) =
�

(1− 2ε) + b− f (t)
�−γ

; f (0) = 0 (3.77)

instead of (2.5). Equivalently, we define Ŷ ε(Bε) := −X̂ ε(−Bε). Again, the proof is not essentially

changed by these modifications, and thus, Ŷ ε − X̂ ε is also transient for γ > 1. Observe that the

auxiliary processes are sandwiched by the original processes:

X ε
′

t ≤ X̂ εt + ε and Y ε
′

t ≥ Ŷ εt − ε (3.78)

for all ε′ < ε. This follows from the same idea like in the recurrent case. We conclude

Yt − X t = lim
ε→0
(Y εt − X εt ) (3.79)

≥ Ŷ εt − X̂ εt − 2ε (3.80)

which implies the desired result.

4 Conclusions

In this last section, we describe what our results mean for the opinion game [4]. We begin with a

short description of the model. Although it is introduced in great generality in the original article,

we adhere to that implementation that has produced interesting results in the simulations. For a

deeper discussion about the choice of parameters, we refer to the original paper. In the second

subsection, we point out the connections between our work and the opinion game.

4.1 The opinion game

Bovier et al. consider a generalised, respectively virtual, order book containing the opinion of each

participating agent about the share’s value. Here, the notion of value is distinguished from the

one of price. The price is determined by the market and is the same for all agents, but the value

is driven by fundamental and speculative considerations, and thus, varies individually. This is a

fundamental difference to a classical order book model, because the order book only keeps track of

placed orders; the generalised order book knows the opinion of all market participants independent

on whether they have made them public. The model’s dynamics are driven by the change of the

agents’ opinions.

A market with N traders trading M < N stocks is considered. For simplification, every trader can

own at most one share, and furthermore, a discrete time and space setting is assumed. The state of

trader i is given by his or her opinion pi ∈ Z and the number of possesed stocks ni ∈ {0,1}. A trader
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with one share is called a buyer, one without a share is called a seller. The order book’s state is given

by the states of all traders. A state is said to be stable, if the traders with the M highest opinions

posses shares. In particular, one can describe an order book’s stable state just by the traders’ opinions

p := (p1, . . . , pN ). For stable states, one can define an ask price as the lowest opinion of all traders

possesing a share:

pa :=min{pi : ni = 1}; (4.1)

the bid price is defined as the highest opinion of all traders without a share:

pb :=max{pi : ni = 0}. (4.2)

The current (logarithmic) price of the stock is given by p := (pa − pb)/2. The updating of the order

book’s state, p, happens in three steps:

1. At time (t + 1) ∈ N0, trader i is selected with probability g(·;p(t), t).

2. The selected trader i changes his or her opinion to pi(t) + d with d ∈ Z having distribution

f (·;p(t), i, t).

3. If p′ = (p1(t), . . . , pi(t) + d, · · · , pN (t)) is stable, then p(t + 1) = p′. Otherwise, trader i

exchanges the state of ownership, ni(t), with the lowest asker, respectively highest bidder, j.

Afterwards, to avoid a direct re-trade, both participants change their opinion away from the

trading price.

The function g is defined by

g(i;p(t), t) := h(pi(t)− p(t))/Zg(p(t)) (4.3)

with

h(x) := 1/ (1+ |x |)γ , γ > 0, (4.4)

and Zg normalizing g such that
∑N

i=1 g(i;p(t), t) = 1.

The size of d is chosen from the set {−l, . . . , l} with probability

f (d;p(t), i, t) :=
1

2l + 1

�

�

δpi ,p(t)
δext(t)
�d ∧ 1
�

for d 6= 0 (4.5)

and f (0;p(t), i, t) = 1−
∑

0<|k|≤l f (k;p(t), i, t). The parameter δpi ,p(t)
describes the tendency to

change the opinion into the price’s direction. Thus it is larger than 1 for pi < p and smaller for

pi > p. The second parameter, δext, simulates outer influences on the change of opinion, news or

rumors for example. This force is the same for all traders but changes its strength in time. Good

results have been achieved by taking l = 4, δpi ,p(t)
= exp(0.1) for buyers, and δpi ,p(t)

= exp(−0.1)

for sellers. The external influence changes its strength after independent, exponentially distributed

times with rate 1/2000 to exp(εis
′
i) with εi being Bernoulli with P(εi = ±1) = 1/2 and s′i being

Exponential with mean 0.12. Observe that, in expectation, the external force is slightly stronger

than the drift to the price.

The jump away from the trading price in the last step is implemented by setting

pi(t + 1) = pb(t)− k, p j(t + 1) = pb(t) + k (4.6)
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if trader i sells a stock in this step, and

pi(t + 1) = pa(t) + k, p j(t + 1) = pa(t)− k (4.7)

if he or she buys it. Here, k is a uniformly distributed variable on {5, . . . , 20}.
In the simulations, the price was recorded every 100 opinion updates. Thus, if we talk about one

simulation step in the next section, we mean 100 steps of the underlying dynamics.

4.2 Our result in context

Simulations show that the price process produced by these dynamics has some interesting properties.

At first, the distribution of returns, which is the relative change of the price in one step, has heavy

tails. Furthermore, the volatility, which is the average returns’ size in some time interval, shows

correlations on much larger time scales than the implementation would suggest. For the volatility

of an interval of size 100, correlations after 104 steps can be observed. This is suprising, because

104 recorded steps are equal to 106 steps of the dynamics, but the model is Markovian, and even

the strength of the external influence changes after 2 · 103 steps only.

The explanation for these observations can be found in two features of the implementation. As

alreday suggested, the external force brings excitement into the market; else the traders would

basically perform random walks into the direction of the price. The returns would be much smaller;

an interesting structure of the volatility would not exist. This coincides with the Efficient Market

Hypothesis, because in a world without news and rumors there are no reasons for price changes.

But the external force on its own does not explain the system’s memory in terms of volatility. This

behaviour arises from the slower updating speed of traders far away from the current price. This

mechanism ensures that the system remembers price changes on large time scales. If we observe

an order book state including a group of traders with a large distance to the current price, we can

deduce that the price must have been in the traders’ region before, as it is very unlikely that the

whole group has moved against its drift. Furthermore, after fast price movements, the distance

between ask and bid price, called gap, is larger than average and needs some time to recover. In

these periods, the market is illiquid, and a small number of trades can move the price a lot resulting

in an increased volatility. Increased volatility after large price movements is a well observed feature

of real world markets.

Thus, the connection of the updating speed and the distance to the price is of paramount importance

for the model. Indeed, the larger γ is chosen in formula (4.4) the better the just explained phenom-

ena can be observed. However, a larger γ contains the risk of instablity in the system. It turns out

that once the gap has exceeded a certain size (depending on γ), it cannot recover anymore, and the

two groups, buyers and sellers, drift away from each other. Then the price waves between these

groups. In particular, it is driven by two traders - one from each group - that have been able to get

away from the other agents, and that move according to the external drift without any resistance

by surrounding traders. For γ ≥ 1.6, this happens quite fast, yet, the model has remained stable

in simulations over several days for γ = 1.5 (figure 5). On the other hand, if we start a simulation

with a large gap and γ= 1.5, the system is also not able to recover. As a large gap size is eventually

reached by randomness, it is justified to talk about a metastable behaviour. In figure 6, we illustrate

these statements with a sample. Instead of recording the difference between ask and bid price, we

recorded the distance between the 950th and the 1050th trader ordered by their opinions (in other
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Figure 5: Screenshots of the virtual order books after 428500 simulation steps for γ = 1.5 (left)

and γ = 1.6 (right) with the same initial conditions and the same realisation of external influences.

Observe the different distances between buyers (green) and sellers (red) and the different behaviour

of the price processes (blue box).
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Figure 6: The left graph shows the gap of the system for different γ. Being stable for γ = 1.5

(black lower graph), it increases for γ = 1.6 (red) and γ = 1.7 (grey). However, if the system is

started with γ = 1.5 but with an artificially enlarged gap, it also increases (black increasing graph).

The convergence to a value below 2000 is due to a restriction of the state space in the numerical

simulations. The right graph shows the stable, respectively unstable, behaviour for γ = 1.5 (black)

and γ= 1.6 (red) in terms of the price process.

words, the buyer with the 50th highest opinion and the seller with the 50th lowest one), because

traders close to the price suffer much more fluctuations than agents with some distance.

In the situation when the traders’ groups have already a large distance from each other, the two

traders in between and also the price perform basically a random walk. Especially, when the two

traders are close to the middle in between both groups, their probability to move is almost 1. In this

case, our model with a Brownian motion as driving force offers a reasonable approximation for the

behaviour of the system. Thus, our results give few hope that any simulation with γ > 1 remains

stable. But for γ < 1, the memory effect producing all the statistical facts is too small. However,

as already mentioned, the model seems to be stable on a large time scale for γ = 1.5. This and the

sharp threshold between 1.5 and 1.6 are not understood. More research is neccessary here.

Besides these findings, the three particle model introduced in this paper has its qualities on its own.

As a simple model for longterm investors, the simple setting already exhibits an interesting and

non-trivial longterm behaviour. As a next step, it is interesting to see how the results change if we
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substitute the Brownian motion by a Lévy process, which is more realistic for price process on stock

markets.

A Proof of Lemma 2.1

We turn to the proof of Lemma 2.1.

Let S ⊂ [0,∞) be a compact set and ε≪ exp(−γ · sup S). Then

sup
t∈S

¯

¯

¯X ε
′

t − X εt

¯

¯

¯≤ εKS a.s. (A.1)

with KS being a finite, deterministic constant that depends on S, and ε′ < ε.

Because S is compact, we may assume S = [0, t∗] for some 0 ≤ t∗ <∞. Remember that the jump

times of Bε are denoted by σ̄ε (see (2.1)), and the time between two jumps by σε (see (3.7)).

Furthermore,
¯

¯

¯Bε− Bε
′
¯

¯

¯< ε. (A.2)

We denote the distance of X ε to Bε by

di := Bεσ̄i
− X εσ̄i

, (A.3)

and the distance to X ε
′

by

∆i := X εσ̄i
− X ε

′

σ̄i
(A.4)

with σ̄ with respect to ε. We would like to maximize ∆2, thus we assume that Bε has jumped

upwards at σ̄1. Then d1 = ε and |∆1| < ε. We assume that ∆1 is positive first. By definition of ∆

and of h̄ in (2.6),

∆2 =
�

X εσ̄2
− X εσ̄1

�

−
�

X ε
′

σ̄2
− X ε

′

σ̄1

�

+
�

X εσ̄1
− X ε

′

σ̄1

�

(A.5)

(A.2)
≤ h̄(σ1, d1)− h̄(σ1, d1+∆1+ ε) +∆1 (A.6)

(2.8)
= h(σ1, d1+∆1+ ε)− h(σ1, d1)− ε. (A.7)

Remember that h is basically defined as

h(t, d) =
�

(d + 1)γ+1 −
�

γ+ 1
�

t
�1/(γ+1)− 1. (A.8)

As the distance does not increase anymore, once X ε has hit Bε, we get an upper bound for σ1:

h(σ1, d1)≥ 0 ⇔ σ1 ≤
(d1+ 1)γ+1− 1

γ+ 1
. (A.9)

Because d1 = ε, we have σ1 ≤ ε. As d1, ∆1, ε, and σ1 are small in comparison to 1, we apply Taylor

approximations to line (A.7) twice and get

∆2 ≤
�

1−
�

γ+ 1
�

σ1

�−γ/(γ+1) �
∆1+ ε
�

− ε (A.10)

= ∆1+ γ
�

∆1+ ε
�

σ1 (A.11)

= ∆1

�

1+ γε
�

. (A.12)
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With the same argumentation, we can conclude that

∆i+1 ≤∆i

�

1+ γε
�

, (A.13)

and thus,

X ε
t∗ − X ε

′

t∗ = ∆t∗/ε (A.14)

≤ ∆1

�

1+ γε
�t∗/ε

(A.15)

→ εeγt∗ . (A.16)

On the other hand, if X ε
′
> X ε, the same idea applies: the distance grows the quickest, if one

of the processes always stays close to its attracting process such that it has drift speed 1. Now, if

X ε
′

increases with speed 1 (as a worst case assumption), σε = ε, and we end up with the same

calculation as before.

It should be mentioned that our estimations are rough, as we do not consider the structure of

Brownian paths, but only the worst case of all continous paths. However, uniform convergence on

compact intervals is the best one can get, and every improvement would only change the constant

KS .
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