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Abstract

Brownian areas are considered in this paper: the Brownian excursion area, the Brownian
bridge area, the Brownian motion area, the Brownian meander area, the Brownian double
meander area, the positive part of Brownian bridge area, the positive part of Brownian
motion area. We are interested in the asymptotics of the right tail of their density function.
Inverting a double Laplace transform, we can derive, in a mechanical way, all terms of an
asymptotic expansion. We illustrate our technique with the computation of the first four
terms. We also obtain asymptotics for the right tail of the distribution function and for the
moments. Our main tool is the two-dimensional saddle point method.
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1 Introduction

Let Bex(t), t ∈ [0, 1], be a (normalized) Brownian excursion, and let Bex :=
∫ 1
0 Bex(t) dt be its

area (integral). This random variable has been studied by several authors, including Louchard
[14; 15], Takács [22], and Flajolet and Louchard [8]; see also the survey by Janson [10] with
many further references. One reason for the interest in this variable is that it appears as a limit
in many different problems, see [22] and, in particular, [8] for examples and applications.

It is known that Bex has a density function fex, which was given explicitly by Takács [22] as a
convergent series involving the zeros aj of the Airy function and the confluent hypergeometric
function U :

fex(x) =
2
√

6

x2

∞∑

j=1

v
2/3
j e−vjU

(
−5

6
,
4

3
; vj

)
with vj = 2|aj |3/27x2. (1.1)

(The existence and continuity of fex follows also from Theorem 3.1 below.) A related expansion
for the distribution function P(Bex ≤ x) was found by Darling [4]. (We must use the Vervaat
construction [29] to relate his result to Bex; see [10] and the discussion surrounding eq. (11)
in Majumdar and Comtet [16].) The series expansion (1.1) for fex and Darling’s result readily
yield asymptotics of the left tail of the distribution, i.e., of fex(x) and P(Bex ≤ x) as x → 0, see
Louchard [15] and Flajolet and Louchard [8] (with typos corrected in [10]); it is easily seen that
with aj ordered with |a1| < |a2| < . . . , only the first term in the sum is significant for small x
because of the factor e−vj .

The main purpose of this paper is to give corresponding asymptotics for the right tail of the
distribution of Bex, i.e., for the density function fex(x) and the tail probabilities P(Bex > x) for
large x. This is important for large deviation properties in the above-mentioned applications.
For large x, the expansion (1.1) is not very useful since many vj are small, and to find asymptotics
has been a long-standing mathematical question with only some weak results obtained so far,
see (1.4) below. We have the following very precise result.

Theorem 1.1. For the Brownian excursion area, as x → ∞,

fex(x) ∼ 72
√

6√
π

x2e−6x2

(1.2)

and

P(Bex > x) ∼ 6
√

6√
π

xe−6x2

. (1.3)

More precisely, there exist asymptotic expansions in powers of x−2, to arbitrary order N , as
x → ∞,

fex(x) =
72
√

6√
π

x2e−6x2

(
1 − 1

9
x−2 − 5

1296
x−4 − 25

46656
x−6 + · · · + O

(
x−2N

))
,

P(Bex > x) =
6
√

6√
π

xe−6x2

(
1 − 1

36
x−2 − 1

648
x−4 − 7

46656
x−6 + · · · + O

(
x−2N

))
.
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Unlike the left tail, it seems difficult to obtain such results from Takács’s formula (1.1) for fex,
and we will instead use a method by Tolmatz [26; 27; 28] that he used to obtain corresponding
asymptotics for three other Brownian areas, viz., the integral Bbr :=

∫ 1
0 |Bbr(t)|dt of the absolute

value of a Brownian bridge Bbr(t), the integral Bbm :=
∫ 1
0 |B(t)|dt of the absolute value of a

Brownian motion B(t) over [0, 1], and the integral Bbr+ :=
∫ 1
0 Bbr(t)+ dt of the positive part of

a Brownian bridge. (An application of Bbr can be found in Shepp [21].)

The (much weaker) fact that − ln P(Bex > x) ∼ −6x2, i.e., that

P(Bex > x) = exp
(
−6x2 + o(x2)

)
, (1.4)

was shown by Csörgő, Shi and Yor [3] as a consequence of the asymptotics of the moments EBn
ex

found by Takács [22], see Section 9. It seems difficult to obtain more precise tail asymptotics
from the moment asymptotics. It is, however, easy to go in the opposite direction and obtain
moment asymptotics from the tail asymptotics above, as was done by Tolmatz [27; 28] for Bbm,
Bbr and Bbr+; see again Section 9. In particular, this made it possible to guess the asymptotic
formula (1.2) before we could prove it, by matching the resulting moment asymptotics with the
known result by Takács [22].

An alternative way to obtain (1.4) is by large deviation theory, which easily gives (1.4) and
explains the constant 6 as the result of an optimization problem, see Fill and Janson [7]. This
method applies to the other Brownian areas in this paper too, and explains the different constants
in the exponents below, but, again, it seems difficult to obtain more precise results by this
approach.

Besides the Brownian excursion area and the three areas studied by Tolmatz, his method applies
also to three further Brownian areas: the integrals Bme :=

∫ 1
0 |Bme(t)|dt, Bdm :=

∫ 1
0 |Bdm(t)|dt

and Bbm+ :=
∫ 1
0 B(t)+ dt of a Brownian meander Bme(t), a Brownian double meander Bdm(t),

and the positive part of a Brownian motion over [0, 1]. We define here the Brownian double
meander by Bdm(t) := B(t)−min0≤u≤1 B(u); this is a non-negative continuous stochastic process
on [0, 1] that a.s. is 0 at a unique point τ ∈ [0, 1], and it can be regarded as two Brownian
meanders on the intervals [0, τ ] and [τ, 1] joined back to back (with the first one reversed), see
Majumdar and Comtet [17] and Janson [10]; the other processes considered here are well-known,
see for example Revuz and Yor [20].

We find it illuminating to study all seven Brownian areas together, and we will therefore formu-
late our proof in a general form that applies to all seven areas. As a result we obtain also the
following results, where we for completeness repeat Tolmatz’s results. (We also extend them,
since Tolmatz [26; 27; 28] gives only the leading terms, but he points out that higher order terms
can be obtained in the same way.) We give the four first terms in the asymptotic expansions;
they can (in principle, at least) be continued to any desired number of terms by the methods in
Section 6; only even powers x−2k appear in the expansions.

Theorem 1.2 (Tolmatz [26]). For the Brownian bridge area, as x → ∞,

fbr(x) =
2
√

6√
π

e−6x2

(
1 +

1

18
x−2 +

1

432
x−4 +

25

46656
x−6 + O

(
x−8

))
,

P(Bbr > x) =
1√
6π

x−1e−6x2

(
1 − 1

36
x−2 +

1

108
x−4 − 155

46656
x−6 + O

(
x−8

))
.
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Theorem 1.3 (Tolmatz [27]). For the Brownian motion area, as x → ∞,

fbm(x) =

√
6√
π

e−3x2/2

(
1 +

1

18
x−2 − 1

162
x−4 +

49

5832
x−6 + O

(
x−8

))
,

P(Bbm > x) =

√
2√
3π

x−1e−3x2/2

(
1 − 5

18
x−2 +

22

81
x−4 − 2591

5832
x−6 + O

(
x−8

))
.

Theorem 1.4. For the Brownian meander area, as x → ∞,

fme(x) = 3
√

3 xe−3x2/2

(
1 − 1

18
x−2 − 1

162
x−4 +

5

5832
x−6 + O

(
x−8

))
,

P(Bme > x) =
√

3 e−3x2/2

(
1 − 1

18
x−2 +

5

162
x−4 − 235

5832
x−6 + O

(
x−8

))
.

Theorem 1.5. For the Brownian double meander area, as x → ∞,

fdm(x) =
2
√

6√
π

e−3x2/2

(
1 +

1

6
x−2 +

1

18
x−4 +

29

648
x−6 + O

(
x−8

))
,

P(Bdm > x) =
2
√

2√
3π

x−1e−3x2/2

(
1 − 1

6
x−2 +

2

9
x−4 − 211

648
x−6 + O

(
x−8

))
.

Theorem 1.6 (Tolmatz [28]). For the positive part of Brownian bridge area, as x → ∞,

fbr+(x) =

√
6√
π

e−6x2

(
1 +

1

36
x−2 − 7

5184
x−4 +

17

46656
x−6 + O

(
x−8

))
,

P(Bbr+ > x) =
1

2
√

6π
x−1e−6x2

(
1 − 1

18
x−2 +

65

5184
x−4 − 907

186624
x−6 + O

(
x−8

))
.

Theorem 1.7. For the positive part of Brownian motion area, as x → ∞,

fbm+(x) =

√
3√
2π

e−3x2/2

(
1 +

1

36
x−2 − 5

648
x−4 +

109

15552
x−6 + O

(
x−8

))
,

P(Bbm+ > x) =
1√
6π

x−1e−3x2/2

(
1 − 11

36
x−2 +

193

648
x−4 − 2537

5184
x−6 + O

(
x−8

))
.

It is not surprising that the tails are roughly Gaussian, with a decay like e−cx2

for some constants
c. Note that the constant in the exponent is 6 for the Brownian bridge and excursion, which
are tied to 0 at both endpoints, and only 3/2 for the Brownian motion, meander and double
meander, which are tied to 0 only at one point. It is intuitively clear that the probability of a very
large value is smaller in the former cases. There are also differences in factors of x between Bbr

and Bex, and between Bbm and Bme, where the process conditioned to be positive has somewhat
higher probabilities of large areas. These differences are in the expected direction, but we see no
intuitive reason for the powers in the theorems. We have even less explanations for the constant
factors in the estimates.

As said above, the weaker result (1.4) for the Brownian excursion was obtained from moment
asymptotics by Csörgő, Shi and Yor [3], and the corresponding result for the double meander,
P(Bdm > x) = exp

(
−3x2/2 + o(x2)

)
, was obtained in the same way by Majumdar and Comtet

[16, 17].

1603



Remark 1.8. If we define Bbr− :=
∫ 1
0 Bbr(t)− dt, we have Bbr = Bbr+ + Bbr−; further, Bbr−

d
=

Bbr+ by symmetry. Hence, for any x,

P(Bbr > x) ≥ P(Bbr+ > x or Bbr− > x)

= P(Bbr+ > x) + P(Bbr− > x) − P(Bbr+ > x and Bbr− > x)

≥ 2P(Bbr+ > x) − 2P(Bbr > 2x).

By Theorems 1.2 and 1.6, the ratio between the two sides is 1 + 1
36x−2 + O(x−4); hence, these

inequalities are tight for large x. This shows, in a very precise way, the intuitive fact that the
most probable way to obtain a large value of Bbr is with one of Bbr+ and Bbr− large and the
other close to 0.

The same is true for Bbm and Bbm± by Theorems 1.2 and 1.6. It is interesting to note that for
both Bbr and Bbm, the ratio P(B > x)/2P(B+) = 1 + 1

36x−2 + O(x−4), with the first two terms
equal for the two cases (the third terms differ).

Remark 1.9. Series expansions similar to (1.1) for the density functions fbr, fbm, fme and fdm

are known, see [23; 24; 25; 17; 10]. As for the Brownian excursion, these easily yield asymptotics
as x → 0 [10] but not as x → ∞.

Tolmatz’s method is based on inverting a double Laplace transform; this double Laplace trans-
form has simple explicit forms (involving the Airy function) for all seven Brownian areas, see
the survey [10] and the references given there. The inversion is far from trivial; a straightfor-
ward inversion leads to a double integral that is not even absolutely convergent, and not easy
to estimate. Tolmatz found a clever change of contour that together with properties of the Airy
function leading to near cancellations makes it possible to rewrite the integral as a double integral
of a rapidly decreasing function, for which the saddle point method can be applied. (Kearney,
Majumdar and Martin [13] have recently used a similar change of contour together with similar
near cancellations to invert a (single) Laplace transform for another type of Brownian area.) We
follow Tolmatz’s approach, and state his inversion using a change of contour in a rather general
form in Section 3; the proof is given in Section 8. This inversion formula is then applied to the
seven Brownian areas in Sections 4–6. Moment asymptotics are derived in Section 9.

A completely different proof for the asymptotics of P(Bbr > x) and P(Bbm > x) in Theorems 1.2
and 1.3 has been given by Fatalov [6] using Laplace’s method in Banach spaces. This method
seems to be an interesting and flexible alternative way to obtain at least first order asymptotics
in many situations, and it would be interesting to extend it to cover all cases treated here.

We use C1, C2, . . . and c1, c2, . . . to denote various positive constants; explicit values could be
given but are unimportant. We also write, for example, C1(M) to denote dependency on a
parameter (but not on anything else).

2 Asymptotics of density and distribution functions

The relation between the asymptotics for density functions and distribution functions in Theo-
rems 1.1–1.7 can be obtained as follows.

Suppose that X is a positive random variable with a density function f satisfying

f(x) ∼ axαe−bx2

, x → ∞, (2.1)
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for some numbers a, b > 0, α ∈ R. It is easily seen, e.g. by integration by parts, that (2.1)
implies

P(X > x) ∼ a

2b
xα−1e−bx2

, x → ∞. (2.2)

Obviously, there is no implication in the opposite direction; X may even satisfy (2.2) without
having a density at all. On the other hand, if it is known that (2.1) holds with some unknown
constants a, b, α, then the constants can be found from the asysmptotics of P(X > x) by (2.2).

The argument extends to asymptotic expansions with higher order terms. If, as for the Brownian
areas studied in this paper, there is an asymptotic expansion

f(x) = xαe−bx2 (
a0 + a2x

−2 + a4x
−4 + · · · + O(x−2N )

)
, x → ∞, (2.3)

then repeated integrations by parts yield a corresponding expansion

P(X > x) = xα−1e−bx2 (
a′0 + a′2x

−2 + a′4x
−4 + · · · + O(x−2N )

)
, x → ∞, (2.4)

where a′0 = a0/(2b), a′2 = a0(α − 1)/(2b)2 + a2/(2b), . . . ; in general, the expansion (2.3) is
recovered by formal differentiation of (2.4), which gives a simple method to find the coefficients
in (2.4).

3 A double Laplace inversion

We state the main step in (our version of) Tolmatz’ method as the following inversion formula,
which is based on and generalizes formulas in Tolmatz [26; 27; 28].

Fractional powers of complex numbers below are interpreted as the principal values, defined in
C \ (−∞, 0].

Theorem 3.1. Let X be a positive random variable and let ψ(s) := E e−sX be its Laplace
transform. Suppose that 0 < ν < 3/2 and that

1

Γ(ν)

∫ ∞

0
e−xsψ(s3/2)sν−1 ds = Ψ(x), x > 0, (3.1)

where Ψ is an analytic function in the sector {z ∈ C : | arg z| < 5π/6} such that

Ψ(z) = o(|z|−ν), z → 0 with | arg z| < 5π/6, (3.2)

Ψ(z) = O(1), |z| → ∞ with | arg z| < 5π/6. (3.3)

Let
Ψ∗(z) := e2πνi/3Ψ

(
e2πi/3z

)
− e−2πνi/3Ψ

(
e−2πi/3z

)
. (3.4)

Finally, assume that

Ψ∗(z) = O(|z|−6), |z| → ∞ with | arg z| < π/6. (3.5)
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Then X is absolutely continuous with a continuous density function f given by, for x > 0 and
every ξ > 0,

f(x) =
3Γ(ν)

8π2i
ξ5/2−νx2ν/3−5/3

·
∫ π/2

θ=−π/2

∫ ∞

r=0
exp

(
ξx−2/3 sec θeiθ − eiθ(ξ sec θ)3/2r−3/2

)

· e(1−2ν/3)iθ(sec θ)7/2−νrν−5/2Ψ∗(reiθ/3) dr dθ. (3.6)

Note that Ψ∗ is analytic in the sector | arg z| < π
6 , with, by (3.2) and (3.3),

Ψ∗(z) = o(|z|−ν), z → 0 with | arg z| <
π

6
, (3.7)

Ψ∗(z) = O(1), |z| → ∞ with | arg z| <
π

6
. (3.8)

However, we need, as assumed in (3.5), a more rapid decay as |z| → ∞ than this.

Remark 3.2. In all our applications, Ψ is, in fact, analytic in the slit plane C \ (−∞, 0], and
(3.2) and (3.3) hold in any sector | arg z| ≤ π − δ; thus Ψ∗ is analytic in | arg z| < π/3, and (3.7)
and (3.8) hold for | arg z| ≤ π/3 − δ.

Remark 3.3. To obtain Tolmatz’ version of the formulas, for example [26, (30)] (correcting a
typo there), take ν = 1/2 and Ψ∗ as in (4.5) below, and make the substitutions x = λ, ξ = aλ2/3

and r = aρ−2/3 sec θ.

We prove Theorem 3.1 in Section 8, but show first how it applies to the Brownian areas.

4 The function Ψ∗ for Brownian areas

For the Brownian bridge area Bbr we have ν = 1/2 and, see e.g. [10, (126)],

Ψ(z) = −21/6 Ai(21/3z)

Ai′(21/3z)
, (4.1)

which by the formula [1, 10.4.9]

Ai(ze±2πi/3) = 1
2e±πi/3

(
Ai(z) ∓ iBi(z)

)
(4.2)

and its consequence
Ai′(ze±2πi/3) = 1

2e∓πi/3
(
Ai′(z) ∓ iBi′(z)

)
(4.3)

together with the Wronskian [1, 10.4.10]

Ai(z)Bi′(z) − Ai′(z)Bi(z) = π−1 (4.4)

by a simple calculation leads to, as shown by Tolmatz [26, Lemma 2.1], see (4.7) below,

Ψ∗(z) =
27/6π−1i

Ai′(21/3z)2 + Bi′(21/3z)2
. (4.5)
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It seems simpler to instead consider
√

2Bbr. Note that, by the simple change of variables
s 7→ 21/3s and x 7→ 2−1/3x in (3.1), if (3.1) holds for some random variable X and a function
Ψ, it holds for

√
2 X and 2−ν/3Ψ(2−1/3z). We use the notations Ψbr and Ψ∗

br for the case
X =

√
2Bbr and obtain from (4.1) the simpler

Ψbr(z) = − Ai(z)

Ai′(z)
(4.6)

and thus, by (4.2), (4.3) and (4.4),

Ψ∗
br(z) =

∑

±
±e±πi/3Ψ

(
e±2πi/3z

)
=

∑

±
∓e±3πi/3 Ai(z) ∓ iBi(z)

Ai′(z) ∓ iBi′(z)

=
∑

±
±

(
Ai(z) ∓ iBi(z)

)(
Ai′(z) ± iBi′(z)

)

Ai′(z)2 + Bi′(z)2

=
2π−1i

Ai′(z)2 + Bi′(z)2
.

(4.7)

For the Brownian excursion area Bex we have ν = 1/2 and by Louchard [15], see also [10, (80)],

Ψ(z) = −25/6 d

dz

(
Ai′(21/3z)

Ai(21/3z)

)
= 21/2

(
21/3 Ai′(21/3z)

Ai(21/3z)

)2

− 23/2z, (4.8)

Again, it seems simpler to instead consider
√

2Bex, for which we use the notation Ψex and Ψ∗
ex.

We have, see Louchard [15] and [10, (81)], or by (4.8) and the general relation above,

Ψex(z) = −2
d

dz

(
Ai′(z)

Ai(z)

)
= 2

(
Ai′(z)

Ai(z)

)2

− 2z, (4.9)

and thus by (4.2), (4.3) and (4.4)

Ψ∗
ex(z) =

∑

±
±e±πi/3Ψex

(
e±2πi/3z

)

=
∑

±
±

(
e±πi/32

(
e∓2πi/3 Ai′(z) ∓ iBi′(z)

Ai(z) ∓ iBi(z)

)2

− 2e±2πi/3z

)

= 2
∑

±
±e∓3πi/3

(
Ai′(z) ∓ iBi′(z)

)2(
Ai(z) ± iBi(z)

)2

(
Ai(z)2 + Bi(z)2

)2 + 0

= 2
∑

±
∓

(
Ai′(z)Ai(z) + Bi′(z)Bi(z) ∓ iπ−1

)2

(
Ai(z)2 + Bi(z)2

)2

=
8π−1i

(
Ai(z)Ai′(z) + Bi(z)Bi′(z)

)
(
Ai(z)2 + Bi(z)2

)2 .

(4.10)

The Brownian motion area Bbm is another case treated by Tolmatz [27]. Note that in this case
ν = 1. For

√
2Bbm, we have by Takács [24], see also Kac [11], Perman and Wellner [19], and

[10, Section 20 and Appendix C.1], ν = 1 and

Ψbm(z) = −AI(z)

Ai′(z)
, (4.11)
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where we use the notation, see [10, Appendix A],

AI(z) :=

∫ +∞

z
Ai(t) dt =

1

3
−

∫ z

0
Ai(t) dt. (4.12)

If we further define

BI(z) :=

∫ z

0
Bi(t) dt, (4.13)

we have by (4.2)

AI(ze±2πi/3) =
1

3
−

∫ ze±2πi/3

0
Ai(t) dt

=
1

3
− e±2πi/3

∫ z

0
Ai(te±2πi/3) dt

=
1

3
− 1

2
e±3πi/3

∫ z

0

(
Ai(t) ∓ iBi(t)

)
dt

= 1
2 − 1

2AI(z) ∓ 1
2 iBI(z).

(4.14)

Consequently, using (4.11) and (4.3),

Ψ∗
bm(z) =

∑

±
±e±2πi/3Ψbm

(
e±2πi/3z

)

=
∑

±
∓e±3πi/3 1 − AI(z) ∓ iBI(z)

Ai′(z) ∓ iBi′(z)

=
∑

±
±

(
1 − AI(z) ∓ iBI(z)

)(
Ai′(z) ± iBi′(z)

)

Ai′(z)2 + Bi′(z)2

= 2i
Bi′(z) − AI(z)Bi′(z) − Ai′(z)BI(z)

Ai′(z)2 + Bi′(z)2
.

(4.15)

For the Brownian meander, or more precisely
√

2Bme, by Takács [25], see also [10, Section 22
and Appendix C.3], (3.1) holds with ν = 1/2 and

Ψme(z) =
AI(z)

Ai(z)
. (4.16)

Consequently, using (4.14) and (4.2),

Ψ∗
me(z) =

∑

±
±e±πi/3Ψme

(
e±2πi/3z

)

=
∑

±
±1 − AI(z) ∓ iBI(z)

Ai(z) ∓ iBi(z)

=
∑

±
±

(
1 − AI(z) ∓ iBI(z)

)(
Ai(z) ± iBi(z)

)

Ai(z)2 + Bi(z)2

= 2i
Bi(z) − AI(z)Bi(z) − Ai(z)BI(z)

Ai(z)2 + Bi(z)2
.

(4.17)
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For the Brownian double meander, or more precisely
√

2Bdm, by Majumdar and Comtet [17],
see also [10, Section 23], (3.1) holds with ν = 1 and

Ψdm(z) =

(
AI(z)

Ai(z)

)2

. (4.18)

Consequently, using (4.14) and (4.2),

Ψ∗
dm(z) =

∑

±
±e±2πi/3Ψdm

(
e±2πi/3z

)

=
∑

±
±

(
1 − AI(z) ∓ iBI(z)

Ai(z) ∓ iBi(z)

)2

=
∑

±
±

((
1 − AI(z) ∓ iBI(z)

)(
Ai(z) ± iBi(z)

))2

(Ai(z)2 + Bi(z)2)2

= 4i

(
(1 − AI(z))Ai(z) + BI(z)Bi(z)

)(
(1 − AI(z))Bi(z) − BI(z)Ai(z)

)

(Ai(z)2 + Bi(z)2)2
.

(4.19)

The positive part of a Brownian bridge is another case treated by Tolmatz [28]. For
√

2Bbr+,
by Perman and Wellner [19], see also Tolmatz [28] and [10, Section 22 and Appendix C.2], (3.1)
holds with ν = 1/2 and

Ψbr+(z) = 2
Ai(z)

z1/2Ai(z) − Ai′(z)
. (4.20)

Consequently, by (4.2), (4.3) and (4.4),

Ψ∗
br+(z) =

∑

±
±e±πi/3Ψbr+

(
e±2πi/3z

)

=
∑

±
±2e±πi/3 Ai

(
e±2πi/3z

)

e±πi/3z1/2Ai
(
e±2πi/3z

)
− Ai′

(
e±2πi/3z

)

= 2
∑

±
± Ai(z) ∓ iBi(z)

z1/2
(
Ai(z) ∓ iBi(z)

)
− e∓3πi/3

(
Ai′(z) ∓ iBi′(z)

)

= 2
∑

±
± Ai(z) ∓ iBi(z)(

z1/2Ai(z) + Ai′(z)
)
∓ i

(
z1/2Bi(z) + Bi′(z)

)

= 2
∑

±
±

(
Ai(z) ∓ iBi(z)

)(
z1/2Ai(z) + Ai′(z) ± i

(
z1/2Bi(z) + Bi′(z)

))
(
z1/2Ai(z) + Ai′(z)

)2
+

(
z1/2Bi(z) + Bi′(z)

)2

=
4iπ−1

(
z1/2Ai(z) + Ai′(z)

)2
+

(
z1/2Bi(z) + Bi′(z)

)2 .

(4.21)

For the positive part of a Brownian motion, or more precisely
√

2Bbm+, by Perman and Wellner
[19], see also [10, Section 23 and Appendix C.1], (3.1) holds with ν = 1 and

Ψbm+(z) =
z−1/2Ai(z) + AI(z)

z1/2Ai(z) − Ai′(z)
. (4.22)
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Note that this Ψ is singular at 0, but still satisfies (3.2). By (4.2), (4.3), (4.14) and (4.4),

Ψ∗
bm+(z) =

∑

±
±e±2πi/3Ψbm+

(
e±2πi/3z

)

=
∑

±
±e±2πi/3 e∓πi/3z−1/2Ai

(
e±2πi/3z

)
+ AI

(
e±2πi/3z

)

e±πi/3z1/2Ai
(
e±2πi/3z

)
− Ai′

(
e±2πi/3z

)

=
∑

±
± z−1/2

(
Ai(z) ∓ iBi(z)

)
+ 1 − AI(z) ∓ iBI(z)

z1/2
(
Ai(z) ∓ iBi(z)

)
− e∓3πi/3

(
Ai′(z) ∓ iBi′(z)

)

=
∑

±
±z−1/2Ai(z) + 1 − AI(z) ∓ i

(
z−1/2Bi(z) + BI(z)

)
(
z1/2Ai(z) + Ai′(z)

)
∓ i

(
z1/2Bi(z) + Bi′(z)

)

= 2i

(
z−1/2Ai(z) + 1 − AI(z)

)(
z1/2Bi(z) + Bi′(z)

)
(
z1/2Ai(z) + Ai′(z)

)2
+

(
z1/2Bi(z) + Bi′(z)

)2

− 2i

(
z−1/2Bi(z) + BI(z)

)(
z1/2Ai(z) + Ai′(z)

)
(
z1/2Ai(z) + Ai′(z)

)2
+

(
z1/2Bi(z) + Bi′(z)

)2

= 2i

(
1 − AI(z)

)(
z1/2Bi(z) + Bi′(z)

)
− BI(z)

(
z1/2Ai(z) + Ai′(z)

)
+ z−1/2π−1

(
z1/2Ai(z) + Ai′(z)

)2
+

(
z1/2Bi(z) + Bi′(z)

)2

(4.23)

Note that the functions Ψbr, Ψex, Ψbm, Ψme and Ψdm given above in (4.6), (4.9), (4.11), (4.16),
(4.18) are meromorphic, with poles only on the negative real axis, because the only zeros of Ai
and Ai′ are on the negative real axis [1, p. 450]. The functions Ψbr+ and Ψbm+ in (4.20) and
(4.22) are analytic in the slit plane C\(−∞, 0], since Tolmatz [28] showed that z1/2Ai(z)−Ai′(z)
has no zeros in the slit plane; see Appendix A for an alternative proof. In particular, all seven
functions are analytic in the slit plane. Furthermore, all except Ψbm+ have finite limits as
z → 0, and in particular they are O(1) as z → 0 so (3.2) holds. By (4.22), we have Ψbm+(z) ∼
z−1/2Ai(0)/Ai′(0) and thus Ψbm+ = O(|z|−1/2) as z → 0; since in this case ν = 1, (3.2) holds
for Ψbm+ too.

Next we consider asymtotics as |z| → ∞. The Airy functions have well-known asymptotics, see
[1, 10.4.59, 10.4.61, 10.4.63, 10.4.66, 10.4.82, 10.4.84]. The leading terms are, as |z| → ∞ and
uniformly in the indicated sectors for any δ > 0,

Ai(z) ∼ π−1/2

2
z−1/4e−2z3/2/3, | arg(z)| ≤ π − δ, (4.24)

Ai′(z) ∼ −π−1/2

2
z1/4e−2z3/2/3, | arg(z)| ≤ π − δ, (4.25)

AI(z) ∼ π−1/2

2
z−3/4e−2z3/2/3, | arg(z)| ≤ π − δ, (4.26)

Bi(z) ∼ π−1/2z−1/4e2z3/2/3, | arg(z)| ≤ π/3 − δ, (4.27)

Bi′(z) ∼ π−1/2z1/4e2z3/2/3, | arg(z)| ≤ π/3 − δ, (4.28)

BI(z) ∼ π−1/2z−3/4e2z3/2/3, | arg(z)| ≤ π/3 − δ. (4.29)

It follows by using (4.24), (4.25) and (4.26) in (4.6), (4.9), (4.16), (4.11), (4.20), (4.22) that in
all seven cases (3.3) holds; more precisely, Ψ(z) ∼ z−ν as |z| → ∞ with | arg z| < π−δ. (For real
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z > 0, this is always true, as follows from (3.1) by the change of variables s = t/x and monotone
(or dominated) convergence.)

Turning to Ψ∗, we observe first that, by (3.4), in all seven cases, Ψ∗(z) is analytic in | arg z| < 1/3.
Next, (4.24)–(4.29) show that, as |z| → ∞ in a sector | arg(z)| ≤ π/3 − δ, Ai, Ai′, AI decrease
superexponentially while Bi, Bi′, BI increase superexponentially. Hence, we can ignore all terms
involving Ai. More precisely, (4.7), (4.10), (4.15), (4.17), (4.19), (4.21), (4.23) together with
(4.24)–(4.29) yield the asymptotics, as |z| → ∞ with (for example) | arg z| ≤ π/6,

Ψ∗
br(z) =

2π−1i

Bi′(z)2

(
1 + O

(
e−8z3/2/3

))
, (4.30)

Ψ∗
ex(z) = 8π−1i

Bi′(z)

Bi(z)3

(
1 + O

(
e−8z3/2/3

))
, (4.31)

Ψ∗
bm(z) =

2i

Bi′(z)

(
1 + O

(
e−2z3/2/3

))
, (4.32)

Ψ∗
me(z) =

2i

Bi(z)

(
1 + O

(
e−2z3/2/3

))
, (4.33)

Ψ∗
dm(z) = 4i

BI(z)

Bi(z)2

(
1 + O

(
e−2z3/2/3

))
, (4.34)

Ψ∗
br+(z) =

4iπ−1

(
z1/2Bi(z) + Bi′(z)

)2

(
1 + O

(
e−4z3/2/3

))
, (4.35)

Ψ∗
bm+(z) =

2i

z1/2Bi(z) + Bi′(z)

(
1 + O

(
e−2z3/2/3

))
. (4.36)

In all seven cases, Ψ∗ decreases superexponentially in the sector; in particular, (3.5) holds. It
is remarkable that in all seven cases, Ψ(z) decreases slowly, as z−1/2 or z−1, but the linear
combination Ψ∗(z) decreases extremely rapidly in a sector around the positive real axis; there
are thus almost complete cancellations between the values of Ψ(z) at, say, arg z = ±2πi/3.
These cancellations are an important part of the success of Tolmatz’s method.

We have verified all the conditions of Theorem 3.1. Hence, the theorem shows that the variables
have continuous density functions given by (3.6).

5 The saddle point method

We proceed to show how the tail asymptotics for the Brownian areas follow from Theorem 3.1
and the formulae in Section 4 by straightforward applications of the saddle point method. For
simplicity, we give first a derivation of the leading terms. In the next section we show how the
calculations can be refined to obtain the asymptotic expansions in Theorems 1.1–1.7.

We use Ξ ∈ {br, ex, bm, me, dm, br+, bm+} as a variable indicating the different Brownian
areas we consider. We begin by writing (4.30)–(4.36), using (4.27) and (4.28), as

Ψ∗
Ξ(z) = hΞ(z)e−γΞz3/2

, (5.1)

where γbr = γex = γbr+ = 4/3 and γbm = γme = γdm = γbm+ = 2/3 (note that these cases differ
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by having two or one points tied to 0) and, as |z| → ∞ with | arg z| ≤ π/6,

hbr(z) ∼ 2iz−1/2 (5.2)

hex(z) ∼ 8iz (5.3)

hbm(z) ∼ 2iπ1/2z−1/4 (5.4)

hme(z) ∼ 2iπ1/2z1/4 (5.5)

hdm(z) ∼ 4iπ1/2z−1/4 (5.6)

hbr+(z) ∼ iz−1/2 (5.7)

hbm+(z) ∼ iπ1/2z−1/4. (5.8)

We write the right hand sides as ih0
br(z), . . . , ih0

bm+(z), and thus these formulae can be written

hΞ(z) ∼ ih0
Ξ(z), (5.9)

where h0
br(z) = 2z−1/2, h0

ex(z) = 8z, and so on.

Consider, for simplicity, first the cases Ξ ∈ {br, ex, me, br+} where ν = 1/2. We then rewrite
(3.6) as, using f∗

Ξ for the density of
√

2BΞ,

f∗
Ξ(x) = ξ2x−4/3

∫ π/2

−π/2

∫ ∞

0
F0(r, θ)e

ϕ0(r,θ;x,ξ) dr dθ (5.10)

where, with γ = γΞ,

F0(r, θ) :=
3π−3/2

8i
e2iθ/3(sec θ)3r−2hΞ(reiθ/3), (5.11)

ϕ0(r, θ; x, ξ) := ξx−2/3 sec θeiθ − eiθ(ξ sec θ/r)3/2 − γr3/2eiθ/2. (5.12)

Remember that ξ is arbitrary; we choose ξ = ρx8/3 for a positive constant ρ that will be chosen
later. Further, make the change of variables r = x4/3s2/3. Thus,

f∗
Ξ(x) = ρ2x8/3

∫ π/2

θ=−π/2

∫ ∞

s=0
F1(s, θ; x)ex2ϕ1(s,θ) dsdθ (5.13)

where

F1(s, θ; x) :=
1

4π3/2i
e2iθ/3(sec θ)3s−5/3hΞ(x4/3s2/3eiθ/3), (5.14)

ϕ1(s, θ) := ρ
(
1 + i tan θ

)
− ρ3/2s−1eiθ(sec θ)3/2 − γseiθ/2. (5.15)

In particular,
Re ϕ1(s, θ) = ρ − ρ3/2s−1(cos θ)−1/2 − γs cos(θ/2). (5.16)

In the cases Ξ ∈ {bm, dm, bm+} when ν = 1, we obtain similarly

f∗
Ξ(x) = ρ3/2x7/3

∫ π/2

θ=−π/2

∫ ∞

s=0
F1(s, θ; x)ex2ϕ1(s,θ) dsdθ (5.17)
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where

F1(s, θ; x) :=
1

4π2i
eiθ/3(sec θ)5/2s−4/3hΞ(x4/3s2/3eiθ/3) (5.18)

and ϕ1 is the same as above.

Consider first θ = 0; then

ϕ1(s, 0) = Re ϕ1(s, 0) = ρ − ρ3/2s−1 − γs, (5.19)

which has a maximum at s = s0 := ρ3/4γ−1/2. In order for (s0, 0) to be a saddle point of ϕ1, we
need also

0 =
∂ϕ1

∂θ
(s0, 0) = iρ − iρ3/2s−1 − 1

2 iγs = i
(
ρ − 3

2ρ3/4γ1/2
)

(5.20)

and thus

ρ = ρΞ :=
(3γ1/2

2

)4
=

(9γ

4

)2
=

{
9, Ξ ∈ {br, ex, br+},
9/4, Ξ ∈ {bm, me, dm, bm+}.

(5.21)

With this choice of ρ, we find from (5.15) and (5.20) that the value at the saddle point is

ϕ1(s0, 0) = ρ − 2ρ3/4γ1/2 = −ρ

3
=

{
−3, Ξ ∈ {br, ex, br+},
−3/4, Ξ ∈ {bm, me, dm, bm+}.

(5.22)

This yields the constant coefficient in the exponent of the asymptotics. We denote this value by
−b = −bΞ, and have thus, using (5.20),

ρ = 3b, ρ3/4γ1/2 = 2b. (5.23)

Further, by (5.23) and (5.22)

s0 = ρ3/4γ−1/2 = 2bγ−1 =

{
9/2, Ξ ∈ {br, ex, br+},
9/4, Ξ ∈ {bm, me, dm, bm+}.

(5.24)

The significant part of the integrals in (5.13) and (5.17) comes from the square

Q :=
{
(s, θ) : |s − s0| ≤ log x/x, |θ| ≤ log x/x

}
(5.25)

around the saddle point, as we will see in Lemma 5.1 below. We consider first this square.

By (5.14), (5.18) and (5.2)–(5.8), uniformly for (s, θ) ∈ Q, as x → ∞,

F1(s, θ; x) =





1+o(1)

4π3/2
s
−5/3
0 h0

Ξ(x4/3s
2/3
0 ), Ξ ∈ {br, ex, me, br+},

1+o(1)
4π2 s

−4/3
0 h0

Ξ(x4/3s
2/3
0 ), Ξ ∈ {bm, dm, bm+}.

(5.26)

For the exponential part, we let s = s0(1 + u/x) and θ = 2v/x, and note that Q corresponds to

Q′ :=
{
(u, v) : |u| ≤ (log x)/s0, |θ| ≤ (log x)/2

}
. (5.27)

A Taylor expansion yields, for (u, v) ∈ Q′, after straightforward computations,

ϕ1(s, θ) = −b − 2bu2x−2 + 2ibuvx−2 − bv2x−2 + O
(
(|u|3 + |v|3)x−3

)
. (5.28)
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Hence,

∫∫

Q
ex2ϕ1(s,θ) dsdθ = 2s0x

−2

∫∫

Q′

e−bx2−2bu2+2ibuv−bv2+o(1) du dv

= 2s0x
−2e−bx2

(∫ ∞

0

∫ ∞

0
e−2bu2+2ibuv−bv2+o(1) du dv + o(1)

)

= 2s0x
−2e−bx2

(
π

∣∣∣∣
2b −ib
−ib b

∣∣∣∣
−1/2

+ o(1)

)

∼ 2s0π√
3 b

x−2e−bx2

.

(5.29)

Further,
∫∫

Q

∣∣ex2ϕ1(s,θ)
∣∣ dsdθ is of the same order. Consequently, if we write

G1(s, θ; x) := F1(s, θ; x)ex2ϕ1(s,θ),

then (5.29) and (5.26) yield

∫∫

Q
G1(s, θ; x) dsdθ =





1+o(1)

2
√

3π b
s
−2/3
0 h0

Ξ(x4/3s
2/3
0 )x−2e−bx2

, Ξ ∈ {br, ex, me, br+},
1+o(1)

2
√

3 πb
s
−1/3
0 h0

Ξ(x4/3s
2/3
0 )x−2e−bx2

, Ξ ∈ {bm, dm, bm+}.
(5.30)

For the complement Qc := (0,∞) × (−π/2, π/2) \ Q, we have the following.

Lemma 5.1. For every N < ∞, for large x,

∫∫

Qc

|G1(s, θ; x)|dsdθ = O
(
x−Ne−bx2

)
.

We postpone the proof and find from (5.13), (5.17) and (5.30), using (5.23),

f∗(x) ∼





√
3 ρ

2
√

π
s
−2/3
0 h0

Ξ(x4/3s
2/3
0 )x2/3e−bx2

, Ξ ∈ {br, ex, me, br+},
√

3ρ
2π s

−1/3
0 h0

Ξ(x4/3s
2/3
0 )x1/3e−bx2

, Ξ ∈ {bm, dm, bm+}.

Substituting the functions h0
Ξ implicit in (5.2)–(5.8) and the values of ρ, b and s0 given in
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(5.21)–(5.24), we finally find

f∗
br(z) ∼

√
3 ρ√
π

s−1
0 e−bx2

=
2
√

3√
π

e−3x2

, (5.31)

f∗
ex(z) ∼ 4

√
3 ρ√
π

x2e−bx2

=
36
√

3√
π

x2e−3x2

, (5.32)

f∗
bm(z) ∼

√
3ρ√
π

s
−1/2
0 e−bx2

=

√
3√
π

e−3x2/4, (5.33)

f∗
me(z) ∼

√
3 ρs

−1/2
0 xe−bx2

=
3
√

3

2
xe−3x2/4, (5.34)

f∗
dm(z) ∼ 2

√
3ρ√
π

s
−1/2
0 e−bx2

=
2
√

3√
π

e−3x2/4, (5.35)

f∗
br+(z) ∼

√
3 ρ

2
√

π
s−1
0 e−bx2

=

√
3√
π

e−3x2

, (5.36)

f∗
bm+(z) ∼

√
3ρ

2
√

π
s
−1/2
0 e−bx2

=

√
3

2
√

π
e−3x2/4. (5.37)

Recall that these are the densities of
√

2BΞ. The density of BΞ is fΞ(x) =
√

2 f∗
Ξ(
√

2 x), and
we obtain the leading term of the asymptotics in Theorems 1.1–1.7. The leading terms of the
asymptotics for P(BΞ > x) follow by integration by parts, as discussed in Section 2.

It remains to prove Lemma 5.1. We begin by observing that by (3.7), (5.1) and (5.2)–(5.8),

|h(z)| = O
(
|z| + |z|−1

)
, | arg z| < π/6. (5.38)

Hence (5.14) and (5.18) show that, with some margin,

|F1(s, θ; x)| ≤ C1

(
x2s−1 + x−2s−3

)
(cos θ)−3. (5.39)

and thus by (5.16), for x ≥ 1,

|G1(s, θ; x)| ≤ C2x
2(cos θ)−3

(
s−1 + s−3

)
eρx2−x2A(θ)s−1−x2B(θ)s, (5.40)

where A(θ) = ρ3/2(cos θ)−1/2 and B(θ) := γ cos(θ/2). We integrate over s, using the following
lemma.

Lemma 5.2. Let M ≥ 0.

(i) If A and B are positive numbers and AB ≥ 1, then

∫ ∞

0
s−M−1e−As−1−Bs ds ≤ C3(M)(B/A)M/2e−2

√
AB. (5.41)

(ii) If further 0 < δ < 1, then

∫
∣∣s−√A/B

∣∣>δ
√

A/B, s>0
s−M−1e−As−1−Bs ds ≤ C4(M)(B/A)M/2e−(2+δ2/2)

√
AB. (5.42)
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Proof. (i): The change of variables s =
√

A/B t followed by t 7→ t−1 for t > 1 yields

∫ ∞

0
s−Me−As−1−Bs ds

s
= (B/A)M/2

∫ ∞

0
t−Me−

√
AB(t−1+t) dt

t

= (B/A)M/2

∫ 1

0

(
t−M + tM

)
e−

√
AB(t−1+t) dt

t

. (5.43)

For t ∈ (1
6 , 1) we write t = 1 − u and use (1 − u)−1 + 1 − u ≥ 2 + u2; hence the integral over

(1
6 , 1) is bounded by

C5(M)

∫ ∞

0
e−

√
AB(2+u2) du ≤ C6(M)e−2

√
AB

For t ∈ (0, 1
6) we use

t−M−1e−
√

AB t−1/2 ≤ C7(M)(AB)−(M+1)/2 ≤ C7(M);

hence the integral over (0, 1
6) is bounded by

C7(M)

∫ 1/6

0
e−

√
AB t−1/2 dt ≤ C7(M)e−3

√
AB. (5.44)

(ii): Arguing as in (5.43), we see that the integral is bounded by

(B/A)M/2

∫ 1/(1+δ)

0
2t−Me−

√
AB(t−1+t) dt

t
.

The integral over (0, 1/6) is bounded by (5.44), and the integral over (1/6,
1/(1 + δ)) by

C8(M)e−
√

AB
(
1+δ+1/(1+δ)

)
≤ C8(M)e−

√
AB(2+δ2/2).

Proof of Lemma 5.1. Returning to (5.40), we have B(θ)/A(θ) ≤ γ/ρ2/3 and

A(θ)B(θ) = ρ2/3γ(cos θ)−1/2 cos(θ/2). (5.45)

Noting that ρ2/3γ = (2b)2 by (5.23) and

cos(θ/2)2

cos θ
=

cos θ + 1

2 cos θ
=

1

2
+

1

2 cos θ
≥ 1 + c1θ

2, |θ| < π/2,

we see that √
A(θ)B(θ) ≥ 2b + c2θ

2. (5.46)

Hence Lemma 5.2 applies with A = x2A(θ) and B = x2B(θ) when x2 ≥ 1/(2b) and shows, using
(5.40), that for every θ with |θ| < π/2,

∫ ∞

0
|G1(s, θ; x)|ds ≤ C9x

2(cos θ)−3eρx2−4bx2−2c2x2θ2

= C9x
2(cos θ)−3e−bx2−c3x2θ2

.

(5.47)
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For |θ| close to π/2, we use instead of (5.46)

√
A(θ)B(θ) ≥ c4(cos θ)−1/4, (5.48)

another consequence of (5.45). Hence, (5.40) and Lemma 5.2(i) show that if ε > 0 is small
enough, and |θ| > π/2 − ε, then

∫ ∞

0
|G1(s, θ; x)|ds ≤ C10x

2(cos θ)−3eρx2−c4x2(cos θ)−1/4

≤ C11e
−bx2−c4x2/2.

(5.49)

Moreover, (5.45) implies that if |θ| ≤ 1, say, then

√
A(θ)/B(θ) = s0 + O(θ2).

Hence, if |θ| ≤ (log x)/x and |s − s0| > (log x)/x, then, for large x,

∣∣∣s −
√

A(θ)/B(θ)
∣∣∣ >

log x

2x
> c5

log x

x

√
A(θ)/B(θ),

and Lemma 5.2(ii) implies, using (5.46), that if |θ| ≤ (log x)/x, then

∫

|s−s0|>log x/x, s>0
|G1(s, θ; x)|ds ≤ C12x

2eρx2−4bx2−c6(log x)2

≤ C13e
−bx2−c7(log x)2 .

(5.50)

The lemma follows by using (5.50) for |θ| ≤ (log x)/x, (5.49) for |θ| > π/2 − ε, and (5.47) for
the remaining θ, and integrating over θ.

6 Higher order terms

The asymptotics for fΞ(x) obtained above can be refined to full asymptotic expansions by stan-
dard methods and straightforward, but tedious, calculations. With possible future extensions in
view, we find it instructive to present two versions of this; the first is more straightforward brute
force, while the second (in the next section) performs a change of variables leading to simpler
integrals.

First, the asymptotics (4.27) and (4.28) can be refined into well-known asymptotic series [1,
10.4.63,10.4.66 (with a typo in early printings)]; we write these as

Bi(z) = π−1/2z−1/4e2z3/2/3β0(z), (6.1)

Bi′(z) = π−1/2z1/4e2z3/2/3β1(z), (6.2)

with

β0(z) = 1 +
5

48
z−3/2 +

385

4608
z−3 + · · · + O

(
z−3N/2

)
, | arg(z)| ≤ π/3 − δ, (6.3)

β1(z) = 1 − 7

48
z−3/2 − 455

4608
z−3 + · · · + O

(
z−3N/2

)
, | arg(z)| ≤ π/3 − δ, (6.4)
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where the expansions can be continued to any desired power N of z3/2. Similarly, (4.29) can be
refined to an asymptotic series

BI(z) = π−1/2z−3/4e2z3/2/3β−1(z), (6.5)

with

β−1(z) = 1 +
41

48
z−3/2 +

9241

4608
z−3 + · · · + O

(
z−3N/2

)
, | arg(z)| ≤ π/3 − δ; (6.6)

this is easily verified by writing (4.13) as BI(z) = BI(1) +
∫ z
1 t−1Bi′′(t) dt followed by repeated

integrations by parts, as in corresponding argument for AI(z) in [10, Appendix A]. The coeffi-
cients in (6.6) are easily found noting that a formal differentiation of (6.5) yields (6.1). (They
are the numbers denoted βk in [10].)

Hence, by (4.30)–(4.36), (5.9) can be refined to, for | arg z| ≤ π/6,

hΞ(z) = ih0
Ξ(z)

(
h1

Ξ(z) + O
(
e−2z3/2/3

))
, (6.7)

where

h1
br(z) := β1(z)−2 = 1 +

7

24
z−3/2 + . . . , (6.8)

h1
ex(z) := β1(z)β0(z)−3 = 1 − 11

24
z−3/2 + . . . , (6.9)

h1
bm(z) := β1(z)−1 = 1 +

7

48
z−3/2 + . . . , (6.10)

h1
me(z) := β0(z)−1 = 1 − 5

48
z−3/2 + . . . , (6.11)

h1
dm(z) := β−1β0(z)−2 = 1 +

31

48
z−3/2 + . . . , (6.12)

h1
br+(z) :=

(
(β0(z) + β1(z))/2

)−2
= 1 +

1

24
z−3/2 + . . . , (6.13)

h1
bm+(z) :=

(
(β0(z) + β1(z))/2

)−1
= 1 +

1

48
z−3/2 + . . . (6.14)

By (6.3) and (6.4), h1
Ξ has an asymptotic series expansion

h1
Ξ(z) = 1 + dΞ

1 z−3/2 + dΞ
2 z−3 + · · · + O

(
z−3N/2

)
, | arg(z)| ≤ π/3 − δ, (6.15)

for some readily computed coefficients dΞ
k ; moreover, we can clearly ignore the O term in (6.7).

Next, by Lemma 5.1, it suffices to consider (s, θ) ∈ Q in (5.13) and (5.17). We use (6.7) and
(6.15) in (5.14) and (5.18) and obtain, for example, for Ξ = ex,

F1(s, θ; x) =
2x4/3

π3/2

(
eiθ(sec θ)3s−1 − 11

24
eiθ/2(sec θ)3s−2x−2 + · · · + O(x−2N )

)
. (6.16)

We substitute s = s0(1 + u/x) and θ = 2v/x as above and obtain by Taylor expansions a series
in x−1 (with a prefactor x4/3) where the coefficients are polynomials in u and v.

Similarly, the Taylor expansion (5.28) can be continued; we write the remainder term as R(u, v; x)
and have

R(u, v; x) = r3(u, v)x−3 + · · · + O(x−2N−2), (6.17)
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for some polynomials rk(u, v). Another Taylor expansion then yields

ex2R(u,v;x) = r∗1(u, v)x−1 + · · · + O(x−2N ), (6.18)

for some polynomials r∗k(u, v). We multiply this, the expansion of F1 and the main term
exp(−bx2 − 2bu2 +2ibuv− bv2), and integrate over Q; we may extend the integration domain to
R

2 with a negligible error. This yields an asymptotic expansion for f∗
Ξ(x), and thus for fΞ(x),

where the leading term found above is multiplied by a series in x−1, up to any desired power.
Furthermore, it is easily seen that all coefficients for odd powers of x−1 vanish, since they are
given by the integrals of an odd functions of u and v; hence this is really an asymptotic series
in x−2.

We obtain the explicit expansions for fΞ(x) in Theorems 1.1–1.7 by calculations with Maple.
The asymptotics for P(BΞ > x) follow by integration by parts, see Section 2.

Remark 6.1. In particular, since h0
br+ = 1

2h0
br and h0

bm+ = 1
2h0

bm, the leading terms for br+ and

bm+ differ from those of br and bm by a factor 1
2 as discussed in Remark 1.8. The second order

terms in h1 are different, as is seen above; more precisely, h1
br+ = h1

br − 1
4z−3/2 + O(z−3) and

h1
bm+ = h1

bm − 1
8z−3/2 + O(z−3); it is easily seen that if we ignore terms beyond the second, this

difference transfers into factors 1 − (4s0)
−1x−2 and 1 − (8s0)

−1x−2, respectively, for f∗
Ξ, which

in both cases equals 1− 1
18x−2, and thus a factor 1− 1

36x−2 for fΞ, which explains the difference
between the second order terms in fbr or fbm and 2fbr+ or 2fbm+; cf. again Remark 1.8.

7 Higher order terms, version II

Our second version of the saddle point method leads to simpler calculations (see for instance,
Bleistein and Handelsman [2]). We illustrate it with Bex; the other Brownian areas are treated
similarly. We use again (5.13), and recall that by Lemma 5.1, it suffices to consider (s, θ) close
to (s0, 0) = (9/2, 0).

We make first the substitution s = 9
2(sec θ)3/2u−1 (this is not necessary, but makes the integral

more similar to Tolmatz’ versions). This transforms (5.13) into

f∗
ex(x) =

∫ π/2

θ=−π/2

∫ ∞

u=0
F2(u, θ; x)ex2ϕ2(u,θ) du dθ, (7.1)

where, by (5.14), (5.15), (5.21), (6.7), (5.3), (6.9), for u bounded, at least,

F2(u, θ; x) =
81x8/3

4π3/2i
e2iθ/3(sec θ)2

(
9
2

)−2/3
u−1/3hex

((
9
2

)2/3
x4/3u−2/3eiθ/3 sec θ

)
,

=
162x4eiθ

π3/2u(cos θ)3
h1

ex

((
9
2

)2/3
x4/3u−2/3eiθ/3 sec θ

)
(7.2)

=
162x4eiθ

π3/2u(cos θ)3
− 33x2eiθ/2

2π3/2(cos θ)3/2
+ O(1), (7.3)

ϕ2(u, θ) = 9(1 + i tan θ) − 6ueiθ − 6e−iθ(1 + i tan θ)3/2

u
. (7.4)
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The saddle point is now (u, θ) = (1, 0), and in a neighbourhood we have, cf. (5.28), with v = u−1,

ϕ2(u, θ) = −3 − 6v2 − 3ivθ − 3
4θ2 + O

(
|v|3 + |θ|3

)
. (7.5)

The function ϕ2 has a non-degenerate critical point at (1, 0), and by the Morse lemma, see e.g.
Milnor [18], Lemma 2.2, we can make a complex analytic change of variables in a neighbourhood
of (1, 0) such that in the new variables ϕ2 + 3 becomes a diagonal quadratic form. (The Morse
lemma is usually stated for real variables, but the standard proof in e.g. [18] applies to the
complex case too.) The quadratic part of (7.5) is diagonalized by (ṽ, θ) with v = ṽ − iθ/4; we
may thus choose the new variables ũ and θ̃ such that ũ ∼ ṽ and θ̃ ∼ θ at the critical point, and
thus

u = 1 + ũ − iθ̃/4 + O
(
|ũ|2 + |θ̃|2

)
, (7.6)

θ = θ̃ + O
(
|ũ|2 + |θ̃|2

)
, (7.7)

ϕ2(u, θ) = −3 − 6ũ2 − 9
8 θ̃2. (7.8)

Note that the new coordinates are not uniquely determined; we will later use this and simplify
by letting some Taylor coefficients be 0. In the new coordinates, (7.1) yields,

f∗
ex(x) ∼

∫

θ̃

∫

ũ
F3(ũ, θ̃; x)e−3x2−x2(6ũ2+ 9

8
θ̃2)J(ũ, θ̃) dũ dθ̃, (7.9)

where F3 is obtained by substituting u = u(ũ, θ̃) and θ = θ(ũ, θ̃) in (7.2) and J(ũ, θ̃) = ∂u
∂ũ

∂θ
∂θ̃

−
∂u
∂θ̃

∂θ
∂ũ is the Jacobian. Recall that, up to a negligible error, we only have to integrate in (7.1) over

a small disc, say with radius log x/x; this becomes in the new coordinates a surface in C
2 as the

integration domain in (7.9). The next step is to replace this integration domain by, for example,
the disc {(ũ, θ̃) ∈ R

2 : |ũ|2 + |θ̃|2 ≤ (log x/x)2}, in analogy with the much more standard change
of integration contour in one complex variable. To verify the change of integration domain,
note that if F (z1, z2) is any analytic function of two complex variables, then F (z1, z2) dz1 ∧ dz2

is a closed differential form in C
2 (regarded as a real manifold of dimension four), and thus∫

∂M F (z1, z2) dz1 ∧ dz2 = 0 by Stokes’ theorem for any compact submanifold M with boundary
∂M . In our case, it follows that the difference between the integrals over the two domains equals
an integral over boundary terms at a distance ≍ log x/x from the origin, which is negligible.
(The careful reader may parametrize the two domains by suitable mappings ψ0, ψ1 : U → C

2,
where U is the unit disc in R

2, and apply Stokes’ theorem to the cylinder U × [0, 1] and the
pullback of F (z1, z2) dz1 ∧ dz2 by the map (w, t) 7→ (1 − t)ψ0(w) + tψ1(w).)

We next change variable again to w = xũ, t = xθ̃, and obtain by (7.9)

f∗
ex(x) ∼ x−2e−3x2

∫∫
F3(w/x, t/x; x)J(w/x, t/x)e−6w2− 9

8
t2 dw dt, (7.10)

integrating over (w, t) ∈ R
2 with, say, w2 + t2 ≤ (log x)2. To obtain the desired asymptotics for

f∗
ex, and thus for fex, we mechanically expand F3 and J in Taylor series up to any desired order

and compute the resulting Gaussian integrals, extending the integration domains to R
2.

We illustrate this by giving the details for the first two terms in (1.2). We have, cf. (7.6) and
(7.7), expansions

u = 1 + ũ − iθ̃/4 + α1ũ
2 + α2ũθ̃ + O(|ũ|3 + |θ̃|3),

θ = θ̃ + α3θ̃
2 + α4ũθ̃ + O(|ũ|3 + |θ̃|3),

1620



where we, as we may, have chosen two Taylor coefficients to be 0. To determine α1, . . . , α4, we
substitute into ϕ2(u, θ). We obtain from (7.4), up to terms of order three,

ϕ2(u, θ) ∼ −3 − [6ũ2 + 9θ̃2/8] + (6 − 12α1)ũ
3 + (−3iα4 − 12α2 − 15i/2)θ̃ũ2

+

(
−9α4

4
− 3iα3 +

33

8

)
θ̃2ũ +

(
−9α3

4
+

15i

32

)
θ̃3.

Annihilating the coefficients, cf. (7.8), leads to a linear system, the solution of which is

α1 = 1/2, α2 = −83i/72, α3 = 5i/24, α4 = 19/9.

This leads to the Jacobian

J(ũ, θ̃) = 1 +

(
−5iθ̃

24
+

28ũ

9

)
+ O

(
θ̃2 + ũ2

)
.

Furthermore, by (7.3), with w = xũ and t = xθ̃,

F3(ũ, θ̃; x) = F2(u, θ; x) ∼ 162x4

π3/2
+

162x3

π3/2

(5

4
it − w

)
+ O

(
x2(1 + w2 + t2)

)
.

Integrating in (7.10) yields the leading term

f∗
ex(x) ∼ 36

√
3

π1/2
x2e−3x2

(7.11)

together with correction terms of order xe−3x2

that all vanish by symmetry, since they involve
integrals of odd functions, plus a remainder term of order e−3x2

.

The next term in the expansion of e3x2

f∗
ex is thus the constant term. To find it, we try, again

setting some Taylor coefficients to 0 as we may,

u ∼ 1 + (ũ − iθ̃/4) + ũ(α1ũ + α2θ̃) + ũ(β1ũ
2 + β2ũθ̃ + β3θ̃

2),

θ ∼ θ̃ + θ̃(α3θ̃ + α4ũ) + θ̃(β4ũ
2 + β5ũθ̃ + β6θ̃

2).

We obtain now

ϕ2(u, θ) ∼ −3 − [6ũ2 + 9θ̃2/8] + (3/2 − 12β1)ũ
4 + (−131i/6 − 3iβ4 − 12β2)ũ

3θ̃

+ (−9β4/4 + 2627/288 − 12β3 − 3iβ5)ũ
2θ̃2 + (−9β5/4 + 535i/96 − 3iβ6)ũθ̃3

+ (−1283/768 − 9β6/4)θ̃4.

We set for instance β4 = 0. This gives

β1 = 1/8, β2 = −131i/72, β3 = 16867/10368, β5 = 4493i/1296, β6 = −1283/1728.

The Jacobian becomes

J(ũ, θ̃) ∼ 1 +

(
28ũ

9
− 5iθ̃

24

)
+

(
179

72
ũ2 +

2405

648
iũθ̃ − 379

384
θ̃2

)
.
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The first term in (7.3) becomes

∼ 162x4

π3/2
+

162x4

π3/2

(5

4
iθ̃ − ũ

)
+

x4

π3/2

(
81ũ2 +

1143

4
iũθ̃ +

621

8
θ̃2

)
.

and the second is

∼ − 33x2

2π3/2
.

Collecting terms, the coefficient of x2 in F3(w/x, t/x)J(w/x, t/x) equals

−1296w2 − 99248iwt + 2565t2

64π3/2
− 33

2π3/2
.

Multiplying by exp(−6w2 − 9
8 t2) and integrating yields the contribution

x2−8
√

3

π1/2
(7.12)

to the integral in (7.10). So, finally, combining (7.11) and (7.12),

f∗
ex(x) ∼ 31/2e−3x2

π1/2

[
36x2 − 8

]
,

which fits with the first two terms for fex(x) in Theorem 1.1. More terms can be found in a
mechanical way.

8 Proof of Theorem 3.1

Let T ∼ Γ(ν) be a Gamma distributed random variable independent of X and let XT := T 3/2X.
Then T has the density Γ(ν)−1tν−1e−t, t > 0, and thus XT has, using (3.1), the Laplace
transform

ψT (u) := E e−uT 3/2X = E ψ
(
uT 3/2

)

= Γ(ν)−1

∫ ∞

0
ψ

(
ut3/2

)
tν−1e−t dt

= Γ(ν)−1

∫ ∞

0
ψ

(
s3/2

)
u−2ν/3sν−1e−u−2/3s ds

= u−2ν/3Ψ
(
u−2/3

)
, u > 0.

(8.1)

By (8.1) and our assumption on Ψ, ψT extends to an analytic function in C\(∞, 0]. Furthermore,
XT has a density g on (0,∞), because T 3/2 has, and it is easily verified that this density is
continuous. We next use Laplace inversion for XT . The Laplace transform ψT is, by (8.1), not
absolutely integrable on vertical lines (at least not in our cases, where Ψ(z) is bounded away
from 0 as z → 0), so we will use the following form of the Laplace inversion formula, assuming
only conditional convergence of the integral.

1622



Lemma 8.1. Let h be a measurable function on R. Suppose that the Laplace transform h̃(z) :=∫ ∞
−∞ h(y)e−zy dy exists in a strip a < Re z < b, and that σ ∈ (a, b) is a real number such that the

generalized integral
∫ σ+i∞
σ−i∞ exzh̃(z) dz exists in the sense that the limit limA→∞ sA exists, where

sA :=

∫ σ+iA

σ−iA
exzh̃(z) dz.

If further x is a continuity point (or, more generally, a Lebesgue point) of h, then

∫ σ+i∞

σ−i∞
exzh̃(z) dz := lim

A→∞
sA = 2πih(x).

Proof. By considering instead e−σyh(y), we may suppose that σ = 0. In this case, h is integrable
and h̃(it) = ĥ(t), the Fourier transform of h, and the result is a classical result on Fourier
inversion. (It is the analogue for Fourier transforms of the more well-known fact that if a
Fourier series converges at a continuity (or Lebesgue) point of the function, then the limit
equals the function value.) For a proof, note that if sA converges as A → ∞, then so does the
Abel mean

∫ ∞
0 ye−yAsA dA as y → 0, and this Abel mean equals 2πi times the Poisson integral∫ ∞

−∞ π−1y(u2 + y2)−1h(x − u) du, which converges to h(x).

We verify the condition of the lemma with h = g and σ = 1, recalling that g̃ = ψT . Thus, by
(8.1),

sA :=

∫ 1+iA

1−iA
exzψT (z) dz =

∫ 1+iA

1−iA
exzz−2ν/3Ψ(z−2/3) dz.

We may here change the integration path from the straight line segment [1 − iA, 1 + iA] to the
path consisting of the following seven parts:

γ1: the line segment [1 − iA,−A − iA],

γ2: the line segment [−A − iA,−A − i0],

γ3: the line segment [−A − i0,−ε − i0],

γ4: the circle {εeit : t ∈ [−π, π]}.

γ5: the line segment [−ε + i0,−A + i0],

γ6: the line segment [−A + i0,−A + iA],

γ7: the line segment [−A + iA, 1 + iA].

(Here, γ3 could formally be interpreted as the line segment [−A− iη,−
√

ε2 − η2− iη] for a small
positive η, taking the limit of the integral as η → 0, and similarly for the other parts with ±i0.)
Letting A → ∞, we see that we essentially change the integration path from a vertical line to a
Hankel contour; however, we do this carefully since, as said above, the integral along the vertical
line is not absolutely convergent.
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We now first let ε → 0. By (3.3),

∫

γ4

exzz−2ν/3Ψ(z−2/3) dz = O
(
ε1−2ν/3

)
→ 0,

and, again by (3.3), the integrals along γ3 and γ5 converge to the absolutely convergent integrals

∫ −i0

−A−i0
exzz−2ν/3Ψ(z−2/3) dz =

∫ A

0
e−xρρ−2ν/3e2πνi/3Ψ

(
e2πi/3ρ−2/3

)
dρ

and ∫ −A+i0

i0
exzz−2ν/3Ψ(z−2/3) dz = −

∫ A

0
e−xρρ−2ν/3e−2πνi/3Ψ

(
e−2πi/3ρ−2/3

)
dρ,

which together make

IA :=

∫ A

0
e−xρρ−2ν/3Ψ∗(ρ−2/3

)
dρ.

Hence, for every A > 0,

sA = IA +

(∫

γ1

+

∫

γ2

+

∫

γ6

+

∫

γ7

)
exzz−2ν/3Ψ(z−2/3) dz.

Now let A → ∞. By (3.2),

∫

γ1

exzz−2ν/3Ψ(z−2/3) dz = o

(∫ 1

−∞
ext dt

)
= o(1),

and similarly
∫
γ2

= o(1),
∫
γ6

= o(1),
∫
γ7

= o(1). Finally, IA → I∞, and Lemma 8.1 applies and
yields the following.

Lemma 8.2. For every x > 0, we have

g(x) =
1

2πi

∫ ∞

0
e−xρρ−2ν/3Ψ∗(ρ−2/3) dρ, (8.2)

where the integral is absolutely convergent by (3.7) and (3.8).

By the change of variables ρ = u−3/2, (8.2) may be rewritten as

g(x) =
3

4πi

∫ ∞

0
e−xu−3/2

uν−5/2Ψ∗(u) du, x > 0. (8.3)

We can here, using (3.7) and (3.8), change the integration path from the positive real axis to
the line {reiϕ : r > 0}, for every fixed ϕ with |ϕ| < π

6 . Consequently, we further have, for x > 0
and |ϕ| < π

6 ,

g(x) =
3

4πi
e(ν−3/2)iϕ

∫ ∞

0
exp

(
−e−3iϕ/2xr−3/2

)
rν−5/2Ψ∗(reiϕ) dr. (8.4)

The right hand side of (8.4) is an analytic function of x in the sector {x : | arg x−3ϕ/2| < π/2},
which contains the positive real axis; together, these thus define an analytic extension of g(x)
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to the sector | arg x| < 3π/4 such that (8.4) holds whenever | arg x| < 3π/4, |ϕ| < π
6 and

| arg x − 3ϕ/2| < π/2.

We next find the density of X from g by another Laplace inversion. Assume first, for simplicity,
that we already know that X has a continuous density f on (0,∞). Then t3/2X has the density
t−3/2f(t−3/2x), and thus (using t = x2/3s), for x > 0,

g(x) = Γ(ν)−1

∫ ∞

0
tν−1e−tt−3/2f

(
t−3/2x

)
dt

= Γ(ν)−1x2ν/3−1

∫ ∞

0
e−x2/3ssν−5/2f

(
s−3/2

)
ds.

(8.5)

Let
F (s) := sν−5/2f

(
s−3/2

)
. (8.6)

Then (8.5) can be written, with x = y3/2,

g(y3/2) = Γ(ν)−1yν−3/2

∫ ∞

0
e−ysF (s) ds, y > 0. (8.7)

In other words, F has the Laplace transform

F̃ (y) :=

∫ ∞

0
e−ysF (s) ds = Γ(ν)y3/2−νg(y3/2), y > 0. (8.8)

Since this is finite for all y > 0, the Laplace transform F̃ is analytic in the half-plane Re y > 0.
Hence, using our analytic exytension of g to | arg z| < 3π/4

”
(8.8) holds for all y with Re y > 0.

Consequently, by standard Laplace inversion, for every s > 0 and every ξ > 0 such that the
integrals are absolutely (or even conditionally, see Lemma 8.1) convergent,

F (s) =
1

2πi

∫ ξ+i∞

ξ−i∞
esyF̃ (y) dy =

Γ(ν)

2πi

∫ ξ+i∞

ξ−i∞
esyy3/2−νg(y3/2) dy. (8.9)

We have for (mainly notational) simplicity assumed that X has a density. In general, we may
replace the density function f in (8.5) and (8.6) by a probability measure µ (with suitable
interpretations; we identify here absolutely continuous measures and their densities as in the
theory of distributions). Then F is a (positive) measure on (0,∞), and its Laplace transform
is still given by (8.8). The fact, proved below, that F̃ is absolutely integrable on a vertical line
Re y = ξ implies by standard Fourier analysis that F actually is the continuous function given
by (8.9), and thus the measure µ too is a continuous function; i.e., X has a continuous density
f as asserted, and (8.5) and (8.6) hold.

We change variables in (8.9) to θ := arg y ∈ (−π/2, π/2), that is y = ξ(1 + i tan θ) = ξ sec(θ)eiθ.
We further express g(y3/2) by (8.4) with ϕ = θ/3 (which satisfies the conditions above for (8.4));
this yields, assuming absolute convergence of the double integral,

F (s) =
3Γ(ν)

8π2i

∫ π/2

θ=−π/2

∫ ∞

r=0
exp

(
ξs(1 + i tan θ) − eiθ(ξ sec θ)3/2r−3/2

)

e(1−2ν/3)iθξ5/2−ν(sec θ)7/2−νrν−5/2Ψ∗(reiθ/3) dr dθ. (8.10)
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To verify absolute convergence of this double integral, take absolute values inside the integral.
Since

Re
(
eiθ(ξ sec θ)3/2r−3/2

)
≥ ξ3/2(sec θ)1/2r−3/2,

the resulting integral is, using (3.5) and (3.7), for fixed s and ξ bounded by

C14(s, ξ)

∫ ∞

0

∫ ∞

0
e−ξ3/2(sec θ)1/2r−3/2

(sec θ)7/2−νrν−5/2 min
(
r−ν , r−6

)
dr dθ.

We split this double integral into the two parts: 0 < θ < 1 and 1 < θ < ∞. For 0 < θ < 1,
sec θ is bounded above and below, and it is easy to see that the integral is finite. For θ > 1,
tan θ < sec θ < 2 tan θ, and with t = tan θ we obtain at most

C15

∫ ∞

1

∫ ∞

0
e−ξ3/2t1/2r−3/2

t3/2−νrν−5/2 min
(
r−ν , r−6

)
dr dt.

Substituting t = r3u, we find that this is at most

C15

∫ ∞

0
e−ξ3/2u1/2

u3/2−ν du

∫ ∞

0
r5−2ν min

(
r−ν , r−6

)
dr < ∞.

This verifies absolute convergence of the double integral in (8.10) for every ξ > 0, which implies
absolute convergence of the integrals in (8.9). Consequently, (8.9) and (8.10) are valid for every
s > 0 and ξ > 0. We now put s = x−2/3 in (8.10) and obtain by (8.6) the sought result (3.6).

Remark 8.3. We have chosen ϕ = θ/3, which leads to (3.6) and, see Remark 3.3, the formulas
by Tolmatz [26, 27, 28]. Other choices of ϕ are possible and lead to variations of the inversion
formula (3.6). In particular, it may be noted that we may take ϕ = 0 for, say, |θ| < 1; this
yields a formula that, apart from a small contribution for |θ| > π/4, involves Ψ∗(x) for real x
only. However, we do not find that this or any other variation of (3.6) simplifies the application
of the saddle method, and we leave these versions to the interested reader.

9 Moment asymptotics

Suppose that X is a positive random variable with a density function f satisfying (2.1). Then,
as r → ∞, using Stirling’s formula,

E Xr ∼
∫ ∞

0
axr+αe−bx2

dx

=
a

2

∫ ∞

0
y(r+α+1)/2−1e−by dy

=
a

2
b−(r+α+1)/2Γ

(r + α + 1

2

)

∼ a

2
b−(r+α+1)/2

(r

2

)(α+1)/2
Γ
(r

2

)

= a
√

π(2b)−(α+1)/2rα/2
( r

2eb

)r/2
.

(9.1)

(It is easily seen, by an integration by parts, that the same result follows from the weaker
assumption (2.2).)

For the Brownian areas studied in this paper, Theorems 1.1–1.7 thus imply the following.
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Corollary 9.1. As n → ∞,

EBn
ex ∼ 3

√
2 n

( n

12e

)n/2
, (9.2)

EBn
br ∼

√
2

( n

12e

)n/2
, (9.3)

EBn
bm ∼

√
2

( n

3e

)n/2
, (9.4)

EBn
me ∼

√
3πn1/2

( n

3e

)n/2
, (9.5)

EBn
dm ∼ 2

√
2

( n

3e

)n/2
, (9.6)

EBn
br+ ∼ 1√

2

( n

12e

)n/2
, (9.7)

EBn
bm+ ∼ 1√

2

( n

3e

)n/2
. (9.8)

Most of these results have been found earlier: (9.2) by Takács [22], (9.3) by Takács [23] and
Tolmatz [26], (9.4) by Takács [24] and Tolmatz [27], (9.5) by Takács [25], (9.6) by Janson [10],
(9.7) by Tolmatz [28]; Takács used recursion formulas derived by other methods, while Tolmatz
used the method followed here. Note that, as remarked by Tolmatz [28], EBn

br+ ∼ 1
2 EBn

br and

similarly EBn
bm+ ∼ 1

2 EBn
bm, cf. Remark 1.8.

In the opposite direction, we do not know any way to get precise asymptotics of the form (2.1) or
(2.2) from moment asymptotics, but, as observed by Csörgő, Shi and Yor [3], the much weaker
estimate (1.4) and its analogue for other Brownian areas can be obtained by the following special
case of results by Davies [5] and Kasahara [12]. (See [9, Theorem 4.5] for a more general version
with an arbitrary power xp instead of x2 in the exponent.)

Proposition 9.2. If X is a positive random variable and b > 0, then the following are equivalent:

− ln P(X > x) ∼ bx2, x → ∞,

(
E Xn

)1/n ∼
√

n

2eb
, n → ∞,

ln
(
E etX

)
∼ 1

4b
t2, t → ∞.

Returning to (9.1), we obtain in the same way more precise asymptotics for the moments if we
are given an asymptotic series for f or P(X > x). For simplicity, we consider only the next term,
but the calculations can be extended to an asymptotic expansion with any number of terms.
Thus, suppose that, as for the Brownian areas, (2.1) is sharpened to (2.3) with N ≥ 2. Then,
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also using further terms in Stirling’s formula,

E Xn =
a0

2
b−(n+α+1)/2Γ

(n + α + 1

2

)
+

a2

2
b−(n+α−1)/2Γ

(n + α − 1

2

)

+ O

(
b−n/2Γ

(n + α − 3

2

))

=
1

2
b−(n+α+1)/2Γ

(n + α + 1

2

) (
a0 + a2b

2

n
+ O(n−2)

)

=
√

2π(2b)−(α+1)/2nα/2
( n

2eb

)n/2

·
(

a0 +

(
a0

α2 − 1

4
+

a0

6
+ 2a2b

)
n−1 + O(n−2)

)
.

In particular, for the Brownian excursion, where by Theorem 1.1 (2.3) holds with α = 2, b = 6,
a0 = 72

√
6/π and a2 = −8

√
6/π,

EBn
ex =

1

2
√

2

( n

12e

)n/2
n

(
12 +

9 + 2 − 16

n
+ O(n−2)

)

= 3
√

2
( n

12e

)n/2
n

(
1 − 5

12n
+ O(n−2)

)
.

(9.9)

If we, following Takács [22], introduce Kn defined by

EBn
ex =

4
√

π 2−n/2n!

Γ((3n − 1)/2)
Kn,

further applications of Stirling’s formula shows that (9.9) is equivalent to

Kn = (2π)−1/2n−1/2
(3n

4e

)n
(

1 − 7

36n
+ O(n−2)

)
. (9.10)

Again, the leading term is given by Takács [22], in the equivalent form

Kn ∼ 1

2π

(3

4

)n
(n − 1)! as n → ∞. (9.11)

Takács [22] further gave the recursion formula (with K0 = −1/2)

Kn =
3n − 4

4
Kn−1 +

n−1∑

j=1

KjKn−j , n ≥ 1, (9.12)

It is easy to obtain from (9.11) and (9.12) the refined asymptotics

Kn =
1

2π

(3

4

)n
(n − 1)!

(
1 − 5

18n
+ O(n−2)

)
, (9.13)

which is equivalent to (9.10). and, by recursion, (9.13) can be extended to an asymptotic
expansion of arbitrary length. (Another method to obtain an asymptotic expansion of Kn

is given by Kearney, Majumdar and Martin [13].) Hence (9.9) (also with further terms) can,
alternatively, be derived from (9.11) and (9.12) by straightforward calculations. However, as said
above, we do not know any way to derive Theorem 1.1 from this. (Nevertheless, the calculations
above serve as a check of the coefficients in Theorem 1.1.)
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A Proof that
√

zAi(z) − Ai′(z) has no zeros

The double Laplace transforms for the positive part areas Bbr+ and Bbm+ have both the de-
nominator

√
zAi(z) − Ai′(z), and it is important that this function has no zeros, whence Ψ∗

br+

and Ψ∗
bm+ are analytic in the slit plane C \ (−∞, 0]. This was proved by Tolmatz [28] (for the

same reason), but we give here an alternative proof that does not need the careful numerical
integration done by Tolmatz. (Our proof is, like Tolmatz’, based on the argument principle.)

Lemma A.1 (Tolmatz [28]). The function
√

zAi(z) − Ai′(z) is non-zero for all z = reiθ with
r ≥ 0 and |θ| ≤ π.

Proof. We use the notations

ζ(z) := 2
3z3/2,

f(z) :=
√

π
(√

zAi(z) − Ai′(z)
)
,

g(z) := eζ(z)f(z).

Note that these functions are analytic in the slit plane C \ (−∞, 0] and extend continuously to
(−∞, 0] from each side, so we can regard them as continuous functions of reiθ with r ≥ 0 and
−π ≤ r ≤ π, where we regard the two sides re±iπ = −r± i0 of the negative real axis as different.
(The reader that dislikes this can reformulate the proof and study zAi(z2)−Ai′(z2) for Re z ≥ 0;
this avoids the ambiguities of square roots.)

We will use the argument principle on g(z) and the contour γR consisting of the interval from 0
to −R− i0 along the lower side of the negative real axis, the circle Reiθ for −π ≤ θ ≤ π and the
interval from −R + i0 back to 0, where R is a large real number.

First, fix a small δ > 0. By (4.24) and (4.25), as |z| → ∞,

f(z) ∼ z1/4e−ζ(z), | arg z| ≤ π − δ. (A.1)

Next, assume 0 < arg z < 2π/3− δ. Note that then arg(−z) = arg(z)− π ∈ (−π,−π/3− δ) and
thus

(−z)1/2 = −iz1/2, ζ(−z) = e−(3/2)iπζ(z) = iζ(z). (A.2)

Furthermore, we have as |z| → ∞ with | arg z| < 2π/3 − δ the expansions [1, 10.4.60,10.4.62]

Ai(−z) = π−1/2z−1/4
(
sin

(
ζ(z) +

π

4

)(
1 + O(ζ−2)

)
− cos

(
ζ(z) +

π

4

)
· O(ζ−1)

)

Ai′(−z) = π−1/2z1/4
(
− cos

(
ζ(z) +

π

4

)(
1 + O(ζ−2)

)
+ cos

(
ζ(z) +

π

4

)
· O(ζ−1)

)

and thus

f(−z) = z1/4
(
cos

(
ζ(z) +

π

4

)(
1 + O(ζ−1)

)
− i sin

(
ζ(z) +

π

4

)(
1 + O(ζ−1)

))
.
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In the range arg z ∈ (0, 2π/3 − δ), further ℑζ(z) > 0, and thus by Euler’s formulas

∣∣∣cos
(
ζ(z) +

π

4

)∣∣∣ +
∣∣∣sin

(
ζ(z) +

π

4

)∣∣∣ ≤
∣∣∣eiζ(z)

∣∣∣ +
∣∣∣e−iζ(z)

∣∣∣ ≤ 2eℑζ(z) = 2
∣∣∣e−iζ(z)

∣∣∣ .

Hence, as |z| → ∞ with arg z ∈ (0, 2π/3 − δ), using (A.2).

f(−z) = z1/4e−i(ζ(z)+π/4)
(
1 + O(ζ−1)

)
∼ (−z)1/4e−ζ(−z).

Consequently, (A.1) holds as |z| → ∞ with −π < arg z < −π/3 − δ too. Since f(z) = f(z), it
holds for π/3 + δ < arg z < π too, and combining the three ranges, we see that as |z| → ∞, for
all | arg z| < π,

f(z) ∼ z1/4e−ζ(z), (A.3)

and thus
g(z) = z1/4

(
1 + o(1)

)
. (A.4)

Consider now f(z) on the lower side of the negative real axis, i.e. for z = re−iπ = −r− i0, r ≥ 0.
Note that then Ai(z) and Ai′(z) are real and z1/2 purely imaginary. Since Ai and Ai′ have no
common zeros, and Ai′(0) 6= 0, f(−r − i0) 6= 0. Moreover, f(0) > 0, and as r grows from 0
to ∞, f(−r − i0) is real at r = 0 and at the zeros −r = ak of Ai, and imaginary at the zeros
−r = a′k of Ai′. Consider continuous determinations of arg f(z) and arg g(z) along the neagtive
real axis, starting with arg f(0) = arg g(z) = 0. It is easily seen that arg f(z) then is −π/2 for
z = a′1, −π for z = a1, and so on, with arg f(ak − i0) = −kπ. Furthermore, for z = −r − i0,

arg g(z) = arg f(z) + ℑζ(z) = arg f(z) + 2
3ℑz3/2 = arg f(z) + 2

3r3/2.

In particular, using the asymptotic formula [1, 10.4.94] for the Airy zeros ak,

arg g(ak) = −πk + 2
3 |ak|3/2 = −πk +

2

3

3π(4k − 1)

8

(
1 + O(k−2)

)

= −π

4
+ O(k−1).

(A.5)

Consider now a continuous determination of arg g(z) along the contour γR, with R = |ak| for a
large k. On the part from 0 to −R − i0, the argument decreases by −π/4 + O(k−1) by (A.5),
and on the half-circle from −R− i0 to R, it increases by (A.4) by π/4+o(1), so the total change
from 0 to R is o(1), i.e., tends to 0 as k → ∞. Since furthermore g(R) > 0, the change is a
multiple of 2π, and thus exactly 0 for large k. By symmetry, the change of the argument on the
remaining half of γR is the same, so the total change along γR is 0, which proves that g(z) has
no zero inside γR for R = |ak| with k large. Letting k → ∞, we see that g(z) has no zeros.
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