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Abstract

Let X1,X2, ... be independent and symmetric random variables such that Sn = X1 + ...+Xn

converges to a finite valued random variable S a.s. and let S∗ = sup1≤n<∞ Sn (which is

finite a.s.). We construct upper and lower bounds for sy and s∗y, the upper 1
y

th
quantile of

Sy and S∗, respectively. Our approximations rely on an explicitly computable quantity q
y

for which we prove that

1

2
q

y/2
< s∗y < 2q

2y
and

1

2
q y

4
(1+

√
1−8/y)

< sy < 2q
2y

.

The RHS’s hold for y ≥ 2 and the LHS’s for y ≥ 94 and y ≥ 97, respectively. Although
our results are derived primarily for symmetric random variables, they apply to non-negative
variates and extend to an absolute value of a sum of independent but otherwise arbitrary
random variables.
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1 Introduction

The classical problem of approximating the tail probability of a sum of independent random
variables dates back at least to the famous central limit theorem of de Moivre (1730–33) for sums
of independent identically distributed (i.i.d.) Bernoulli random variables. As time has passed,
increasingly general central limit theorems have been established and stable limit theorems
proved. All of these results were asymptotic and approximated the distribution of the sum only
sufficiently near its center.

With the advent of the upper and lower exponential inequalities of Kolmogoroff (1929), the
possibility materialized of approximating the tail probabilities of a sum having a fixed, finite
number of mean zero uniformly bounded random summands, over a much broader range of
values.

In the interest of more exact approximation, Esscher (1932) recovered the error in the exponen-
tial bound by introducing a change of measure, thereby expressing the exact value of the tail
probability in terms of an exponential upper-bound times an expectation factor (which is a kind
of Laplace transform). Cramér (1938) brought it to the attention of the probability community,
showing that it can be effectively used to reduce the relative error in approximation of small tail
probabilities.

However, in the absence of special conditions, the expectation factor is not readily tractable,
involving a function of the original sum transformed in such a way that the level to be exceeded
by the original sum for the tail probability in question has been made equal or at least close to
the mean of the sum of the transformed variable(s).

Over the years various approaches have been used to contend with this expectation term. By
slightly re-shifting the mean of the sum of i.i.d. non-negative random variables and applying the
generalized mean value theorem, Jain and Pruitt (1987) obtained a quite explicit tail probability
approximation. Given any n ≥ 1, any exceedance level z and any non-degenerate i.i.d. random
variables X1, ..., Xn, Hahn and Klass (1997) showed that for some unknown, universal constant
∆ > 0

∆B2 ≤ P (
n

∑

j=1

Xj ≥ z) ≤ 2B. (1)

The quantity B was determined by constructing a certain common truncation level and applying
the usual exponential upper bound to the probability that the sum of the underlying variables
each conditioned to remain below this truncation level had sum at least z. The level was chosen
so that the chance of any Xj reaching or exceeding that height roughly equalled the exponential
upper bound then obtained. Employing a local probability approximation theorem of Hahn and
Klass (1995) it was found that the expectation factor in the Esscher transform could be as small
as the exponential bound term itself but of no smaller order of magnitude as indicated by the
LHS of (1). By separately considering the contributions to Sn of those Xj at or below some
truncation level tn and those above it, the method of Hahn and Klass bears some resemblance
to work of Nagaev (1965) and Fuk and Nagaev (1971). Other methods required more restrictive
distributional assumptions and so are of less concern to us here.

The general (non-i.i.d.) case has been elusive, we now believe, because there is no limit to how
much smaller the reduction factor may be compared to the exponential bound (of even suitably
truncated random variables).
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To see this, let

Xi =











1 wp pi

0 wp 1 − 2pi

−1 wp pi

and suppose p1 >> p2 >> ... >> pn > pn+1 ≡ 0. Then, for 1 ≤ k ≤ n

P (
n

∑

j=1

Xj ≥ k) ≈ p1p2...pk

n
∏

j=k+1

(1 − 2pj)

Using exponential bounds, the bound for P (
∑n

j=1 Xj ≥ k) is

inf
t>0

e−tk
n

∏

j=1

EetXj

and for P (
∑n

j=1 Xj > k) it is

lim
δց0

inf
t>0

e−t(k+δ)
n

∏

j=1

EetXj ,

which is, in fact, the same exponential factor.

Therefore in this second case the reduction factor is even smaller than pk+1, which could be
smaller than Pα(

∑n
j=1 Xj ≥ k) for any α > 0 prescribed before construction of pk+1.

It is this additional reduction factor which the Esscher transform provides and which we now see
can sometimes be far more accurate in identifying the order of magnitude of a tail probability
than the exponential bound which it was thought to merely adjust a bit.

Nor does the direct approach to tail probability approximation offer much hope because calcu-
lation of convolutions becomes unwieldy with great rapidity.

As a lingering alternative one could try to employ characteristic functions. They have three
principle virtues:

• They exist for all random variables.

• They retain all the distributional information.

• They readily handle sums of independent variables by converting a convolution to a product
of marginal characteristic functions.

Thus if Sn = X1 + ... + Xn where the Xj are independent rv’s, for any amount a with P (Sn =
a) = 0 the inversion formula is

P (Sn ≥ a) = lim
b→∞

lim
T→∞

1

2π

∫ T

−T

e−ita − e−itb

it

n
∏

j=1

EeitXjdt (2)

Clearly, the method becomes troublesome when applied to marginal distributions X1, ..., Xn for
which at least one of the successive limits converges arbitrary slowly. In addition, formula (2)
does not hold nor is it continuous at any atom a of Sn. Moreover, as we have already witnessed,

1279



the percentage drop in order of magnitude of the tail probability as a moves just above a given
atom can be arbitrarily close to 100%.

The very issues posed by both characteristic function inversion and change of measure have
given rise to families of results: asymptotic results, large deviation results, moderate deviation
results, steepest descent results, etc. Lacking are results which are explicit and non-asymptotic,
applying to all fixed n sums of independent real-valued random variables without restrictions
and covering essentially the entire range of the sum distribution without limiting or confining
the order of magnitude of the tail probabilities.

In 2001 Hitczenko and Montgomery-Smith, inspired by a reinvigorating approach of LataÃla
(1997) to uniformly accurate p-norm approximation, showed that for any integer n ≥ 1, any
exceedance level z, and any n independent random variables satisfying what they defined to be
a Levy condition, there exists a constructable function f(z) and a universal positive constant
c > 1 whose magnitude depends only upon the Levy-condition parameters such that

c−1f(cz) ≤ P (|
n

∑

j=1

Xj |> z) ≤ cf(c−1z). (3)

To obtain their results they employed an inequality due to Klass and Nowicki (2000) for sums
of independent, symmetric random variables which they extended to sums of arbitrary random
variables at some cost of precision. Using a common truncation level for the |Xj | and a norm
of the sum of truncated random variables, Hitczenko and Montgomery-Smith (1999) previously
obtained approximations as in (3) for sums of independent random variables all of which were
either symmetric or non-negative.

In this paper we show that the constant c in (3) can be chosen to be at most 2 for a slightly
different function f if |∑n

j=1 Xj | is replaced by S∗
n = max1≤k≤n Sn and if the Xj are symmetric.

A slightly weaker result is obtained for Sn itself. We obtain our function as the solution to a
functional equation involving the moment generating function of the sum of truncated random
variables.

The accuracy of our results depends primarily upon an inequality pertaining to the number
of event recurrences, as given in Klass and Nowicki (2003), a corollary of which extends the
tail probability inequality of Klass and Nowicki (2000) in an optimal way from independent
symmetric random elements to arbitrary independent random elements.

In effect our approach has involved the recognition that uniformly good approximation of the
tail probability of Sn was impossible. However, if we switched attention to upper-quantile
approximation, then uniformly good approximation could become feasible at least for sums of
independent symmetric random variables. In this endeavor we have been able to obtain adequate
precision from moment generating function information for sums of truncated rv’s obviating the
need to entertain the added complexity of transform methods despite their potentially greater
exactitude.

Although our results are derived for symmetric random variables, they apply to non-negative
variates and have some extension to a sum of independent but otherwise arbitrary random
variables via the concentration function CZ(y), where

CZ(y) = inf{c : P (| Z − b |≤ c) ≥ 1 − 1

y
for some b ∈ R} (for y > 1), (4)
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by making use of the fact that the concentration function for any random variable Z possesses a
natural approximation based on the symmetric random variable Z−Z̃ where Z̃ is an independent
copy of Z, due to the inequalities

1

2
s|Z−Z̃|, y

2
≤ CZ(y) ≤ s|Z−Z̃|,y. (5)

Thus, to obtain reasonably accurate concentration function and tail probability approximations
of sums of independent random variables, it is sufficient to be able to obtain explicit upper and
lower bounds of sPn

j=1 Xj
if the Xj are independent and symmetric.

These results can be extended to Banach space settings.

2 Tail probability approximations

Let X1, X2, ... be independent, symmetric random variables such that letting Sn = X1 + ...+Xn

limn→∞ Sn = S a.s. and supn→∞ Sn = S∗ < ∞ a.s. We introduce the upper 1
y

th
quantile sy

satisfying

sy = sup{s : P (S ≥ s) ≥ 1

y
}. (6)

For sums of random variables that behave like a normal random variable, sy is slowly varying.
For sums which behave like a stable random variable with parametern α < 2, sy grows at most
polynomially fast. However, if an Xj has a sufficiently heavy tail, then sy can grow arbitrary
rapidly.

Analogously we define

s∗y = sup{s : P (S∗ ≥ s) ≥ 1

y
}. (7)

To approximate sy and s∗y in the symmetric case, to which this paper is restricted, we utilize the

magnitude ty, the upper 1
y

th
quantile of the maximum of the Xj , defined as

ty = sup{t : P (

∞
⋃

j=1

{Xj ≥ t}) ≥ 1

y
}. (8)

This quantity allows us to rewrite each Xj in terms of the sum of two quantities: a quantity
of relatively large absolute value, (| Xj | −ty)

+sgn Xj , and one of more typical size, (| Xj |
∧ty)sgn Xj .

Take any y > 1 and let
Xj,y = (| Xj | ∧ty)sgn Xj (9)

Sj,y = X1,y + ... + Xj,y (10)

Sy = lim
n→∞

Sn,y a.s. (11)

S∗
y = sup

1≤n<∞
Sn,y (12)

sy = sup{s : P (Sy ≥ s) ≥ 1

y
} (13)
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s∗y = sup{s : P (S∗
y ≥ s) ≥ 1

y
} (14)

Since ty can be computed directly from the marginal distributions of the Xj ’s, we regard ty as
computable. At the very least, the tail probability functions defined in (6), (7), (13) and (14)
require knowledge of convolutions. Generally speaking we regard such quantities as inherently
difficult to compute. It is the object of this paper to construct good approximations to them.
To simplify this task it is useful to compare them with one another.

Notice that for y > 1
sy ≤ s∗y, sy ≤ s∗y and s∗y ≤ s2y. (15)

The first two inequalities are trivial; the last one follows from Levy’s inequality.

Due to the effect of truncation, one may think that s∗y never exceeds s∗y. The example below
provides a case to the contrary. In fact, s∗y/s∗y can equal +∞.

Example 2.1. Let, for y > 2,

X1 =











2 w p 1 −
√

1 − 1/y

0 w p 2
√

1 − 1/y − 1

−2 w p 1 −
√

1 − 1/y

and

X2 =











1 w p 1 −
√

1 − 1/y

0 w p 2
√

1 − 1/y − 1

−1 w p 1 −
√

1 − 1/y

and, for 0 < ǫ < 1
2

X3 =











ǫ w p (1 − δ)/2

0 w p δ

−ǫ w p (1 − δ)/2.

Then ty = 1 and P (S∗ ≥ 0) > 1
2 . For simplicity set p = 2

√

1 − 1/y − 1. Then

P (S∗ > 0) = P (S∗ ≥ ǫ)

= P (X1 = 2) + P (X1 = 0, X2 = 1) + P (X1 = X2 = 0, X3 = ǫ)

=
1 − p

2
+ p

1 − p

2
+ p2 1 − δ

2
=

1 − p2δ

2
.

There exists 0 < δ∗ < 1 such that 1
2(1− p2δ∗) = 1

y . To see this note that when δ = 0, 1
2 > 1

y and

when δ = 1, 1
2(1 − p2) < 1

y . Hence, when δ∗ < δ < 1, s∗y = 0.

It also follows that there exists a unique δ∗ < δ∗∗ < 1 such that

1

2
(1 − p2δ∗∗) +

(1 − p)2

4

(1 − δ∗∗)

2
=

1

y
.
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Hence for δ∗ < δ < δ∗∗ and when the random variables are truncated at ty = 1:

P (S∗
y ≥ ǫ) = P (X1 = 1) + P (X1 = 0, X2 = 1) + P (X1 = X2 = 0, X3 = ǫ)

+ P (X1 = −1, X2 = 1, X3 = ǫ)

=
1 − p

2
+ p

1 − p

2
+ p2 1 − δ

2
+

(1 − p)2

4
(
1 − δ

2
)

=
1 − p2δ

2
+

(1 − p)2

4
(
1 − δ

2
)

≥ 1

y
.

So s∗y ≥ ǫ for δ∗ < δ < δ∗∗. Consequently, s∗y/s∗y = ∞.

Nevertheless, reducing y by a factor uy allows us to compare these quantities, as the following
lemma describes.

Lemma 2.1. Suppose y ≥ 4 and let uy = y
2 (1 −

√

1 − 4
y ). Then for independent symmetric

Xj’s,
s∗y/uy

≤ s∗y ≤ s∗2y. (16)

Thus, for y ≥ 2
s∗y ≤ s∗y2/(y−1). (17)

Proof: To verify the RHS of (16), suppose there exists s∗2y < s < s∗y. We have

1

y
≤ P (S∗ ≥ s) ≤ P (S∗

2y ≥ s,
∞
⋂

j=1

{Xj ≤ t2y})

+ P (
∞
⋃

j=1

{Xj > t2y}) <
1

2y
+

1

2y
=

1

y
.

which gives a contradiction. Hence s∗y ≤ s∗2y.

To prove the LHS of (16) by contradiction, suppose there exists s∗y < s < s∗y/uy
. Let

Ay =
∞
⋂

j=1

{Xj ≥ −ty/uy
}.
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We have

uy

y
≤ P (S∗

y/uy
≥ s)

≤ P (S∗
y/uy

≥ s | Ay)

(because each of the marginal distributions

(| Xj | ∧ty/uy
)sgn(Xj) is made stochastically

larger by conditioning on Ay while preserving independence)

≤ P (sup
n

n
∑

j=1

(Xj ∨ (−ty/uy
) | Ay) = P (S∗ ≥ s | Ay)

=
P (S∗ ≥ s, Ay)

P (Ay)
≤ P (S∗ ≥ s)

1 − P (Ac
y)

<

1
y

1 − uy/y
.

However, by the quadratic formula,

uy

y
− (

uy

y
)2 =

1

y
,

which gives a contradiction.

Reparametrizing the middle of (16) gives (17)

Remark 2.1. Removing the stars in the proof of (16) and (17) establishes two new chains of
inequalities

sy/uy
≤ sy ≤ s2y, y ≥ 4 (18)

and
sy ≤ sy2/(y−1), y ≥ 2. (19)

Lemma 2.2. Take any y > 1. Then

ty ≤ s∗2y ∧ s∗2y (20)

and
ty ≤ s4y2/(2y−1) ∧ s4y2/(2y−1) (21)

These inequalities are essentially best possible, as will be shown by examples below.

Proof: To prove (20) we first show that ty ≤ s∗2y. Let

τ =

{

last 1 ≤ k < ∞ : Xk ≥ ty

∞ if no such k exists.
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Conditional on τ = k, Sk−1 is a symmetric random variable. Hence

P (S∗ ≥ ty) ≥
∞

∑

k=1

P (S∗ ≥ ty, τ = k)

≥
∞

∑

k=1

P (Sk ≥ ty, τ = k)

≥
∞

∑

k=1

P (Sk−1 ≥ 0, τ = k)

≥
∞

∑

k=1

1

2
P (τ = k) (by conditional symmetry)

=
1

2
P (

∞
⋃

k=1

{Xk ≥ ty}) ≥ (2y)−1.

Thus s∗2y ≥ ty.

The other inequality is proved similarly.

To prove (21) let

τ =

{

first 1 ≤ k < ∞ : |Xk| ≥ ty

∞ if no such k exists.

The RHS of (21) is non-negative. Hence we may suppose ty > 0.

P (S ≥ ty) ≥
∞

∑

k=1

P (S ≥ ty, τ = k)

≥
∞

∑

k=1

P (S ≥ ty, τ = k, Xk ≥ ty)

≥
∞

∑

k=1

P (
k−1
∑

j=1

XjI(|Xj | < ty) +
∞

∑

j=k+1

Xj ≥ 0, τ = k, Xk ≥ ty)

≥
∞

∑

k=1

1

2
P (τ = k, Xk ≥ ty)

=
1

4
P (τ < ∞).

To lower-bound P (τ < ∞) let P+
j,y = P (Xj ≥ ty). Notice that since X is symmetric and ty > 0

we must have P+
j,y ≤ 1

2 . Given P (
⋃∞

j=1{Xj ≥ ty}) ≥ 1
y we have

1 −
∞
∏

j=1

(1 − P+
j,y) = P (

∞
⋃

j=1

{Xj ≥ ty}) ≥
1

y
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so
∞
∏

j=1

(1 − P+
j,y) ≤ 1 − 1

y
.

Since 0 ≤ 1 − 2P+
j,y ≤ (1 − P+

j,y)
2

∞
∏

j=1

(1 − 2P+
j,y) ≤≤

(

∞
∏

j=1

(1 − P+
j,n)

)2 ≤ (1 − 1

y
)2.

Consequently,

P (τ < ∞) = (1 −
∞
∏

j=1

(1 − 2P+
j,y)) ≥ 1 − (1 − 1

y
)2 =

2

y
− 1

y2

so that P (S ≥ ty) ≥ 1
2y − 1

4y2 . Therefore ty ≤ s4y2/(2y−1).

By essentially the same reasoning ty ≤ s4y2/(2y−1).

(20) is best possible for y > 4
3 as the following example demonstrates.

Example 2.2. For any y > 4
3 and y < z < 2y we can have s∗z < ty and s∗z < ty. Let X1 be

uniform on (−a, a) for any 0 < a ≤ 1. For j = 2, 3 let

Xj =



















1 w p 1 −
√

1 − 1
y

0 w p 2
√

1 − 1
y − 1

−1 w p 1 −
√

1 − 1
y

and Xj = 0 for j ≥ 4.

Then P (
⋃∞

j=1{Xj ≥ 1}) = 1
y so ty = 1. If s∗z ≥ ty or s∗z ≥ ty, then

1

z
≤ P ( max

1≤k≤3

k
∑

j=1

Xj ≥ 1)

= P (X1 ≥ 0, X2 = 1) + P (X1 ≥ 0, X2 = 0, X3 = 1)

+ P (X1 < 0, X2 = 1, X3 = 1)

=
1

2
(1 −

√

1 − 1

y
)(1 + (2

√

1 − 1

y
− 1) + 1 −

√

1 − 1

y
)

=
1

2
(1 −

√

1 − 1

y
)(1 +

√

1 − 1

y
)

=
1

2y

which gives a contradiction.

Next we show that
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Example 2.3. For any fixed 0 < ǫ < 1 there exists 1 << yǫ < ∞ such that for each y ≥ yǫ we
may have

s4y2/(2y−1+ǫ) < ty.

Fix n large. Let X1 be uniform on (−a, a) for any 0 < a ≤ 1. For j = 2, 3, ..., n + 1 let

Xj =











1 w p 1 − (1 − 1
y )1/n

0 w p 2(1 − 1
y )1/n − 1

−1 w p 1 − (1 − 1
y )1/n

and let Xj = 0 for j > n + 1.

Then

P (
∞
⋃

j=1

{Xj ≥ 1}) = 1 − Pn(X2 < 1) = 1 − (1 − 1

y
) =

1

y

so tz = 1 for z ≥ y.

Fix any ǫ > 0 and suppose that s4y2/(2y−1+ǫ) ≥ 1. Then

2y − 1 + ǫ

4y2
≤ P (

n+1
∑

j=1

Xj ≥ 1)

= P (X1 ≥ 0,
n+1
∑

j=2

Xj = 1) + P (
n+1
∑

j=2

Xj ≥ 2)

≤ n

2
P (X2 = 1)P (

n+1
⋂

j=3

{Xj = 0})

+

(

n

2

)

P 2(X2 = 1)P (

n+1
⋂

j=4

{Xj = 0}) + P (

n+1
∑

j=2

| Xj |≥ 3)

−→
n→∞

(−1

2
ln(1 − 1

y
))(1 − 1

y
)2 +

1

2
(ln(1 − 1

y
))2(1 − 1

y
)2 + O(

1

y3
).

As y → ∞ the latter quantity equals

1

2y
− 1

4y2
+ O(

1

y3
) <

2y − 1 + ǫ/2

4y2
,

for all y sufficiently large, which gives a contradiction.

Moreover, as the next example demonstrates, ty divided by the upper 1
y

th
-quantile of each of

the above variables may be unbounded. It also shows that s∗y and s∗y (as well as sy and sy) can
be zero for arbitrary large values of y. (Note: These quantities are certainly non-negative for
y ≥ 2.)
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Example 2.4. Take any y ≥ 4
3 . Let X1 and X2 be i.i.d. with

X1 =











1 w p 1 −
√

1 − 1/y

0 w p 2
√

1 − 1/y − 1

−1 w p 1 −
√

1 − 1/y

Also, set 0 = X3 = X4 = .... Then,

0 = P (
∞
⋃

j=1

{Xj > 1)}) < P (
∞
⋃

j=1

{Xj ≥ 1}) = 1 − P 2(X1 < 1) =
1

y
.

Therefore ty = 1. Observe that

P (S∗ > 0) = P (S∗ ≥ 1) = P (X1 = 1) + P (X1 = 0, X2 = 1)

= 2(1 −
√

1 − 1/y)
√

1 − 1/y.

This quantity is less than 1/y. Therefore s∗y = s∗y = 0. Also, since P (Sy < 0) = P (S < 0) < 1
y ,

sy = sy = 0.

We want to approximate s∗y and sy based on the behavior of the marginal distributions of
variables whose sum is S.

Suppose we attempt to construct our approximation by means of a quantity q
y

which involves

some reparametrization of the moment generating function of a truncated version of S. Inspired
by Luxemburg’s approach to constructing norms for functions in Orlicz space and affording
ourselves as much latitude as possible, we temporarily introduce arbitrary positive functions
f1(y) and f2(y), defining q

y
as the real satisfying

q
y

= sup{q > 0 : E(f1(y))Sy/q ≥ f2(y)}. (22)

To avoid triviality we also require that Sy be non-constant. Since Sy is symmetric,

E(f1(y))Sy/q = E(f1(y))−Sy/q > 1. Therefore we may assume that f1(y) > 1 and f2(y) > 1 .
Given f1(y) and constant 0 < c∗ < ∞, we want to choose f2(y) so that s∗y < c∗q

y
and q

y
is as

small as possible.

Notice that a sum of independent, symmetric, uniformly bounded rv’s converges a.s. iff its
variance is finite. Consequently, by Lemma 3.1 to follow, h(q) < ∞ where h(q) = E(f1(y))Sy/q.
Clearly, h(q) is a strictly decreasing continuous function of q > 0 with range (1,∞), (see Re-
mark 3.1). Hence, there is a unique q

y
such that

E(f1(y))
Sy/q

y = f2(y). (23)

Ideally, we would like to choose f2(y) so that s∗y = c∗q
y
. But since we can not directly compare

s∗y and q
y
, we must content ourselves with selecting a value for f2(y) in (1, y−1(f1(y))c∗ ] because

for these values we can demonstrate that s∗y < c∗q
y
. Since q

y
decreases as f2(y) increases, we will

set f2(y) = y−1(f1(y))c∗ . This gives the sharpest inequality our method of proof can provide.
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Lemma 2.3. Fix any y > 1, any f1(y) > 1, and any c∗ > 0 such that (f1(y))c∗/y > 1. Define
q
y

according to (22) with f2(y) = y−1(f1(y))c∗. Then, if ty 6= 0,

s∗y < c∗q
y
. (24)

Proof: Since ty 6= 0, Sy is non-constant and so q
y

> 0. To prove (24) suppose s∗y ≥ c∗q
y
. Let

τ =

{

1stn : Sy,n ≥ c∗q
y

∞ if such n doesn’t exist.

We have

1

y
≤ P (S∗

y ≥ c∗q
y
) = P (τ < ∞)

≤
∞

∑

n=1

E[(f1(y))
(Sy,n/q

y
)−c∗

I(τ = n)]

≤
∞

∑

n=1

E[(f1(y))
(Sy/q

y
)−c∗

I(τ = n)]

= E[(f1(y))
(Sy/q

y
)−c∗

I(τ < ∞)]

< E(f1(y))
(Sy/q

y
)−c∗

(since P (τ = ∞) > 0 and Sy is finite)

≤ 1

y
− E[(f1(y))

(Sy/q
y
)−c∗

I(τ = ∞)]

≤ 1

y
,

(25)

which gives a contradiction.

We can extend this inequality to the following theorem:

Theorem 2.4. Let f(y) > 1 and 0 < c∗ < ∞ be such that f c∗(y) > y ≥ 2. Suppose ty > 0. Let

q
y

= sup{q > 0 : E(f(y))Sy/q ≥ y−1f c∗(y)}. (26)

Then
max{s∗y, ty} < c∗q

y
. (27)

Proof: We already know that s∗y < c∗q
y
. Suppose ty = c∗∗q

y
. Let X̂j = ty(I(Xj ≥ ty)− I(Xj ≤

−ty)). There exist 0 − 1 valued random variables δj such that {Xi, δj : 1 ≤ i, j < ∞} are
independent and P (

⋃∞
j=1{δjX̂j = ty}) = 1

y . Setting pj = P (δjX̂j = ty)(= P (δjX̂j > 0)) we

obtain 1 − 1
y =

∏∞
j=1(1 − pj).
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Then let a = (f(y))c∗∗ − 2 + (f(y))−c∗∗ > 0 and notice that, for all y ≥ 2, 1 + a/y > f c∗∗(y)/y.
Moreover,

∏∞
j=1(1 − pj) ≥ 1 − ∑∞

j=1 pj . Consequently,
∑∞

j=1 pj ≥ 1
y .

Clearly,

y−1(f(y))c∗ = E(f(y))
Sy/q

y = E(f(y))c∗∗Sy/ty =
∞
∏

j=1

E(f(y))c∗∗Xj,y/ty

≥
∞
∏

j=1

E(f(y))c∗∗δjX̂j/ty =
∞
∏

j=1

(1 + pj((f(y))c∗∗ − 2 + (f(y))−c∗∗))

=
∞
∏

j=1

(1 + apj) ≥ 1 + a
∞

∑

j=1

pj ≥ 1 +
a

y

>
f(y)c∗∗

y
for all y ≥ 2.

(28)

This gives a contradiction whenever c∗∗ ≥ c∗.

Since
E(f(y))

Sy/q
y = E((f(y))c∗)

Sy/(c∗q
y
)
,

by redefining f(y) as (f(y))c∗ , qy is redefined in a way which makes c∗ = 1. Hence Theorem 2.4
can be restated as

Corollary 2.5. Take any y ≥ 2 such that Sy is non-constant. Then

max{s∗y, ty} ≤ inf
z>y

{qy(z) : EzSy/qy(z) =
z

y
} (29)

with equality iff max{s∗y, ty} = ess sup Sy.

Proof: (29) follows from (23) and (27). To get the details correct, note first that for any such
y > 1

lim
z→∞

Ez(Sy/q)−1 =











∞ if 0 < q <ess sup Sy

P (Sy = ess sup Sy) if q=ess sup Sy

0 if q > ess sup Sy

Hence qy(z) → ess sup Sy as z → ∞ and so

inf
z>y

{qy(z) : EzSy/qy(z) =
z

y
} ≤ ess sup Sy. (30)

Therefore, if max{s∗y, ty} = ess sup Sy we must have equality in (29). W.l.o.g. we may assume
that

max{s∗y, ty} < ess sup Sy. (31)

There exist monotonic zn ∈ (y,∞) such that

qy(zn) −→ inf
z>y

{qy(z) : EzSy/qy(z) =
z

y
} < ∞. (32)
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Let z∞ = limn→∞ zn. If z∞ = y then qy(zn) → ∞ which is impossible as indicated in (32).

If z∞ = ∞, then limn→∞ qy(zn) ≥ ess sup Sy which gives strict inequality in (29) by application
of (31).

Finally, suppose z∞ ∈ (y,∞). By dominated convergence the equation Ez
Sy/qy(zn)
n = zn

y con-

verges to equation Ez
Sy/qy(z∞)
∞ = z∞

y . Hence max{s∗y, ty} = infz>y{qy(z) : EzSy/qy(z) = z
y} =

qy(z∞) > max{s∗y, ty} by Theorem 2.4.

The example below verifies that inequality (29) is sharp.

Example 2.5. Consider a sequence of probability distributions such that, for each n ≥ 1,
Xn1, Xn2, ..., Xnn are i.i.d. and P (Xnj = 1/

√
n) = P (Xnj = −1/

√
n) = 0.5, j = 1, ..., n.

Letting n tend to ∞ we find from (29) that

s∗y ≤ inf
z>y

{qy(z) : EzB(1)/qy(z) =
z

y
} (33)

where B(t) is standard Brownian motion and

s∗y = sup{s : P ( max
1≤t≤1

B(t) ≥ s) ≥ 1

y
}. (34)

As is well known,
s∗y ∼

√

2 ln y as y → ∞. (35)

Notice that

EzB(1)/qy(z) = exp(
ln2(z)

2q2
y(z)

), (36)

whence

qy(z) =
ln(z)

√

2 ln z
y

. (37)

Noting that infz>y qy(z) = qy(y
2) =

√
2 ln y we find that

qy(y
2)

s∗y
−→ 1 as y → ∞, (38)

which implies that (29) is best possible.

Proceeding, we seek a lower bound of max{s∗y, ty} in terms of q
y
.

Theorem 2.6. Take any y ≥ 47 such that Sy is non-constant. Let f(y) = −1.5/ ln(1 − 2/y)
and let

q
y

= sup{q > 0 : E(f(y))Sy/q ≥ y−1f2(y))}. (39)
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Then
1

2
q
y

< max{s∗y, ty} < 2q
y

(40)

with the RHS holding for y ≥ 2. Moreover, if
ty
q

y

→ 0 as y → ∞ then

lim inf
y→∞

s∗y2/(y−1)

q
y

≥ lim inf
y→∞

s∗y
q
y

≥ 1. (41)

Proof: For the moment let f(y) > 1 denote any real such that f2(y) > y. Then 0 < q
y

< ∞
satisfies (39) with equality. The RHS of (40) is contained in Theorem 2.4.

Let τ = last j : there exists i : 1 ≤ i < j and Sj,y − Si,y > s∗y. Then, let τ0 = last i < τ :
Sτ,y − Si,y > s∗y. Notice that

P (
⋃

0≤i<j<∞

{Sj,y − Si,y > s∗y}) = P (
∞
⋃

j=2

{τ = j})

=
∞

∑

j=2

j−1
∑

i=1

P (τ0 = i, τ = j)

≤ 2
∞

∑

j=2

j−1
∑

i=1

P (τ0 = i, τ = j, Si,y ≥ 0)

≤ 2
∞

∑

j=2

j−1
∑

i=1

P (τ0 = i, τ = j, max
1≤k<∞

Sk,y > s∗y)

≤ 2P ( max
1≤k<∞

Sk,y > s∗y) ≤
2

y
.

(42)

Therefore, by (39) and (73) of Theorem 3.2,

y−1(f(y))2 = E(f(y))
Sy/q

y

≤ E(f(y))
S∗

y/q
y < (f(y))

s∗y/q
y(1 − 2

y
)1−(f(y))

(s∗y+ty)/q
y
.

(43)

Let c1 and c2 satisfy ty = c1qy
and s∗y = c2qy

. From (43) it follows that

(f(y))2−c2(1 − 2

y
)(f(y))c1+c2

< y − 2. (44)

Suppose that the LHS of (40) fails. Then 0 < c1 ∨ c2 ≤ 1
2 . Hence

(f(y))3/2(1 − 2

y
)f(y) < y − 2. (45)

Since (45) holds for all choices of f(y) >
√

y, putting

f(y) =
3

2 ln(1 + 2
y−2)
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we must have

(
3

2e ln(1 + 2
y−2)

)3/2 < y − 2. (46)

This inequality is violated for y ≥ 47. Therefore c1 ∨ c2 > 1
2 if y ≥ 47.

As for (41) suppose c1 → 0 as y → ∞. If there exist ǫ > 0 and yn → ∞ such that c2 for yn (call
it c2n and similarly let c1n denote c1 for yn) is at most 1 − ǫ then, since f(yn) ∼ 3yn

4 , the LHS
of (44) is asymptotic to

(
3yn

4
)2−c2n(1 − 2

yn
)(3yn/4)c1n+c2n ∼ (

3yn

4
)2−c2n > (

3yn

4
)1+ǫ (47)

thereby contradicting (44). Thus the RHS of (41) holds and its LHS follows by application of
(17).

Remark 2.2. Letting c∗ be any real exceeding 1.5, the method of proof of Theorem 2.6 also
shows that if we define f(y) = − c∗−1/2

ln(1− 2
y
)

and

q
y,c∗

= sup{q > 0 : E(f(y))Sy/q ≥ y−1f c∗(y))} (48)

there exists y
c∗

such that for y ≥ y
c∗

such that ty > 0

1

2
q
y,c∗

< max{s∗y, ty} < c∗q
y,c∗

. (49)

Hence, as y → ∞ our upper and lower bounds for max{s∗y, ty} differ by a factor which can be
made to converge to 3.

Theorem 2.6 implies the following bounds on sv and s∗v for v related to y.

Corollary 2.7. Take any y ≥ 47 such that Sy is non-constant. Then if q
y

is as defined in (39)

1

2
s∗y/2 < q

y
< 2s∗2y (50)

and
1

2
sy/2 < q

y
< 2s 2y2

y−1

(51)

with the LHS’s holding for y ≥ 2.

Proof: To prove the LHS of (50) and (51) write

2q
y

> s∗y (by Theorem 2.6)

≥ s∗y/2 (by the RHS of (16) in Lemma 2.1)

≥ sy/2.
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To prove the RHS of (50) and (51) we show that

q
y

< 2(s∗2y ∧ s2y2/(y−1)). (52)

To do so first recall that, by Theorem 2.6,

q
y

< 2(s∗y ∨ ty).

By Remark 2.1, s∗y ≤ s∗2y. Moreover,

s∗y ≤ s∗y2

y−1

(by (17) in Lemma 2.2)

≤ s 2y2

y−1

(by (15))

so s∗y ≤ s∗2y ∧ s2y2/(y−1). Finally,

ty ≤ s∗2y ∧ s4y2/(2y−1) (by combining results in Lemma 2.2)

≤ s∗2y ∧ s2y2/(y−1) (since sy is non-decreasing in y)

so (52) and consequently the RHS of (50) and (51) hold.

The LHS’s of (50) and (51) are best possible in that csy/2 may exceed q
y

as y → ∞ if c > 1
2 ,

since in Example 2.5 above, s∗y ∼ 2q
y

and sy/2 ∼ s∗y as y → ∞.

Corollary 2.7 can be restated as

Remark 2.3. Take any y ≥ 94. Then

1

2
q
y/2

< s∗y < 2q
2y

. (53)

The RHS of (53) is valid for y ≥ 2. Moreover, take any y ≥ 97. Then

1

2
q y

4
(1+

√
1−8/y)

< sy < 2q
2y

. (54)

The RHS of (54) is valid for y ≥ 2.

Remark 2.4. To approximate s∗y we have set our truncation level at ty. Somewhat more careful
analysis might, especially in particular cases, use other truncation levels for upper and lower
bounds of s∗y and sy.

Remark 2.2 suggests that there is a sharpening of Theorem 2.6 which can be obtained if we
allow c∗ to vary with y. Our next result gives one such refinement by identifying the greatest
lower bound which our approach permits and then adjoining Corollary 2.7, which identifies the
least such upper bound.

Theorem 2.8. For any y ≥ 4 there is a unique wy > ln y
y−2 such that

(
wy

e ln y
y−2

)wy = y − 2. (55)
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Let γy satisfy
1 − γy

2γy
= wy (56)

and zy > 0 satisfy

z
2γy
y =

1 − γy

2γy ln y
y−2

. (57)

Then zy > y for y ≥ 4. For z > y ≥ 4 let qy(z) be the unique positive real satisfying

EzSy/qy(z) =
z

y
. (58)

Then
γyqy(zy) ≤ max{s∗y, ty} ≤ inf

z>y
{qy(z)} (≤ qy(zy)) (59)

and

lim
y→∞

γy =
1

3
. (60)

Proof: For y > 3 there is exactly one solution to equation (55). To see this consider ( w
ea)w

for fixed a > 0. The log of this is convex in w, strictly decreasing for 0 ≤ w ≤ a and stricly
increasing for w ≥ a. Hence, sup0<w≤a(

w
ea)w = 1 and supw≥a(

w
ea)w = ∞. Consequently, for

b > 1 there is a unique w = wb such that ( w
ea)w = b. Now (55) holds with a = ln y

y−2 and
b = y − 2 > 1

The RHS of (59) follows from Corollary 2.7. As for the LHS of (59), we employ the same
notation and approach as used in the proof of Theorem 2.6.

Next we show that zy > y for y ≥ 4. To obtain a contradiction, suppose zy ≤ y. Then

y ≥ (y − 2)1/(1−γy) exp(
1

2γy
) ≥ inf

0<γ<1
(y − 2)1/(1−γ) exp(

1

2γ
). (61)

To minimize (y − 2)1/(1−γ) exp( 1
2γ ) set γ = 1/(1 +

√

2 ln(y − 2)). Then, for y ≥ 4,

inf
0<γ<1

(y − 2)1/(1−γ) exp(
1

2γ
) = exp(

1

2
(1 +

√

2 ln(y − 2))2)

≥ exp(
1

2
) exp(

√
ln 4)(y − 2) > 3(y − 2) > y,

(62)

giving a contradiction.

Hence qy(zy) exists. Put c1 =
ty

qy(zy) and c2 =
s∗y

qy(zy) . Using Theorem 3.2 and arguing as in (43)

but incorporating (58),
zy

y
< (zy)

c2(1 − 2

y
)1−z

c1+c2
y (63)

and consequently

z1−c2
y (1 − 2

y
)z

c1+c2
y < y − 2. (64)
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To obtain a contradiction of (64) suppose

max{s∗y, ty} ≤ γyqy(zy). (65)

Then max{c1, c2} ≤ γy and

z1−c2
y (1 − 2

y
)z

c1+c2
y ≥ z

1−γy
y (1 − 2

y
)z

2γy
y = y − 2, (66)

where the last equality follows since, using (57), (56), and then (55),

z
1−γy
y = (

1 − γy

2γy ln y
y−2

)
1−γy
2γy = (y − 2) exp(wy) (67)

and by (57) and (56),

(1 − 2

y
)z

2γy
y = exp(−wy). (68)

This gives the desired contradiction. (60) holds by direct calculation, using the definition of γy

found in (56) and the fact that wy → 1 as y → ∞.

The following corollary follows from the previous results.

Corollary 2.9.

γyqy(zy) ≤ s 2y2

y−1

∧ s∗2y (69)

and
s∗y ≤ inf

z>2y
q2y(z) ≤ q2y(z2y). (70)

3 Appendix

Lemma 3.1. Let Y1, Y2, ... be independent, symmetric, uniformly bounded rv’s such that σ2 =
∑∞

j=1 EY 2
j is finite. Then, for all real t,

E exp(t
∞

∑

j=1

Yj) < ∞. (71)

Proof: See, for example, Theorem 1 in Prokhorov (1959).

Remark 3.1. For all p > 0 the submartingale exp(t
∑n

j=1 Yj) convergences almost surely and in
Lp to exp(t

∑∞
j=1 Yj). Consequently, for all t > 0,

E supn exp(t
∑n

j=1 Yj) < ∞. Therefore, by dominated convergence

exp(t
∑∞

j=1 Yj) is continuous and the submartingale has moments of all orders.
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Theorem 3.2. Let X1, X2, . . . be independent real valued random variables such that if Sn =
X1 + ...+Xn, then Sn converges to a finite valued random variable S almost surely. For 0 ≤ i <
j < ∞ let S(i,j] ≡ Sj −Si = Xi+1 + ...+Xj and for any real a0 > 0 let λ = P (

⋃

0≤i<j<∞{S(i,j] >
a0}). Further, suppose that the Xj’s take values not exceeding a1. Then, for every integer k ≥ 1
and all positive reals a0 and a1,

P ( sup
1≤j<∞

Sj > ka0 + (k − 1)a1) ≤ P (N− ln(1−λ) ≥ k), (72)

(with strict inequality for k ≥ 2) where Nγ denotes a Poisson variable with parameter γ > 0.

Then, for every b > 0
Eeb sup1≤j<∞ Sj < eba0(1 − λ)1−exp(b(a0+a1)). (73)

Proof: (72) follows from Theorem 1 proved in Klass and Nowicki (2003):

To prove (73) denote W = sup1≤j<∞ Sj . For k ≥ 2,

P (N− ln(1−λ) ≥ k) > P (W ≥ ka0 + (k − 1)a1) = P (
W − a0

a0 + a1
> k − 1)

= P (⌈(W − a0)
+

a0 + a1
⌉ ≥ k).

For k = 1 we get equality. Letting

W = ⌈(W − a0)
+

a0 + a1
⌉,

W is a non-negative integer-valued random variable which is stochastically smaller than
N− ln(1−λ). Since exp(b(a0 + a1)x) is an increasing function of x,

EebW = eba0Eeb(W−a0) ≤ eba0Eeb(a0+a1)W

< eba0Eeb(a0+a1)N− ln(1−λ) = eba0 exp(− ln(1 − λ)(eb(a0+a1) − 1)).

4 Acknowledgment

We would like to thank the referee for his thoughtful comments. They helped us to improve the
presentation of the paper.

1297



References

[1] H. Cramér, On a new limit in theory of probability, in Colloquium on the Theory of Prob-
ability, (1938), Hermann, Paris. Review number not available.

[2] F. Esscher, On the probability function in the collective theory of risk, Skand. Aktuarietid-
skr. 15 (1932), 175—195. Review number not available.

[3] M. G. Hahn and M. J. Klass, Uniform local probability approximations: improvements on
Berry-Esseen, Ann. Probab. 23 (1995), no. 1, 446–463. MR1330778 (96d:60069) MR1330778

[4] M. G. Hahn and M. J. Klass, Approximation of partial sums of arbitrary i.i.d. random
variables and the precision of the usual exponential upper bound, Ann. Probab. 25 (1997),
no. 3, 1451–1470. MR1457626 (99c:62039) MR1457626

[5] Fuk, D. H.; Nagaev, S. V. Probabilistic inequalities for sums of independent random vari-
ables. (Russian) Teor. Verojatnost. i Primenen. 16 (1971), 660–675. MR0293695 (45 #2772)
MR0293695

[6] P. Hitczenko and S. Montgomery-Smith, A note on sums of independent random variables,
in Advances in stochastic inequalities (Atlanta, GA, 1997), 69–73, Contemp. Math., 234,
Amer. Math. Soc., Providence, RI. MR1694763 (2000d:60080) MR1694763

[7] P. Hitczenko and S. Montgomery-Smith, Measuring the magnitude of sums of indepen-
dent random variables, Ann. Probab. 29 (2001), no. 1, 447–466. MR1825159 (2002b:60077)
MR1825159

[8] N. C. Jain and W. E. Pruitt, Lower tail probability estimates for subordinators and non-
decreasing random walks, Ann. Probab. 15 (1987), no. 1, 75–101. MR0877591 (88m:60075)
MR0877591

[9] M. J. Klass, Toward a universal law of the iterated logarithm. I, Z. Wahrsch. Verw. Gebiete
36 (1976), no. 2, 165–178. MR0415742 (54 #3822) MR0415742

[10] M. J. Klass and K. Nowicki, An improvement of Hoffmann-Jørgensen’s inequality, Ann.
Probab. 28 (2000), no. 2, 851–862. MR1782275 (2001h:60029) MR1782275

[11] M. J. Klass and K. Nowicki, An optimal bound on the tail distribution of the number of
recurrences of an event in product spaces, Probab. Theory Related Fields 126 (2003), no. 1,
51–60. MR1981632 (2004f:60038) MR1981632
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