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Abstract

In this paper we study typical distances in random graphs with i.i.d. degrees of which the tail
of the common distribution function is regularly varying with exponent 1− τ . Depending on
the value of the parameter τ we can distinct three cases: (i) τ > 3, where the degrees have
finite variance, (ii) τ ∈ (2, 3), where the degrees have infinite variance, but finite mean, and
(iii) τ ∈ (1, 2), where the degrees have infinite mean. The distances between two randomly
chosen nodes belonging to the same connected component, for τ > 3 and τ ∈ (1, 2), have
been studied in previous publications, and we survey these results here. When τ ∈ (2, 3), the
graph distance centers around 2 log logN/| log(τ − 2)|. We present a full proof of this result,
and study the fluctuations around this asymptotic means, by describing the asymptotic
distribution. The results presented here improve upon results of Reittu and Norros, who
prove an upper bound only.
The random graphs studied here can serve as models for complex networks where degree
power laws are observed; this is illustrated by comparing the typical distance in this model
to Internet data, where a degree power law with exponent τ ≈ 2.2 is observed for the so-
called Autonomous Systems (AS) graph .
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1 Introduction

Complex networks are encountered in a wide variety of disciplines. A rough classification has
been given by Newman (18) and consists of: (i) Technological networks, e.g. electrical power
grids and the Internet, (ii) Information networks, such as the World Wide Web, (iii) Social
networks, like collaboration networks and (iv) Biological networks like neural networks and
protein interaction networks.

What many of the above examples have in common is that the typical distance between two
nodes in these networks are small, a phenomenon that is dubbed the ‘small-world’ phenomenon.
A second key phenomenon shared by many of those networks is their ‘scale-free’ nature; meaning
that these networks have so-called power-law degree sequences, i.e., the number of nodes with
degree k falls of as an inverse power of k. We refer to (1; 18; 25) and the references therein
for a further introduction to complex networks and many more examples where the above two
properties hold.

A random graph model where both the above key features are present is the configuration model
applied to an i.i.d. sequence of degrees with a power-law degree distribution. In this model we
start by sampling the degree sequence from a power law and subsequently connect nodes with
the sampled degree purely at random. This model automatically satisfies the power law degree
sequence and it is therefore of interest to rigorously derive the typical distances that occur.

Together with two previous papers (10; 14), the current paper describes the random fluctuations
of the graph distance between two arbitrary nodes in the configuration model, where the i.i.d.
degrees follow a power law of the form

P(D > k) = k−τ+1L(k),

where L denotes a slowly varying function and the exponent τ satisfies τ ≥ 1. To obtain a
complete picture we include a discussion and a heuristic proof of the results in (10) for τ ∈ [1, 2),
and those in (14) for τ > 3. However, the main goal of this paper is the complete description,
including a full proof of the case where τ ∈ (2, 3). Apart from the critical cases τ = 2 and
τ = 3, which depend on the behavior of the slowly varying function L (see (10, Section 4.2)
when τ = 2), we have thus given a complete analysis for all possible values of τ ≥ 1.

This section is organized as follows. In Section 1.1, we start by introducing the model, in Section
1.2 we state our main results. Section 1.3 is devoted to related work, and in Section 1.4, we
describe some simulations for a better understanding of our main results. Finally, Section 1.5
describes the organization of the paper.

1.1 Model definition

Fix an integer N . Consider an i.i.d. sequence D1,D2, . . . ,DN . We will construct an undirected
graph with N nodes where node j has degree Dj . We assume that LN =

∑N
j=1Dj is even. If LN

is odd, then we increase DN by 1. This single change will make hardly any difference in what
follows, and we will ignore this effect. We will later specify the distribution of D1.

To construct the graph, we have N separate nodes and incident to node j, we have Dj stubs
or half-edges. All stubs need to be connected to build the graph. The stubs are numbered in
any given order from 1 to LN . We start by connecting at random the first stub with one of the
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LN − 1 remaining stubs. Once paired, two stubs (half-edges) form a single edge of the graph.
Hence, a stub can be seen as the left or the right half of an edge. We continue the procedure
of randomly choosing and pairing the stubs until all stubs are connected. Unfortunately, nodes
having self-loops may occur. However, self-loops are scarce when N → ∞, as shown in (5).

The above model is a variant of the configuration model, which, given a degree sequence, is the
random graph with that given degree sequence. The degree sequence of a graph is the vector
of which the kth coordinate equals the proportion of nodes with degree k. In our model, by the
law of large numbers, the degree sequence is close to the probability mass function of the nodal
degree D of which D1, . . . ,DN are independent copies.

The probability mass function and the distribution function of the nodal degree law are denoted
by

P(D1 = j) = fj, j = 1, 2, . . . , and F (x) =

⌊x⌋∑

j=1

fj, (1.1)

where ⌊x⌋ is the largest integer smaller than or equal to x. We consider distributions of the form

1 − F (x) = x−τ+1L(x), (1.2)

where τ > 1 and L is slowly varying at infinity. This means that the random variables Dj obey
a power law, and the factor L is meant to generalize the model. We assume the following more
specific conditions, splitting between the cases τ ∈ (1, 2), τ ∈ (2, 3) and τ > 3.

Assumption 1.1. (i) For τ ∈ (1, 2), we assume (1.2).

(ii) For τ ∈ (2, 3), we assume that there exists γ ∈ [0, 1) and C > 0 such that

x−τ+1−C(log x)γ−1 ≤ 1 − F (x) ≤ x−τ+1+C(log x)γ−1
, for large x. (1.3)

(iii) For τ > 3, we assume that there exists a constant c > 0 such that

1 − F (x) ≤ cx−τ+1, for all x ≥ 1, (1.4)

and that ν > 1, where ν is given by

ν =
E[D1(D1 − 1)]

E[D1]
. (1.5)

Distributions satisfying (1.4) include distributions which have a lighter tail than a power law,
and (1.4) is only slightly stronger than assuming finite variance. The condition in (1.3) is slightly
stronger than (1.2).

1.2 Main results

We define the graph distance HN between the nodes 1 and 2 as the minimum number of edges
that form a path from 1 to 2. By convention, the distance equals ∞ if 1 and 2 are not connected.
Observe that the distance between two randomly chosen nodes is equal in distribution to HN ,
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because the nodes are exchangeable. In order to state the main result concerning HN , we define
the centering constant

mτ,N =

{
2⌊ log log N

| log(τ−2)|⌋, for τ ∈ (2, 3),

⌊logν N⌋, for τ > 3.
(1.6)

The parameter mτ,N describes the asymptotic growth of HN as N → ∞. A more precise result
including the random fluctuations around mτ,N is formulated in the following theorem.

Theorem 1.2 (The fluctuations of the graph distance). When Assumption 1.1 holds, then

(i) for τ ∈ (1, 2),
lim

N→∞
P(HN = 2) = 1 − lim

N→∞
P(HN = 3) = p, (1.7)

where p = pF ∈ (0, 1).

(ii) for τ ∈ (2, 3) or τ > 3 there exist random variables (Rτ,a)a∈(−1,0], such that as N → ∞,

P

(
HN = mτ,N + l

∣∣∣HN <∞
)

= P(Rτ,aN
= l) + o(1), (1.8)

where

aN =

{
⌊ log log N
| log(τ−2)|⌋ −

log log N
| log(τ−2)| , for τ ∈ (2, 3),

⌊logν N⌋ − logν N, for τ > 3.

We see that for τ ∈ (1, 2), the limit distribution exists and concentrates on the two points 2 and
3. For τ ∈ (2, 3) or τ > 3 the limit behavior is more involved. In these cases the limit distribution
does not exist, caused by the fact that the correct centering constants, 2 log logN/(| log(τ −2)|),
for τ ∈ (2, 3) and logν N , for τ > 3, are in general not integer, whereas HN is with probability
1 concentrated on the integers. The above theorem claims that for τ ∈ (2, 3) or τ > 3 and
large N , we have HN = mτ,N +Op(1), with mτ,N specified in (1.6) and where Op(1) is a random
contribution, which is tight on R. The specific form of this random contribution is specified in
Theorem 1.5 below.

In Theorem 1.2, we condition on HN <∞. In the course of the proof, here and in (14), we also
investigate the probability of this event, and prove that

P(HN <∞) = q2 + o(1), (1.9)

where q is the survival probability of an appropriate branching process.

Corollary 1.3 (Convergence in distribution along subsequences). For τ ∈ (2, 3) or τ > 3, and
when Assumption 1.1 is fulfilled, we have that, for k → ∞,

HNk
−mτ,Nk

|HNk
<∞ (1.10)

converges in distribution to Rτ,a, along subsequences Nk where aNk
converges to a.

A simulation for τ ∈ (2, 3) illustrating the weak convergence in Corollary 1.3 is discussed in
Section 1.4.
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Corollary 1.4 (Concentration of the hopcount). For τ ∈ (2, 3) or τ > 3, and when Assumption
1.1 is fulfilled, we have that the random variables HN −mτ,N , given that HN <∞, form a tight
sequence, i.e.,

lim
K→∞

lim sup
N→∞

P

(∣∣HN −mτ,N

∣∣ ≤ K
∣∣∣HN <∞

)
= 1. (1.11)

We next describe the laws of the random variables (Rτ,a)a∈(−1,0]. For this, we need some further
notation from branching processes. For τ > 2, we introduce a delayed branching process {Zk}k≥1,
where in the first generation the offspring distribution is chosen according to (1.1) and in the
second and further generations the offspring is chosen in accordance to g given by

gj =
(j + 1)fj+1

µ
, j = 0, 1, . . . , where µ = E[D1]. (1.12)

When τ ∈ (2, 3), the branching process {Zk} has infinite expectation. Under Assumption 1.1,
it is proved in (8) that

lim
n→∞

(τ − 2)n log(Zn ∨ 1) = Y, a.s., (1.13)

where x ∨ y denotes the maximum of x and y.

When τ > 3, the process {Zn/µν
n−1}n≥1 is a non-negative martingale and consequently

lim
n→∞

Zn

µνn−1
= W, a.s. (1.14)

The constant q appearing in (1.9) is the survival probability of the branching process {Zk}k≥1.

We can identify the limit laws of (Rτ,a)a∈(−1,0] in terms of the limit random variables in (1.13)
and (1.14) as follows:

Theorem 1.5 (The limit laws). When Assumption 1.1 holds, then

(i) for τ ∈ (2, 3) and for a ∈ (−1, 0],

P(Rτ,a > l) = P

(
min
s∈Z

[
(τ−2)−sY (1)+(τ−2)s−clY (2)

]
≤ (τ−2)⌈l/2⌉+a

∣∣Y (1)Y (2) > 0
)
, (1.15)

where cl = 1 if l is even and zero otherwise, and Y (1), Y (2) are two independent copies of
the limit random variable in (1.13).

(ii) for τ > 3 and for a ∈ (−1, 0],

P(Rτ,a > l) = E
[

exp{−κ̃νa+lW(1)W(2)}
∣∣W(1)W(2) > 0

]
, (1.16)

where W(1) and W(2) are two independent copies of the limit random variable W in (1.14)
and where κ̃ = µ(ν − 1)−1.

The above results prove that the scaling in these random graphs is quite sensitive to the degree
exponent τ . The scaling of the distance between pairs of nodes is proved for all τ ≥ 1, except
for the critical cases τ = 2 and τ = 3. The result for τ ∈ (1, 2), and the case τ = 1, where

HN

P→ 2, are both proved in (10), the result for τ > 3 is proved in (14). In Section 2 we
will present heuristic proofs for all three cases, and in Section 4 a full proof for the case where
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τ ∈ (2, 3). Theorems 1.2-1.5 quantify the small-world phenomenon for the configuration model,
and explicitly divide the scaling of the graph distances into three distinct regimes

In Remarks 4.2 and A.1.5 below, we will explain that our results also apply to the usual config-
uration model, where the number of nodes with a given degree is deterministic, when we study
the graph distance between two uniformly chosen nodes, and the degree distribution satisfied
certain conditions. For the precise conditions, see Remark A.1.5 below.

1.3 Related work

There are many papers on scale-free graphs and we refer to reviews such as the ones by Albert
and Barabási (1), Newman (18) and the recent book by Durrett (9) for an introduction; we refer
to (2; 3; 17) for an introduction to classical random graphs.

Papers involving distances for the case where the degree distribution F (see (1.2)), has exponent
τ ∈ (2, 3) are not so wide spread. In this discussion we will focus on the case where τ ∈ (2, 3).
For related work on distances for the cases τ ∈ (1, 2) and τ > 3 we refer to (10, Section 1.4) and
(14, Section 1.4), respectively.

The model investigated in this paper with τ ∈ (2, 3) was first studied in (21), where it was shown
that with probability converging to 1, HN is less than mτ,N(1 + o(1)). We improve the results
in (21) by deriving the asymptotic distribution of the random fluctuations of the graph distance
around mτ,N . Note that these results are in contrast to (19, Section II.F, below Equation (56)),
where it was suggested that if τ < 3, then an exponential cut-off is necessary to make the
graph distance between an arbitrary pair of nodes well-defined. The problem of the mean graph
distance between an arbitrary pair of nodes was also studied non-rigorously in (7), where also
the behavior when τ = 3 and x 7→ L(x) is the constant function, is included. In the latter case,
the graph distance scales like log N

log log N . A related model to the one studied here can be found in
(20), where a Poissonian graph process is defined by adding and removing edges. In (20), the
authors prove similar results as in (21) for this related model. For τ ∈ (2, 3), in (15), it was
further shown that the diameter of the configuration model is bounded below by a constant times
logN , when f1 + f2 > 0, and bounded above by a constant times log logN , when f1 + f2 = 0.

A second related model can be found in (6), where edges between nodes i and j are present
with probability equal to wiwj/

∑
l wl for some ‘expected degree vector’ w = (w1, . . . , wN). It is

assumed that maxiw
2
i <

∑
iwi, so that wiwj/

∑
l wl are probabilities. In (6), wi is often taken

as wi = ci−
1

τ−1 , where c is a function of N proportional to N
1

τ−1 . In this case, the degrees obey a
power law with exponent τ . Chung and Lu (6) show that in this case, the graph distance between
two uniformly chosen nodes is with probability converging to 1 proportional to logN(1 + o(1))
when τ > 3, and to 2 log log N

| log(τ−2)|(1 + o(1)) when τ ∈ (2, 3). The difference between this model

and ours is that the nodes are not exchangeable in (6), but the observed phenomena are similar.
This result can be heuristically understood as follows. Firstly, the actual degree vector in (6)
should be close to the expected degree vector. Secondly, for the expected degree vector, we can
compute that the number of nodes for which the degree is at least k equals

|{i : wi ≥ k}| = |{i : ci−
1

τ−1 ≥ k}| ∝ k−τ+1.

Thus, one expects that the number of nodes with degree at least k decreases as k−τ+1, similarly
as in our model. The most general version of this model can be found in (4). All these models
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Figure 1: Histograms of the AS-count and graph distance in the configuration model with
N = 10, 940, where the degrees have generating function fτ (s) in (1.18), for which the power
law exponent τ takes the value τ = 2.25. The AS-data is lightly shaded, the simulation is darkly
shaded.

assume some form of (conditional) independence of the edges, which results in asymptotic degree
sequences that are given by mixed Poisson distributions (see e.g. (5)). In the configuration
model, instead, the degrees are independent.

1.4 Demonstration of Corollary 1.3

Our motivation to study the above version of the configuration model is to describe the topology
of the Internet at a fixed time instant. In a seminal paper (12), Faloutsos et al. have shown
that the degree distribution in Internet follows a power law with exponent τ ≈ 2.16 − 2.25.
Thus, the power law random graph with this value of τ can possibly lead to a good Internet
model. In (24), and inspired by the observed power law degree sequence in (12), the power law
random graph is proposed as a model for the network of autonomous systems. In this graph, the
nodes are the autonomous systems in the Internet, i.e., the parts of the Internet controlled by
a single party (such as a university, company or provider), and the edges represent the physical
connections between the different autonomous systems. The work of Faloutsos et al. in (12)
was among others on this graph which at that time had size approximately 10,000. In (24), it is
argued on a qualitative basis that the power law random graph serves as a better model for the
Internet topology than the currently used topology generators. Our results can be seen as a step
towards the quantitative understanding of whether the AS-count in Internet is described well
by the graph distance in the configuration model. The AS-count gives the number of physical
links connecting the various autonomous domains between two randomly chosen domains. To
validate the model studied here, we compare a simulation of the distribution of the distance
between pairs of nodes in the configuration model with the same value of N and τ to extensive
measurements of the AS-count in Internet. In Figure 1, we see that the graph distance in the
model with the predicted value of τ = 2.25 and the value of N from the data set fits the AS-count
data remarkably well.
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Figure 2: Empirical survival functions of the graph distance for τ = 2.8 and for the four values
of N .

Having motivated why we are interested to study distances in the configuration model, we now
explain by a simulation the relevance of Theorem 1.2 and Corollary 1.3 for τ ∈ (2, 3). We have
chosen to simulate the distribution (1.12) using the generating function:

gτ (s) = 1 − (1 − s)τ−2, for which gj = (−1)j−1

(
τ − 2

j

)
∼ c

jτ−1
, j → ∞. (1.17)

Defining

fτ (s) =
τ − 1

τ − 2
s− 1 − (1 − s)τ−1

τ − 2
, τ ∈ (2, 3), (1.18)

it is immediate that

gτ (s) =
f ′τ (s)

f ′τ (1)
, so that gj =

(j + 1)fj+1

µ
.

For fixed τ , we can pick different values of the size of the simulated graph, so that for each two
simulated values N and M we have aN = aM , i.e., N = ⌈M (τ−2)−k⌉, for some integer k. For
τ = 2.8, this induces, starting from M = 1000, by taking for k the successive values 1, 2, 3,

M = 1, 000, N1 = 5, 624, N2 = 48, 697, N3 = 723, 395.

According to Corollary 1.3, the survival functions of the hopcount HN , given by k 7→ P(HN >

k|HN <∞), and for N = ⌈M (τ−2)−k⌉, run approximately parallel on distance 2 in the limit for
N → ∞, since mτ,Nk

= mτ,M + 2k for k = 1, 2, 3. In Section 3.1 below we will show that the
distribution with generating function (1.18) satisfies Assumption 1.1(ii).
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1.5 Organization of the paper

The paper is organized as follows. In Section 2 we heuristically explain our results for the three
different cases. The relevant literature on branching processes with infinite mean. is reviewed in
Section 3, where we also describe the growth of shortest path graphs, and state coupling results
needed to prove our main results, Theorems 1.2–1.5 in Section 4. In Section 5, we prove three
technical lemmas used in Section 4. We finally prove the coupling results in the Appendix. In
the sequel we will write that event E occurs whp for the statement that P(E) = 1− o(1), as the
total number of nodes N → ∞.

2 Heuristic explanations of Theorems 1.2 and 1.5

In this section, we present a heuristic explanation of Theorems 1.2 and 1.5.

When τ ∈ (1, 2), the total degree LN is the i.i.d. sum of N random variables D1,D2, . . . ,DN ,
with infinite mean. From extreme value theory, it is well known that then the bulk of the
contribution to LN comes from a finite number of nodes which have giant degrees (the so-called
giant nodes). Since these giant nodes have degree roughly N1/(τ−1), which is much larger than
N , they are all connected to each other, thus forming a complete graph of giant nodes. Each
stub of node 1 or node 2 is with probability close to 1 attached to a stub of some giant node,
and therefore, the distance between any two nodes is, whp, at most 3. In fact, this distance
equals 2 precisely when the two nodes are attached to the same giant node, and is 3 otherwise.
For τ = 1 the quotient MN/LN , where MN denotes the maximum of D1,D2, . . . ,DN , converges
to 1 in probability, and consequently the asymptotic distance is 2 in this case, as basically all
nodes are attached to the unique giant node. As mentioned before, full proofs of these results
can be found in (10).

For τ ∈ (2, 3) or τ > 3 there are two basic ingredients underlying the graph distance results. The
first one is that for two disjoint sets of stubs of sizes n and m out of a total of L, the probability
that none of the stubs in the first set is attached to a stub in the second set, is approximately
equal to

n−1∏

i=0

(
1 − m

L− n− 2i

)
. (2.1)

In fact, the product in (2.1) is precisely equal to the probability that none of the n stubs in the
first set of stubs is attached to a stub in the second set, given that no two stubs in the first
set are attached to one another. When n = o(L), L → ∞, however, these two probabilities are
asymptotically equal. We approximate (2.1) further as

n−1∏

i=0

(
1 − m

L− n− 2i

)
≈ exp

{
n−1∑

i=0

log

(
1 − m

L

(
1 +

n+ 2i

L

))}
≈ e−

mn
L , (2.2)

where the approximation is valid as long as nm(n+m) = o(L2), when L→ ∞.

The shortest path graph (SPG) from node 1 is the union of all shortest paths between node 1 and
all other nodes {2, . . . , N}. We define the SPG from node 2 in a similar fashion. We apply the
above heuristic asymptotics to the growth of the SPG’s. Let Z(1,N)

j denote the number of stubs
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that are attached to nodes precisely j − 1 steps away from node 1, and similarly for Z(2,N)

j . We

then apply (2.2) to n = Z(1,N)

j ,m = Z(2,N)

j and L = LN . Let Q
(k,l)
Z be the conditional distribution

given {Z(1,N)
s }k

s=1 and {Z(2,N)
s }l

s=1. For l = 0, we only condition on {Z(1,N)
s }k

s=1. For j ≥ 1, we
have the multiplication rule (see (14, Lemma 4.1)),

P(HN > j) = E

[ j+1∏

i=2

Q
(⌈i/2⌉,⌊i/2⌋)
Z (HN > i− 1|HN > i− 2)

]
, (2.3)

where ⌈x⌉ is the smallest integer greater than or equal to x and ⌊x⌋ the largest integer smaller
than or equal to x. Now from (2.1) and (2.2) we find,

Q
(⌈i/2⌉,⌊i/2⌋)
Z (HN > i− 1|HN > i− 2) ≈ exp

{
−
Z(1,N)

⌈i/2⌉Z
(2,N)

⌊i/2⌋

LN

}
. (2.4)

This asymptotic identity follows because the event {HN > i−1|HN > i−2} occurs precisely when
none of the stubs Z(1,N)

⌈i/2⌉ attaches to one of those of Z(2,N)

⌊i/2⌋. Consequently we can approximate

P(HN > j) ≈ E

[
exp

{
− 1

LN

j+1∑

i=2

Z(1,N)

⌈i/2⌉Z
(2,N)

⌊i/2⌋

}]
. (2.5)

A typical value of the hopcount HN is the value j for which

1

LN

j+1∑

i=2

Z(1,N)

⌈i/2⌉Z
(2,N)

⌊i/2⌋ ≈ 1.

This is the first ingredient of the heuristic.

The second ingredient is the connection to branching processes. Given any node i and a stub
attached to this node, we attach the stub to a second stub to create an edge of the graph. This
chosen stub is attached to a certain node, and we wish to investigate how many further stubs this
node has (these stubs are called ‘brother’ stubs of the chosen stub). The conditional probability
that this number of ‘brother’ stubs equals n given D1, . . . ,DN , is approximately equal to the
probability that a random stub from all LN = D1 + . . .+DN stubs is attached to a node with in
total n+ 1 stubs. Since there are precisely

∑N
j=1(n + 1)1{Dj=n+1} stubs that belong to a node

with degree n+ 1, we find for the latter probability

g(N)
n =

n+ 1

LN

N∑

j=1

1{Dj=n+1}, (2.6)

where 1A denotes the indicator function of the event A. The above formula comes from sampling
with replacement, whereas in the SPG the sampling is performed without replacement. Now,
as we grow the SPG’s from nodes 1 and 2, of course the number of stubs that can still be
chosen decreases. However, when the size of both SPG’s is much smaller than N , for instance
at most

√
N , or slightly bigger, this dependence can be neglected, and it is as if we choose each

time independently and with replacement. Thus, the growth of the SPG’s is closely related to a
branching process with offspring distribution {g(N)

n }∞n=1.
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When τ > 2, using the strong law of large numbers for N → ∞,

LN

N
→ µ = E[D1], and

1

N

N∑

j=1

1{Dj=n+1} → fn+1 = P(D1 = n+ 1),

so that, almost surely,

g(N)
n → (n+ 1)fn+1

µ
= gn, N → ∞. (2.7)

Therefore, the growth of the shortest path graph should be well described by a branching process
with offspring distribution {gn}, and we come to the question what is a typical value of j for
which

j+1∑

i=2

Z(1)

⌈i/2⌉Z
(2)

⌊i/2⌋ = LN ≈ µN, (2.8)

where {Z(1)

j } and {Z(2)

j } denote two independent copies of a delayed branching process with
offspring distribution {fn}, fn = P(D = n), n = 1, 2, . . ., in the first generation and offspring
distribution {gn} in all further generations.

To answer this question, we need to make separate arguments depending on the value of τ .
When τ > 3, then ν =

∑
n≥1 ngn <∞. Assume also that ν > 1, so that the branching process is

supercritical. In this case, the branching process Zj/µν
j−1 converges almost surely to a random

variable W (see (1.14)). Hence, for the two independent branching processes {Z(i)

j }, i = 1, 2,
that locally describe the number of stubs attached to nodes on distance j − 1, we find that, for
j → ∞,

Z(i)

j ∼ µνj−1W(i). (2.9)

This explains why the average value of Z(i,N)

j grows like µνj−1 = µ exp((j − 1) log ν), that is,
exponential in j for ν > 1, so that a typical value of j for which (2.8) holds satisfies

µ · νj−1 = N, or j = logν(N/µ) + 1.

We can extend this argument to describe the fluctuation around the asymptotic mean. Since
(2.9) describes the fluctuations of Z(i)

j around the mean value µνj−1, we are able to describe the
random fluctuations of HN around logν N . The details of these proofs can be found in (14).

When τ ∈ (2, 3), the branching processes {Z(1)

j } and {Z(2)

j } are well-defined, but they have
infinite mean. Under certain conditions on the underlying offspring distribution, which are
implied by Assumption 1.1(ii), Davies (8) proves for this case that (τ −2)j log(Zj + 1) converges
almost surely, as j → ∞, to some random variable Y . Moreover, P(Y = 0) = 1−q, the extinction
probability of {Zj}∞j=0. Therefore, also (τ − 2)j log(Zj ∨ 1) converges almost surely to Y .

Since τ > 2, we still have that LN ≈ µN . Furthermore by the double exponential behavior of
Zi, the size of the left-hand side of (2.8) is equal to the size of the last term, so that the typical
value of j for which (2.8) holds satisfies

Z(1)

⌈(j+1)/2⌉Z
(2)

⌊(j+1)/2⌋ ≈ µN, or log(Z(1)

⌈(j+1)/2⌉ ∨ 1) + log(Z(2)

⌊(j+1)/2⌋ ∨ 1) ≈ logN.

This indicates that the typical value of j is of order

2
log logN

| log(τ − 2)| , (2.10)

714



as formulated in Theorem 1.2(ii), since if for some c ∈ (0, 1)

log(Z(1)

⌈(j+1)/2⌉ ∨ 1) ≈ c logN, log(Z(2)

⌊(j+1)/2⌋ ∨ 1) ≈ (1 − c) logN

then (j + 1)/2 = log(c logN)/| log(τ − 2)|, which induces the leading order of mτ,N defined in
(1.6). Again we stress that, since Davies’ result (8) describes a distributional limit, we are able
to describe the random fluctuations of HN around mτ,N . The details of the proof are given in
Section 4.

3 The growth of the shortest path graph

In this section we describe the growth of the shortest path graph (SPG). This growth relies
heavily on branching processes (BP’s). We therefore start in Section 3.1 with a short review of
the theory of BP’s in the case where the expected value (mean) of the offspring distribution is
infinite. In Section 3.2, we discuss the coupling between these BP’s and the SPG, and in Section
3.3, we give the bounds on the coupling. Throughout the remaining sections of the sequel we
will assume that τ ∈ (2, 3), and that F satisfies Assumption 1.1(ii).

3.1 Review of branching processes with infinite mean

In this review of BP’s with infinite mean we follow in particular (8), and also refer the readers
to related work in (22; 23), and the references therein.

For the formal definition of the BP we define a double sequence {Xn,i}n≥0,i≥1 of i.i.d. random
variables each with distribution equal to the offspring distribution {gj} given in (1.12) with

distribution function G(x) =
∑⌊x⌋

j=0 gj . The BP {Zn} is now defined by Z0 = 1 and

Zn+1 =

Zn∑

i=1

Xn,i, n ≥ 0.

In case of a delayed BP, we let X0,1 have probability mass function {fj}, independently of
{Xn,i}n≥1. In this section we restrict to the non-delayed case for simplicity.

We follow Davies in (8), who gives the following sufficient conditions for convergence of
(τ − 2)n log(1 + Zn). Davies’ main theorem states that if there exists a non-negative, non-
increasing function γ(x), such that,

(i) x−ζ−γ(x) ≤ 1 −G(x) ≤ x−ζ+γ(x), for large x and 0 < ζ < 1,

(ii) xγ(x) is non-decreasing,

(iii)
∫∞
0 γ(ee

x
) dx <∞, or, equivalently,

∫∞
e

γ(y)
y log y dy <∞,

then ζn log(1 + Zn) converges almost surely to a non-degenerate finite random variable Y with
P(Y = 0) equal to the extinction probability of {Zn}, whereas Y |Y > 0 admits a density on
(0,∞). Therefore, also ζn log(Zn ∨ 1) converges to Y almost surely.
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The conditions of Davies quoted as (i-iii) simplify earlier work by Seneta (23). For example,
for {gj} in (1.17), the above is valid with ζ = τ − 2 and γ(x) = C(log x)−1, where C is
sufficiently large. We prove in Lemma A.1.1 below that for F as in Assumption 1.1(ii), and G
the distribution function of {gj} in (1.12), the conditions (i-iii) are satisfied with ζ = τ − 2 and
γ(x) = C(log x)γ−1, with γ < 1.

Let Y (1) and Y (2) be two independent copies of the limit random variable Y . In the course
of the proof of Theorem 1.2, for τ ∈ (2, 3), we will encounter the random variable U =
mint∈Z(κtY (1) + κc−tY (2)), for some c ∈ {0, 1}, and where κ = (τ − 2)−1. The proof relies
on the fact that, conditionally on Y (1)Y (2) > 0, U has a density. The proof of this fact is as
follows. The function (y1, y2) 7→ mint∈Z(κty1 + κc−ty2) is discontinuous precisely in the points

(y1, y2) satisfying
√
y2/y1 = κn− 1

2
c, n ∈ Z, and, conditionally on Y (1)Y (2) > 0, the random

variables Y (1) and Y (2) are independent continuous random variables. Therefore, conditionally
on Y (1)Y (2) > 0, the random variable U = mint∈Z(κtY (1) + κc−tY (2)) has a density.

3.2 Coupling of SPG to BP’s

In Section 2, it has been shown informally that the growth of the SPG is closely related to a BP
{Ẑ(1,N)

k } with the random offspring distribution {g(N)

j } given by (2.6); note that in the notation

Ẑ(1,N)

k we do include its dependence on N , whereas in (14, Section 3.1) this dependence on N
was left out for notational convenience. The presentation in Section 3.2 is virtually identical to
the one in (14, Section 3). However, we have decided to include most of this material to keep
the paper self-contained.

By the strong law of large numbers,

g(N)

j → (j + 1)P(D1 = j + 1)/E[D1] = gj , N → ∞.

Therefore, the BP {Ẑ(1,N)

k }, with offspring distribution {g(N)

j }, is expected to be close to the

BP {Z(1)

k } with offspring distribution {gj} given in (1.12). So, in fact, the coupling that we

make is two-fold. We first couple the SPG to the N−dependent branching process {Ẑ(1,N)

k }, and

consecutively we couple {Ẑ(1,N)

k } to the BP {Z(1)

k }. In Section 3.3, we state bounds on these
couplings, which allow us to prove Theorems 1.2 and 1.5 of Section 1.2.

The shortest path graph (SPG) from node 1 consists of the shortest paths between node 1 and
all other nodes {2, . . . , N}. As will be shown below, the SPG is not necessarily a tree because
cycles may occur. Recall that two stubs together form an edge. We define Z(1,N)

1 = D1 and, for
k ≥ 2, we denote by Z(1,N)

k the number of stubs attached to nodes at distance k − 1 from node
1, but are not part of an edge connected to a node at distance k − 2. We refer to such stubs
as ‘free stubs’, since they have not yet been assigned to a second stub to from an edge. Thus,
Z(1,N)

k is the number of outgoing stubs from nodes at distance k − 1 from node 1. By SPGk−1

we denote the SPG up to level k − 1, i.e., up to the moment we have Z(1,N)

k free stubs attached
to nodes on distance k− 1, and no stubs to nodes on distance k. Since we compare Z(1,N)

k to the

kth generation of the BP Ẑ(1,N)

k , we call Z(1,N)

k the stubs of level k.

For the complete description of the SPG {Z(1,N)

k }, we have introduced the concept of labels in
(14, Section 3). These labels illustrate the resemblances and the differences between the SPG
{Z(1,N)

k } and the BP {Ẑ(1,N)

k }.
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SPG stubs with their labels

2 2 2

3 2 2 2 3 2 2

3 3 2 2 3 2 2 3 2

3 3 3 2 3 2 2 3 2 2 3 2

3 3 3 3 3 2 2 3 2 2 3 3

Figure 3: Schematic drawing of the growth of the SPG from the node 1 with N = 9 and the
updating of the labels. The stubs without a label are understood to have label 1. The first
line shows the N different nodes with their attached stubs. Initially, all stubs have label 1.
The growth process starts by choosing the first stub of node 1 whose stubs are labelled by 2 as
illustrated in the second line, while all the other stubs maintain the label 1. Next, we uniformly
choose a stub with label 1 or 2. In the example in line 3, this is the second stub from node
3, whose stubs are labelled by 2 and the second stub by label 3. The left hand side column
visualizes the growth of the SPG by the attachment of stub 2 of node 3 to the first stub of node
1. Once an edge is established the paired stubs are labelled 3. In the next step, again a stub is
chosen uniformly out of those with label 1 or 2. In the example in line 4, it is the first stub of the
last node that will be attached to the second stub of node 1, the next in sequence to be paired.
The last line exhibits the result of creating a cycle when the first stub of node 3 is chosen to be
attached to the second stub of node 9 (the last node). This process is continued until there are
no more stubs with labels 1 or 2. In this example, we have Z(1,N)

1 = 3 and Z(1,N)

2 = 6.

Initially, all stubs are labelled 1. At each stage of the growth of the SPG, we draw uniformly
at random from all stubs with labels 1 and 2. After each draw we will update the realization
of the SPG according to three categories, which will be labelled 1, 2 and 3. At any stage of the
generation of the SPG, the labels have the following meaning:

1. Stubs with label 1 are stubs belonging to a node that is not yet attached to the SPG.

2. Stubs with label 2 are attached to the SPG (because the corresponding node has been
chosen), but not yet paired with another stub. These are the ‘free stubs’ mentioned above.

3. Stubs with label 3 in the SPG are paired with another stub to form an edge in the SPG.
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The growth process as depicted in Figure 3 starts by labelling all stubs by 1. Then, because we
construct the SPG starting from node 1 we relabel the D1 stubs of node 1 with the label 2. We
note that Z(1,N)

1 is equal to the number of stubs connected to node 1, and thus Z(1,N)

1 = D1. We
next identify Z(1,N)

j for j > 1. Z(1,N)

j is obtained by sequentially growing the SPG from the free

stubs in generation Z(1,N)

j−1 . When all free stubs in generation j − 1 have chosen their connecting

stub, Z(1,N)

j is equal to the number of stubs labelled 2 (i.e., free stubs) attached to the SPG.

Note that not necessarily each stub of Z(1,N)

j−1 contributes to stubs of Z(1,N)

j , because a cycle may
‘swallow’ two free stubs. This is the case when a stub with label 2 is chosen.

After the choice of each stub, we update the labels as follows:

1. If the chosen stub has label 1, we connect the present stub to the chosen stub to form an
edge and attach the brother stubs of the chosen stub as children. We update the labels as
follows. The present and chosen stub melt together to form an edge and both are assigned
label 3. All brother stubs receive label 2.

2. When we choose a stub with label 2, which is already connected to the SPG, a self-loop
is created if the chosen stub and present stub are brother stubs. If they are not brother
stubs, then a cycle is formed. Neither a self-loop nor a cycle changes the distances to the
root in the SPG. The updating of the labels solely consists of changing the label of the
present and the chosen stubs from 2 to 3.

The above process stops in the jth generation when there are no more free stubs in generation
j − 1 for the SPG, and then Z(1,N)

j is the number of free stubs at this time. We continue the
above process of drawing stubs until there are no more stubs having label 1 or 2, so that all
stubs have label 3. Then, the SPG from node 1 is finalized, and we have generated the shortest
path graph as seen from node 1. We have thus obtained the structure of the shortest path graph,
and know how many nodes there are at a given distance from node 1.

The above construction will be performed identically from node 2, and we denote the number
of free stubs in the SPG of node 2 in generation k by Z(2,N)

k . This construction is close to being
independent, when the generation size is not too large. In particular, it is possible to couple the
two SPG growth processes with two independent BP’s. This is described in detail in (14, Section
3). We make essential use of the coupling between the SPG’s and the BP’s, in particular, of (14,
Proposition A.3.1) in the appendix. This completes the construction of the SPG’s from both
node 1 and 2.

3.3 Bounds on the coupling

We now investigate the relationship between the SPG {Z(i,N)

k } and the BP {Z(i)

k } with law g.
These results are stated in Proposition 3.1, 3.2 and 3.4. In their statement, we write, for i = 1, 2,

Y (i,N)

k = (τ − 2)k log(Z(i,N)

k ∨ 1) and Y (i)

k = (τ − 2)k log(Z(i)

k ∨ 1), (3.1)

where {Z(1)

k }k≥1 and {Z(2)

k }k≥1 are two independent delayed BP’s with offspring distribution
{gj} and where Z(i)

1 has law {fj}. Then the following proposition shows that the first levels of
the SPG are close to those of the BP:
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Proposition 3.1 (Coupling at fixed time). If F satisfies Assumption 1.1(ii), then for every m
fixed, and for i = 1, 2, there exist independent delayed BP’s Z(1),Z(2), such that

lim
N→∞

P(Y (i,N)
m = Y (i)

m ) = 1. (3.2)

In words, Proposition 3.1 states that at any fixed time, the SPG’s from 1 and 2 can be coupled to
two independent BP’s with offspring g, in such a way that the probability that the SPG differs
from the BP vanishes when N → ∞.

In the statement of the next proposition, we write, for i = 1, 2,

T (i,N)
m = T (i,N)

m (ε) = {k > m :
(
Z(i,N)

m

)κk−m

≤ N
1−ε2

τ−1 }

= {k > m : κkY (i,N)
m ≤ 1 − ε2

τ − 1
logN}, (3.3)

where we recall that κ = (τ − 2)−1. We will see that Z(i,N)

k grows super-exponentially with k as

long as k ∈ T (i,N)
m . More precisely, Z(i,N)

k is close to
(
Z(i,N)

m

)κk−m

, and thus, T (i,N)
m can be thought

of as the generations for which the generation size is bounded by N
1−ε2

τ−1 . The second main result
of the coupling is the following proposition:

Proposition 3.2 (Super-exponential growth with base Y (i,N)
m for large times). If F satisfies

Assumption 1.1(ii), then, for i = 1, 2,

(a) P

(
ε ≤ Y (i,N)

m ≤ ε−1, max
k∈T

(i,N)
m (ε)

|Y (i,N)

k − Y (i,N)
m | > ε3

)
= oN,m,ε(1), (3.4)

(b) P

(
ε ≤ Y (i,N)

m ≤ ε−1, ∃k ∈ T (i,N)
m (ε) : Z(i,N)

k−1 > Z(i,N)

k

)
= oN,m,ε(1), (3.5)

P

(
ε ≤ Y (i,N)

m ≤ ε−1, ∃k ∈ T (i,N)
m (ε) : Z(i,N)

k > N
1−ε4

τ−1

)
= oN,m,ε(1), (3.6)

where oN,m,ε(1) denotes a quantity γN,m,ε that converges to zero when first N → ∞, then m→ ∞
and finally ε ↓ 0.

Remark 3.3. Throughout the paper limits will be taken in the above order, i.e., first we send
N → ∞, then m→ ∞ and finally ε ↓ 0.

Proposition 3.2 (a), i.e. (3.4), is the main coupling result used in this paper, and says that
as long as k ∈ T (i,N)

m (ε), we have that Y (i,N)

k is close to Y (i,N)
m , which, in turn, by Proposition

3.1, is close to Y (i)
m . This establishes the coupling between the SPG and the BP. Part (b) is a

technical result used in the proof. Equation (3.5) is a convenient result, as it shows that, with
high probability, k 7→ Z(i,N)

k is monotonically increasing. Equation (3.6) shows that with high

probability Z(i,N)

k ≤ N
1−ε4

τ−1 for all k ∈ T (i,N)
m (ε), which allows us to bound the number of free

stubs in generation sizes that are in T (i,N)
m (ε).

We complete this section with a final coupling result, which shows that for the first k which is
not in T (i,N)

m (ε), the SPG has many free stubs:
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Proposition 3.4 (Lower bound on Z(i,N)

k+1 for k+1 6∈ T (i,N)
m (ε)). Let F satisfy Assumption 1.1(ii).

Then,

P

(
k ∈ T (i,N)

m (ε), k + 1 6∈ T (i,N)
m (ε), ε ≤ Y (i,N)

m ≤ ε−1, Z(i,N)

k+1 ≤ N
1−ε
τ−1

)
= oN,m,ε(1). (3.7)

Propositions 3.1, 3.2 and 3.4 will be proved in the appendix. In Section 4 and 5, we will prove
the main results in Theorems 1.2 and 1.5 subject to Propositions 3.1, 3.2 and 3.4.

4 Proof of Theorems 1.2 and 1.5 for τ ∈ (2, 3)

For convenience we combine Theorem 1.2 and Theorem 1.5, in the case that τ ∈ (2, 3), in a
single theorem that we will prove in this section.

Theorem 4.1. Fix τ ∈ (2, 3). When Assumption 1.1(ii) holds, then there exist random variables
(Rτ,a)a∈(−1,0], such that as N → ∞,

P

(
HN = 2⌊ log logN

| log(τ − 2)| ⌋ + l
∣∣∣HN <∞

)
= P(Rτ,aN

= l) + o(1), (4.1)

where aN = ⌊ log log N
| log(τ−2)|⌋−

log log N
| log(τ−2)| ∈ (−1, 0]. The distribution of (Rτ,a), for a ∈ (−1, 0], is given

by

P(Rτ,a > l) = P

(
min
s∈Z

[
(τ − 2)−sY (1) + (τ − 2)s−clY (2)

]
≤ (τ − 2)⌈l/2⌉+a

∣∣Y (1)Y (2) > 0
)
,

where cl = 1 if l is even, and zero otherwise, and Y (1), Y (2) are two independent copies of the
limit random variable in (1.13).

4.1 Outline of the proof

We start with an outline of the proof. The proof is divided into several key steps proved in 5
subsections, Sections 4.2 - 4.6.

In the first key step of the proof, in Section 4.2, we split the probability P(HN > k) into separate
parts depending on the values of Y (i,N)

m = (τ − 2)m log(Z(i,N)
m ∨ 1). We prove that

P(HN > k, Y (1,N)
m Y (2,N)

m = 0) = 1 − q2m + o(1), N → ∞, (4.2)

where 1−qm is the probability that the delayed BP {Z(1)

j }j≥1 dies at or before the mth generation.

When m becomes large, then qm ↑ q, where q equals the survival probability of {Z(1)

j }j≥1. This

leaves us to determine the contribution to P(HN > k) for the cases where Y (1,N)
m Y (2,N)

m > 0. We
further show that for m large enough, and on the event that Y (i,N)

m > 0, whp, Y (i,N)
m ∈ [ε, ε−1],

for i = 1, 2, where ε > 0 is small. We denote the event where Y (i,N)
m ∈ [ε, ε−1], for i = 1, 2, by

Em,N(ε), and the event where max
k∈T

(N)
m (ε)

|Y (i,N)

k − Y (i,N)
m | ≤ ε3 for i = 1, 2 by Fm,N(ε). The

events Em,N(ε) and Fm,N (ε) are shown to occur whp, for Fm,N (ε) this follows from Proposition
3.2(a).
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The second key step in the proof, in Section 4.3, is to obtain an asymptotic formula for P({HN >
k} ∩ Em,N(ε)). Indeed we prove that for k ≥ 2m− 1, and any k1 with m ≤ k1 ≤ (k − 1)/2,

P({HN > k} ∩ Em,N(ε)) = E

[
1Em,N (ε)∩Fm,N (ε)Pm(k, k1)

]
+ oN,m,ε(1), (4.3)

where Pm(k, k1) is a product of conditional probabilities of events of the form {HN > j|HN >
j − 1}. Basically this follows from the multiplication rule. The identity (4.3) is established in
(4.32).

In the third key step, in Section 4.4, we show that, for k = kN → ∞, the main contribution of
the product Pm(k, k1) appearing on the right side of (4.3) is

exp
{
− λN min

k1∈BN

Z(1,N)

k1+1Z
(2,N)

kN−k1

LN

}
, (4.4)

where λN = λN(kN) is in between 1
2 and 4kN , and where BN = BN(ε, kN ) defined in (4.51) is

such that k1 ∈ BN(ε, kN ) precisely when k1 + 1 ∈ T (1,N)
m (ε) and kN − k1 ∈ T (2,N)

m (ε). Thus, by
Proposition 3.2, it implies that whp

Z(1,N)

k1+1 ≤ N
1−ε4

τ−1 and Z(2,N)

kN−k1
≤ N

1−ε4

τ−1 .

In turn, these bounds allow us to use Proposition 3.2(a). Combining (4.3) and (4.4), we establish
in Corollary 4.10, that for all l and with

kN = 2

⌊
log logN

| log(τ − 2)|

⌋
+ l, (4.5)

we have

P({HN > kN} ∩ Em,N(ε)) = E

[
1Em,N (ε)∩Fm,N (ε) exp

{
− λN min

k1∈BN

Z(1,N)

k1+1Z
(2,N)

kN−k1

LN

}]
+ oN,m,ε(1)

= E

[
1Em,N (ε)∩Fm,N (ε) exp

{
− λN min

k1∈BN

exp{κk1+1Y (1,N)

k1+1 + κkN−k1Y (2,N)

kN−k1
}

LN

}]
+ oN,m,ε(1),

(4.6)

where κ = (τ − 2)−1 > 1.

In the final key step, in Sections 4.5 and 4.6, the minimum occurring in (4.6), with the approx-
imations Y (1,N)

k1+1 ≈ Y (1,N)
m and Y (2,N)

kN−k1
≈ Y (2,N)

m , is analyzed. The main idea in this analysis is as
follows. With the above approximations, the right side of (4.6) can be rewritten as

E

[
1Em,N (ε)∩Fm,N (ε) exp

{
− λN exp

[
min

k1∈BN

(κk1+1Y (1,N)
m + κkN−k1Y (2,N)

m ) − logLN

]}]
+ oN,m,ε(1).

(4.7)
The minimum appearing in the exponent of (4.7) is then rewritten (see (4.73) and (4.75)) as

κ⌈kN /2⌉
{

min
t∈Z

(κtY (1,N)
m + κcl−tY (2,N)

m ) − κ−⌈kN /2⌉ logLN

}
.

Since κ⌈kN /2⌉ → ∞, the latter expression only contributes to (4.7) when

min
t∈Z

(κtY (1,N)
m + κcl−tY (2,N)

m ) − κ−⌈kN /2⌉ logLN ≤ 0.
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Here it will become apparent that the bounds 1
2 ≤ λN(k) ≤ 4k are sufficient. The expectation

of the indicator of this event leads to the probability

P

(
min
t∈Z

(κtY (1) + κcl−tY (2)) ≤ κaN−⌈l/2⌉, Y (1)Y (2) > 0

)
,

with aN and cl as defined in Theorem 4.1. We complete the proof by showing that conditioning on
the event that 1 and 2 are connected is asymptotically equivalent to conditioning on Y (1)Y (2) > 0.

Remark 4.2. In the course of the proof, we will see that it is not necessary that the degrees of
the nodes are i.i.d. In fact, in the proof below, we need that Propositions 3.1–3.4 are valid, as
well as that LN is concentrated around its mean µN . In Remark A.1.5 in the appendix, we will
investigate what is needed in the proof of Propositions 3.1– 3.4. In particular, the proof applies
also to some instances of the configuration model where the number of nodes with degree k is
deterministic for each k, when we investigate the distance between two uniformly chosen nodes.

We now go through the details of the proof.

4.2 A priory bounds on Y (i,N)
m

We wish to compute the probability P(HN > k). To do so, we split P(HN > k) as

P(HN > k) = P(HN > k, Y (1,N)
m Y (2,N)

m = 0) + P(HN > k, Y (1,N)
m Y (2,N)

m > 0). (4.8)

We will now prove two lemmas, and use these to compute the first term in the right-hand side
of (4.8).

Lemma 4.3. For any m fixed,

lim
N→∞

P(Y (1,N)
m Y (2,N)

m = 0) = 1 − q2m,

where
qm = P(Y (1)

m > 0).

Proof. The proof is immediate from Proposition 3.1 and the independence of Y (1)
m and Y (2)

m .

The following lemma shows that the probability that HN ≤ m converges to zero for any fixed m:

Lemma 4.4. For any m fixed,
lim

N→∞
P(HN ≤ m) = 0.

Proof. As observed above Theorem 1.2, by exchangeability of the nodes {1, 2, . . . ,N},

P(HN ≤ m) = P(H̃N ≤ m), (4.9)

where H̃N is the hopcount between node 1 and a uniformly chosen node unequal to 1. We split,
for any 0 < δ < 1,

P(H̃N ≤ m) = P(H̃N ≤ m,
∑

j≤m

Z(1,N)

j ≤ N δ) + P(H̃N ≤ m,
∑

j≤m

Z(1,N)

j > N δ). (4.10)
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The number of nodes at distance at most m from node 1 is bounded from above by
∑

j≤mZ(1,N)

j .

The event {H̃N ≤ m} can only occur when the end node, which is uniformly chosen in {2, . . . ,N},
is in the SPG of node 1, so that

P

(
H̃N ≤ m,

∑

j≤m

Z(1,N)

j ≤ N δ
)
≤ N δ

N − 1
= o(1), N → ∞. (4.11)

Therefore, the first term in (4.10) is o(1), as required. We will proceed with the second term
in (4.10). By Proposition 3.1, whp, we have that Y (1,N)

j = Y (1)

j for all j ≤ m. Therefore, we

obtain, because Y (1,N)

j = Y (1)

j implies Z(1,N)

j = Z(1)

j ,

P

(
H̃N ≤ m,

∑

j≤m

Z(1,N)

j > N δ
)
≤ P

(∑

j≤m

Z(1,N)

j > N δ
)

= P

(∑

j≤m

Z(1)

j > N δ
)

+ o(1).

However, when m is fixed, the random variable
∑

j≤m Z(1)

j is finite with probability 1, and
therefore,

lim
N→∞

P

(∑

j≤m

Z(1,N)

j > N δ
)

= 0. (4.12)

This completes the proof of Lemma 4.4.

We now use Lemmas 4.3 and 4.4 to compute the first term in (4.8). We split

P(HN > k, Y (1,N)
m Y (2,N)

m = 0) = P(Y (1,N)
m Y (2,N)

m = 0) − P(HN ≤ k, Y (1,N)
m Y (2,N)

m = 0). (4.13)

By Lemma 4.3, the first term is equal to 1− q2m + o(1). For the second term, we note that when
Y (1,N)

m = 0 and HN <∞, then HN ≤ m− 1, so that

P(HN ≤ k, Y (1,N)
m Y (2,N)

m = 0) ≤ P(HN ≤ m− 1). (4.14)

Using Lemma 4.4, we conclude that

Corollary 4.5. For every m fixed, and each k ∈ N, possibly depending on N ,

lim
N→∞

P(HN > k, Y (1,N)
m Y (2,N)

m = 0) = 1 − q2m.

By Corollary 4.5 and (4.8), we are left to compute P(HN > k, Y (1,N)
m Y (2,N)

m > 0). We first prove
a lemma that shows that if Y (1,N)

m > 0, then whp Y (1,N)
m ∈ [ε, ε−1]:

Lemma 4.6. For i = 1, 2,

lim sup
ε↓0

lim sup
m→∞

lim sup
N→∞

P(0 < Y (i,N)
m < ε) = lim sup

ε↓0
lim sup
m→∞

lim sup
N→∞

P(Y (i,N)
m > ε−1) = 0.

Proof. Fix m, when N → ∞ it follows from Proposition 3.1 that Y (i,N)
m = Y (i)

m , whp. Thus,
we obtain that

lim sup
ε↓0

lim sup
m→∞

lim sup
N→∞

P(0 < Y (i,N)
m < ε) = lim sup

ε↓0
lim sup
m→∞

P(0 < Y (i)
m < ε),
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and similarly for the second probability. The remainder of the proof of the lemma follows because

Y (i)
m

d→ Y (i) as m → ∞, and because conditionally on Y (i) > 0 the random variable Y (i) admits
a density.

Write

Em,N = Em,N(ε) = {Y (i,N)
m ∈ [ε, ε−1], i = 1, 2}, (4.15)

Fm,N = Fm,N(ε) =
{

max
k∈T

(N)
m (ε)

|Y (i,N)

k − Y (i,N)
m | ≤ ε3, i = 1, 2

}
. (4.16)

As a consequence of Lemma 4.6, we obtain that

P(Ec
m,N ∩ {Y (1,N)

m Y (2,N)
m > 0}) = oN,m,ε(1), (4.17)

so that
P(HN > k, Y (1,N)

m Y (2,N)
m > 0) = P({HN > k} ∩ Em,N) + oN,m,ε(1). (4.18)

In the sequel, we compute
P({HN > k} ∩ Em,N), (4.19)

and often we will make use of the fact that by Proposition 3.2,

P(Em,N ∩ F c
m,N) = oN,m,ε(1). (4.20)

4.3 Asymptotics of P({HN > k} ∩ Em,N)

We next give a representation of P({HN > k} ∩Em,N). In order to do so, we write Q
(i,j)
Z , where

i, j ≥ 0, for the conditional probability given {Z(1,N)
s }i

s=1 and {Z(2,N)
s }j

s=1 (where, for j = 0, we
condition only on {Z(1,N)

s }i
s=1), and E

(i,j)
Z for its conditional expectation. Furthermore, we say

that a random variable k1 is Zm-measurable if k1 is measurable with respect to the σ-algebra
generated by {Z(1,N)

s }m
s=1 and {Z(2,N)

s }m
s=1. The main rewrite is now in the following lemma:

Lemma 4.7. For k ≥ 2m− 1,

P({HN > k} ∩ Em,N) = E

[
1Em,N

Q
(m,m)
Z (HN > 2m− 1)Pm(k, k1)

]
, (4.21)

where, for any Zm-measurable k1, with m ≤ k1 ≤ (k − 1)/2,

Pm(k, k1) =

2k1∏

i=2m

Q
(⌊i/2⌋+1,⌈i/2⌉)
Z (HN > i|HN > i− 1) (4.22)

×
k−2k1∏

i=1

Q
(k1+1,k1+i)

Z (HN > 2k1 + i|HN > 2k1 + i− 1).

Proof. We start by conditioning on {Z(1,N)
s }m

s=1 and {Z(2,N)
s }m

s=1, and note that 1Em,N
is Zm-

measurable, so that we obtain, for k ≥ 2m− 1,

P({HN > k} ∩ Em,N) = E

[
1Em,N

Q
(m,m)
Z (HN > k)

]
(4.23)

= E

[
1Em,N

Q
(m,m)
Z (HN > 2m− 1)Q(m,m)

Z (HN > k|HN > 2m− 1)
]
.
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Moreover, for i, j such that i+ j ≤ k,

Q
(i,j)
Z (HN > k|HN > i+ j − 1) (4.24)

= E
(i,j)
Z

[
Q

(i,j+1)
Z (HN > k|HN > i+ j − 1)

]

= E
(i,j)
Z

[
Q

(i,j+1)
Z (HN > i+ j|HN > i+ j − 1)Q(i,j+1)

Z (HN > k|HN > i+ j)
]
,

and, similarly,

Q
(i,j)
Z (HN > k|HN > i+ j − 1) (4.25)

= E
(i,j)
Z

[
Q

(i+1,j)
Z (HN > i+ j|HN > i+ j − 1)Q(i+1,j)

Z (HN > k|HN > i+ j)
]
.

In particular, we obtain, for k > 2m− 1,

Q
(m,m)
Z (HN > k|HN > 2m− 1) = E

(m,m)
Z

[
Q

(m+1,m)
Z (HN > 2m|HN > 2m− 1) (4.26)

× Q
(m+1,m)
Z (HN > k|HN > 2m)

]
,

so that, using that Em,N is Zm-measurable and that E[E(m,m)
Z [X]] = E[X] for any random variable

X,

P({HN > k} ∩ Em,N) (4.27)

= E

[
1Em,N

Q
(m,m)
Z (HN > 2m− 1)Q(m+1,m)

Z (HN > 2m|HN > 2m− 1)Q(m+1,m)
Z (HN > k|HN > 2m)

]
.

We now compute the conditional probability by repeatedly applying (4.24) and (4.25), increasing
i or j as follows. For i+ j ≤ 2k1, we will increase i and j in turn by 1, and for 2k1 < i+ j ≤ k,
we will only increase the second component j. This leads to

Q
(m,m)
Z (HN > k|HN > 2m− 1) = E

(m,m)
Z

[ 2k1∏

i=2m

Q
(⌊i/2⌋+1,⌈i/2⌉)
Z (HN > i|HN > i− 1) (4.28)

×
k−2k1∏

j=1

Q
(k1+1,k1+j)

Z (HN > 2k1 + j|HN > 2k1 + j − 1)
]

= E
(m,m)
Z [Pm(k, k1)],

were we used that we can move the expectations E
(i,j)
Z outside, as in (4.27), so that these do not

appear in the final formula. Therefore, from (4.23), (4.28), and since 1Em,N
and Q

(m,m)
Z (HN >

2m− 1) are Zm-measurable,

P({HN > k} ∩ Em,N) = E

[
1Em,N

Q
(m,m)
Z (HN > 2m− 1)E(m,m)

Z [Pm(k, k1)]
]

= E

[
E

(m,m)
Z [1Em,N

Q
(m,m)
Z (HN > 2m− 1)Pm(k, k1)]

]

= E

[
1Em,N

Q
(m,m)
Z (HN > 2m− 1)Pm(k, k1)

]
. (4.29)

This proves (4.22).
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We note that we can omit the term Q
(m,m)
Z (HN > 2m− 1) in (4.21) by introducing a small error

term. Indeed, we can write

Q
(m,m)
Z (HN > 2m− 1) = 1 − Q

(m,m)
Z (HN ≤ 2m− 1). (4.30)

Bounding 1Em,N
Pm(k, k1) ≤ 1, the contribution to (4.21) due to the second term in the right-

hand side of (4.30) is according to Lemma 4.4 bounded by

E

[
Q

(m,m)
Z (HN ≤ 2m− 1)

]
= P(HN ≤ 2m− 1) = oN(1). (4.31)

We conclude from (4.20), (4.21), and (4.31), that

P({HN > k} ∩ Em,N) = E

[
1Em,N∩Fm,N

Pm(k, k1)
]

+ oN,m,ε(1). (4.32)

We continue with (4.32) by bounding the conditional probabilities in Pm(k, k1) defined in (4.22).

Lemma 4.8. For all integers i, j ≥ 0,

exp

{
−

4Z(1,N)

i+1 Z(2,N)

j

LN

}
≤ Q

(i+1,j)
Z (HN > i+ j|HN > i+ j − 1) ≤ exp

{
−
Z(1,N)

i+1 Z(2,N)

j

2LN

}
. (4.33)

The upper bound is always valid, the lower bound is valid whenever

i+1∑

s=1

Z(1,N)
s +

j∑

s=1

Z(2,N)
s ≤ LN

4
. (4.34)

Proof. We start with the upper bound. We fix two sets of n1 and n2 stubs, and will be
interested in the probability that none of the n1 stubs are connected to the n2 stubs. We order
the n1 stubs in an arbitrary way, and connect the stubs iteratively to other stubs. Note that we
must connect at least ⌈n1/2⌉ stubs, since any stub that is being connected removes at most 2
stubs from the total of n1 stubs. The number n1/2 is reached for n1 even precisely when all the
n1 stubs are connected with each other. Therefore, we obtain that the probability that the n1

stubs are not connected to the n2 stubs is bounded from above by

⌈n1/2⌉∏

t=1

(
1 − n2

LN − 2t + 1

)
≤

⌈n1/2⌉∏

t=1

(
1 − n2

LN

)
. (4.35)

Using the inequality 1 − x ≤ e−x, x ≥ 0, we obtain that the probability that the n1 stubs are
not connected to the n2 stubs is bounded from above by

e
−⌈n1/2⌉

n2
LN ≤ e

−
n1n2
2LN . (4.36)

Applying the above bound to n1 = Z(1,N)

i+1 and n2 = Z(2,N)

j , and noting that the probability that
HN > i + j given that HN > i + j − 1 is bounded from above by the probability that none of
the Z(1,N)

i+1 stubs are connected to the Z(2,N)

j stubs leads to the upper bound in (4.33).

We again fix two sets of n1 and n2 stubs, and are again interested in the probability that none of
the n1 stubs are connected to the n2 stubs. However, now we use these bounds repeatedly, and
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we assume that in each step there remain to be at least L stubs available. We order the n1 stubs
in an arbitrary way, and connect the stubs iteratively to other stubs. We obtain a lower bound
by further requiring that the n1 stubs do not connect to each other. Therefore, the probability
that the n1 stubs are not connected to the n2 stubs is bounded below by

n1∏

t=1

(
1 − n2

L− 2t+ 1

)
. (4.37)

When L − 2n1 ≥ LN
2 and 1 ≤ t ≤ n1, we obtain that 1 − n2

L−2t+1 ≥ 1 − 2n2
LN

. Moreover, when

x ≤ 1
2 , we have that 1− x ≥ e−2x. Therefore, we obtain that when L− 2n1 ≥ LN

2 and n2 ≤ LN
4 ,

then the probability that the n1 stubs are not connected to the n2 stubs when there are still at
least L stubs available is bounded below by

n1∏

t=1

(
1 − n2

L− 2t+ 1

)
≥

n1∏

t=1

e
−

4n2
LN = e

−
4n1n2

LN . (4.38)

The event HN > i + j conditionally on HN > i + j − 1 precisely occurs when none of the
Z(1,N)

i+1 stubs are connected to the Z(2,N)

j stubs. We will assume that (4.34) holds. We have that

L = LN − 2
∑i

s=1 Z
(1,N)
s − 2

∑j
s=1 Z

(2,N)
s , and n1 = Z(1,N)

i+1 , n2 = Z(2,N)

j . Thus, L − 2n1 ≥ LN
2

happens precisely when

L− 2n1 = LN − 2

i+1∑

s=1

Z(1,N)
s − 2

j∑

s=1

Z(2,N)
s ≥ LN

2
. (4.39)

This follows from the assumed bound in (4.34). Also, when n2 = Z(2,N)

j , n2 ≤ LN
4 is implied by

(4.34). Thus, we are allowed to use the bound in (4.38). This leads to

Q
(i+1,j)
Z (HN > i+ j|HN > i+ j − 1) ≥ exp

{
−

4Z(1,N)

i+1 Z(2,N)

j

LN

}
, (4.40)

which completes the proof of Lemma 4.8.

4.4 The main contribution to P({HN > k} ∩ Em,N)

We rewrite the expression in (4.32) in a more convenient form, using Lemma 4.8. We derive an
upper and a lower bound. For the upper bound, we bound all terms appearing on the right-hand
side of (4.22) by 1, except for the term Q

(k1+1,k−k1)

Z (HN > k|HN > k − 1), which arises when
i = k− 2k1, in the second product. Using the upper bound in Lemma 4.8, we thus obtain that

Pm(k, k1) ≤ exp
{
−
Z(1,N)

k1+1Z
(2,N)

k−k1

2LN

}
. (4.41)

The latter inequality is true for any Zm-measurable k1, with m ≤ k1 ≤ (k − 1)/2.

To derive the lower bound, we next assume that

k1+1∑

s=1

Z(1,N)
s +

k−k1∑

s=1

Z(2,N)
s ≤ LN

4
, (4.42)
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so that (4.34) is satisfied for all i in (4.22). We write, recalling (3.3),

B(1)
N (ε, k) =

{
m ≤ l ≤ (k − 1)/2 : l + 1 ∈ T (1,N)

m (ε), k − l ∈ T (2,N)
m (ε)

}
. (4.43)

We restrict ourselves to k1 ∈ B(1)
N (ε, k), if B(1)

N (ε, k) 6= ∅. When k1 ∈ B(1)
N (ε, k), we are allowed

to use the bounds in Proposition 3.2. Note that {k1 ∈ B(1)
N (ε, k)} is Zm-measurable. Moreover,

it follows from Proposition 3.2 that if k1 ∈ B(1)
N (ε, k), that then, with probability converging to

1 as first N → ∞ and then m→ ∞,

Z(1,N)
s ≤ N

1−ε4

τ−1 , ∀m < s ≤ k1 + 1, and Z(2,N)
s ≤ N

1−ε4

τ−1 , ∀m < s ≤ k − k1. (4.44)

When k1 ∈ B(1)
N (ε, k), we have

k1+1∑

s=1

Z(1,N)
s +

k−k1∑

s=1

Z(2,N)
s = kO(N

1
τ−1 ) = o(N) = o(LN),

as long as k = o(N
τ−2
τ−1 ). Since throughout the paper k = O(log logN) (see e.g. Theorem 1.2),

and τ−2
τ−1 > 0, the Assumption (4.42) will always be fulfilled.

Thus, on the event Em,N ∩ {k1 ∈ B(1)
N (ε, k)}, using (3.5) in Proposition 3.2 and the lower bound

in Lemma 4.8, with probability 1 − oN,m,ε(1), and for all i ∈ {2m, . . . , 2k1 − 1},

Q
(⌊i/2⌋+1,⌈i/2⌉)
Z (HN > i|HN > i− 1) ≥ exp

{
−

4Z(1,N)

⌊i/2⌋+1Z
(2,N)

⌈i/2⌉

LN

}
≥ exp

{
−

4Z(1,N)

k1+1Z
(2,N)

k−k1

LN

}
, (4.45)

and, for 1 ≤ i ≤ k − 2k1,

Q
(k1+1,k1+i)

Z (HN > 2k1 + i|HN > 2k1 + i− 1) ≥ exp
{
−

4Z(1,N)

k1+1Z
(2,N)

k1+i

LN

}
≥ exp

{
−

4Z(1,N)

k1+1Z
(2,N)

k−k1

LN

}
.

(4.46)

Therefore, by Lemma 4.7, and using the above bounds for each of the in total k− 2m+ 1 terms,
we obtain that when k1 ∈ B(1)

N (ε, k) 6= ∅, and with probability 1 − oN,m,ε(1),

Pm(k, k1) ≥
(

exp
{
− 4

Z(1,N)

k1+1Z
(2,N)

k−k1

LN

}
)k−2m+1

≥ exp
{
− 4k

Z(1,N)

k1+1Z
(2,N)

k−k1

LN

}
. (4.47)

We next use the symmetry for the nodes 1 and 2. Denote

B(2)
N (ε, k) =

{
m ≤ l ≤ (k − 1)/2 : l + 1 ∈ T (2,N)

m (ε), k − l ∈ T (1,N)
m (ε)

}
. (4.48)

Take l̃ = k − l − 1, so that (k − 1)/2 ≤ l̃ ≤ k − 1 −m, and thus

B(2)
N (ε, k) =

{
(k − 1)/2 ≤ l̃ ≤ k − 1 −m : l̃ + 1 ∈ T (1,N)

m (ε), k − l̃ ∈ T (2,N)
m (ε)

}
. (4.49)

Then, since the nodes 1 and 2 are exchangeable, we obtain from (4.47), when k1 ∈ B(2)
N (ε, k) 6= ∅,

and with probability 1 − oN,m,ε(1),

Pm(k, k1) ≥ exp
{
− 4k

Z(1,N)

k1+1Z
(2,N)

k−k1

LN

}
. (4.50)
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We define BN(ε, k) = B(1)
N (ε, k) ∪ B(2)

N (ε, k), which is equal to

BN(ε, k) =
{
m ≤ l ≤ k − 1 −m : l + 1 ∈ T (1,N)

m (ε), k − l ∈ T (2,N)
m (ε)

}
. (4.51)

We can summarize the obtained results by writing that with probability 1−oN,m,ε(1), and when
BN(ε, k) 6= ∅, we have

Pm(k, k1) = exp
{
− λN

Z(1,N)

k1+1Z
(2,N)

k−k1

LN

}
, (4.52)

for all k1 ∈ BN(ε, k), where λN = λN(k) satisfies

1

2
≤ λN(k) ≤ 4k. (4.53)

Relation (4.52) is true for any k1 ∈ BN(ε, k). However, our coupling fails when Z(1,N)

k1+1 or Z(2,N)

k−k1

grows too large, since we can only couple Z(i,N)

j with Ẑ(i,N)

j up to the point where Z(i,N)

j ≤ N
1−ε2

τ−1 .
Therefore, we next take the maximal value over k1 ∈ BN(ε, k) to arrive at the fact that, with
probability 1 − oN,m,ε(1), on the event that BN(ε, k) 6= ∅,

Pm(k, k1) = max
k1∈BN (ε,k)

exp
{
− λN

Z(1,N)

k1+1Z
(2,N)

k−k1

LN

}
= exp

{
− λN min

k1∈BN (ε,k)

Z(1,N)

k1+1Z
(2,N)

k−k1

LN

}
. (4.54)

From here on we take k = kN as in (4.5) with l a fixed integer.

In Section 5, we prove the following lemma that shows that, apart from an event of probability
1 − oN,m,ε(1), we may assume that BN(ε, kN ) 6= ∅:

Lemma 4.9. For all l, with kN as in (4.5),

lim sup
ε↓0

lim sup
m→∞

lim sup
N→∞

P({HN > kN} ∩ Em,N ∩ {BN(ε, kN ) = ∅}) = 0.

From now on, we will abbreviate BN = BN(ε, kN ). Using (4.32), (4.54) and Lemma 4.9, we
conclude that,

Corollary 4.10. For all l, with kN as in (4.5),

P
(
{HN > kN} ∩ Em,N

)
= E

[
1Em,N∩Fm,N

exp
{
− λN min

k1∈BN

Z(1,N)

k1+1Z
(2,N)

kN−k1

LN

}]
+ oN,m,ε(1),

where
1

2
≤ λN(kN ) ≤ 4kN .

4.5 Application of the coupling results

In this section, we use the coupling results in Section 3.3. Before doing so, we investigate the
minimum of the function t 7→ κty1 + κn−ty2, where the minimum is taken over the discrete set
{0, 1, . . . , n}, and where we recall that κ = (τ − 2)−1.
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Lemma 4.11. Suppose that y1 > y2 > 0, and κ = (τ − 2)−1 > 1. Fix an integer n, satisfying

n > | log(y2/y1)|
log κ , then

t∗ = argmint∈{1,2,...,n}

(
κty1 + κn−ty2

)
= round

(
n

2
+

log(y2/y1)

2 log κ

)
,

where round(x) is x rounded off to the nearest integer. In particular,

max

{
κt∗y1

κn−t∗y2
,
κn−t∗y2

κt∗y1

}
≤ κ.

Proof. Consider, for real-valued t ∈ [0, n], the function

ψ(t) = κty1 + κn−ty2.

Then,
ψ′(t) = (κty1 − κn−ty2) log κ, ψ′′(t) = (κty1 + κn−ty2) log2 κ.

In particular, ψ′′(t) > 0, so that the function ψ is strictly convex. The unique minimum of ψ is
attained at t̂, satisfying ψ′(t̂) = 0, i.e.,

t̂ =
n

2
+

log(y2/y1)

2 log κ
∈ (0, n),

because n > − log(y2/y1)/ log κ. By convexity t∗ = ⌊t̂⌋ or t∗ = ⌈t̂⌉. We will show that |t∗−t̂| ≤ 1
2 .

Put t∗1 = ⌊t̂⌋ and t∗2 = ⌈t̂⌉. We have

κt̂y1 = κn−t̂y2 = κ
n
2
√
y1y2. (4.55)

Writing t∗i = t̂+ t∗i − t̂, we obtain for i = 1, 2,

ψ(t∗i ) = κ
n
2
√
y1y2{κt∗i −t̂ + κt̂−t∗i }.

For 0 < x < 1, the function x 7→ κx+κ−x is increasing so ψ(t∗1) ≤ ψ(t∗2) if and only if t̂−t∗1 ≤ t∗2−t̂,
or t̂ − t∗1 ≤ 1

2 , i.e., if ψ(t∗1) ≤ ψ(t∗2) and hence the minimum over the discrete set {0, 1, . . . , n}
is attained at t∗1, then t̂ − t∗1 ≤ 1

2 . On the other hand, if ψ(t∗2) ≤ ψ(t∗1), then by the ‘only if’
statement we find t∗2 − t̂ ≤ 1

2 . In both cases we have |t∗ − t̂| ≤ 1
2 . Finally, if t∗ = t∗1, then we

obtain, using (4.55),

1 ≤ κn−t∗y2

κt∗y1
=
κt̂−t∗1

κt∗1−t̂
= κ2(t̂−t∗1) ≤ κ,

while for t∗ = t∗2, we obtain 1 ≤ κt∗y1

κn−t∗y2
≤ κ.

We continue with our investigation of P
(
{HN > kN}∩Em,N

)
. We start from Corollary 4.10, and

substitute (3.1) to obtain,

P
(
{HN > kN} ∩ Em,N

)
(4.56)

= E

[
1Em,N∩Fm,N

exp
{
− λN exp

[
min

k1∈BN

(
κk1+1Y (1,N)

k1+1 + κkN−k1Y (2,N)

kN−k1

)
− logLN

]}]
+ oN,m,ε(1),
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where we rewrite, using (4.51) and (3.3),

BN =

{
m ≤ k1 ≤ kN − 1 −m : κk1+1Y (1,N)

m ≤ 1 − ε2

τ − 1
logN,κkN−k1Y (2,N)

m ≤ 1 − ε2

τ − 1
logN

}
.

(4.57)
Moreover, on Fm,N , we have that mink1∈BN

(κk1+1Y (1,N)

k1+1 + κkN−k1Y (2,N)

kN−k1
) is between

min
k1∈BN

(
κk1+1(Y (1,N)

m − ε3) + κkN−k1(Y (2,N)
m − ε3)

)

and
min

k1∈BN

(
κk1+1(Y (1,N)

m + ε3) + κkN−k1(Y (2,N)
m + ε3)

)
.

To abbreviate the notation, we will write, for i = 1, 2,

Y (i,N)

m,+ = Y (i,N)
m + ε3, Y (i,N)

m,− = Y (i,N)
m − ε3. (4.58)

Define for ε > 0,

Hm,N = Hm,N(ε) =

{
min

0≤k1≤kN−1

(
κk1+1Y (1,N)

m,− + κkN−k1Y (2,N)

m,−

)
≤ (1 + ε2) logN

}
.

On the complement Hc
m,N , the minimum over 0 ≤ k1 ≤ kN − 1 of κk1+1Y (1,N)

m,− + κkN−k1Y (2,N)

m,−

exceeds (1+ε2) logN . Therefore, also the minimum over the set BN of κk1+1Y (1,N)

m,− +κkN−k1Y (2,N)

m,−

exceeds (1 + ε2) logN , so that from (4.56), Lemma 4.8 and Proposition 3.2 and with error at
most oN,m,ε(1),

P

(
{HN > kN} ∩ Em,N ∩Hc

m,N

)

≤ E

[
1Hc

m,N
exp

{
− 1

2
exp

[
min

k1∈BN

(
κk1+1Y (1,N)

k1+1 + κkN−k1Y (2,N)

kN−k1

)
− logLN

]}]

≤ E

[
1Hc

m,N
exp

{
− 1

2
exp

[
min

k1∈BN

(
κk1+1Y (1,N)

m,− + κkN−k1Y (2,N)

m,−

)
− logLN

]}]

≤ E

[
exp

{
− 1

2
exp

(
(1 + ε2) logN − logLN

)}]
≤ e−

1
2c

Nε2

= oN,m,ε(1), (4.59)

because LN ≤ cN , whp, as N → ∞. Combining (4.59) with (4.18) yields

P(HN > k, Y (1,N)
m Y (2,N)

m > 0) = P({HN > k} ∩ Em,N ∩Hm,N) + oN,m,ε(1). (4.60)

Therefore, in the remainder of the proof, we assume that Hm,N holds.

Lemma 4.12. With probability exceeding 1 − oN,m,ε(1),

min
k1∈BN

(
κk1+1Y (1,N)

m,+ + κkN−k1Y (2,N)

m,+

)
= min

0≤k1<kN

(
κk1+1Y (1,N)

m,+ + κkN−k1Y (2,N)

m,+

)
, (4.61)

and

min
k1∈BN

(
κk1+1Y (1,N)

m,− + κkN−k1Y (2,N)

m,−

)
= min

0≤k1<kN

(
κk1+1Y (1,N)

m,− + κkN−k1Y (2,N)

m,−

)
. (4.62)
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Proof. We start with (4.61), the proof of (4.62) is similar, and, in fact, slightly simpler, and is
therefore omitted. To prove (4.61), we use Lemma 4.11, with n = kN + 1, t = k1 + 1, y1 = Y (1,N)

m,+

and y2 = Y (2,N)

m,+ . Let

t∗ = argmint∈{1,2,...,n}

(
κty1 + κn−ty2

)
,

and assume (without restriction) that κt∗y1 ≥ κn−t∗y2. We have to show that t∗ − 1 ∈ BN .
According to Lemma 4.11,

1 ≤
κt∗Y (1,N)

m,+

κn−t∗Y (2,N)

m,+

=
κt∗y1

κn−t∗y2
≤ κ. (4.63)

We define x = κt∗Y (1,N)

m,+ and y = κn−t∗Y (2,N)

m,+ , so that x ≥ y. By definition, on Hm,N ,

κt∗Y (1,N)

m,− + κn−t∗Y (2,N)

m,− ≤ (1 + ε2) logN.

Since, on Em,N , we have that Y (1,N)
m ≥ ε,

Y (1,N)

m,+ = Y (1,N)

m,−

(
1 +

2ε3

Y (1,N)

m,−

)
≤ ε+ ε3

ε− ε3
Y (1,N)

m,− =
1 + ε2

1 − ε2
Y (1,N)

m,− , (4.64)

and likewise for Y (2,N)

m,+ . Therefore, we obtain that on Em,N ∩Hm,N , and with ε sufficiently small,

x+ y ≤ 1 + ε2

1 − ε2
[
κt∗Y (1,N)

m,− + κn−t∗Y (2,N)

m,−

]
≤ (1 + ε2)2

1 − ε2
logN ≤ (1 + ε) logN. (4.65)

Moreover, by (4.63), we have that

1 ≤ x

y
≤ κ. (4.66)

Hence, on Em,N ∩Hm,N , we have, with κ−1 = τ − 2,

x =
x+ y

1 + y
x

≤ (1 + ε)
1

1 + κ−1
logN =

1 + ε

τ − 1
logN, (4.67)

when ε > 0 is sufficiently small. We claim that if (note the difference with (4.67)),

x = κt∗Y (1,N)

m,+ ≤ 1 − ε

τ − 1
logN, (4.68)

then k∗1 = t∗ − 1 ∈ BN(ε, kN ), so that (4.61) follows. Indeed, we use (4.68) to see that

κk∗
1+1Y (1,N)

m = κt∗Y (1,N)
m ≤ κt∗Y (1,N)

m,+ ≤ 1 − ε

τ − 1
logN, (4.69)

so that the first bound in (4.57) is satisfied. The second bound is satisfied, since

κkN−k∗
1Y (2,N)

m = κn−t∗Y (2,N)
m ≤ κn−t∗Y (2,N)

m,+ = y ≤ x ≤ 1 − ε

τ − 1
logN, (4.70)

where we have used n = kN + 1, and (4.68). Thus indeed k∗1 ∈ BN(ε, kN ).
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We conclude that, in order to show that (4.61) holds with error at most oN,m,ε(1), we have to
show that the probability of the intersection of the events {HN > kN} and

Em,N = Em,N(ε) =
{
∃t :

1 − ε

τ − 1
logN < κtY (1,N)

m,+ ≤ 1 + ε

τ − 1
logN, (4.71)

κtY (1,N)

m,+ + κn−tY (2,N)

m,+ ≤ (1 + ε) logN
}
,

is of order oN,m,ε(1). This is contained in Lemma 4.13 below.

Lemma 4.13. For kN as in (4.5),

lim sup
ε↓0

lim sup
m→∞

lim sup
N→∞

P(Em,N(ε) ∩ Em,N(ε) ∩ {HN > kN}) = 0.

The proof of Lemma 4.13 is deferred to Section 5.

From (4.56), Lemmas 4.12 and 4.13, we finally arrive at

P
(
{HN > kN} ∩ Em,N

)
(4.72)

≤ E

[
1Em,N

exp
{
− λN exp

[
min

0≤k1<kN

(
κk1+1Y (1,N)

m,− + κkN−k1Y (2,N)

m,−

)
− logLN

]}]
+ oN,m,ε(1),

and at a similar lower bound where Y (i,N)

m,− is replaced by Y (i,N)

m,+ . Note that on the right-hand side
of (4.72), we have replaced the intersection of 1Em,N∩Fm,N

by 1Em,N
, which is allowed, because

of (4.20).

4.6 Evaluating the limit

The final argument starts from (4.72) and the similar lower bound, and consists of letting N → ∞
and then m → ∞. The argument has to be performed with Y (i,N)

m,+ and Y (i,N)

m,− separately, after
which we let ε ↓ 0. Since the precise value of ε plays no role in the derivation, we only give the
derivation for ε = 0. Observe that

min
0≤k1<kN

(κk1+1Y (1,N)
m + κkN−k1Y (2,N)

m ) − logLN

= κ⌈kN /2⌉ min
0≤k1<kN

(
κk1+1−⌈kN /2⌉Y (1,N)

m + κ⌊kN /2⌋−k1Y (2,N)
m − κ−⌈kN /2⌉ logLN

)

= κ⌈kN /2⌉ min
−⌈kN/2⌉+1≤t<⌊kN /2⌋+1

(κtY (1,N)
m + κcl−tY (2,N)

m − κ−⌈kN /2⌉ logLN), (4.73)

where t = k1 +1−⌈kN/2⌉, ckN
= cl = ⌊l/2⌋−⌈l/2⌉+1 = 1{l is even}. We further rewrite, using

the definition of aN in Theorem 4.1,

κ−⌈kN /2⌉ logLN = κ
log log N

log κ
−⌊ log log N

log κ
⌋−⌈l/2⌉ logLN

logN
= κ−aN−⌈l/2⌉ logLN

logN
. (4.74)

Calculating, for Y (i,N)
m ∈ [ε, ε−1], the minimum of κtY (1,N)

m + κcl−tY (2,N)
m , over all t ∈ Z, we

conclude that the argument of the minimum is contained in the interval [12 ,
1
2 + log(ε2)/2 log κ].

Hence from Lemma 4.11, for N → ∞, n = cl ∈ {0, 1} and on the event Em,N ,

min
−⌈kN /2⌉+1≤t≤⌊kN /2⌋

(κtY (1,N)
m + κcl−tY (2,N)

m ) = min
t∈Z

(κtY (1,N)
m + κcl−tY (2,N)

m ). (4.75)
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We define

Wm,N(l) = min
t∈Z

(κtY (1,N)
m + κcl−tY (2,N)

m ) − κ−aN−⌈l/2⌉ logLN

logN
, (4.76)

and, similarly we define W+
m,N and W−

m,N , by replacing Y (i,N)
m by Y (i,N)

m,+ and Y (i,N)

m,− , respectively.
The upper and lower bound in (4.72) now yield:

E

[
1Em,N

exp
[
− λNe

κ⌈kN /2⌉W+
m,N (l)]]+ oN,m,ε(1) (4.77)

≤ P({HN > kN} ∩Em,N) ≤ E

[
1Em,N

exp
[
− λNe

κ⌈kN /2⌉W−
m,N (l)]]+ oN,m,ε(1).

We split

E

[
1Em,N

exp
[
− λNe

κ⌈kN /2⌉Wm,N (l)
]]

= P(G̃N ∩Em,N) + IN + JN +KN + oN,m,ε(1), (4.78)

where for ε > 0,

F̃N = F̃N(l, ε) =
{
Wm,N(l) > ε

}
, G̃N = G̃N(l, ε) =

{
Wm,N(l) < −ε

}
, (4.79)

and where we define

IN = E

[
exp

[
− λNe

κ⌈kN /2⌉Wm,N (l)
]
1 eFN∩Em,N

]
, (4.80)

JN = E

[(
exp

[
− λNe

κ⌈kN /2⌉Wm,N (l)
]
− 1
)
1 eGN∩Em,N

]
, (4.81)

KN = E
[
exp

[
− λNe

κ⌈kN /2⌉Wm,N (l)
]
1 eF c

N∩ eGc
N∩Em,N

]
. (4.82)

The split (4.78) is correct since (using the abbreviation expW for exp
[
− λNe

κ⌈kN /2⌉Wm,N (l)
]
),

IN + JN +KN = E

[
1Em,N

[
(expW ){1 eFN

+ 1 eGN
+ 1 eF c

N∩ eGc
N
} − 1 eGN

]]

= E
[
1Em,N

[(expW ) − 1 eGN
]
]

= E
[
1Em,N

(expW )
]
− P(Em,N ∩ G̃N). (4.83)

Observe that

κ⌈kN /2⌉Wm,N(l) · 1 eFN
> εκ⌈kN /2⌉, κ⌈kN /2⌉Wm,N(l) · 1 eGN

< −εκ⌈kN /2⌉. (4.84)

We now show that IN , JN and KN are error terms, and then prove convergence of P(Em,N ∩ G̃N).
We start by bounding IN . By the first bound in (4.84), for every ε > 0, and since λN ≥ 1

2 ,

lim sup
N→∞

IN ≤ lim sup
N→∞

exp
{
− 1

2
exp{κ⌈kN /2⌉ε}

}
= 0. (4.85)

Similarly, by the second bound in (4.84), for every ε > 0, and since λN ≤ 4kN , we can bound JN

as
lim sup
N→∞

|JN | ≤ lim sup
N→∞

E
[
1 − exp

{
− 4kN exp{−κ⌈kN /2⌉ε}

}]
= 0. (4.86)

Finally, we bound KN by
KN ≤ P(F̃ c

N ∩ G̃c
N ∩Em,N), (4.87)

and apply the following lemma, whose proof is deferred to Section 5:
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Lemma 4.14. For all l,

lim sup
ε↓0

lim sup
m→∞

lim sup
N→∞

P
(
F̃N(l, ε)c ∩ G̃N (l, ε)c ∩ Em,N(ε)

)
= 0.

The conclusion from (4.77)-(4.87) is that:

P({HN > kN} ∩ Em,N) = P(G̃N ∩ Em,N) + oN,m,ε(1). (4.88)

To compute the main term P(G̃N ∩ Em,N), we define

Ul = min
t∈Z

(κtY (1) + κcl−tY (2)), (4.89)

and we will show that

Lemma 4.15.

P(G̃N ∩ Em,N) = P
(
Ul − κ−aN−⌈l/2⌉ < 0, Y (1)Y (2) > 0

)
+ oN,m,ε(1). (4.90)

Proof. From the definition of G̃N ,

G̃N ∩Em,N =
{

min
t∈Z

(κtY (1,N)
m + κcl−tY (2,N)

m ) − κ−aN−⌈l/2⌉ logUN

logN
< −ε, Y (i,N)

m ∈ [ε, ε−1]
}
. (4.91)

By Proposition 3.1 and the fact that LN = µN(1 + o(1)),

P(G̃N∩Em,N)−P

(
min
t∈Z

(κtY (1)
m +κcl−tY (2)

m )−κ−aN−⌈l/2⌉ < −ε, Y (i)
m ∈ [ε, ε−1]

)
= oN,m,ε(1). (4.92)

Since Y (i)
m converges to Y (i) almost surely, as m→ ∞, sups≥m |Y (i)

s − Y (i)| converges to 0 a.s. as
m→ ∞. Therefore,

P(G̃N ∩ Em,N) − P

(
Ul − κ−aN−⌈l/2⌉ < −ε, Y (i) ∈ [ε, ε−1]

)
= oN,m,ε(1), (4.93)

Moreover, since Y (1) has a density on (0,∞) and an atom at 0 (see (8)),

P(Y (1) 6∈ [ε, ε−1], Y (1) > 0) = o(1), as ε ↓ 0.

Recall from Section 3.1 that for any l fixed, and conditionally on Y (1)Y (2) > 0, the random
variable Ul has a density. We denote this density by f2 and the distribution function by F2.
Also, κ−aN−⌈l/2⌉ ∈ Il = [κ−⌈l/2⌉, κ−⌈l/2⌉+1]. Then,

P

(
− ε ≤ Ul − κ−aN−⌈l/2⌉ < 0

)
≤ sup

a∈Il

[F2(a) − F2(a− ε)]. (4.94)

The function F2 is continuous on Il, so that in fact F2 is uniformly continuous on Il, and we
conclude that

lim sup
ε↓0

sup
a∈Il

[F2(a) − F2(a− ε)] = 0. (4.95)

This establishes (4.90).

We summarize the results obtained sofar in the following corollary:
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Corollary 4.16. For all l, with kN as in (4.5),

P
(
{HN > kN} ∩Em,N

)
= q2P

(
Ul ≤ κ−aN−⌈l/2⌉

∣∣∣Y (1)Y (2) > 0
)

+ oN,m,ε(1).

Proof. By independence of Y (1) and Y (2), we obtain P(Y (1)Y (2) > 0) = q2. Combining this
with (4.88) and (4.90), yields

P({HN > kN} ∩ Em,N) = P

(
Ul − κ−aN−⌈l/2⌉ < 0, Y (1)Y (2) > 0

)
+ oN,m,ε(1)

= q2P
(
Ul − κ−aN−⌈l/2⌉ < 0

∣∣∣Y (1)Y (2) > 0
)

+ oN,m,ε(1). (4.96)

Note that the change from Ul < κ−aN−⌈l/2⌉ to Ul ≤ κ−aN−⌈l/2⌉ is allowed because F2 admits a
density.

We now come to the conclusion of the proof of Theorem 4.1. Corollary 4.16 yields, with mτ,N =

2
⌊

log log N
| log(τ−2)|

⌋
, so that kN = mτ,N + l,

P (HN > mτ,N + l) = P({HN > kN} ∩ Em,N) + P({HN > kN} ∩ Ec
m,N)

= q2P
(
Ul ≤ κ−aN−⌈l/2⌉

∣∣∣Y (1)Y (2) > 0
)

+ 1 − q2 + oN,m,ε(1),

because

P({HN > kN} ∩ Ec
m,N)

= P({HN > kN} ∩Ec
m,N ∩ {Y (1,N)

m Y (2,N)
m = 0}) + P({HN > kN} ∩ Ec

m,N ∩ {Y (1,N)
m Y (2,N)

m > 0})

= P({HN > kN} ∩ {Y (1,N)
m Y (2,N)

m = 0}) + P({HN > kN} ∩ Ec
m,N ∩ {Y (1,N)

m Y (2,N)
m > 0})

= lim
ε↓0

lim
m→∞

(1 − q2m) + oN,m,ε(1) = (1 − q2) + oN,m,ε(1),

where the second equality follows from {Y (1,N)
m Y (2,N)

m = 0} ⊆ Ec
m,N , and the one but final equality

from Corollary 4.5 and (4.17), respectively.

Taking complementary events, we obtain,

P (HN ≤ mτ,N + l) = q2P
(
Ul > κ−aN−⌈l/2⌉

∣∣Y (1)Y (2) > 0
)

+ oN,m,ε(1).

Note that in the above equation the terms, except the error oN,m,ε(1), are independent of m and
ε, so that, in fact, we have, for N → ∞,

P (HN ≤ mτ,N + l) = q2P
(
Ul > κ−aN−⌈l/2⌉

∣∣Y (1)Y (2) > 0
)

+ o(1). (4.97)

We claim that (4.97) implies that, when N → ∞,

P (HN <∞) = q2 + o(1). (4.98)

Indeed, to see (4.98), we prove upper and lower bounds. For the lower bound, we use that for
any l ∈ Z

P (HN <∞) ≥ P (HN ≤ kτ,N + l) ,
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and let l → ∞ in (4.97), noting that κ−aN−⌈l/2⌉ → 0 as l → ∞. For the upper bound, we split

P (HN <∞) = P
(
{HN <∞} ∩ {Y (1,N)

m Y (2,N)
m = 0}

)
+ P

(
{HN <∞} ∩ {Y (1,N)

m Y (2,N)
m > 0}

)
.

For N → ∞, the first term is bounded by P(HN ≤ m − 1) = o(1), by Lemma 4.4. Similarly as
N → ∞, the second term is bounded from above by, using Proposition 3.1,

P
(
{HN <∞} ∩ {Y (1,N)

m Y (2,N)
m > 0}

)
≤ P

(
Y (1,N)

m Y (2,N)
m > 0

)
= q2m + o(1), (4.99)

which converges to q2 as m → ∞. This proves (4.98). We conclude from (4.97) and (4.98) that
for N → ∞,

P

(
HN ≤ mτ,N + l

∣∣∣HN <∞
)

= P

(
Ul > κ−aN−⌈l/2⌉

∣∣∣Y (1)Y (2) > 0
)

+ o(1). (4.100)

Substituting κ = (τ−2)−1, and taking complements in (4.100) this yields the claims in Theorem
4.1.

5 Proofs of Lemmas 4.9, 4.13 and 4.14

In this section, we prove the three lemmas used in Section 4. The proofs are similar in nature.
Denote

{k ∈ ∂T (i,N)
m } = {k ∈ T (i,N)

m } ∩ {k + 1 6∈ T (i,N)
m }. (5.1)

We will make essential use of the following consequences of Propositions 3.1 and 3.2:

Lemma 5.1. For any u > 0, and i = 1, 2,

(i) P

(
{k ∈ T (i,N)

m } ∩ Em,N ∩ {Z(i,N)

k ∈ [Nu(1−ε),Nu(1+ε)]}
)

= oN,m,ε(1), (5.2)

(ii) P

(
{k ∈ ∂T (i,N)

m } ∩ Em,N ∩ {Z(i,N)

k ≤ N
1

κ(τ−1)
+ε}
)

= oN,m,ε(1). (5.3)

Proof. We start with the proof of (i). In the course of this proof the statement whp means
that the complement of the involved event has probability oN,m,ε(1). By Proposition 3.2, we
have whp, for k ∈ T (i,N)

m , and on the event Em,N , that

Y (i,N)

k ≤ Y (i,N)
m + ε3 ≤ Y (i,N)

m (1 + ε2), (5.4)

where the last inequality follows from Y (i,N)
m ≥ ε. Therefore, also

Y (i,N)
m ≥ Y (i,N)

k (1 − 2ε2), (5.5)

when ε is so small that (1 + ε2)−1 ≥ 1− 2ε2. In a similar way, we conclude that with k ∈ T (i,N)
m ,

and on the event Em,N ,
Y (i,N)

m ≤ Y (i,N)

k (1 + 2ε2). (5.6)

Furthermore, the event Z(i,N)

k ∈ [Nu(1−ε),Nu(1+ε)] is equivalent to

κ−ku(1 − ε) logN ≤ Y (i,N)

k ≤ κ−ku(1 + ε) logN. (5.7)
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Therefore, we obtain that, with uk,N = uκ−k logN ,

Y (i,N)
m ≤ (1 + 2ε2)(1 + ε)uκ−k logN ≤ (1 + 2ε)uk,N , (5.8)

and similarly,
Y (i,N)

m ≥ (1 − 2ε2)(1 − ε)uκ−k logN ≥ (1 − 2ε)uk,N . (5.9)

We conclude that whp the events k ∈ T (i,N)
m , ε ≤ Y (i,N)

m ≤ ε−1 and Z(i,N)

k ∈ [Nu(1−ε),Nu(1+ε)]
imply

Y (i,N)
m ∈ uk,N [1 − 2ε, 1 + 2ε] ≡ [uk,N(1 − 2ε), uk,N(1 + 2ε)]. (5.10)

Since ε ≤ Y (i,N)
m ≤ ε−1, we therefore must also have (when ε is so small that 1 − 2ε ≥ 1

2),

uk,N ∈ [
ε

2
,
2

ε
]. (5.11)

Therefore,

P

(
{k ∈ T (i,N)

m } ∩Em,N ∩ {Z(i,N)

k ∈ [Nu(1−ε),Nu(1+ε)]}
)

(5.12)

≤ sup
x∈[ ε

2
, 2
ε
]

P
(
Y (i,N)

m ∈ x[1 − 2ε, 1 + 2ε]
)

+ oN,m,ε(1).

Since, for N → ∞, Y (i,N)
m = Y (i)

m in probability, by Proposition 3.1, we arrive at

lim sup
ε↓0

lim sup
m→∞

lim sup
N→∞

P
(
{k ∈ T (i,N)

m } ∩ Em,N ∩ {Z(i,N)

k ∈ [Nu(1−ε),Nu(1+ε)]}
)

(5.13)

≤ lim sup
ε↓0

lim sup
m→∞

sup
x∈[ ε

2
, 2
ε
]

P
(
Y (i)

m ∈ x[1 − 2ε, 1 + 2ε]
)
.

We next use that Y (i)
m converges to Y (i) almost surely as m→ ∞ to arrive at

lim sup
m→∞

lim sup
N→∞

P
(
{k ∈ T (i,N)

m } ∩ Em,N ∩ {Z(i,N)

k ∈ [Nu(1−ε),Nu(1+ε)]}
)

(5.14)

≤ sup
x∈[ ε

2
, 2
ε
]

P
(
Y (i) ∈ x[1 − 2ε, 1 + 2ε]

)
≤ sup

x>0
[F1(x(1 + 2ε)) − F1(x(1 − 2ε))],

where F1 denotes the distribution function of Y (i). Since F1 is a proper distribution function on
[0,∞), with an atom at 0 and admitting a density on (0,∞), we have

lim sup
ε↓0

sup
x>0

[F1(x(1 + 2ε)) − F1(x(1 − 2ε))] = 0. (5.15)

This is immediate from uniform continuity of F1 on each bounded subinterval of (0,∞) and by
the fact that F1(∞) = 1. The upper bound (5.14) together with (5.15) completes the proof of
the first statement of the lemma.

We turn to the statement (ii). The event that k ∈ ∂T (i,N)
m implies

Y (i,N)
m ≥ 1 − ε2

τ − 1
κ−(k+1) logN. (5.16)
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By (5.6), we can therefore conclude that whp, for k ∈ ∂T (i,N)
m , and on the event Em,N , that, for

ε so small that (1 − ε2)/(1 + 2ε2) ≥ 1 − ε,

Y (i,N)

k ≥ 1 − ε

τ − 1
κ−(k+1) logN, (5.17)

which is equivalent to

Z(i,N)

k ≥ N
1−ε

κ(τ−1) ≥ N
1

κ(τ−1)
−ε
. (5.18)

Therefore,

lim sup
ε↓0

lim sup
m→∞

lim sup
N→∞

P
(
{k ∈ ∂T (i,N)

m } ∩ Em,N ∩ {Z(i,N)

k ≤ N
1

κ(τ−1)
+ε}
)

(5.19)

≤ lim sup
ε↓0

lim sup
m→∞

lim sup
N→∞

P
(
{k ∈ T (i,N)

m } ∩ Em,N ∩ {Z(i,N)

k ∈ [N
1

κ(τ−1)
−ε
,N

1
κ(τ−1)

+ε
]}
)

= 0,

which follows from the first statement in Lemma 5.1 with u = 1
κ(τ−1) .

Proof of Lemma 4.9. By (4.20), it suffices to prove that

P({HN > kN} ∩ Em,N ∩ Fm,N ∩ {BN(ε, kN ) = ∅}) = oN,m,ε(1), (5.20)

which shows that in considering the event {HN > kN} ∩ Em,N ∩ Fm,N , we may assume that
BN(ε, kN ) 6= ∅.

Observe that if BN(ε, k) = ∅, then BN(ε, k + 1) = ∅. Indeed, if l ∈ BN(ε, k + 1) and l 6= m,
then l − 1 ∈ BN(ε, k). If, on the other hand, BN(ε, k + 1) = {m}, then also m ∈ BN(ε, k). We
conclude that the random variable,

l∗ = sup{k : BN(ε, k) 6= ∅}. (5.21)

is well defined.

Hence {BN(ε, kN ) = ∅} = {kN ≥ l∗ + 1} and we therefore have

{BN(ε, kN ) = ∅} = {l∗ < kN} = {l∗ ≤ kN − 2} ∪̇{l∗ = kN − 1}. (5.22)

We deal with each of the two events separately. We start with the first.

Since the sets BN(ε, k) are Zm-measurable, we obtain, as in (4.32),

P({HN > kN} ∩ Em,N ∩ Fm,N ∩ {l∗ ≤ kN − 2}) ≤ P({HN > l∗ + 2} ∩ Em,N ∩ Fm,N) (5.23)

= E

[
1Em,N∩Fm,N

Pm(l∗ + 2, k1)
]

+ oN,m,ε(1).

We then use (4.41) to bound

Pm(l∗ + 2, k1) ≤ exp

{
−
Z(1,N)

k1+1Z
(2,N)

l∗+2−k1

2LN

}
. (5.24)

Now, since BN(ε, l∗) 6= ∅, we can pick k1 such that k1 − 1 ∈ BN(ε, l∗). Since BN(ε, l∗ + 1) = ∅,
we have k1 − 1 /∈ BN(ε, l∗ + 1), implying l∗ + 1− k1 ∈ T (2,N)

m and l∗ + 2 − k1 /∈ T (2,N)
m so that, by

(3.7), Z(2,N)

l∗+2−k1
≥ N

1−ε
τ−1 .
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Similarly, since k1 6∈ BN(ε, l∗ + 1) we have that k1 ∈ T (1,N)
m and k1 + 1 /∈ T (1,N)

m , so that, again

by (3.7), Z(1,N)

k1+1 ≥ N
1−ε
τ−1 . Therefore, since LN ≥ N , whp,

Z(1,N)

k1+1Z
(2,N)

l∗+2−k1

LN

≥ N
2(1−ε)

τ−1
−1, (5.25)

and the exponent of N is strictly positive for τ ∈ (2, 3) and ε > 0 small enough. This bounds
the contribution in (5.23) due to {l∗ ≤ kN − 2}.

We proceed with the contribution due to {l∗ = kN − 1}. In this case, there exists a k1 with
k1−1 ∈ BN(ε, kN−1), so that k1 ∈ T (1,N)

m and kN−k1 ∈ T (2,N)
m . On the other hand, BN(ε, kN ) = ∅,

which together with k1−1 ∈ BN(ε, kN −1) implies that kN −k1 ∈ T (2,N)
m , and kN −k1 +1 /∈ T (2,N)

m .
Similarly, we obtain that k1 ∈ T (1,N)

m and k1 + 1 /∈ T (1,N)
m . Using Proposition 3.4, we conclude

that, whp, Z(1,N)

k1+1 ≥ N
1−ε
τ−1 .

We now distinguish two possibilities: (a) Z(2,N)

kN−k1
≤ N

τ−2
τ−1

+ε; and (b) Z(2,N)

kN−k1
> N

τ−2
τ−1

+ε. By

(5.3) and the fact that kN −k1 ∈ ∂T (2,N)
m , case (a) has small probability, so we need to investigate

case (b) only.

In case (b), we can write

P

(
{HN > kN} ∩ Em,N ∩ Fm,N ∩ {l∗ = kN − 1} ∩ {Z(2,N)

kN−k1
> N

τ−2
τ−1

+ε}
)

(5.26)

= E

[
1Em,N∩Fm,N∩{l∗=kN−1}1

{Z
(2,N)
kN−k1

>N
τ−2
τ−1+ε

}∩{k1−1∈BN (ε,kN−1)}
Pm(kN , k1)

]
+ oN,m,ε(1),

where according to (4.41), we can bound

Pm(kN , k1) ≤ exp

{
−
Z(1,N)

k1+1Z
(2,N)

kN−k1

2LN

}
. (5.27)

We note that by Proposition 3.4 and similarly to (5.25),

Z(1,N)

k1+1Z
(2,N)

kN−k1

LN

≥ N
1−ε
τ−1N

τ−2
τ−1

+ε−1 = N

(
1− 1

τ−1

)
ε, (5.28)

and again the exponent is strictly positive, so that, following the arguments in (5.23–5.27), we
obtain that also the contribution due to case (b) is small.

Proof of Lemma 4.13. Recall that we have defined x = x(t) = κtY (1,N)

m,+ and y = y(t) =

κn−tY (2,N)

m,+ , with n = kN + 1, and that x ≥ y. The event Em,N in (4.71) is equal to the existence
of a t such that,

1 − ε

τ − 1
logN ≤ x ≤ 1 + ε

τ − 1
logN, and x+ y ≤ (1 + ε) logN. (5.29)

Therefore, by (4.66),

y ≥ x

κ
≥ (1 − ε)

τ − 2

τ − 1
logN. (5.30)
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On the other hand, by the bounds in (5.29),

y ≤ (1 + ε) logN − x ≤ (1 + ε) logN − 1 − ε

τ − 1
logN =

(
1 + ε

τ

τ − 2

)τ − 2

τ − 1
logN. (5.31)

Therefore, by multiplying the bounds on x and y, we obtain

(1 − ε)2
τ − 2

(τ − 1)2
log2N ≤ κkN+1Y (1,N)

m,+ Y (2,N)

m,+ ≤
(
1 + ε

τ

τ − 2

)
(1 + ε)

τ − 2

(τ − 1)2
log2N, (5.32)

and thus

P(Em,N ∩ Em,N ∩ {HN > kN}) ≤ P

(
(1 − ε)2 ≤ κkN+1

c log2N
Y (1,N)

m,+ Y (2,N)

m,+ ≤
(
1 + ε

τ

τ − 2

)
(1 + ε)

)
,

(5.33)

where we abbreviate c = τ−2
(τ−1)2

. Since κkN+1

c log2 N
is bounded away from 0 and ∞, we conclude that

the right-hand side of (5.33) is oN,m,ε(1), analogously to the final part of the proof of Lemma
5.1(i).

Proof of Lemma 4.14. We recall that Ul = mint∈Z(κtY (1) + κcl−tY (2)), and repeat the argu-
ments leading to (4.92–4.96) to see that, as first N → ∞ and then m → ∞,

P(F̃ c
N ∩ G̃c

N ∩ Em,N) ≤ P

(
−ε ≤ Ul − κ−aN−⌈l/2⌉ ≤ ε, Y (1)Y (2) > 0

)
+ oN,m(1) (5.34)

= q2P
(
−ε ≤ Ul − κ−aN−⌈l/2⌉ ≤ ε

∣∣∣Y (1)Y (2) > 0
)

+ oN,m(1).

Recall from Section 3.1 that, conditionally on Y (1)Y (2) > 0, the random variable Ul has a density,
and that we denoted the distribution function of Ul given Y (1)Y (2) > 0 by F2. Furthermore,
κ−aN−⌈l/2⌉ ∈ Il = [κ−⌈l/2⌉, κ−⌈l/2⌉+1], so that, uniformly in N ,

P

(
−ε ≤ Ul − κ−aN−⌈l/2⌉ ≤ ε

∣∣∣Y (1)Y (2) > 0
)
≤ sup

u∈Il

[F2(u+ ε) − F2(u− ε)] = 0,

where the conclusion follows by repeating the argument leading to (5.15). This completes the
proof of Lemma 4.14.

A Proof of Propositions 3.1, 3.2 and 3.4

The appendix is organized as follows. In Section A.1, we prove three lemmas that are used in
Section A.2 to prove Proposition 3.1. In Section A.3, we continue with preparations for the
proofs of Proposition 3.2 and 3.4. In this section we formulate key Proposition A.3.2, which will
be proved in Section A.4. In Section A.5, we end the appendix with the proofs of Proposition
3.2 and 3.4. As in the main body of the paper, we will assume throughout the appendix that
τ ∈ (2, 3), so if we refer to Assumption 1.1, we mean Assumption 1.1(ii).

741



A.1 Some preparatory lemmas

In order to prove Proposition 3.1, we make essential use of three lemmas, that also play a key
role in Section A.4 below. The first of these three lemmas investigates the tail behaviour of
1 − G(x) under Assumption 1.1. Recall that G is the distribution function of the probability
mass function {gj}, defined in (1.12).

Lemma A.1.1. If F satisfies Assumption 1.1(ii) then there exists Kτ > 0 such that for x large
enough

x2−τ−Kτ γ(x) ≤ 1 −G(x) ≤ x2−τ+Kτγ(x), (A.1.1)

where γ(x) = (log x)γ−1, γ ∈ [0, 1).

Proof. Using (1.12) we rewrite 1 −G(x) as

1 −G(x) =

∞∑

j=x+1

(j + 1)fj+1

µ
=

1

µ


(x+ 2) [1 − F (x+ 1)] +

∞∑

j=x+2

[1 − F (j)]


 .

Then we use (13, Theorem 1, p. 281), together with the fact that 1 − F (x) is regularly varying
with exponent 1 − τ 6= 1, to deduce that there exists a constant c = cτ > 0 such that

∞∑

j=x+2

[1 − F (j)] ≤ cτ (x+ 2) [1 − F (x+ 2)] .

Hence, if F satisfies Assumption 1.1(ii), then

1 −G(x) ≥ 1
µ(x+ 2) [1 − F (x+ 1)] ≥ x2−τ−Kτγ(x),

1 −G(x) ≤ 1
µ(c+ 1)(x+ 2) [1 − F (x+ 1)] ≤ x2−τ+Kτ γ(x),

for some Kτ > 0 and large enough x.

Remark A.1.2. It follows from Assumption 1.1(ii) and Lemma A.1.1, that for each ε > 0 and
sufficiently large x,

x1−τ−ε ≤ 1 − F (x) ≤ x1−τ+ε, (a)

x2−τ−ε ≤ 1 −G(x) ≤ x2−τ+ε. (b)
(A.1.2)

We will often use (A.1.2) with ε replaced by ε6.

Let us define for ε > 0,

α =
1 − ε5

τ − 1
, h = ε6, (A.1.3)

and the auxiliary event Fε by

Fε = {∀1 ≤ x ≤ Nα : |G(x) −G(N)(x)| ≤ N−h[1 −G(x)]}, (A.1.4)

where G(N) is the (random) distribution function of {g(N)
n }, defined in (2.6).
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Lemma A.1.3. For ε small enough, and N sufficiently large,

P(F c
ε ) ≤ N−h. (A.1.5)

Proof. First, we rewrite 1 −G(N)(x), for x ∈ N ∪ {0}, in the following way:

1 −G(N)(x) =
∞∑

n=x+1

g(N)
n =

1

LN

N∑

j=1

∞∑

n=x+1

Dj1{Dj=n+1} =
1

LN

N∑

j=1

Dj1{Dj≥x+2}

=
1

LN

N∑

j=1

Dj∑

l=1

1{Dj≥x+2} =
1

LN

∞∑

l=1

N∑

j=1

1{Dj≥(x+2)∨l}. (A.1.6)

Writing

B(N)
y =

N∑

j=1

1{Dj≥y}, (A.1.7)

we thus end up with

1 −G(N)(x) =
1

LN

∞∑

l=1

B(N)

(x+2)∨l. (A.1.8)

We have a similar expression for 1 −G(x) that reads

1 −G(x) =
1

µ

∞∑

l=1

P(D1 ≥ (x+ 2) ∨ l). (A.1.9)

Therefore, with

β =
1 − h

τ − 1
, and χ =

1 + 2h

τ − 1
,

we can write

[G(x) −G(N)(x)] =
(

Nµ
LN

− 1
)

[1 −G(x)]

+ 1
LN

∑Nβ

l=1

[
B(N)

(x+2)∨l −NP
(
D1 ≥ (x+ 2) ∨ l

)]

+ 1
LN

∑Nχ

l=Nβ+1

[
B(N)

(x+2)∨l −NP
(
D1 ≥ (x+ 2) ∨ l

)]

+ 1
LN

∑∞
l=Nχ+1

[
B(N)

(x+2)∨l −NP
(
D1 ≥ (x+ 2) ∨ l

)]
.

(A.1.10)

Hence, for large enough N and x ≤ Nα < Nβ < Nχ, we can bound

RN(x) ≡
∣∣∣G(x) −G(N)(x)

∣∣∣ ≤
∣∣∣Nµ
LN

− 1
∣∣∣ [1 −G(x)] (a)

+ 1
LN

∑Nβ

l=1

∣∣∣B(N)

(x+2)∨l −NP
(
D1 ≥ (x+ 2) ∨ l

)∣∣∣ (b)

+ 1
LN

∑Nχ

l=Nβ+1

∣∣B(N)

l −NP
(
D1 ≥ l

)∣∣ (c)

+ 1
LN

∑∞
l=Nχ+1B

(N)

l (d)

+ 1
LN

∑∞
l=Nχ+1NP

(
D1 ≥ l

)
. (e)

(A.1.11)
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We use (A.1.2(b)) to conclude that, in order to prove P(F c
ε ) ≤ N−h, it suffices to show that

P




⋃

1≤x≤Nα

{
|RN(x)| > CgN

−hx2−τ−h
}

 ≤ N−h, (A.1.12)

for large enough N , and for some Cg, depending on distribution function G. We will define an
auxiliary event AN,ε, such that |RN(x)| is more easy to bound on AN,ε and such that P(Ac

N,ε) is
sufficiently small. Indeed, we define, with A = 3(β + 2h),

AN,ε(a) =
{
|Nµ
LN

− 1| ≤ N−3h
}
, (a)

AN,ε(b) = {max1≤j≤N Dj ≤ Nχ} , (b)

AN,ε(c) =
⋂

1≤x≤Nβ

{
|B(N)

x −NP(D1 ≥ x)| ≤
√
A(logN)NP(D1 ≥ x)

}
, (c)

(A.1.13)

and
AN,ε = AN,ε(a) ∩AN,ε(b) ∩AN,ε(c).

By intersecting with AN,ε and its complement, we have

P
( ⋃

1≤x≤Nα

{|RN (x)| > CgN
−hx2−τ−h}

)

≤ P

(
AN,ε ∩

{
⋃

1≤x≤Nα

{|RN (x)| > CgN
−hx2−τ−h}

})
+ P(Ac

N,ε).
(A.1.14)

We will prove that P(Ac
N,ε) ≤ N−h, and that on the event AN,ε, and for each 1 ≤ x ≤ Nα,

the right-hand side of (A.1.11) can be bounded by CgN
−hx2−τ−h. We start with the latter

statement.

Consider the right-hand side of (A.1.11). Clearly, on AN,ε(a), the first term of |RN(x)| is bounded
by N−3h[1−G(x)] ≤ CgN

−3hx2−τ+h ≤ CgN
−hx2−τ−h, where the one but last inequality follows

from (A.1.2(b)), and the last since x ≤ Nα < N so that x2h < N2h. Since for l > Nχ and
each j, 1 ≤ j ≤ N , we have that {Dj > l} is the empty set on AN,ε(b), the one but last term of
|RN(x)| vanishes on AN,ε(b). The last term of |RN(x)| can, for N large, be bounded, using the
inequality LN ≥ N and (A.1.2(a)),

1

LN

∞∑

l=Nχ+1

NP(D1 ≥ l) ≤
∞∑

l=Nχ+1

l1−τ+h ≤ Nχ(2−τ+h)

τ − 2
< CgN

−h+α(2−τ+h) ≤ CgN
−hx2−τ−h,

for all x ≤ Nα, and where we also used that for ε sufficiently small and τ > 2,

χ(2 − τ + h) < −h+ α(2 − τ + h).

We bound the third term of |RN(x)| by

1

LN

Nχ∑

l=Nβ+1

∣∣B(N)

l −NP(D1 ≥ l)
∣∣ ≤ 1

N

Nχ∑

l=Nβ+1

[B(N)

l +NP(D1 ≥ l)]

≤ Nχ[N−1B(N)

Nβ + P(D1 ≥ Nβ)]. (A.1.15)
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We note that due to (A.1.2(a)),

P(D1 ≥ Nβ) ≥ Nβ(1−τ−h), (A.1.16)

for large enough N , so that

bN =
√
A(logN)NP(D1 ≥ Nβ) ≤ NP(D1 ≥ Nβ). (A.1.17)

Therefore, on AN,ε(c), we obtain that

B(N)

Nβ ≤ 2NP(D1 ≥ Nβ), (A.1.18)

for ε small enough and large enough N . Furthermore as ε ↓ 0,

Nχ+β(1−τ+h) < CgN
−h+α(2−τ−h) ≤ CgN

−hx2−τ−h,

for x ≤ Nα, 2 − τ − h < 0, because (after multiplying by τ − 1 and dividing by ε5)

χ+ β(1 − τ + h) < −h+ α(2 − τ − h), or ε(2 + 2τ − h) < τ − 2 + h,

as ε is sufficiently small. Thus, the third term of |RN(x)| satisfies the required bound.

We bound the second term of |RN(x)| on AN,ε(c), using again LN ≥ N , by

1

N

Nβ∑

l=1

√
A(logN)NP

(
D1 ≥ (x+ 2) ∨ l

)
=

√
A logN√
N

Nβ∑

l=1

√
P
(
D1 ≥ (x+ 2) ∨ l

)
. (A.1.19)

Let c be a constant such that (P(D1 > x))
1
2 ≤ cx(1−τ+h)/2, then for all 1 ≤ x ≤ Nα,

1

LN

Nβ∑

l=1

∣∣B(N)

(x+2)∨l −NP
(
D1 ≥ (x+ 2) ∨ l

)∣∣ ≤ c
√
A logN√
N

Nβ∑

l=1

(
(x+ 2) ∨ l

)(1−τ+h)/2

≤ c
√
A logN√
N

[
x(3−τ+h)/2 +Nβ(3−τ+h)/2

]
≤ 2c

√
A logN√
N

Nβ(3−τ+h)/2

≤ Nh−1/2Nβ(3−τ+h)/2 < CgN
−hNα(2−τ−h) ≤ CgN

−hx2−τ−h, (A.1.20)

because

h− 1/2 + β(3 − τ + h)/2 < −h+ α(2 − τ − h), or h(5τ − 4 − h) < 2ε5(τ − 2 + h),

for ε small enough and τ ∈ (2, 3). We have shown that for 1 ≤ x ≤ Nα, N sufficiently large,
and on the event AN,ε,

|RN(x)| ≤ CgN
−hx2−τ−h. (A.1.21)

It remains to prove that P(Ac
N,ε) ≤ N−h. We use that

P(Ac
N,ε) ≤ P(AN,ε(a)c) + P(AN,ε(b)

c) + P(AN,ε(c)
c), (A.1.22)

and we bound each of the three terms separately by N−h/3.
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Using the Markov inequality followed by the Marcinkiewicz-Zygmund inequality, see e.g. (11,
Corollary 8.2 in Section 3), we obtain, with 1 < r < τ − 1, and again using that LN ≥ N ,

P(AN,ε(a)c) = P
(∣∣∣

1

N

N∑

j=1

(Dj − µ)
∣∣∣ > N−3h · LN/N

)
(A.1.23)

= P

(∣∣
N∑

j=1

(Dj − µ)
∣∣r > (N1−3h · LN/N)r

)
≤ Cr(N1−3h)−rNE[|D1 − µ|r] ≤ 1

3
N−h,

by choosing h sufficiently small depending on r.

The bound on P(AN,ε(b)
c) is a trivial estimate using (A.1.2(a)). Indeed, for N large,

P(AN,ε(b)
c) = P

(
max

1≤j≤N
Dj > Nχ

)
≤ NP(D1 ≥ Nχ) ≤ Nχ(1−τ+h)+1 ≤ 1

3
N−h, (A.1.24)

for small enough ε, because τ > 2 + h. For P(AN,ε(c)
c), we will use a bound given by Janson

(16), which states that for a binomial random variable X with parameters N and p, and all
t > 0,

P(|X −Np| ≥ t) ≤ 2 exp

{
− t2

2(Np+ t/3)

}
. (A.1.25)

We will apply (A.1.25) with t = bN(x) =
√
A(logN)NP(D1 ≥ x), and obtain that uniformly in

x ≤ Nα,

P
(
|B(N)

x −NP(D1 ≥ x)| > bN(x)
)
≤ 2 exp

{
− bN(x)2

2(NP(D1 ≥ x) + bN(x)/3)

}

≤ 2 exp

{
− A logN

2(1 + 1
3

√
A logN/(NP(D1 ≥ Nα)))

}
≤ 2N−A/3, (A.1.26)

because
logN

NP(D1 ≥ Nα)
≤ logN

N1+α(τ−1−h)
→ 0,

as N → ∞. Thus, (A.1.26) yields, using A = 3(β + 2h),

P(AN,ε(c)
c) ≤

Nβ∑

x=1

P
(
|B(N)

x −NP(D1 ≥ x)| > bN(x)
)
≤ 2Nβ−A/3 = 2N−2h ≤ 1

3
N−h. (A.1.27)

This completes the proof of the lemma.

For the third lemma we introduce some further notation. For any x ∈ N, define

Ŝ(N)
x =

x∑

i=1

X̂(N)

i , V̂ (N)
x = max

1≤i≤x
X̂(N)

i ,

where {X̂(N)

i }x
i=1 have the same law, say Ĥ (N), but are not necessarily independent.
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Lemma A.1.4 (Sums and maxima with law Ĥ (N) on the good event).

(i) If Ĥ (N) satisfies

[1 − Ĥ (N)(z)] ≤ [1 + 2N−h][1 −G(z)], ∀ z ≤ y, (A.1.28)

then for all x ∈ N, there exists a constant b′, such that:

P

(
Ŝ(N)

x ≥ y
)
≤ b′x[1 + 2N−h]

[
1 −G

(
y)
]
. (A.1.29)

(ii) If Ĥ (N) satisfies
[1 − Ĥ (N)(y)] ≥ [1 − 2N−h][1 −G(y)], (A.1.30)

and {X̂(N)

i }x
i=1 are independent, then for all x ∈ N,

P

(
V̂ (N)

x ≤ y
)
≤
(

1 − [1 − 2N−h][1 −G (y)]
)x
. (A.1.31)

Proof. We first bound P

(
Ŝ(N)

x ≥ y
)

. We write

P

(
Ŝ(N)

x ≥ y
)
≤ P

(
Ŝ(N)

x ≥ y, V̂ (N)
x ≤ y

)
+ P

(
V̂ (N)

x > y
)
. (A.1.32)

Due to (A.1.28), the second term is bounded by

xP
(
X̂(N)

1 > y
)

= x
[
1 − Ĥ (N)

(
y
)]

≤ x[1 + 2N−h]
[
1 −G

(
y
)]
. (A.1.33)

We use the Markov inequality and (A.1.28) to bound the first term on the right-hand side of
(A.1.32) by

P

(
Ŝ(N)

x ≥ y, V̂ (N)
x ≤ y

)
≤ 1

y
E

(
Ŝ(N)

x 1
{V̂

(N)
x ≤y}

)
≤ x

y
E

(
X̂(N)

1 1
{X̂

(N)
1 ≤y}

)

≤ x

y

y∑

i=1

[1 − Ĥ (N)(i)] ≤ x

y
[1 + 2N−h]

y∑

i=1

[1 −G(i)]. (A.1.34)

For the latter sum, we use (13, Theorem 1(b), p. 281), together with the fact that 1 − G(y) is
regularly varying with exponent 2 − τ 6= 1, to deduce that there exists a constant c1 such that

y∑

i=1

[1 −G(i)] ≤ c1y[1 −G(y)]. (A.1.35)

Combining (A.1.32), (A.1.33), (A.1.34) and (A.1.35), we conclude that

P

(
Ŝ(N)

x ≥ y
)
≤ b′x[1 + 2N−h]

[
1 −G

(
y)
)]
, (A.1.36)

where b′ = c1 + 1. This completes the proof of Lemma A.1.4(i).

For the proof of (ii), we use independence of {X̂(N)

i }x
i=1, and condition (A.1.30), to conclude that

P

(
V̂ (N)

x ≤ y
)

=
(
Ĥ (N) (y)

)x
=
(

1 −
[
1 − Ĥ (N)(y)

])x
≤
(

1 − [1 − 2N−h][1 −G (y)]
)x
.

Hence, (A.1.31) holds.
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Remark A.1.5. In the proofs in the appendix, we will only use that

(i) the event Fε holds whp;

(ii) that LN is concentrated around its mean;

(iii) that, whp, the maximal degree is bounded by Nχ for any χ > 1/(τ − 1).

Moreover, the proof of Proposition 3.1 relies on (14, Proposition A.3.1), and in its proof it was
further used that

(iv) pN ≤ Nα2 , whp, for any α2 > 0, where pN is the total variation distance between g and
g(N), i.e.,

pN =
1

2

∑

n

|gn − g(N)
n |. (A.1.37)

Therefore, if instead of taking the degrees i.i.d. with distribution F , we would take the degrees
in an exchangeable way such that the above restrictions hold, then the proof carries on verbatim.
In particular, this implies that our results also hold for the usual configuration model, where the
degrees are fixed, as long as the above restrictions are satisfied.

A.2 Proof of Proposition 3.1

The proof makes use of (14, Proposition A.3.1), which proves the statement in Proposition 3.1
under an additional condition.

In order to state this condition let {Ẑ(i,N)

j }j≥1, i = 1, 2, be two independent copies of the

delayed BP, where Ẑ(i,N)

1 has law {fn} given in (1.1), and where the offspring of any individual
in generation j with j > 1 has law {g(N)

n }, where g(N)
n is defined in (2.6). Then, the conclusion

of Proposition 3.1 follows from (14, Proposition A.3.1), for any m such that, for any η > 0, and
i = 1, 2,

P(
m∑

j=1

Ẑ(i,N)

j ≥ Nη) = o(1)., N → ∞ (A.2.1)

By exchangeability it suffices to prove (A.2.1) for i = 1 only, we can therefore simplify notation
and write further Ẑ(N)

j instead of Ẑ(i,N)

j . We turn to the proof of (A.2.1).

By Lemma A.1.3 and (A.1.2(b)), respectively, for every η > 0, there exists a cη > 0, such that
whp for all x ≤ Nα,

1 −G(N)(x) ≤ [1 + 2N−h][1 −G(x)] ≤ cηx
2−τ+η. (A.2.2)

We call a generation j ≥ 1 good, when

Ẑ(N)

j ≤
(
Ẑ(N)

j−1 logN
) 1

τ−2−η
, (A.2.3)

and bad otherwise, where as always Ẑ(N)

0 = 1. We further write

Hm = {generations 1, . . . ,m are good}. (A.2.4)
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We will prove that when Hm holds, then
∑m

j=1 Ẑ
(N)

j ≤ Nη. Indeed, when generations 1, . . . ,m
are all good, then, for all j ≤ m,

Ẑ(N)

j ≤ (logN)
Pj

i=1(τ−2−η)−i
. (A.2.5)

Therefore,
m∑

j=1

Ẑ(N)

j ≤ m(logN)
Pm

i=1(τ−2−η)−i ≤ m(logN)
(τ−2−η)−m−2

(τ−2−η)−1−1 ≤ Nη, (A.2.6)

for any η > 0, when N is sufficiently large. We conclude that

P

( m∑

j=1

Ẑ(N)

j > Nη
)
≤ P(Hc

m), (A.2.7)

and Proposition 3.1 follows if we show that P(Hc
m) = o(1). In order to do so, we write

P(Hc
m) = P(Hc

1) +

m−1∑

j=1

P(Hc
j+1 ∩Hj). (A.2.8)

For the first term, we use (A.1.2(a)) to deduce that

P(Hc
1) = P

(
D1 > (logN)

1
τ−2−η

)
≤ (logN)−

τ−1−η
τ−2−η ≤ (logN)−1. (A.2.9)

For 1 ≤ j ≤ m, we have Ẑ(N)

j ≤∑m
k=1 Ẑ

(N)

k , and using (A.2.6),

m∑

j=1

Ẑ(N)

j ≤ m(logN)
(τ−2−η)−m−2

(τ−2−η)−1−1 ≡WN . (A.2.10)

Using Lemma A.1.4(i) with Ĥ (N) = G(N), x = l and y = vN(l) = (l logN)
1

τ−2−η , where (A.1.28)
follows from (A.2.2), we obtain that

P(Hc
j+1 ∩Hj) ≤

WN∑

l=1

P

(
Ẑ(N)

j+1 ≥ vN(l)
∣∣∣Ẑ(N)

j = l
)

P(Ẑ(N)

j = l)

≤ max
1≤l≤WN

P

(
Ŝ(N)

l ≥ vN(l)
)
≤ b′ max

1≤l≤WN

l[1 + 2N−h]
[
1 −G(vN (l))

]
. (A.2.11)

Furthermore by (A.1.2(b)),

max
1≤l≤WN

l[1 −G(vN (l))] ≤ max
1≤l≤WN

lvN(l)2−τ+η = (logN)−1. (A.2.12)

This completes the proof of Proposition 3.1.
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A.3 Some further preparations

Before we can prove Propositions 3.2 and 3.4 , we state a lemma that was proved in (14).

We introduce some notation. Suppose we have L objects divided into N groups of sizes
d1, . . . , dN , so that L =

∑N
i=1 di. Suppose we draw an object at random. This gives a dis-

tribution g(~d), i.e.,

g(~d)
n =

1

L

N∑

i=1

di1{di=n+1}, n = 0, 1, . . . (A.3.1)

Clearly, g(N) = g( ~D), where ~D = (D1, . . . ,DN). We further write

G(~d)(x) =

x∑

n=0

g(~d)
n . (A.3.2)

We next label M of the L objects in an arbitrary way, and suppose that the distribution G(~d)
M (x)

is obtained in a similar way from drawing conditionally on drawing an unlabelled object. More
precisely, we remove the labelled objects from all objects thus creating new d′1, . . . , d

′
N , and we

let G(~d)
M (x) = G(~d′)(x). Even though this is not indicated, the law G(~d)

M depends on what objects
have been labelled.

Lemma A.3.1 below shows that the law G(~d)
M can be stochastically bounded above and below by

two specific ways of labeling objects. Before we can state the lemma, we need to describe those
specific labellings.

For a vector ~d, we denote by d(1) ≤ d(2) ≤ . . . ≤ d(N) the ordered coordinates. Then the laws

G
(~d)

M and G(~d)
M , respectively, are defined by successively decreasing d(N) and d(1), respectively, by

one. Thus,

G
(~d)

1 (x) =
1

L− 1

N−1∑

i=1

d(i)1{d(i)≤x+1} +
d(N) − 1

L− 1
1{d(N)−1≤x+1}, (A.3.3)

G(~d)
1 (x) =

1

L− 1

N∑

i=2

d(i)1{d(i)≤x+1} +
d(1) − 1

L− 1
1{d(1)−1≤x+1}. (A.3.4)

For G
(~d)

M and G(~d)
M , respectively, we perform the above change M times, and after each repetition

we reorder the groups. Here we note that when d(N) = 1 (in which case di = 1, for all i), and

for G
(~d)

1 we decrease d(N) by one, that we only keep d(1), . . . , d(N−1). A similar rule applies when

d(1) = 1 and for G(~d)
1 we decrease d(1) by one. Thus, in these cases, the number of groups of

objects, indicated by N , is decreased by 1. Applying the above procedure to ~d = (D1, . . . ,DN)
we obtain that, for all x ≥ 1,

G
(N)

M (x) ≡ G
(~D)

M (x) ≤ 1

LN −M

N∑

i=1

Di1{Di≤x+1} =
LN

LN −M
G(N)(x), (A.3.5)

G(N)
M (x) ≡ G(~D)

M (x) ≥ 1

LN −M

[ N∑

i=1

Di1{Di≤x+1} −M
]

=
1

LN −M

[
LNG

(N)(x) −M
]
, (A.3.6)
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where equality is achieved precisely when D(N) ≥ x+M , and #{i : Di = 1} ≥M , respectively.

Finally, for two distribution functions F,G, we write that F � G when F (x) ≥ G(x) for all
x. Similarly, we write that X � Y when for the distribution functions FX , FY we have that
FX � FY .

We next prove stochastic bounds on the distribution G(~d)
M (x) that are uniform in the choice of

the M labelled objects. The proof of Lemma A.3.1 can be found in (14).

Lemma A.3.1. For all choices of M labelled objects

G(~d)
M � G(~d)

M � G
(~d)

M . (A.3.7)

Moreover, when X1, . . . ,Xj are draws from G(~d)
M1
, . . . , G(~d)

Ml
, where the only dependence between

the Xi resides in the labelled objects, then

j∑

i=1

X i �
j∑

i=1

Xi �
j∑

i=1

Xi, (A.3.8)

where {X i}j
i=1 and {X i}j

i=1, respectively, are i.i.d. copies of X and X with laws G(N)
M and G

(N)

M

for M = max1≤i≤lMi, respectively.

We will apply Lemma A.3.1 to G( ~D) = G(N).

A.3.1 The inductive step

Our key result, which will yield the proofs of Proposition 3.2 and 3.4, is Proposition A.3.2 below.
This proposition will be proved in Section A.4. For its formulation we need some more notation.

As before we simplify notation and write further on Z(N)

k instead of Z(i,N)

k . Similarly, we write
Zk instead of Z(i)

k and T (N)
m (ε) instead of T (i,N)

m (ε). Recall that we have defined previously

κ =
1

τ − 2
> 1 and α =

1 − ε5

τ − 1
.

In the sequel we work with Y (N)

k > ε, for k large enough, i.e., we work with Z(N)

k > eεκ
k
> 1,

due to definition (3.1). Hence, we can treat these definitions as

Y (N)

k = κ−k log(Z(N)

k ) and Yk = κ−k log(Zk). (A.3.9)

With γ defined in the Assumption 1.1(ii), and 0 < ε < 3 − τ , we take mε sufficiently large to
have

∞∑

k=mε

(τ − 2 + ε)k(1−γ) ≤ ε3 and

∞∑

k=mε

k−2 ≤ ε/2. (A.3.10)

For any mε ≤ m < k, we denote

M (N)

k =
k∑

j=1

Z(N)

j , and Mk =
k∑

j=1

Zj. (A.3.11)
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As defined in Section 3 of (14) we speak of free stubs at level l, as the free stubs connected to
nodes at distance l−1 from the root; the total number of free stubs, obtained immediately after
pairing of all stubs at level l − 1 equals Z(N)

l (see also Section 3.2 above). For any l ≥ 1 and
1 ≤ x ≤ Z(N)

l−1, let Z(N)

x,l denote the number of constructed free stubs at level l after pairing of the

first x stubs of Z(N)

l−1. Note that for x = Z(N)

l−1, we obtain Z(N)

x,l = Z(N)

l . For general x, the quantity

Z(N)

x,l is loosely speaking the sum of the number of children of the first x stubs at level l− 1, and
according to the coupling at fixed times (Proposition 3.1) this number is for fixed l, whp equal
to the number of children of the first x individuals in generation l − 1 of the BP {Zk}k≥1.

We introduce the event F̂m,k(ε),

F̂m,k(ε) =

{k ∈ T (N)
m (ε)} (a)

∩{∀m < l ≤ k − 1 : |Y (N)

l − Y (N)
m | ≤ ε3} (b)

∩{ε ≤ Y (N)
m ≤ ε−1} (c)

∩{M (N)
m ≤ 2Z(N)

m }. (d)

(A.3.12)

We denote by X(N)

i,l−1 the number of brother stubs of a stub attached to the ith stub of SPGl−1.

In the proof of Proposition A.3.2 we compare the quantity Z(N)

x,l to the sum
∑x

i=1X
(N)

i,l−1 for part

(a) and to max1≤i≤xX
(N)

i,l−1 for part (b). We then couple X(N)

i,l−1 to X
(N)

i,l−1 for part (a) and to

X (N)

i,l−1 for part (b). Among other things, the event F̂m,k(ε) ensures that these couplings hold.

Proposition A.3.2 (Inductive step). Let F satisfy Assumption 1.1(ii). For ε > 0 sufficiently
small and cγ sufficiently large, there exist a constant b = b(τ, ε) > 0 such that, for x = Z(N)

l−1 ∧
N

(1−ε/2)
κ(τ−1) ,

P
(
F̂m,l(ε) ∩

{
Z(N)

x,l ≥ (l3x)κ+cγγ(x)
})

≤ bl−3, (a)

P

(
F̂m,l(ε) ∩

{
Z(N)

x,l ≤
(

x
l3

)κ−cγγ(x) }) ≤ bl−3. (b)

The proof of Proposition A.3.2 is quite technical and is given in Section A.4. In this section we
give a short overview of the proof. For l ≥ 1, let SPGl denote the shortest path graph containing
all nodes on distance l− 1, and including all stubs at level l, i.e., the moment we have Z(N)

l free
stubs at level l. As before, we denote by X(N)

i,l−1, i ∈ {1, . . . , x}, the number of brother stubs of

a stub attached to the ith stub of SPGl−1 (see Figure A.3.1).

Because Z(N)

x,l is the number of free stubs at level l after the pairing of the first x stubs, one
would expect that

Z(N)

x,l ∼
x∑

i=1

X(N)

i,l−1, (A.3.13)

where ∼ denotes that we have an uncontrolled error term. Indeed, the intuition behind (A.3.13)
is that loops or cycles should be rare for small l. Furthermore, when M (N)

l−1 is much smaller than

N , then the law of X(N)

i,l−1 should be quite close to the law G(N), which, in turn, by Lemma A.1.3

is close to G. If X(N)

i,l−1 would have distribution G(x), then we could use the theory of sums
of random variables with infinite expectation, as well as extreme value theory, to obtain the
inequalities of Proposition A.3.2.
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Figure 4: The building of the lth level of SPG. The last paired stubs are marked by thick lines,
the brother stubs by dashed lines. In a) the (l − 1)st level is completed, in b) the pairing with
a new node is described, in c) the pairing within the (l − 1)st level is described, and in d) the
pairing with already existing node at lth level is described.

In order to make the above intuition rigorous, we use upper and lower bounds. We note that
the right-hand side of (A.3.13) is a valid upper bound for Z(N)

x,l . We show below that X(N)

i,l−1 have

the same law, and we wish to apply Lemma A.1.4(i). For this, we need to control the law X(N)

i,l−1,

for which we use Lemma A.3.1 to bound each X(N)

i,l−1 from above by a random variable with law

G
(N)

M . This coupling makes sense only on the good event where G
(N)

M is sufficiently close to G.

For the lower bound, we have to do more work. The basic idea from the theory of sums
of random variables with infinite mean is that the sum has the same order as the maximal
summand. Therefore, we bound from below

Z(N)

x,l ≥ Z(N)

x,l − x. (A.3.14)

where
Z(N)

x,l = max
1≤i≤x

X(N)

i,l−1. (A.3.15)

However, we will see that this lower bound is only valid when the chosen stub is not part of the
shortest path graph up to that point. We show in Lemma A.3.4 below that the chosen stub has
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label 1 when Z(N)

x,l > 2M (N)

l−1. In this case, (A.3.14) follows since the x−1 remaining stubs can ‘eat

up’ at most x − 1 ≤ x stubs. To proceed with the lower bound, we bound (X(N)

1,l−1, . . . ,X
(N)

x,l−1)
stochastically from below, using Lemma A.3.1, by an i.i.d. sequence of random variables with
laws G(N)

M , whereM is chosen appropriately and serves as an upper bound on the number of stubs
with label 3. Again on the good event, G(N)

M is sufficiently close to G. Therefore, we are now faced
with the problem of studying the maximum of a number of random variables with a law close
to G. Here we can use Lemma A.1.4(ii), and we conclude in the proof of Proposition A.3.2(a)

that Z(N)

x,l is to leading order equal to xκ, when x = Z(N)

l−1 ∧N
1−ε/2
κ(τ−1) . For this choice of x, we also

see that Z(N)

x,l is of bigger order than M (N)

l−2, so that the basic assumption in the above heuristic
is satisfied. This completes the overview of the proof.

We now state and prove the Lemmas A.3.3 and A.3.4. The proof of Proposition A.3.2 then
follows in Section A.4. We define the good event mentioned above by

Fε,M =

Nα⋂

x=1

{
[1 − 2N−h][1 −G(x)] ≤ 1 −G

(N)

M (x) ≤ 1 −G(N)
M (x) ≤ [1 + 2N−h][1 −G(x)]

}
.

(A.3.16)
The following lemma says that for M ≤ Nα, the probability of the good event is close to one.

Lemma A.3.3. Let F satisfy Assumption 1.1(ii). Then, for ε > 0 sufficiently small,

P(F c
ε,Nα) ≤ N−h, for large N.

Proof. Due to Lemma A.1.3 it suffices to show that for ε small enough, and N sufficiently we
have

F c
ε,Nα ⊆ F c

ε . (A.3.17)

We will prove the equivalent statement that

Fε ⊆ Fε,Nα . (A.3.18)

It follows from (A.3.5) and (A.3.6) that for every M and x

1 −G(N)
M (x) ≤ 1 −G(N)(x) ≤ 1 −G

(N)

M (x), (A.3.19)

and, in particular, that for M ≤ Nα,

[1 −G
(N)

M (x)] − [1 −G(N)
M (x)] ≤ M

LN −M
≤ O(Nα−1). (A.3.20)

Then we use (A.1.2(b)) to obtain that for all x ≤ Nα, ε small enough, and N sufficiently large,

O(Nα−1) ≤ Nα−1+h = N
1−ε5

τ−1
−1+ε6

< N−2ε6
N

1−ε5

τ−1
(2−τ−ε6)

= N−2hNα(2−τ−h) ≤ N−2hx2−τ−h ≤ N−h[1 −G(x)].

(A.3.21)

Therefore, for M ≤ Nα and with the above choices of ε, α and h, we have, uniformly for x ≤ Nα

and on Fε,

[1 −G(N)
M (x)] ≤ 1 −G(N)(x) + [1 −G

(N)

M (x)] − [1 −G(N)
M (x)] ≤ [1 + 2N−h][1 −G(x)],

[1 −G(N)
M (x)] ≥ 1 −G(N)(x) − [1 −G

(N)

M (x)] + [1 −G(N)
M (x)] ≥ [1 − 2N−h][1 −G(x)],
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i.e., we have (A.3.16), so that indeed Fε ⊆ Fε,Nα .

For the coupling of X(N)

i,l−1 with the random variables with laws G(N)
M (x) and G

(N)

M (x) we need the

following lemma. Recall the definition of M (N)

l given in (A.3.11.

Lemma A.3.4. For any l ≥ 1 there are at most 2M (N)

l stubs with label 3 in SPGl+1, while the
number of stubs with label 2 is (by definition) equal to Z(N)

l+1.

Proof. The proof is by induction on l. There are Z(N)

1 free stubs in SPG1. Some of these
stubs will be paired with stubs with label 2 or 3, others will be paired to stubs with label 1
(see Figure A.3.1). This gives us at most 2Z(N)

1 stubs with label 3 in SPG2. This initializes
the induction. We next advance the induction. Suppose that for some l ≥ 1 there are at most
2M (N)

l stubs with label 3 in SPGl+1. There are Z(N)

l+1 free stubs (with label 2) in SPGl+1. Some
of these stubs will be paired with stubs with label 2 or 3, others will be linked with stubs with
label 1 (again see Figure A.3.1). This gives us at most 2Z(N)

l+1 new stubs with label 3 in SPGl+2.

Hence the total number of these stubs is at most 2M (N)

l + 2Z(N)

l+1 = 2M (N)

l+1. This advances the
induction hypothesis, and proves the claim.

A.4 The proof of Proposition A.3.2

We state and prove some consequences of the event F̂m,k(ε), defined in (A.3.12). We refer to
the outline of the proof of Proposition A.3.2, to explain where we use these consequences.

Lemma A.4.1. The event F̂m,k(ε) implies, for sufficiently large N , the following bounds:

(a) M (N)

k−1 < N
1−3ε4/4
κ(τ−1) ,

(b) for any δ > 0, N−δ ≤ k−3,

(c) κk−1(ε− ε3) ≤ log
(
Z(N)

k−1

)
≤ κk−1(ε−1 + ε3), for k − 1 ≥ m,

(d) M (N)

k−1 ≤ 2Z(N)

k−1, for k − 1 ≥ m.

(A.4.1)

Proof. Assume that (A.3.12(a)-(d)) holds. We start by showing (A.4.1(b)), which is evident
if we show the following claim:

k ≤
log
(

1−ε2

ε(τ−1) logN
)

log κ
, (A.4.2)

for N large enough. In order to prove (A.4.2), we note that if k ∈ T (N)
m (ε) then, due to defini-

tion (3.3),

κk−m ≤ 1 − ε2

τ − 1

logN

log
(
Z(N)

m

) < 1 − ε2

ε(τ − 1)
κ−m logN, (A.4.3)

where the latter inequality follows from Y (N)
m > ε and (A.3.9). Multiplying by κm and taking

logarithms on both sides yields (A.4.2).

We now turn to (A.4.1(a)). Since

M (N)

k−1 =

k−1∑

l=1

Z(N)

l ≤ k max
1≤l≤k−1

Z(N)

l ,
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the inequality (A.4.1(a)) follows from (A.4.2), when we show that for any l ≤ k − 1,

Z(N)

l ≤ N
1−ε4

κ(τ−1) . (A.4.4)

Observe that for l < m we have that, due to (A.3.9),(A.3.12(c)) and (A.3.12(d)), for any ε > 0
and m fixed and by taking N sufficiently large,

Z(N)

l ≤M (N)
m ≤ 2Z(N)

m ≤ 2eκ
mε−1

< N
1−ε4

κ(τ−1) . (A.4.5)

Consider m ≤ l ≤ k − 1. Due to (A.3.9), inequality (A.4.4) is equivalent to

κl+1Y (N)

l ≤ 1 − ε4

τ − 1
logN. (A.4.6)

To obtain (A.4.6) we will need two inequalities. Firstly, (A.3.12(a)) and l + 1 ≤ k imply that

κl+1Y (N)
m ≤ 1 − ε2

τ − 1
logN. (A.4.7)

Given (A.4.7) and (A.3.12(b)), we obtain, when Y (N)
m ≥ ε, and for m ≤ l ≤ k − 1,

κl+1Y (N)

l ≤ κl+1(Y (N)
m + ε3) ≤ κl+1Y (N)

m (1 + ε2)

≤ (1−ε2)(1+ε2)
τ−1 logN = 1−ε4

τ−1 logN.
(A.4.8)

Hence we have (A.4.6) or equivalently (A.4.4) for m ≤ l ≤ k − 1.

The bound in (A.4.1(c)) is an immediate consequence of (A.3.9) and (A.3.12(b,c)) that imply
for k − 1 > m,

ε− ε3 ≤ Y (N)

k−1 ≤ ε−1 + ε3.

We complete the proof by establishing (A.4.1(d)). We use induction to prove that for all l ≥ m,
the bound M (N)

l ≤ 2Z(N)

l holds. The initialization of the induction hypothesis for l = m follows
from (A.3.12(d)). So assume that for some m ≤ l < k − 1 the inequality M (N)

l ≤ 2Z(N)

l holds,
then

M (N)

l+1 = Z(N)

l+1 +M (N)

l ≤ Z(N)

l+1 + 2Z(N)

l , (A.4.9)

so that it suffices to bound 2Z(N)

l by Z(N)

l+1 . We note that F̂m,k(ε) implies that

|Y (N)

l+1 − Y (N)

l | ≤ |Y (N)

l+1 − Y (N)
m | + |Y (N)

l − Y (N)
m | ≤ 2ε3 ≤ 3ε2Y (N)

l+1 , (A.4.10)

where in the last inequality we used that Y (N)

l+1 ≥ Y (N)
m − ε3 ≥ ε− ε3 > 2

3ε, as ε ↓ 0. Therefore,

2Z(N)

l = 2eκ
lY

(N)
l ≤ 2e(1+3ε2)κlY

(N)
l+1 = 2

(
Z(N)

l+1

)(1+3ε2)κ−1

≤ Z(N)

l+1, (A.4.11)

when ε > 0 is so small that ω = (1 + 3ε2)κ−1 < 1 and where we take m large enough to ensure

that for l ≥ m, the lower bound Z(N)

l+1 = exp{κl+1Y (N)

l+1} > exp{κl+1ε} > 2
1

1−ω is satisfied.
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Proof of Proposition A.3.2(a). Recall that α = 1−ε5

τ−1 . We write

P

(
F̂m,l(ε) ∩

{
Z(N)

x,l ≥
(
l3x
)κ+cγγ(x) }) ≤ PNα

(
F̂m,l(ε) ∩

{
Z(N)

x,l ≥
(
l3x
)κ+cγγ(x) })

+ P(F c
ε,Nα)

≤ PNα

(
F̂m,l(ε) ∩

{
Z(N)

x,l ≥
(
l3x
)κ+cγγ(x) })

+ l−3,

(A.4.12)
where PM is the conditional probability given that Fε,M holds, and where we have used
Lemma A.3.3 with N−h < l−3. It remains to bound the first term on the right-hand side
of (A.4.12). For this bound we aim to use Lemma A.1.4. Clearly because loops and cycles can
occur,

Z(N)

x,l ≤
x∑

i=1

X(N)

i,l−1, (A.4.13)

where for 1 ≤ i ≤ x, X(N)

i,l−1 denotes the number of brother stubs of the ith-attached node. Since
the free stubs of SPGl−1 are exchangeable, each free stub will choose any stub with label unequal
to 3 with the same probability. Therefore, all X(N)

i,l−1 have the same law which we denote by H (N).

Then we observe that due to (A.3.8), X(N)

i,l−1 can be coupled with X
(N)

i,l−1 having law G
(N)

M , where

M is equal to the number of stubs with label 3 at the moment we generate X(N)

i,l−1, which is at
most the number of stubs with label 3 in SPGl plus 1. The last number is due to Lemma A.3.4
at most 2M (N)

l−1 + 1. By Lemma A.4.1(a), we have that

2M (N)

l−1 + 1 ≤ 2N
1−3ε4/4
κ(τ−1) + 1 ≤ N

1−ε5

τ−1 = Nα, (A.4.14)

and hence, due to (A.3.8), we can take as the largest possible number M = Nα. We now verify

whether we can apply Lemma A.1.4(i). Observe that x ≤ N
1−ε/2
κ(τ−1) so that for N large and each

cγ , we have

y = (l3x)κ+cγγ(x) < Nα, (A.4.15)

since by (A.4.2), we can bound l by O(log logN). Hence (A.1.28) holds, because we condition

on Fε,Nα . We therefore can apply Lemma A.1.4(i), with Ŝ(N)
x =

∑x
i=1X

(N)

i,l−1, Ĥ (N) = G
(N)

Nα , and,
also using the upper bound in (A.1.1), we obtain,

PNα

(
F̂m,l(ε) ∩

{
Z(N)

x,l ≥
(
l3x
)κ+cγγ(x) }) ≤ b′x[1 + 2N−h]

[
1 −G

(
y)
]

≤ 2b′xy−κ−1+Kτγ(y) = 2b′x(l3x)(−κ−1+Kτγ(y))(κ+cγγ(x)) ≤ bl−3, (A.4.16)

if we show that
cγγ(x)

(
−κ−1 +Kτγ(y)

)
+ κKτγ(y) < 0. (A.4.17)

Inequality (A.4.17) holds, because γ(y) = (log y)γ−1, γ ∈ [0, 1), can be made arbitrarily small
by taking y large. The fact that y is large follows from (A.4.1(c)) and (A.4.15), and since
l3x ≥ l3 exp{κmε/2}, which can be made large by taking m large.

Proof of Proposition A.3.2(b). Similarly to (A.4.12), we have

P

(
F̂m,l(ε) ∩

{
Z(N)

x,l ≤
(

x
l3

)κ−cγγ(x) }) ≤ PNα

(
F̂m,l(ε) ∩

{
Z(N)

x,l ≤
(

x
l3

)κ−cγγ(x) })
+ l−3,

(A.4.18)
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and it remains to bound the first term on the right-hand side of (A.4.18). Recall that

Z(N)

x,l = max
1≤i≤x

X(N)

i,l−1,

where, for 1 ≤ i ≤ x, X(N)

i,l−1 is the number of brother stubs of a stub attached to the ith free

stub of SPGl−1. Suppose we can bound the first term on the right-hand side of (A.4.18) by bl−3,
when Z(N)

x,l is replaced by Z(N)

x,l after adding an extra factor 2, e.g., suppose that

PNα

(
F̂m,l(ε) ∩

{
Z(N)

x,l ≤ 2
(

x
l3

)κ−cγγ(x) }) ≤ bl−3. (A.4.19)

Then we bound

PNα

(
F̂m,l(ε) ∩

{
Z(N)

x,l ≤
(

x
l3

)κ−cγγ(x) })
(A.4.20)

≤ PNα

(
F̂m,l(ε) ∩

{
Z(N)

x,l ≤ 2
(

x
l3

)κ−cγγ(x) })

+ PNα

(
F̂m,l(ε) ∩

{
Z(N)

x,l ≤
(

x
l3

)κ−cγγ(x) } ∩
{
Z(N)

x,l > 2
(

x
l3

)κ−cγγ(x) })
.

By assumption, the first term is bounded by bl−3, and we must bound the second term. We will
prove that the second term in (A.4.20) is equal to 0.

For x sufficiently large we obtain from l ≤ C log x, κ > 1, and γ(x) → 0,

2
( x
l3

)κ−cγγ(x)
> 6x. (A.4.21)

Hence for x = Z(N)

l−1 > (ε − ε3)κl−1, it follows from Lemma A.4.1(d), that Z(N)

x,l > 2
(

x
l3

)κ−cγγ(x)

induces
Z(N)

x,l > 6Z(N)

l−1 ≥ 2M (N)

l−1 + 2Z(N)

l−1. (A.4.22)

On the other hand, when x = N
(1−ε/2)
κ(τ−1) < Z(N)

l−1, then, by Lemma A.4.1(a), and where we use
again l ≤ C log x, κ > 1, and γ(x) → 0,

Z(N)

x,l ≥ 2
(

x
l3

)κ−cγγ(x)
= 2



N

1−ε/2
κ(τ−1)

l3




κ−cγγ(x)

> 2N
1−3ε4/4
κ(τ−1) + 2N

1−ε/2
κ(τ−1) > 2M

(N)
l−1 + 2x. (A.4.23)

We conclude that in both cases we have that Z(N)

x,l ≥ 2M (N)

l−1 + 2x ≥ 2M (N)

l−2 + 2x. We claim that

the event Z(N)

x,l > 2M (N)

l−2 + 2x implies that

Z(N)

x,l ≥ Z(N)

x,l − x. (A.4.24)

Indeed, let i0 ∈ {1, . . . , N} be the node such that

Di0 = Z(N)

x,l + 1,
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and suppose that i0 ∈ SPGl−1. Then Di0 is at most the total number of stubs with labels 2
and 3, i.e., at most 2M (N)

l−2 + 2x. Hence Z(N)

x,l < Di0 ≤ 2M (N)

l−2 + 2x, and this is a contradiction

with the assumption that Z(N)

x,l > 2M (N)

l−2 + 2x. Since by definition i0 ∈ SPGl, we conclude that

i0 ∈ SPGl \ SPGl−1, which is equivalent to saying that the chosen stub with Z(N)

x,l brother stubs

had label 1. Then, on Z(N)

x,l > 2M (N)

l−2 + 2x, we have (A.4.24). Indeed, the one stub from level

l− 1 connected to i0 gives us Z(N)

x,l free stubs at level l and the other x− 1 stubs from level l− 1
can ‘eat up’ at most x stubs.

We conclude from the above that

PNα

(
F̂m,l(ε) ∩

{
Z(N)

x,l ≤
(

x
l3

)κ−cγγ(x) } ∩
{
Z(N)

x,l > 2
(

x
l3

)κ−cγγ(x) })
(A.4.25)

≤ PNα

(
F̂m,l(ε) ∩

{
Z(N)

x,l ≤
(

x
l3

)κ−cγγ(x) } ∩
{
Z(N)

x,l > 2
(

x
l3

)κ−cγγ(x) − x
})

= 0,

since (A.4.21) implies that

2
( x
l3

)κ−cγγ(x)
− x ≥

( x
l3

)κ−cγγ(x)
.

This completes the proof that the second term on the right-hand side of (A.4.20) is 0.

We are left to prove that there exists a value of b such that (A.4.19) holds, which we do in two
steps. First we couple {X(N)

i,l−1}x
i=1 with a sequence of i.i.d. random variables {X (N)

i,l−1}x
i=1 with

law G(N)

Nα , such that almost surely,

X(N)

i,l−1 ≥ X (N)

i,l−1, i = 1, 2, . . . , x, (A.4.26)

and hence
Z(N)

x,l ≥ V (N)
x

def
= max

1≤i≤x
X(N)

i,l−1. (A.4.27)

Then we apply Lemma A.1.4(ii) with X̂(N)

i = X(N)

i,l−1 and y = 2(x/l3)κ−cγγ(x).

We use Lemma A.3.1 to couple {X(N)

i,l−1}x
i=1 with a sequence of i.i.d. random variables {X (N)

i,l−1}x
i=1,

with law G(N)

Nα . Indeed, Lemma A.3.1 can be applied, when at all times i = 1, 2, . . . , x sampling
is performed, excluding at most Nα stubs with label 3. Since the number of stubs increases with
i, we hence have to verify that M ≤ Nα, when M is the maximal possible number of stubs with
label 3 at the moment we generate X(N)

x,l−1. The number M is bounded from above by

2M (N)

l−2 + 2x ≤ N
1−3ε4/4
κ(τ−1) + 2x ≤ Nα,

using (A.4.1)(a) for the first inequality and x ≤ N
(1−ε/2)
κ(τ−1) ≤ 1

4N
α for the second one.

We finally restrict to x = Z(N)

l−1 ∧ N
1−ε/2
κ(τ−1) , as required in Proposition A.3.2(b) . Note that

y = 2(x/l3)κ−cγγ(x) ≤ Nα, so that Fα,Nα holds, which in turn implies condition (A.1.30). We
can therefore apply Lemma A.1.4(ii) with X̂(N)

i = X(N)

i,l−1, i = 1, 2, . . . , x, Ĥ (N) = G(N)

Nα , and

y = 2(x/l3)κ−cγγ(x), to obtain from (A.4.27),

PNα

(
F̂m,l(ε) ∩

{
Z(N)

x,l ≤ 2
(

x
l3

)κ−cγγ(x) })

≤ P
(
V (N)

x ≤ y
)
≤
(

1 − [1 − 2N−h][1 −G (y)]
)x
. (A.4.28)
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From the lower bound of (A.1.1),

[1 −G(y)] ≥ y−κ−1−Kτ γ(y) = 2−κ−1−Kτγ(y)(x/l3)(−κ−1−Kτγ(y))(κ−cγγ(x)) ≥ l3

2x
, (A.4.29)

because x/l3 > 1 and

κ−1cγγ(x) − κKτγ(y) + cγKτγ(x)γ(y) ≥ cγκ
−1γ(x) − κKτγ(y) ≥ 0,

by choosing cγ large and using γ(x) ≥ γ(y). Combining (A.4.28) and (A.4.29) and taking
1 − 2N−h > 1

2 , we conclude that

(
1 − [1 − 2N−h][1 −G (y)]

)x
≤
(

1 − l3

4x

)x

≤ e−l3/4 ≤ l−3, (A.4.30)

because l > m and m can be chosen large. This yields (??) with b = 1.

In the proof of Proposition 3.2, in Section A.5, we often use a corollary of Proposition A.3.2
that we formulate and prove below.

Corollary A.4.2. Let F satisfy Assumption 1.1(ii). For any ε > 0 sufficiently small, there
exists an integer m such that such that for any k > m,

P

(
F̂m,k(ε) ∩ {|Y (N)

k − Y (N)

k−1| > (τ − 2 + ε)k(1−γ)}
)
≤ k−2, (A.4.31)

for sufficiently large N .

Proof. We use that part (a) and part (b) of Proposition A.3.2 together imply:

P
(
F̂m,k(ε) ∩

{ ∣∣log
(
Z(N)

k

)
− κ log

(
Z(N)

k−1

)∣∣ ≥ κ log(k3) + cγγ
(
Z(N)

k−1

)
log
(
k3Z(N)

k−1

) })
≤ 2bk−3.

(A.4.32)
Indeed applying Proposition A.3.2, with l = k and x = Z(N)

k−1, and hence Z(N)

x,k = Z(N)

k , yields:

P

(
F̂m,k(ε) ∩

{
Z(N)

k ≥ (k3x)κ+cγγ(x)
})

≤ bk−3, (A.4.33)

P

(
F̂m,k(ε) ∩

{
Z(N)

k ≤ (x/k3)κ−cγγ(x)
})

≤ bk−3, (A.4.34)

and from the identities

{Z(N)

k ≥ (k3x)κ+cγγ(x)} = {log(Z(N)

k ) − κ log(Z(N)

k−1) ≥ log((k3x)κ+cγγ(x)) − κ log x},
{Z(N)

k ≤ (x/k3)κ−cγγ(x)} = {log(Z(N)

k ) − κ log(Z(N)

k−1) ≤ log((x/k3)κ+cγγ(x)) − κ log x},

we obtain (A.4.32).

Applying (A.4.32) and (A.3.9), we arrive at

P

(
F̂m,k(ε) ∩ {|Y (N)

k − Y (N)

k−1| > (τ − 2 + ε)k(1−γ)}
)

(A.4.35)

≤ P

(
F̂m,k(ε) ∩

{
κ−k

[
κ log(k3) + cγγ

(
Z(N)

k−1

)
log
(
k3Z(N)

k−1

)]
> (τ − 2 + ε)k(1−γ)

})
+ 2bk−3.
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Observe that, due to Lemma A.4.1(c), and since γ(x) = (log x)γ−1, where 0 ≤ γ < 1, we have
on F̂m,k(ε),

κ−k
[
κ log(k3) + cγγ

(
Z(N)

k−1

)
log
(
k3Z(N)

k−1

)]

= κ−k
[
κ log(k3) + cγ

(
log
(
Z(N)

k−1

))γ−1 (
log(k3) + log

(
Z(N)

k−1

))]

≤ κ−k
[
κ log(k3) + cγ log(k3) + cγ

(
log
(
Z(N)

k−1

))γ]

≤ κ−k
[
(cγ + κ) log(k3) + cγ

(
κk−1(ε−1 + ε3)

)γ]

≤ κ−k(1−γ)
[
κ−kγ(cγ + κ) log(k3) + cγ

(
κ−1(ε−1 + ε3)

)γ] ≤ (τ − 2 + ε)k(1−γ),

because, for k large, and since κ−1 = τ − 2,

(
τ−2

τ−2+ε

)k(1−γ)
[κ−kγ(cγ + κ) log(k3)] ≤ 1

2 ,
(

τ−2
τ−2+ε

)k(1−γ)
cγ
(
κ−1(ε−1 + ε3)

)γ ≤ 1
2 .

We conclude that the first term on the right-hand side of (A.4.35) is 0, for sufficiently large
k, and the second term is bounded by 2bk−3 ≤ k−2, and hence the statement of the corollary
follows.

A.5 Proof of Proposition 3.2 and Proposition 3.4

Proof of Proposition 3.2(a). We have to show that

P

(
ε ≤ Y (i,N)

m ≤ ε−1, max
k∈T

(i,N)
m (ε)

|Y (i,N)

k − Y (i,N)
m | > ε3

)
= oN,m,ε(1).

Fix ε > 0, such that τ − 2 + ε < 1. Then, take m = mε, such that (A.3.10) holds, and increase
m, if necessary, until (A.4.31) holds.

We use the inclusion
{

max
k∈T

(N)
m (ε)

|Y (N)

k − Y (N)
m | > ε3

}
⊆
{ ∑

k∈T
(N)

m (ε)

|Y (N)

k − Y (N)

k−1| >
∑

k≥m

(τ − 2 + ε)k(1−γ)
}
. (A.5.1)

If the event on the right-hand side of (A.5.1) holds, then there must be a k ∈ T (N)
m (ε) such that

|Y (N)

k − Y (N)

k−1| > (τ − 2 + ε)k(1−γ), and therefore

{ max
k∈T

(N)
m (ε)

|Y (N)

k − Y (N)
m | > ε3} ⊆

⋃

k∈T
(N)
m (ε)

Gm,k−1 ∩Gc
m,k, (A.5.2)

where we denote

Gm,k = Gm,k(ε) =
k⋂

j=m+1

{
|Y (N)

j − Y (N)

j−1| ≤ (τ − 2 + ε)j(1−γ)
}
. (A.5.3)
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Since (A.3.10) implies that on Gm,k−1 we have |Y (N)

j − Y (N)
m | ≤ ε3, m < j ≤ k − 1, we find that,

Gm,k−1 ∩Gc
m,k ⊆

{
|Y (N)

l −Y (N)
m | ≤ ε3,∀l : m < l ≤ k− 1

}
∩
{
|Y (N)

k −Y (N)

k−1| > (τ − 2 + ε)k(1−γ)
}
.

(A.5.4)

Take N sufficiently large such that, by Proposition 3.1,

P
(
M (N)

m > 2Z(N)
m , ε ≤ Y (N)

m ≤ ε−1
)
≤ P

(
∃l ≤ m : Y (N)

l 6= Yl

)
+ P

(
Mm > 2Zm, ε ≤ Ym ≤ ε−1

)

≤ P
(
Mm > 2Zm, ε ≤ Ym ≤ ε−1

)
+ ε/4, (A.5.5)

where we recall the definition of Mm =
m∑

j=1
Zj in (A.3.11). Next, we use that

lim
m→∞

P
(
Mm > 2Zm, ε ≤ Ym ≤ ε−1

)
= 0, (A.5.6)

since Yl = (τ − 2)l logZl converges a.s., so that when Ym ≥ ε and m is large, Mm−1 is much
smaller than Zm, so that Mm = Mm−1 + Zm > 2Zm has small probability, as m is large.

Then we use (A.5.1)–(A.5.6), together with (A.3.12), to derive that

P

(
ε ≤ Y (N)

m ≤ ε−1, max
k∈T

(N)
m (ε)

|Y (N)

k − Y (N)
m | > ε3

)
(A.5.7)

≤ P

(
ε ≤ Y (N)

m ≤ ε−1, max
k∈T

(N)
m (ε)

|Y (N)

k − Y (N)
m | > ε3, Y (N)

l = Yl, ∀l ≤ m

)
+ P

(
∃l ≤ m : Y (N)

l 6= Yl

)

≤
∑

k>m

P
(
Gm,k−1 ∩Gc

m,k ∩ {k ∈ T (N)
m (ε)} ∩ {ε ≤ Y (N)

m ≤ ε−1} ∩ {Y (N)

l = Yl, ∀l ≤ m}
)

+
ε

2

≤
∑

k>m

P

(
F̂m,k(ε) ∩

{
|Y (N)

k − Y (N)

k−1| > (τ − 2 + ε)k(1−γ)
})

+ ε < 3ε/2,

by Corollary A.4.2 and (A.3.10).

Proof of Proposition 3.2(b). We first show (3.6), then (3.5). Due to Proposition 3.2(a), and
using that {Y (N)

m ≥ ε}, we find

Y (N)

k ≤ Y (N)
m + ε3 ≤ Y (N)

m (1 + ε2),

apart from an event with probability oN,m,ε(1), for all k ∈ T (N)
m . By (A.3.9) and because k ∈ T (N)

m ,
this is equivalent to

Z(N)

k ≤
(
Z(N)

m

)κk−m(1+ε2) ≤ N
1−ε2

τ−1
(1+ε2) = N

1−ε4

τ−1 ,

which implies (3.6).

We next show (3.5). Observe that k ∈ T (N)
m implies that either k − 1 ∈ T (N)

m , or k − 1 = m.
Hence, from k ∈ T (N)

m and Proposition 3.2(a), we obtain, apart from an event with probability
oN,m,ε(1),

Y (N)

k−1 ≥ Y (N)
m − ε3 ≥ ε− ε3 ≥ ε

2
, (A.5.8)
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for ε > 0 sufficiently small, and

Y (N)

k = Y (N)

k − Y (N)
m + Y (N)

m − Y (N)

k−1 + Y (N)

k−1 ≥ Y (N)

k−1 − 2ε3 ≥ Y (N)

k−1(1 − 4ε2). (A.5.9)

By (A.3.9) this is equivalent to

Z(N)

k ≥
(
Z(N)

k−1

)κ(1−4ε2) ≥ Z(N)

k−1,

when ε > 0 is so small that κ(1 − 4ε2) ≥ 1, since τ ∈ (2, 3), and κ = (τ − 2)−1.

Proof of Proposition 3.4. We must show that

P

(
k ∈ ∂T (N)

m (ε), ε ≤ Y (N)
m ≤ ε−1, Z(N)

k+1 ≤ N
1−ε
τ−1

)
= oN,m,ε(1), (A.5.10)

where we recall that
{k ∈ ∂T (N)

m } = {k ∈ T (N)
m } ∩ {k + 1 6∈ T (N)

m }.
In the proof, we will make repeated use of Propositions 3.1 and 3.2, whose proofs are now
complete.

According to the definition of F̂m,k(ε) in (A.3.12),

P

(
{k ∈ ∂T (N)

m (ε)} ∩ {ε ≤ Y (N)
m ≤ ε−1} ∩ F̂m,k(ε)c

)
(A.5.11)

≤ P

(
ε ≤ Y (N)

m ≤ ε−1, max
l∈T

(N)
m (ε)

|Y (N)

l − Y (N)
m | > ε3

)
+ P

(
ε ≤ Y (N)

m ≤ ε−1,M (N)
m > 2Z(N)

m

)
.

In turn Propositions 3.2(a), as well as (A.5.5–A.5.6) imply that both probabilities on the right-
hand side of (A.5.11) are oN,m,ε(1). Therefore, it suffices to show that

P

(
{k ∈ ∂T (N)

m (ε), ε ≤ Y (N)
m ≤ ε−1, Z(N)

k+1 ≤ N
1−ε
τ−1} ∩ F̂m,k(ε)

)

= P

(
{k + 1 6∈ T (N)

m (ε), Z(N)

k+1 ≤ N
1−ε
τ−1 } ∩ F̂m,k(ε)

)
= oN,m,ε(1). (A.5.12)

Let x = N
1−ε/2
κ(τ−1) , and define the event IN,k = IN,k(a) ∩ IN,k(b) ∩ IN,k(c) ∩ IN,k(d), where

IN,k(a) = {M (N)

k−1 < N
1−3ε4/4
κ(τ−1) }, (A.5.13)

IN,k(b) = {x ≤ Z(N)

k }, (A.5.14)

IN,k(c) = {Z(N)

k ≤ N
1−ε4

τ−1 }, (A.5.15)

IN,k(d) = {Z(N)

k+1 ≥ Z(N)

x,k+1 − Z(N)

k }. (A.5.16)

We split

P
(
{k + 1 6∈ T (N)

m (ε), Z(N)

k+1 ≤ N
1−ε
τ−1} ∩ F̂m,k(ε)

)
(A.5.17)

= P
(
{k + 1 6∈ T (N)

m (ε), Z(N)

k+1 ≤ N
1−ε
τ−1} ∩ F̂m,k(ε) ∩ IN,k

)

+ P
(
{k + 1 6∈ T (N)

m (ε), Z(N)

k+1 ≤ N
1−ε
τ−1} ∩ F̂m,k(ε) ∩ Ic

N,k

)
.
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We claim that both probabilities are oN,m,ε(1), which would complete the proof. We start to
show that

P

(
{k + 1 6∈ T (N)

m (ε), Z(N)

k+1 ≤ N
1−ε
τ−1 } ∩ F̂m,k(ε) ∩ IN,k

)
= oN,m,ε(1). (A.5.18)

Indeed, by (A.3.12), (3.6), and Lemma 5.1, with u = (τ − 1)−1, for the second inequality,

P

(
{k + 1 /∈ T (N)

m (ε)} ∩ {Z(N)

k ≥ N
1−ε
τ−1} ∩ F̂m,k(ε) ∩ IN,k

)
(A.5.19)

≤ P

(
{k ∈ T (N)

m (ε)} ∩ {ε ≤ Y (N)
m ≤ ε−1} ∩ {Z(N)

k ∈ [N
1−ε
τ−1 ,N

1−ε4

τ−1 ]}
)

+ oN,m,ε(1) = oN,m,ε(1).

Therefore, we are left to deal with the case where Z(N)

k ≤ N
1−ε
τ−1 . For this, and assuming IN,k,

we can use Proposition A.3.2(b) with x = N
1−ε/2
κ(τ−1) ≤ Z(N)

k by IN,k(b), and l = k + 1 to obtain
that, whp,

Z(N)

k+1 ≥ Z(N)

x,k+1 − Z(N)

k ≥ xκ(1−ε/2) −N
1−ε
τ−1 = N

(1−ε/2)2

τ−1 −N
1−ε
τ−1 > N

1−ε
τ−1 , (A.5.20)

where we have used that when k ∈ T (N)
m (ε) and Y (N)

m > ε, then we have k ≤ c log logN , for some
c = c(τ, ε), and hence, for N large enough,

(k + 1)3(κ−cγγ(x))xcγγ(x) ≤ (k + 1)3κxcγγ(x) ≤ xεκ/2.

This proves (A.5.18).

For the second probability on the right-hand side of (A.5.17) it suffices to prove that

P
(
{k + 1 6∈ T (N)

m (ε)} ∩ F̂m,k(ε) ∩ Ic
N,k

)
= oN,m,ε(1). (A.5.21)

In order to prove (A.5.21), we prove that (A.5.21) holds with Ic
N,k replaced by each one of the four

events Ic
N,k(a), . . . , Ic

N,k(d). For the intersection with the event Ic
N,k(a), we apply Lemma A.4.1(a),

which states that F̂m,k(ε) ∩ Ic
N,k(a) is the empty set.

It follows from (3.3) that if k + 1 6∈ T (N)
m (ε), then

κk+1Y (N)
m >

1 − ε2

τ − 1
logN. (A.5.22)

If F̂m,k(ε) holds then by definition (A.3.12), and Corollary A.4.2, whp,

Y (N)

k ≥ Y (N)

k−1 ≥ Y (N)
m − ε3 ≥ Y (N)

m (1 − ε2). (A.5.23)

Hence, if F̂m,k(ε) holds and k + 1 6∈ T (N)
m (ε), then, by (A.5.22)–(A.5.23), whp,

κ log(Z(N)

k ) = κk+1Y (N)

k ≥ (1 − ε2)κk+1Y (N)
m ≥ (1−ε2)2

τ−1 logN, (A.5.24)

so that, whp,

Z(N)

k ≥ x = N
1−ε/2
κ(τ−1) , (A.5.25)
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for small enough ε > 0 and sufficiently large N , i.e., we have

P({k + 1 6∈ T (N)
m (ε)} ∩ F̂m,k(ε) ∩ Ic

N,k(b)) = oN,m,ε(1).

From Proposition 3.2(b) it is immediate that

P({k + 1 6∈ T (N)
m (ε)} ∩ F̂m,k(ε) ∩ Ic

N,k(c)) = oN,m,ε(1).

Finally, recall that Z(N)

x,k+1 is the number of constructed free stubs at level k + 1 after pairing of

the first x stubs at level k. The pairing of the remaining Z(N)

k − x stubs at level k can ‘eat up’
at most Z(N)

k − x ≤ Z(N)

k stubs, so that IN,k(d) holds with probability 1.

This completes the proof of (A.5.21) and hence of Proposition 3.4.
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