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Abstract

We continue our study of intermittency for the parabolic Anderson equation Ou/dt =
KAu+E&u, where u: Z9 x [0,00) — R, & is the diffusion constant, A is the discrete Laplacian,
and &: Z? x [0,00) — R is a space-time random medium. The solution of the equation
describes the evolution of a “reactant” v under the influence of a “catalyst” €.

In this paper we focus on the case where £ is exclusion with a symmetric random walk tran-
sition kernel, starting from equilibrium with density p € (0,1). We consider the annealed
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Lyapunov exponents, i.e., the exponential growth rates of the successive moments of u. We
show that these exponents are trivial when the random walk is recurrent, but display an
interesting dependence on the diffusion constant x when the random walk is transient, with
qualitatively different behavior in different dimensions. Special attention is given to the
asymptotics of the exponents for kK — oo, which is controlled by moderate deviations of &
requiring a delicate expansion argument.

In Gértner and den Hollander (10) the case where £ is a Poisson field of independent (sim-
ple) random walks was studied. The two cases show interesting differences and similarities.
Throughout the paper, a comparison of the two cases plays a crucial role.

Key words: Parabolic Anderson model, catalytic random medium, exclusion process, Lya-
punov exponents, intermittency, large deviations, graphical representation.
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1 Introduction and main results

1.1 Model

The parabolic Anderson equation is the partial differential equation

%u(m,t) = rAu(x,t) + {(z, t)u(z, t), rezl t>0. (1.1.1)

Here, the u-field is R-valued, x € [0,00) is the diffusion constant, A is the discrete Laplacian,
acting on u as

Au(z,t) = Y [u(y,t) - ul,t)] (1.1.2)

yezd
ly—z||=1
(Il - || is the Euclidian norm), while
&= {&(a,t): w ez t >0} (1.1.3)

is an R-valued random field that evolves with time and that drives the equation. As initial
condition for (CIT]) we take
u(-,0) = 1. (1.1.4)

Equation (LI is a discrete heat equation with the ¢-field playing the role of a source. What
makes (L)) particularly interesting is that the two terms in the right-hand side compete with
each other: the diffusion induced by A tends to make u flat, while the branching induced by
¢ tends to make wu irregular. Intermittency means that for large ¢ the branching dominates,
i.e., the u-field develops sparse high peaks in such a way that u and its moments are each
dominated by their own collection of peaks (see Gértner and Konig (1), Section 1.3, and den
Hollander (10), Section 1.2). In the quenched situation this geometric picture of intermittency
is well understood for several classes of time-independent random potentials £ (see Sznitman
(21) for Poisson clouds and Gértner, Konig and Molchanov (12) for i.i.d. potentials with double-
exponential and heavier upper tails). For time-dependent random potentials &, however, such
results are not yet available. Instead one restricts attention to understanding the phenomenon
of intermittency indirectly by comparing the successive annealed Lyapunov exponents

1
Ap = lim = log(u(0,)P)YP, p=1,2,... (1.1.5)
t—oo t
One says that the solution wu is p-intermittent if the strict inequality
Ap > Ap1 (1.1.6)

holds. For a geometric interpretation of this definition, see ([L1), Section 1.3.

In their fundamental paper (3), Carmona and Molchanov succeeded to investigate the annealed
Lyapunov exponents and to draw the qualitative picture of intermittency for potentials of the
form

E(x,t) = Wo (), (1.1.7)

where {W,, x € Z} denotes a collection of independent Brownian motions. (In this important
case, equation ([LIJl) corresponds to an infinite system of coupled Ito diffusions.) They showed
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that for d = 1, 2 intermittency of all orders is present for all x, whereas for d > 3 p-intermittency
holds if and only if the diffusion constant x is smaller than a critical threshold x,, tending to
infinity as p — oo. They also studied the asymptotics of the quenched Lyapunov exponent in
the limit as x | 0, which turns out to be singular. Subsequently, the latter was more thoroughly
investigated in papers by Carmona, Molchanov and Viens (4), Carmona, Koralov and Molchanov
(2), and Cranston, Mountford and Shiga (€), (7).

In the present paper we study a different model, describing the spatial evolution of moving
reactants under the influence of moving catalysts. In this model, the potential has the form

E(x,t) =) Sy (@) (1.1.8)
k

with {Yy, & € N} a collection of catalyst particles performing a space-time homogeneous re-
versible particle dynamics with hard core repulsion, and u(x,t) describes the concentration of
the reactant particles given the motion of the catalyst particles. We will see later that the
study of the annealed Lyapunov exponents leads to different dimension effects and requires the
development of different techniques than in the white noise case ([LI7). Indeed, because of the
non-Gaussian nature and the non-independent spatial structure of the potential, it is far from
obvious how to tackle the computation of Lyapunov exponents.

Let us describe our model in more detail. We consider the case where ¢ is Symmetric Fxclusion
(SE), i.c., £ takes values in {0,1}%" x [0,00), where £(z,t) = 1 means that there is a particle at
x at time ¢ and £(x,t) = 0 means that there is none, and particles move around according to a
symmetric random walk transition kernel. We choose &(+,0) according to the Bernoulli product
measure with density p € (0,1), i.e., initially each site has a particle with probability p and no
particle with probability 1 — p, independently for different sites. For this choice, the ¢-field is
stationary in time.

One interpretation of (CIl) and (CIA]) comes from population dynamics. Consider a spatially
homogeneous system of two types of particles, A (catalyst) and B (reactant), subject to:

(i) A-particles behave autonomously, according to a prescribed stationary dynamics, with
density p;

(ii) B-particles perform independent random walks with diffusion constant x and split into
two at a rate that is equal to the number of A-particles present at the same location;

(iii) the initial density of B-particles is 1.

Then
u(z,t) = the average number of B-particles at site = at time ¢

conditioned on the evolution of the A-particles. (1.1.9)

It is possible to add that B-particles die at rate § € (0,00). This amounts to the trivial
transformation u(z,t) — u(x,t)e .

In Kesten and Sidoravicius (Lf) and in Gértner and den Hollander (IL0), the case was considered
where & is given by a Poisson field of independent simple random walks. The survival versus
extinction pattern (in (16) for § > 0) and the annealed Lyapunov exponents (in (10) for § = 0)
were studied, in particular, their dependence on d, x and the parameters controlling &.
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1.2 SE, Lyapunov exponents and comparison with IRW

Throughout the paper, we abbreviate Q = {0, 1}Zd (endowed with the product topology), and
we let p: Z4 x Z% — [0, 1] be the transition kernel of an irreducible random walk,

pla,y) =p0,y —x) >0 Va,y € 2% Y p(z,y) =1 Yz € Z¢,
yezd (1.2.1)

p(z,z) =0 Yz e Z p(-,-) generates Z%,

that is assumed to be symmetric,

p(w,y) = ply,x) Yo,y € Z°. (1.2.2)

A special case is simple random walk

1 .
2 illz—yll=1
zy) =42 ! ’ 1.2.3
p(,9) {O otherwise. ( )

The exclusion process £ is the Markov process on {2 whose generator L acts on cylindrical
functions f as (see Liggett (19), Chapter VIII)

LHm = > ply)n@L—gW]f @) = fm)]l= > ply) [f @) = f0)],
x,ycZd {z,y}czd (1 ) 4)

where the latter sum runs over unoriented bonds {z,y} between any pair of sites x,y € Z%, and

n(z) if 27 z,y,
n*Y(z) = ¢ nly) if z ==, (1.2.5)
n(z) if z=y.

The first equality in ([CZZ]) says that a particle at site z jumps to a vacancy at site y at rate
p(z,y), the second equality says that the states of x and y are interchanged along the bond
{z,y} at rate p(x,y). For p € [0,1], let v, be the Bernoulli product measure on § with density
p- This is an invariant measure for SE. Under (CZIHLZZ), (v,),c[o,1] are the only extremal
equilibria (see Liggett (19), Chapter VIII, Theorem 1.44). We denote by P, the law of £ starting
from n € Q and write P, = [, v,(dn) P,.

In the graphical representation of SE, space is drawn sidewards, time is drawn upwards, and
for each pair of sites x,y € Z¢ links are drawn between z and y at Poisson rate p(x,y). The
configuration at time t is obtained from the one at time 0 by transporting the local states along
paths that move upwards with time and sidewards along links (see Fig. 1).

We will frequently use the following property, which is immediate from the graphical represen-
tation:

E, (¢(y,t)) = Z n(x) pe(x,y), neqQ, yezi t>0. (1.2.6)

x€Z4

Similar expressions hold for higher order correlations. Here, p;(z,y) is the probability that
the random walk with transition kernel p(-,-) and step rate 1 moves from z to y in time t.
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The graphical representation shows that the evolution is invariant under time reversal and, in
particular, the equilibria (v,) pelo,1] are reversible. This fact will turn out to be very important
later on.

t y
T<—
T<—
— |1
0 7 7d
xr

Fig. 1: Graphical representation. The dashed lines are links.
The arrows represent a path from (x,0) to (y,t).

By the Feynman-Kac formula, the solution of (LTI and (LT4) reads

W, t) = B, <eXp [/Ot ds € (X" (s),1 — S)D , (1.2.7)

where X* is simple random walk on Z% with step rate 2dx and E, denotes expectation with
respect to X" given X"(0) = z. We will often write &(x) and X} instead of {(x,t) and X"(t),
respectively.

For p € N and ¢t > 0, define

1
Ap(t) = ;t logE,, (u(0,t)"). (1.2.8)
Then

1 &
Ap(t) = p—tlogE,,p <E07m70<exp [/0 dsZﬁ(X[f(s),s)})), (1.2.9)

q=1
where X7, ¢ = 1,...,p, are p independent copies of X", Fq o denotes expectation w.r.t.
Xgqg=1,...,p, given X{(0) = --- = X7(0) = 0, and the time argument ¢ — s in ([LZT) is

replaced by s in (CZJ)) via the reversibility of ¢ starting from v,. If the last quantity admits a
limit as t — oo, then we define
Ap = lim Ay(t) (1.2.10)
— 0

to be the p-th annealed Lyapunov exponent.

From Holder’s inequality applied to (CZF) it follows that A,(t) > A,_i(¢) for all ¢ > 0 and
p € N\ {1}. Hence A\, > A\, for all p € N\ {1}. As before, we say that the system is p-
intermattent if A, > A\,_1. In the latter case the system is g-intermittent for all ¢ > p as well
(cf. Gértner and Molchanov (13), Section 1.1). We say that the system is intermittent if it is
p-intermittent for all p € N\ {1}.

Let (&)i>0 be the process of Independent Random Walks (IRW) with step rate 1, transition
kernel p(-,-) and state space Q = NOZd with Ng = N U {0}. Let E;™ denote expectation w.r.t.
(52&)1‘20 starting from & = n € Q, and write IEIIZW = [ovp(dn) E;*. Throughout the paper we
will make use of the following inequality comparing SE and IRW. The proof of this inequality is
given in Appendix [Al and uses a lemma due to Landim (18).
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Proposition 1.2.1. For any K: Z% x [0,00) — R such that either K >0 or K <0, anyt >0
such that ), za fot ds|K(z,s)| < oo and any n € Q,

En<exp [ Z /0 ds K(z,s) fs(z)]> < Eﬂ?w(exp [ Z /0 ds K(z,s) gs(z)]> (1.2.11)
2€74 2€74

This powerful inequality will allow us to obtain bounds that are more easily computable.

1.3 Main theorems

Our first result is standard and states that the Lyapunov exponents exist and behave nicely as
a function of k. We write \,(x) to exhibit the dependence on x, suppressing d and p.

Theorem 1.3.1. Letd>1, p€ (0,1) and p € N.
(i) For all k € [0,00), the limit in (CZIW) exists and is finite.
(i) On [0,00), kK — Ap(k) is continuous, non-increasing and convez.

Our second result states that the Lyapunov exponents are trivial for recurrent random walk but
are non-trivial for transient random walk (see Fig. 2), without any further restriction on p(-,-).

Theorem 1.3.2. Letd>1, p€ (0,1) and p € N.

(1) If p(-,-) is recurrent, then Ap(k) =1 for all k € [0, 00).

(it) If p(-,-) is transient, then p < A,(k) < 1 for all k € [0,00). Moreover, k — A, (k) is strictly
decreasing with lim,_,. A\p(k) = p.

Ap(r) Ap(r)
e o F

Fig. 2: Qualitative picture of k +— Ap(k) for recurrent, respectively,
transient random walk.
Our third result shows that for transient random walk the system is intermittent for small k.

Theorem 1.3.3. Let d > 1 and p € (0,1). If p(-,-) is transient, then there exists ko € (0, 00]
such that p — \p(K) is strictly increasing for k € [0, Ko).

Our fourth and final result identifies the behavior of the Lyapunov exponents for large x when
d > 4 and p(-,-) is simple random walk (see Fig. 3).

Theorem 1.3.4. Assume (LZ3)). Let d >4, p € (0,1) and p € N . Then

lim_#[y(r) — ]

Jim = ﬁp(l —p)Gq (1.3.1)

with Gq the Green function at the origin of simple random walk on Z°.
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p=3
p:2§
pzl,\ 9
p ............................................................
0 K

Fig. 3: Qualitative picture of k — A,(k) for p = 1,2, 3 for simple
random walk in d > 4. The dotted line moving down represents
the asymptotics given by the r.h.s. of (L3ZJ]).

1.4 Discussion

Theorem [[3T] gives general properties that need no further comment. We will see that they in
fact hold for any stationary, reversible and bounded &.

The intuition behind Theorem is the following. If the catalyst is driven by a recurrent
random walk, then it suffers from “traffic jams”, i.e., with not too small a probability there is
a large region around the origin that the catalyst fully occupies for a long time. Since with
not too small a probability the simple random walk (driving the reactant) can stay inside this
large region for the same amount of time, the average growth rate of the reactant at the origin
is maximal. This phenomenon may be expressed by saying that for recurrent random walk
clumping of the catalyst dominates the growth of the moments. For transient random walk, on
the other hand, clumping of the catalyst is present (the growth rate of the reactant is > p),
but it is not dominant (the growth rate of the reactant is < 1). As the diffusion constant x of
the reactant increases, the effect of the clumping of the catalyst gradually diminishes and the
growth rate of the reactant gradually decreases to the density of the catalyst.

Theorem shows that if the reactant stands still and the catalyst is driven by a transient
random walk, then the system is intermittent. Apparently, the successive moments of the reac-
tant, which are equal to the exponential moments of the occupation time of the origin by the
catalyst (take ([(CZ1) with x = 0), are sensitive to successive degrees of clumping. By continuity,
intermittency persists for small k.

Theorem [C34 shows that, when the catalyst is driven by simple random walk, all Lyapunov
exponents decay to p as Kk — oo in the same manner when d > 4. The case d = 3 remains open.
We conjecture:

Conjecture 1.4.1. Assume ([LZ3). Let d =3, p € (0,1) and p € N . Then
1

Jim 5[\ (k) = p] = 5 5p(1 = p)Ga + [2dp(1 = p)p]*P (1.4.1)
with )
P s [[-a0) 2 2 - 190 51E] € 0.00) (142)
[Ifll2=1
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where Vs and Ags are the continuous gradient and Laplacian, || - |2 is the L?(R®)-norm,

HY(R3) = {f: R®? = R: f,Vgsf € L3(R®)}, and

[an 2 2 = [ et [ v o)

. 1.4.3
o e (1.43)

In Section we will explain how this conjecture arises in analogy with the case of IRW studied
in Gértner and den Hollander (10). If Conjecture [LZTl holds true, then in d = 3 intermittency
persists for large k. It would still remain open whether the same is true for d > 4. To decide the
latter, we need a finer asymptotics for d > 4. A large diffusion constant of the reactant hampers
the localization of u around the regions where the catalyst clumps, but it is not a priori clear
whether this is able to destroy intermittency for d > 4.

We further conjecture:
Conjecture 1.4.2. In d = 3, the system is intermittent for all k € [0,00).

Conjecture 1.4.3. In d > 4, there exists a strictly increasing sequence 0 < ko < k3 < ... such
that for p=2,3,... the system is p-intermittent if and only if k € [0, kp).

In words, we conjecture that in d = 3 the curves in Fig. 3 never merge, whereas for d > 4 the
curves merge successively.

Let us briefly compare our results for the simple symmetric exclusion dynamics with those of the
IRW dynamics studied in (L0). If the catalysts are moving freely, then they can accumulate with
a not too small probability at single lattice sites. This leads to a double-exponential growth of
the moments for d = 1,2. The same is true for d > 3 for certain choices of the model parameters
(‘strongly catalytic regime’). Otherwise the annealed Lyapunov exponents are finite (‘weakly
catalytic regime’). For our exclusion dynamics, there can be at most one catalytic particle
per site, leading to the degenerate behavior for d = 1,2 (i.e., the recurrent case) as stated in
Theorem [[32(i). For d > 3, the large x behavior of the annealed Lyapunov exponents turns out
to be the same as in the weakly catalytic regime for IRW. The proof of Theorem [L34] will be
carried out in Section Hl essentially by ‘reducing’ its assertion to the corresponding statement in
(L0), as will be explained in Section [[A The reduction is highly technical, but seems to indicate
a degree of ‘universality’ in the behavior of a larger class of models.

Finally, let us explain why we cannot proceed directly along the lines of (10). In that paper,
the key is a Feynman-Kac representation of the moments. For the first moment, for instance,
we have

(u(0,1)) = "' Ey <exp [V /0 tw(X(s), ) dsD , (1.4.4)

where X is simple random walk on Z¢ with generator kA starting from the origin, v is the
density of the catalysts, and w denotes the solution of the random Cauchy problem

%w(m,t) = 0Aw(z,t) + dx () () {w(z,t) + 1}, w(-,0) =0, (1.4.5)

with o the diffusion constant of the catalysts. In the weakly catalytic regime, for large x, we
may combine (CZ4) with the approximation

w(X(s),5) ~ /0 e (X (), X(5)) du, (1.4.6)



where p;(z,y) is the transition kernel of the catalysts. Observe that w(X(s),s) depends on the
full past of X up to time s. The entire proof in (1) is based on formula ([CZZ). But for our
exclusion dynamics there is no such formula for the moments.

1.5 Heuristics behind Theorem 34 and Conjecture [L4T]

The heuristics behind Theorem [C34] and Conjecture [CZ] is the following. Consider the case
p = 1. Scaling time by ~ in ([CZY), we have A\ (k) = kA](k) with

1 1t
A1(k) = lim Aj(k;t) and Aj(k;t) = —logE, o ( exp —/ ds f(X(s), i) ,  (1.5.1)
t—o00 t ” K Jo K
where X = X! and we abbreviate
Eyo=E,, Eo. (1.5.2)

For large &, the ¢-field in (L) evolves slowly and therefore does not manage to cooperate with
the X-process in determining the growth rate. Also, the prefactor 1/k in the exponent is small.
As a result, the expectation over the £-field can be computed via a Gaussian approrimation that
becomes sharp in the limit as Kk — oo, i.e.,

Aj(mit) - 2 = %mgﬂ-zyp,o (exp E /Ot s [e(x(s),2) - p]D
< tiog B (e o [as [Cau e, ([e(x09.2) = o] e(x@.2) -] )]

(1.5.3)
(In essence, what happens here is that the asymptotics for K — oo is driven by moderate

deviations of the ¢-field, which fall in the Gaussian regime.) The exponent in the r.h.s. of (L3

equals
¥ 0 ds/s du IEVP<[§(X(5), 2) = o] [e(xw. ) —PD- (1.54)
Now, for z,y € Z% and b > a > 0 we have
Eyp<[,g<x,a> — ] [€(,b) —p}) =Eup([€<w>0> — ][ b—a) —PD
= [ st )~ 15 Ietwb—0) ) )
3 ) [ et -

z€Z4 &
= ,0(1 - P) pb—a(x’ y)’

(1.5.5)

where the first equality uses the stationarity of £, the third equality uses (([C2ZH0]) from the graphical
representation, and the fourth equality uses that v, is Bernoulli. Substituting (CA3) into ([CA),
we get that the r.h.s. of (LE3) equals

%logEo (exp [w /Ot ds /: du puﬁs(X(s)’X(u))]> . (1.5.6)
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This is precisely the integral that was investigated in Gértner and den Hollander (IL0) (see
Sections 5-8 and equations (1.5.4-1.5.11) of that paper and [LZZHLCZH). Therefore the limit

lim k[\ (k) — p] = lim &2 tlim |:A>f(/<;;t) — B] = lim #? lim (C50) (1.5.7)

K—00 K—00 K K—00 t—00
can be read off from (10) and yields (C3J) for d > 4 and (L)) for d = 3. A similar heuristics
applies for p > 1.

The r.h.s. of (L3J]), which is valid for d > 4, is obtained from the above computations by moving
the expectation in (CAH) into the exponent. Indeed,

Bo (pucs (X(), X())) = > p2as(0, 2)p2au0) (@, 9)Pms (2, 9) = Pagu gy 2 (0,0)

z,y€Z4
(1.5.8)
and hence
t t t t—s 1
ds/duE u—s (X (), X(u :/ds/ dv 1,(0,0) ~t ——————GYy.
[ as [au B0 (pexi@. X)) = [as [ dopsas ,000) T
(1.5.9)

Thus we see that the result in Theorem [L3] comes from a second order asymptotics on £ and
a first order asymptotics on X in the limit as kK — oco. Despite this simple fact, it turns out to
be hard to make the above heuristics rigorous. For d = 3, on the other hand, we expect the first
order asymptotics on X to fail, leading to the more complicated behavior in ([CZTI).

Remark 1: In ([CIT), the {-field may be multiplied by a coupling constant v € (0,00). This
produces no change in Theorems [[31] [C32(i) and In Theorem [C32A(ii), (p,1) becomes
(vp,7), while in the r.h.s. of Theorem [[34] and Conjecture [LZT], p(1 — p) gets multiplied by
42. Similarly, if the simple random walk in Theorem [Z34l is replaced by a random walk with
transition kernel p(-,-) satisfying (CZIHLZZ), then we expect that in ([3J) and (CZT) G4
becomes the Green function at the origin of this random walk and a factor 1/0* appears in front
of the last term in the r.h.s. of (CZI]) with o2 the variance of p(-, ).

Remark 2: In Gértner and den Hollander (L0) the catalyst was « times a Poisson field with
density p of independent simple random walks stepping at rate 2df, where v, p,0 € (0,00) are
parameters. It was found that the Lyapunov exponents are infinite in d = 1,2 for all p and in
d > 3 for p > 2d0/~vGy, irrespective of k and p. In d > 3 for p < 2df/yG4, on the other hand,
the Lyapunov exponents are finite for all x, and exhibit a dichotomy similar to the one expressed
by Theorem [L34 and Conjecture [LZTl Apparently, in this regime the two types of catalyst are
qualitatively similar. Remarkably, the same asymptotic behavior for large x was found (with
p7? replacing p(1— p) in ([C3)), and the same variational formula as in (CZ2) was seen to play
a central role in d = 3. [Note: In (10) the symbols v, p, G4 were used instead of p,0,G;/2d.]

1.6 Outline

In Section Pl we derive a variational formula for A, from which Theorem [[3Tlfollows immediately.
The arguments that will be used to derive this variational formula apply to an arbitrary bounded,
stationary and reversible catalyst. Thus, the properties in Theorem [[L31] are quite general. In
Section Bl we do a range of estimates, either directly on (LZZ9) or on the variational formula for
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Ap derived in Section P to prove Theorems and [[33 Here, the special properties of SE, in
particular, its space-time correlation structure expressed through the graphical representation
(see Fig. 1), are crucial. These results hold for an arbitrary random walk subject to (CZIHLZZ).
Finally, in Section Hl we prove Theorem [L34 which is restricted to simple random walk. The
analysis consists of a long series of estimates, taking up more than half of the paper and, in
essence, showing that the problem reduces to understanding the asymptotic behavior of (CEH).
This reduction is important, because it explains why there is some degree of universality in the
behavior for kK — oo under different types of catalysts: apparently, the Gaussian approximation
and the two-point correlation function in space and time determine the asymptotics (recall the
heuristic argument in Section [CH). The main steps of this long proof are outlined in Section E2]

2 Lyapunov exponents: general properties

In this section we prove Theorem [L3Tl In Section Bl we formulate a large deviation principle
for the occupation time of the origin in SE due to Landim (1§), which will be needed in Section
In Section we extend the line of thought in (18) and derive a variational formula for A,
from which Theorem [[3] will follow immediately.

2.1 Large deviations for the occupation time of the origin

Kipnis (L7), building on techniques developed by Arratia (1), proved that the occupation time
of the origin up to time t,

Tt:/o £(0,s)ds, (2.1.1)

satisfies a strong law of large numbers and a central limit theorem. Landim ([1§) subsequently
proved that T; satisfies a large deviation principle, i.e.,

1
limsup —logP, (T;/t € F) < — inf ¥ (a), F C|0,1] closed,
t—oo T i acF

. (2.1.2)
litm inf i logP,, (T3/t € G) > — infG Vi(a), G C [0,1] open,
—00 [e7S]

with the rate function Wy: [0,1] — [0,00) given by an associated Dirichlet form. This rate
function is continuous, for transient random walk kernels p(-, -) it has a unique zero at p, whereas
for recurrent random walk kernels it vanishes identically.

2.2 Variational formula for \,(x): proof of Theorem [L3.T]

Return to (LZ). In this section we show that, by considering £ and X7,..., X as a joint
random process and exploiting the reversibility of £, we can use the spectral theorem to express
the Lyapunov exponents in terms of a variational formula. From the latter it will follow that
Kk — A\p(k) is continuous, non-increasing and convex on [0, 00).

Define
Y(t) = (&(t), X7 (@), ..., X5 (), t>0, (2.2.1)
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and

V(n,z1,...,2p) = Zn(mi), neQ x,...,0 € 7. (2.2.2)

Then we may write (C2Z3) as

1 t
Ap(t) = p logE,,0,..0 (exp [/ V(Y(s))ds]) . (2.2.3)
p 0
The random process Y = (Y (t));>0 takes values in Q x (Z%)? and has generator
P
G"=L+rY A (2.2.4)
i=1
in L?(v, ® m?) (endowed with the inner product (-,-)), with L given by ([CZZ)), A; the discrete
Laplacian acting on the i-th spatial coordinate, and m the counting measure on Z?. Let
v=G"+V. (2.2.5)

By ([CZ32), this is a self-adjoint operator. Our claim is that A\, equals % times the upper boundary
of the spectrum of GY;.

Proposition 2.2.1. )\, = %,up with p1, = sup Sp (GY,).

Although this is a general fact, the proofs known to us (e.g. Carmona and Molchanov (3), Lemma
II1.1.1) do not work in our situation.

Proof. Let (P¢)¢>0 denote the semigroup generated by G7.

Upper bound: Let Q105+ = [—tlogt,tlog t]? N Z?. By a standard large deviation estimate for
simple random walk, we have

Ey,o.,..0 (GXP [/Ot V(Y(S))ds})

—E, 0.0 (exp [/Ot V(Y(s))ds] L{XF() € Qrrogs for i = 1,... ,p}> + R, 220

with limg_, o % log Ry = —oo. Thus it suffices to focus on the term with the indicator.
Estimate, with the help of the spectral theorem (Kato (13), Section VL.5),

E.,o..0 (eXp [/Ot V(Y(s))ds} L{XE(t) € Qurogs fori=1,... ,p}>

2 2.2.7
< (H(Qtlogt)p’Pt]l(Qtlogt)p> :/ et dHE:u‘]l(Qtlogt)p||L2(I/p®mp) ( )

(_OO7MP

2
< ev! HI[(Qt log )P ||L2(1/p®mp)’

where 1(q,,,,,)» is the indicator function of (Qt10gt)? C (Z4)? and (E,)ucr denotes the spectral

family of orthogonal projection operators associated with Gf,. Since HIL(Q“Ogt)pH%Q (wpomr) =
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|Qt10g¢|P does not increase exponentially fast, it follows from ([CZI), [Z23)) and EZZEHZZT)
that A, < L.

Lower bound: For every § > 0 there exists an f5 € L%(v, ® mP) such that

(Epp — Epp—5)fs #0 (2.2.8)

(see Kato (17), Section VI.2; the spectrum of G, coincides with the set of u’s for which £, ;5 —
E, s # 0 for all 6 > 0). Approximating fs by bounded functions, we may without loss of
generality assume that 0 < f5 < 1. Similarly, approximating fs by bounded functions with finite
support in the spatial variables, we may assume without loss of generality that there exists a
finite K5 C Z% such that

0 < fs < Ligy)p- (2.2.9)

First estimate

Ey,o.,..0 (eXP [/Ot V(Y(s))ds])

> Euaea (1050 = 50 = s e | [ VY6 )

T1,TpEKs

= Y P0,z). . pF0,2p) By e, (exp[/OHV(Y(s))dsD

where pf(z,y) = P,(X"(t) = y) and Cs = mingex, p7(0,z) > 0. The equality in ZZIT) uses
the Markov property and the fact that v, is invariant for the SE-dynamics. Next estimate

r.hs. (ZZI0) > CF /va(dn) Z fs(myx1, ... xp)

T1,...,TpEL?

t—1
E Y Yit—-1
<Epary (00| [ VOO0 ) -
» 3 (t-1) 2
= > a
R Pt 2 [l [ M Bl
> C(I; e(upié)(til) H(Eup - Eup*ls)flSH%Q(Vp@mP)’

where the first inequality uses (ZZJ). Combine [ZZTOHZZTT) with [ZZZF]), and recall [ZZ3)),
to get A, > %(,up —0). Let 0 | 0, to obtain A, > %up. n

The Rayleigh-Ritz formula for p, applied to Proposition EZZT] gives (recall (LZZ), ZZZ) and
EZAE2n)):
Proposition 2.2.2. For allp € N,

)\p:— =

1
= s (GRf) (2.2.12)

||f||L2(yp®mp):1
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with
(GVf, ) = Ai(f) — A2(f) — rA3(f), (2.2.13)
where

AN = [l X Vimzm) Fosen)®

21,e.y2pELY

A2(f):/QVp(d77) ) % > @) [z z) = f 2, 2

21,..2p€LE  {z,y}CZ4

A3(f):[2VP(dn) Z %Z Z [f(nvzlv"'uzp)lziﬁyi _f(nvzlv---vzp)]Qa

21ye.2p€LE =1 y;ezd
lly; =24 ll=1

and z; — y; means that the argument z; is replaced by y;.

Remark 2.2.3. Propositions are valid for general bounded measurable potentials V
instead of @ZZ). The proof also works for modifications of the random walk Y for which a
lower bound similar to that in the last two lines of ZZI0) can be obtained. Such modifications
will be used later in Sections EEDHAA.

We are now ready to give the proof of Theorem [L3T1

Proof. The existence of A\, was established in Proposition ZZ1l By ZZIZHZZTIJ), the r.h.s.
of (ZZT2) is a supremum over functions that are linear and non-increasing in k. Consequently,
k +— Ap(k) is lower semi-continuous, convex and non-increasing on [0,00) (and, hence, also
continuous). |

The variational formula in Proposition is useful to deduce qualitative properties of ),
as demonstrated above. Unfortunately, it is not clear how to deduce from it more detailed
information about the Lyapunov exponents. To achieve the latter, we resort in Sections Bl and
| to different techniques, only occasionally making use of Proposition

3 Lyapunov exponents: recurrent vs. transient random walk

In this section we prove Theorems [[32 and [C33l In Section Bl we consider recurrent random
walk, in Section transient random walk.

3.1 Recurrent random walk: proof of Theorem [[L3.2(i)
The key to the proof of Theorem [[Z2(i) is the following.

Lemma 3.1.1. If p(-,-) is recurrent, then for any finite box Q C Z¢,

lim %logPVp (g(x,s) —1Vsel0,fVae Q) = 0. (3.1.1)

t—o00
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Proof. In the spirit of Arratia (1), Section 3, we argue as follows. Let

H? = {x e Z%: there is a path from (z, 0) to @ x [0,¢] in the graphical representation} .
(3.1.2)

T 7.4

Fig. 4: A path from (z,0) to @ x [0,¢] (recall Fig. 1).

Note that Hg) = @ and that t — HtQ is non-decreasing. Denote by P and &, respectively,
probability and expectation associated with the graphical representation. Then

P, (f(:c, s)=1Vsel0,fVae Q) —(Pay,) (Hf? C 5(0)) , (3.1.3)

where £(0) = {z € Z?: &(x,0) = 1} is the set of initial locations of the particles. Indeed, (BI3)
holds because if £(z,0) = 0 for some x € HtQ, then this 0 will propagate into @) prior to time ¢
(see Fig. 4).

By Jensen’s inequality,
P&, (HO C£0)) =& (o) > po1H21 3.14
p t P P
Moreover, HtQ c UyeQHt{y}, and hence

E\HE| < |Q||H™. (3.1.5)

Furthermore, we have
e|H"| = E2IR,, (3.1.6)
where R; is the range after time ¢ of the random walk with transition kernel p(-,-) driving £ and

Eg("') denotes expectation w.r.t. this random walk starting from 0. Indeed, by time reversal,
the probability that there is a path from (x,0) to {0} x [0,¢] in the graphical representation is
equal to the probability that the random walk starting from 0 hits = prior to time ¢. It follows

from (BET3HITHE) that

1 1 1 .
zlog]P’Vp (f(m,s) =1Vsel0,t]Va e Q) > —|Q| log (;) {;Eg( ’ )Rt}. (3.1.7)
Finally, since lim;_, %Eg("')Rt = 0 when p(-, -) is recurrent (see Spitzer (20), Chapter 1, Section

4), we get [BILT). |
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We are now ready to give the proof of Theorem [LZ2(i).

Proof. Since p — A, is non-decreasing and A, <1 for all p € N, it suffices to give the proof for
p=1. For p =1, (CZ9) gives

Ar() = %bgﬂ-zyp,o (exp [/Otf(X“(s),s) dsD . (3.1.8)

By restricting X* to stay inside a finite box Q C Z? up to time t and requiring ¢ to be 1
throughout this box up to time ¢, we obtain

B0 <eXp [/0 X)) dSD (3.1.9)
> P, (5(x,s) —1Vse0,f]Vae Q) PO(X“(S) cQVse [O,t]).

For the second factor, we apply (BIT]). For the third factor, we have
1
Jim ~log Py (X"‘(s) EQVse [O,t]) = A5(Q) (3.1.10)

with A®(Q) > 0 the principal Dirichlet eigenvalue on @ of —kA, the generator of the simple

random walk X". Combining (BT and ETSHETTI), we arrive at
A = lim Ai(t) > 1= XNQ). (3.1.11)

Finally, let Q — Z¢ and use that limg 74 A*(Q) = 0 for any &, to arrive at A\; > 1. Since,
trivially, A\ <1, we get A\; = 1. ]
3.2 Transient random walk: proof of Theorems [[L3.2(ii) and [L3.3

Theorem [[3A(ii) is proved in Sections BZZTl and BZZ3HZZH, Theorem in Section
Throughout the present section we assume that the random walk kernel p(-,-) is transient.

3.2.1 Proof of the lower bound in Theorem [[3.2l(ii)

Proposition 3.2.1. A\ (k) > p for all k € [0,00) and p € N.

Proof. Since p — Ap(k) is non-decreasing for all , it suffices to give the proof for p = 1. For
every € > 0 there exists a function ¢.: Z¢ — R such that

S od@?=1 and Y [6de) s < € (3:21)
z€Z4 z,yezd
lz—yll=1
Let |+ en(a)
en(x
fe(n,x) = 15 @t Q)i de(x), neq, zezl (3.2.2)
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Then
2 _ [1 +en(x)
1fell 220, cm) _/Qup(dn) EE —1+(26+6 EEngbe : (3.2.3)

Therefore we may use f. as a test function in (ZZIZ) in Proposition ZZZ2 This gives

A = (I—1II—kIII) (3.2.4)

> -
H = 14+ (2 +€2)p

with

I= /Ql/p(dn) Z n(2) [1 + en(2))? ¢e(2)* = (1 + 2¢ + €2 Z be(z (1+2e+€%)p (3.2.5)

2€Z4 2€Z4
and
17 = / AP IR "9(2) = n(z)c(2)?
zEZd FRYA
=5 [wln) S plon) lnte) — ) o) (3.2
z,yeLl

=Ep(1—p) Y p(x,y) de(x)’ < Ep(1—p)

and

HI:%/updn > L+ en(@)]e(z) — [1+ en(y)]de(y )}

acyeZd
le—yll=1

S 3 {1+ et Alloe@)? + o)) — 21+ p)6()6c(0))

Hzi’;.zil (3.2.7)
=it @] Y o) o)+l —p) Y aul@)oy)
e, P
< %[1 + (2¢ + €)ple® + 2de*p(1 - p).

In the last line we use that ¢c(2)¢(y) < 1dc(2)? + 3¢(y)*. Combining EZAEZT), we find

1+ 2¢ + O(€?)
Al =1 > .
! 'ul_pl—f—er—f—O(ez)

(3.2.8)

Because p € (0,1), it follows that for € small enough the r.h.s. is strictly larger than p. n
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3.2.2 Proof of Theorem

Proof. Tt is enough to show that A2(0) > A1(0). Then, by continuity (recall Theorem [31ii)),
there exists kg € (0,00] such that Ag(k) > A (k) for all k € [0, kp), after which the inequality
Ap+1(k) > Ap(k) for k € [0,kKp) and arbitrary p follows from general convexity arguments (see
Gértner and Heydenreich (9), Lemma 3.1).

For k = 0, (CZ3) reduces to

A(t) = pitlogﬂ-zyp <exp [p /0 tf(O,s)ds]) - pitlogE,,p (exp [pT3)) (3.2.9)

(recall (ZIT))). In order to compute A,(0) = lim; oo Ay(t), we may use the large deviation
principle for (T;)s>0 cited in Section X1l due to Landim (1§). Indeed, by applying Varadhan’s
Lemma (see e.g. den Hollander (14), Theorem II1.13) to B2, we get

1
Ap(0) = Earg[%ﬁ} [pa — Uy(a)] (3.2.10)

with ¥4 the rate function introduced in [ZI2). Since ¥, is continuous, (B2ZZI0) has at least one

maximizer ou,:

A(0) = o — %\yd(ap). (3.2.11)

By Proposition BZZTl for k = 0, we have \,(0) > p. Hence o, > p (because ¥4(p) = 0). Since
p(-,-) is transient, it follows that ¥4(a,) > 0. Therefore we get from EZIOHIZTT) that

1 1 1
Ap+1(0) = P+ 1 [ap(p+1) = Valap)] = ap — m\pd(ap) > Qp — I_)\de(ap) =2p(0). (3.2.12)
In particular A\y(0) > A1(0), and so we are done. |

3.2.3 Proof of the upper bound in Theorem [L3.2)(ii)

Proposition 3.2.2. \,(k) <1 for all k € [0,00) and p € N.

Proof. By Theorem [[33] which was proved in Section BZ2Z2 we know that p — X, (0) is strictly
increasing. Since A,(0) < 1 for all p € N, it therefore follows that A,(0) < 1 for all p € N.
Moreover, by Theorem [L3T(ii), which was proved in Section 2 we know that x — A, (k) is
non-increasing. It therefore follows that \,(x) < 1 for all k € [0,00) and p € N. |

3.2.4 Proof of the asymptotics in Theorem [L3.2(ii)
The proof of the next proposition is somewhat delicate.

Proposition 3.2.3. lim,_, A\y(k) = p for all p € N.
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Proof. We give the proof for p = 1. The generalization to arbitrary p is straightforward and will
be explained at the end. We need a cube Q = [-R, R]d NZ% of length 2R, centered at the origin
and 0 € (0,1). Limits are taken in the order

t—o0, k—o0, 010, Q1Z% (3.2.13)

The proof proceeds in 4 steps, each containing a lemma.
Step 1: Let X*© be simple random walk on Q obtained from X* by suppressing jumps outside of
Q. Then (&, X} ’Q)tzo is a Markov process on Q x Q with self-adjoint generator in L*(v, @ mg),

where mg is the counting measure on Q).

Lemma 3.2.4. For all Q finite (centered and cubic) and k € [0, 00),

t t
Eu,o0 (exp UO dSE(XS,s)D <e®WE,, 0 (eXp UO dsé(vaQ,s)D, t—oo.  (3.2.14)

Proof. We consider the partition of Z% into cubes Q, = 2Rz + Q, z € Z*. The Lyapunov
exponent \j (k) associated with X* is given by the variational formula (ZZT2HZZT) for p = 1.
It can be estimated from above by splitting the sums over Z? in ([ZZI4) into separate sums
over the individual cubes @), and suppressing in As(f) the summands on pairs of lattice sites
belonging to different cubes. The resulting expression is easily seen to coincide with the original
variational expression ([ZZT2]), except that the supremum is restricted in addition to functions
f with spatial support contained in (). But this is precisely the Lyapunov exponent )\?(m)
associated with X%, Hence, \ (k) < )\?(m), and this implies (B2ZT4). |

Step 2: For large s the random walk X% moves fast through the finite box @Q and therefore
samples it in a way that is close to the uniform distribution.

Lemma 3.2.5. For all Q finite and § € (0,1), there exist ¢ = (k,0,Q) and Ny = Ny(d,¢),
satisfying limy o €(K,0,Q) = 0 and limg o No(0,e) = Ny > 1, such that

E, 0 (eXp [/Ot dsg(ngQ,s)D < o(1) + exp [((1 + 11L§)5N0\Q! + ff;) (t+ 5)]

t+6 1
XE”P(GXP[/O ds@yezQﬁ(y,s)}), t — oo.

(3.2.15)

Proof. We split time into intervals of length § > 0. Let I be the indicator of the event that
§ has a jump time in ¢ during the -th time interval. If Iy = 0, then { = {;_1)s for all
s € [(k—1)d,kd). Hence,

ko ko
/ ds &5 (X59) < / ds &(g—1)s (X59) + 61, (3.2.16)
(k—=1)s (k—1)8

and, consequently, we have for all z € Z% and k = 1,..., [t/d],

Em<exp [/06 dsf(k_1)5+s(X§’Q)D < el Em<exp [/6 dsn(Xf’Q)]>, (3.2.17)

0
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where we abbreviate {;_1)s = 1. Next, we do a Taylor expansion and use the Markov property
of X®@ to obtain (sq = 0)

£ (oo [ [amntr]) = S (M1 o) ({0

Si (H/l 1dsl> (HmaxE (n(x52., 1)))
< [ e o)} <o [ [ s mas B (a0
|

(3.2.18)

where we use that max,cq E, (f(f ds n(X?’Q)) < 4. Now, let p’;’Q(.’ -) denote the transition
kernel of X*¥. Note that

1
lim pg’Q(x,y) = W for all s > 0, @ finite and z,y € Q. (3.2.19)
K— 00
Hence 1
lim E, ((5 (X”"Q)> @ for all s > 0, @ finite and =,y € Q. (3.2.20)
K—0Q
Therefore, by the Lebesgue dominated convergence theorem, we have
é
I d E (5 X0 ) _ 5L forall >0, Q finite and . 3.2.21
f@l—{goo s max By y (X59) Q) or all 6 >0, @ finite and y € Q ( )
This implies that the expression in the exponent in the r.h.s. of B2ZIX]) converges to
n(y 3.2.22
g (3:222)

yeQ

uniformly in 7 € . Combining the latter with ([BZZIH]), we see that there exists some ¢ =
e(k, 9, Q), satisfying lim,_,~ £(k, 0, Q) = 0, such that for all z € Q,

é
1
Em(exp [/ dsn(ngQ)]) < exp +€ ]Q\ Z for all 6 € (0,1) and @ finite.

0

(3.2.23)
Next, similarly as in (B:?:ED, we have
|Q| Z Eh—1)5 / ds @ > E(y) + 0L (3.2.24)
yeQ yeQ

Applying the Markov property to X®?, and using (216 and EZZIHIZ2), we find that

t . 1+e d+e€
E,,o0 (exp {/0 dsf(XS’Q,s)}> gEVp<exp [(1—1— T 5)5Nt+5+ . _5(t+5)]

t+0
/0 ds@Z,gs )

yeQ

(3.2.25)

X exp
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where Nyis is the total number of jumps that & makes inside @ up to time ¢ + 6. The second
term in the r.h.s. of (BZZ2H) equals the second term in the r.h.s. of B2ZI0). The first term
will be negligible on an exponential scale for § | 0, because, as can be seen from the graphical
representation, Nyys is stochastically smaller that the total number of jumps up to time ¢ + 9§ of
a Poisson process with rate |Q U 9Q)|. Indeed, abbreviating

1+e¢ d+e¢ ”5
1 5, b=—— M.s= g 2.2
o= (14155)8 =155 Mas= [ |Q|Zf (3.2.26)
we estimate, for each IV,

rhs. 220 = E (eaNz+5+b(t+6>+Mt+5)
Yp
< b+1)(E+9) E,, (eaNt+5 1{N,,s > N|Q|(t + 5)}) + (@N1QI+b)(t+5) E,, (thH) .

(3.2.27)

For N > Ny = Ny(a,b), the first term tends to zero as t — oo and can be discarded. Hence

hs. (BZZA) < @M (ebMt+6> , (3.2.28)

which is the desired bound in BZI0). Note that a | 0, b | 1 as d,¢ | 0 and hence Ny(a,b) |
Ny > 1. |

Step 3: By combining Lemmas BEZAHEZH we now know that for any @ finite,

1 |
lim A;(x) < lim —logE,, ( exp / ds — E &) s (3.2.29)

where we have taken the limits Kk — oo and § | 0. According to Proposition [CZT] (with

K(z,5) = (1/1Q)1q(2)),

E,,p(exp[/ ‘Q’Zg DgEI;‘pW(exp[/ ’Q‘ng D (3.2.30)

yeQ yeR

where (g})tzo is the process of Independent Random Walks on Z¢ with step rate 1 and transition
kernel p(-,-), and EJY = Jo vp(dn) BV, The r.h.s. can be computed and estimated as follows.
Write

AP f) @) = play)lfy) - f@),  zeZd, (3.2.31)

YA
to denote the generator of the random walk with step rate 1 and transition kernel p(-,-).

Lemma 3.2.6. For all Q) finite,

h.s. (BZ30) < e exp / ds @ Z w®(z, )| , (3.2.32)
z€Q
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where w?: Z x [0,00) — R is the solution of the Cauchy problem

Q
%(x,t) — APz 1) + {ﬁm(x)} W@, )+ 1], w@(-0) =0, (3.2.33)
which has the representation
t
w®(z,t) = E™W <exp [/ ds ﬁ o(Y: )]) —-1>0, (3.2.34)

where Y = (Yi)i>0 is the single random walk with step rate 1 and transition kernel p(-,-), and
E™W denotes the expectation w.r.t. to'Y starting from Yy = x.

Proof. Let
A, ={x ez nx)=1}, neq. (3.2.35)

Then

h.s. B2Z30) = /Ql/p(dn) E5Y | exp [/ dS@ Z Z 1y(£~s,x):|

vednyed (3.2.36)

:/Qyp(dn) I1 &5 (exp [/ ds@ (Y)D,

€Ay

where SNSJ is the position at time s of the random walk starting from éo,m = z (in the process of
Independent Random Walks & = (&;)>0). Let

|
v¥(z,t) = E?W <exp [ / ds@ o(Ys )D (3.2.37)
By the Feynman-Kac formula, v% (x,t) is the solution of the Cauchy problem
Q 1
%(m) = APz, 1) + {@162(9@)} v9(z,t),  v9(,0) = 1. (3.2.38)

Now put
w(z,t) = v%(z,t) — 1. (3.2.39)

Then ([B2Z38) can be rewritten as (B22Z33]). Combining BZI6HIZIT) and BZ3), we get
. @z = [ wldn) TT (14 0%w0) = [ vptan) T] (04 i) u0(o.)

€A, rE€Z4
(3.2.40)

= H (14 pw@(z,t)) <exp |p Z w(z, 1),

x€Zd x€Zd

where we use that v, is the Bernoulli product measure with density p. Summing [BZ33) over

Z4%, we have
d
5( > w®(a,t) > > = ’Q‘ +1. (3.2.41)

r€eZ4 z€Q
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Integrating (BZZZI]) w.r.t. time, we get

'U)Q.T,' = S . L.
> wq(a,t) /d Z‘Q’ )+t (3.2.42)

rEeZ4

Combining (B2Z40) and (BZZZ7), we get the claim. |

Step 4: The proof is completed by showing the following:
Lemma 3.2.7.

lim lim - ds— w(x, s) 3.2.43
Q1zdt—oo t Q] Z ( )

Proof. Let G denote the Green operator acting on functions V: Z¢ — [0,00) as

GV)(@) = > GxyV(y), =zeZ (3.2.44)

yEZ
where G(z,y) = [;° dtpi(z,y) denotes the Green kernel on Z%. We have

HQ(@%O HOO = sup » G(ﬂm/)L

(3.2.45)
{L‘GZd yEQ |Q|

The r.h.s. tends to zero as Q T Z%, because G(z,y) tends to zero as ||z —y|| — co. Hence Lemma
8.2.1 in Gértner and den Hollander (1() can be applied to [BZ34) for @ large enough, to yield

sup w?(z,5) <e(Q) 10 as Q12 (3.2.46)

zezd
s>0

which proves (B2ZZ43). [
Combine (BZZIHEZAM), (BZ32) and BZZF) to get the claim in Proposition

This completes the proof of Proposition for p = 1. The generalization to arbitrary p is
straightforward and runs as follows. Return to ((CZY). Separate the p terms under the sum with
the help of Holder’s inequality with weights 1/p. Next, use (BZZT4]) for each of the p factors,
leading to 1 log of the r.h.s. of (B2ZT4l) with an extra factor p in the exponent. Then proceed as
before, Wthh leads to Lemma 228 but with w? the solution of [E2Z33) with a1 QI o(x) between
braces. Then again proceed as before, which leads to (B2ZZA0) but with an extra factor p in the
r.h.s. of (BZZ2). The latter gives a factor e’?! replacing e in ([B2Z32). Now use Lemma B21
to get the claim. ]

3.2.5 Proof of the strict monotonicity in Theorem [[3.2(ii)

By Theorem [[3Nii), k — Ap(k) is convex. Because of Proposition B2l and Proposition B3]
it must be strictly decreasing. This completes the proof of Theorem [L32ii).
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4 Lyapunov exponents: transient simple random walk

This section is devoted to the proof of Theorem [[34] where d > 4 and p(-,-) is simple random
walk given by ([C2Z3)), i.e., £ is simple symmetric exclusion (SSE). The proof is long and technical,
taking up more than half of the present paper. After a time scaling in Section EZJl, an outline of
the proof will be given in Section The proof for p = 1 will then be carried out in Sections
E3HET In Section Y, we will indicate how to extend the proof to arbitrary p.

4.1 Scaling

As before, we write X, {;(x) instead of X"(s),{(x,s). We abbreviate
k] =1+ — (4.1.1)

and write {a, b} to denote the unoriented bond between nearest-neighbor sites a,b € Z? (recall
([CZ3)-([CZ4))). Three parameters will be important: ¢, x and T. We will take limits in the
following order:

t—o0, KkK—o00, T — o0 (4.1.2)

For t > 0, let
Zy = (fé,Xt) (4.1.3)

and denote by P, , the law of Z starting from Zy = (n,2). Then Z = (Z;);>0 is a Markov
process on ) x Z% with generator

A= %L+A (4.1.4)

(acting on the Banach space of bounded continuous functions on Q x Z?, equipped with the
supremum norm). Abbreviate X{ = Xy, t > 0, where X = (X¢)¢>0 is simple random walk with
step rate 2d, being independent of (& )¢>0. We therefore have

E., 0 (exp [ /0 s, (X:)D —E,, (exp E /0 s e <Xs)]> . (4.1.5)

Define the scaled Lyapunov exponent (recall (CZIHLZIM))

t
Xi(k) = lim Aj(s:f) with A’{(n;t):%ngayp,o (exp E /0 ds & (XS)D. (4.1.6)

Then Ai (k) = kAj(k). Therefore, in what follows we will focus on the quantity

Ni(k) — g — lim %ngVp,o <exp E /Ot ds (&(XS) - p)D (4.1.7)

—00 K

and compute its asymptotic behavior for large x. We must show that

lim 2dx? [x;(m) - ﬂ = p(1 - p)Ga. (4.1.8)

K—00
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4.2 Outline

To prove (L), we have to study the asymptotics of the expectation on the r.h.s. of [EIT) as
t — oo and kK — oo (in this order). This expectation has the form

Eyp,o(exp E /Ot ds¢(zs)} > (4.2.1)

where ¢(n, x) = n(z) — p. Let ¢ be the bounded solution of the equation
— Ay = ¢. (4.2.2)

(In fact, such a solution exists only after an appropriate regularization, which turns out to be
asymptotically correct for d > 4 but not for d = 3.) Then the term in the exponent of EZT]) is
a martingale M; modulo a remainder that stays bounded as t — oo:

L[ ootz = Mo+ Lppiz) - wiz) (12

K Jo

(Lemma EE3T1(i) below). Hence, the asymptotic investigation of [#Z1]) reduces to the study of

E, 0 (eMt> =E,,0 ((Ng")l/’" exp [% /Ot ds [(e—iwAeﬂ) - A(gw)} (ZS)] ) (4.2.4)
e NI = exp [th - /O s [(e—ime%w) - A(£¢)] (Zs)} (4.2.5)

is an exponential martingale (Lemma EE3TI(iii) below) and r is close to 1. Hence, applying
Holder’s inequality, we may bound the expectation in the r.h.s. of (EZZ4) from above by

(Eyp,o(exp [g /0 s [(eﬁme%w) ~ A(%ﬂ)] (ZS)D)W (4.2.6)

with 1/r 4+ 1/¢ =1 (and ¢ large). A reverse Holder inequality shows that this is a lower bound
for large negative q. Because of the structure of the expected result (coming from a linear
approximation of the exponential), the choice of a large |g| does not hurt. (This is not true for
the result in Conjecture [[Z1] pertaining to d = 3.) Hence, the whole proof essentially reduces
to the derivation of an appropriate upper bound for

Eyp,()( exp [% /O s [(e*%ue%w) ~ A(%zﬂ)] (ZS)D (4.2.7)

with arbitrary o € R (c.f. Proposition EEZT] below). A Taylor expansion up to second order
shows that

[(#ae) - a (L) o) = 3 3 (stne+a—vina)’ +0( (1)) w2y

K
e: Jlell=1

as k — oo (Lemma ELGT] below). The expression under the integral in (ZZ7)) depends on the
process (Xs)s>0. A combination of the spectral representation of the associated semigroup with
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the Rayleigh-Ritz formula shows that, asymptotically as ¢ — oo, the expectation in ([E2Z1) gets
larger when we replace X by 0. Using an explicit representation of 1, we see that

> (Wme) —¢m.0)" = D Kang(2)(n(z) — p)”
e: |le|l=1 z€Z%

+ Z Ko Zl,ZQ 77(21) —P) (77(22) —P)

21, ngZd
z1#29

(4.2.9)

for certain kernels Kgi,s and Kog (Lemma below). Substituting this into the previous
formulas and separating the “diagonal” term from the “off-diagonal” term by use of the Cauchy-
Schwarz inequality, we finally see that the whole proof reduces to showing that

. . K2 2 1
hmsuphmsupTlogE,,p exp / ds Z Kgiag (2 ( z) — p) <arp(l _p)EGd

K—00 t—o0 ~e7d

(4.2.10)
and
12

limsuplimsupTIOgE,,p exp / ds Z Kog (21, 22 (f (z1) — p) (5%(22) —p) <0

K—00 t—o0 S

21722

(4.2.11)

(Lemmas and L6 below). To prove the latter statements, we use Jensen’s inequality to
move the kernels Kgiae and Kyg out of the exponents. Then we are left with the derivation of
upper bounds for terms of the form

E, <exp [f /Otds (g (2 )—p)ZD, ze7d, (4.2.12)
and
E,, (exp [% /Ot ds (5%(21) - p) (5%(@) - ,o)D, 1,20 € T8, 21 # 29 (4.2.13)

(Lemmas and EEG.T0 below). The first expectation can be handled with the help of the IRW
approximation (Proposition [LZT]). The handling of the second expectation is more involved and
requires, in addition, spectral methods.

4.3 SSE+RW generator and an auxiliary exponential martingale

Recall @IT3HETA). Let (P)i>0 be the semigroup generated by A. The following lemma will
be crucial to rewrite the expectation in the r.h.s. of (EI7) in a more manageable form.

Lemma 4.3.1. Fiz x > 0 and r > 0. For allt > 0 and all bounded continuous functions
¥: Q x Z% — R such that ¢ and exp [(r/k)1] belong to the domain of A, define

Mg = 2 otz - vz - [ s vz

NI = exp [M / ds [(e—%wAe%w) —A(%M (ZS)].
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Then:
(i) M" = (M} )t>0 is a Py, -martingale for all (n,x).
(ii) For t > 0, let PPV be the operator defined by

(PR f)(n,z) = e VOO R, (exp {— /O s (e—imeiw) (Zs)} (eiw f) (Zt)> (4.3.2)

for bounded continuous f: Q x Z¢ — R. Then (PPY)e>0 is a strongly continuous semigroup
with generator

(A" f)(n,x) = [e_gw./l (egwf) - (e_gwAeilg f} (n, ). (4.3.3)

(1it) N" = (N} )0 is a Py o-martingale for all (n,x).
(iv) Define a new path measure PpSY by putting
appy

((Zs)ogs<t) =N{,  t=0. (4.3.4)
AP, .

Then, under PP, (Zt)i>0 is a Markov process with semigroup (P )i>0.

Proof. The proof is standard.

(i) This follows from the fact that A is a Markov generator and v belongs to its domain (see
Liggett (19), Chapter I, Section 5).

(i) Let n € Q, z € Z¢ and f: Q x Z¢ — R bounded measurable. Rewrite [E32) as

t
(PP f)(n,2) =Ky (exp |:£'¢(Zt) - %w(zo) — /O ds (e—%wAe%w> (ZS)] f(Zt)> 435)
=Eno (N{ f(Z)) -
This gives

(P f)(n,x) = f(n, ) (4.3.6)

and N7

(PR D) 0.2) = Ene (N1, f (Zi 1)) = B (N Moy f(Zth))

h (4.3.7)

— 80Nz, (Vi (2)) ) = (PP ) (.2,

where we use the Markov property of Z at time ¢; (under P, ) together with the fact that
N{ 1, /N{, only depends on Z; for ¢ € [t1,t; + t2]. Equations EIGHEIZT) show that (PFY);>o
is a semigroup which is easily seen to be strongly continuous.

Taking the derivative of (E32) in the norm w.r.t. ¢ at t = 0, we get ([E33)). Next, if f =1, then
E33) gives A"W1 = 0. This last equality implies that

1
A

Since Ald — A"V is invertible, we get

(AId — A)1=1 VA>0. (4.3.8)

1
(Ad — A%v) ™11 = T YA>0, (4.3.9)
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ie.,

> 1
/ dt e N pRev] = 3 A>0. (4.3.10)
0

Inverting this Laplace transform, we see that

PRVl =1 Vit>0. (4.3.11)

(iii) Fix t > 0 and h > 0. Since N] is Fy-measurable, with F; the o-algebra generated by
(Zs)o<s<t, we have

ope (Ntr+h‘7:t)
= V7B (o0 017 - 7 - | s [(rvact) - a (L)) ) ' %) (43.12)

K

Applying the Markov property of Z at time ¢, we get

h
E e (N | Fi) = Nf Eg, <exp [%p(zh) ~ (%) —/0 ds (e75VAck) (ZS)D

(4.3.13)
= Ny (P,"1) (Z¢) = N,
where the third equality uses [EZIT).
(iv) This follows from (iii) via a calculation similar to (E3). [ |

4.4 Proof of Theorem [[L3.4]

In this section we compute upper and lower bounds for the r.h.s. of 1) in terms of certain
key quantities (Proposition EEZT] below). We then state two propositions for these quantities
(Propositions below), from which Theorem [C34] will follow. The proof of these two
propositions is given in Sections EEGHET

For T > 0, let 1: Q x Z¢ be defined by

T
(,2) = /0 ds (Py9) (n.z) with (n.2) = n(z) — p. (4.4.1)

where (P¢)e>0 is the semigroup generated by A (recall (EI4)). We have

T T
vino) = [ @B, 02) = [ 4B, ¥ mata)(Gw-p). @42

0 yeZ4

where py(x,y) is the probability that simple random walk with step rate 1 moves from x to y in
time ¢ (recall that we assume (CZ3)). Using ([CZH), we obtain the representation

w(nv .’L‘) = /0 ds Z p2dsl[/@](zv 1‘) [n(z) - p]v (443)

z€7Z4
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where 1[x] is given by ([@IJ]). Note that 1) depends on x and T'. We suppress this dependence.
Similarly,

T
. /0 ds (—AP,$) = & — Pro, (4.4.4)
with
(Pr)(n,2) = By (6(Z1)) = By (€2 (Xr) = p) = 3 poaragey(2, ) [n(2) = pl. (44.5)
2€Z4

The auxiliary function ¢ will play a key role throughout the remaining sections. The integral in
(EZT0) is a regularization that is useful when dealing with central limit type behavior of Markov
processes (see e.g. Kipnis (17)). Heuristically, 7' = co corresponds to —.Ay = ¢. Later we will
let T' — oo.

The following proposition serves as the starting point of our asymptotic analysis.

Proposition 4.4.1. For any k,T > 0,

<
X5 (k) — g = Uk T) + (s, T), (4.4.6)
where
1. 1 2¢ [* IR r
r,q _ - - =4 Y AoV -
L'k, T) = o h?i)igp ; logIE,,p,o(exp [ . /0 ds [(e Ae ) A (K@Z))} (Zs)}>,

1 2q (*
LYk, T) = % lim sup ~ ; 10gIE,,p, (exp [;q/o ds (Pro) (Zs)]>,

qd t—oco

and 1/r +1/q =1 for any r,q > 1 in the first inequality and any ¢ < 0 < r < 1 in the second
inequality.

Proof. Recall @I1). From the first line of [E31l) and [EZ3) it follows that
1Mr 1 Z 1 Z—l/td A Z—l/td Z 1/td73 Z
D+ o) — ) = 1 [ asic i) =+ [asoz) -+ [ as (Pro) (2

(4.4.8)
Hence

Bvvo (o0 [+ [ aso(z.)])

= E0 (op [107 + oz - oz + & [Casproyz) ) (449

0
1
= E,/m()(exp |:Utr + ;Vtr})
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and
V] = M] _/0 ds [(e_gwfle%w> -A <£¢>] (Zs). (4.4.11)

By Hoélder’s inequality, with r,q > 1 such that 1/r + 1/q = 1, it follows from (Z3l) that
1 t 1/7‘
Ey, <exp [—/ dssb(Zs)D < (Ev,o(exp [17])) " (Ev0(exp [a7]))
K Jo

= (Eyp,o(eXp [qUt’"]))l/q,

where the second line of [LZTZ) comes from the fact that N/ = exp[V}] is a martingale, by
Lemma EEZTN(iii). Similarly, by the reverse of Holder’s inequality, with ¢ < 0 < r < 1 such that
1/r+1/q =1, it follows from (EZ) that

1 t 1/r
E,, (exp [—/ ds qb(Zs)}) > (Eymo(exp [Vﬂ)) (Eypao(exp [qUtT]))
kJo
1/
= (E,jmo(exp [qU{])) ‘
The middle term in the r.h.s. of @ZI) can be discarded, because A3 shows that —pT <

¥ < (1 — p)T. Apply the Cauchy-Schwarz inequality to the r.h.s. of (ELZTZHLZTS)) to separate
the other two terms in the r.h.s. of [EZI0). ]

1/q

(4.4.12)

1/q
(4.4.13)

Note that in the r.h.s. of [ZT) the prefactors of the logarithms and the prefactors in the
exponents are both positive for the upper bound and both negative for the lower bound. This will
be important later on.

The following two propositions will be proved in Sections EEGHLT, respectively. Abbreviate

lim sup = lim sup lim sup lim sup . (4.4.14)
t,k,I"—00 T—oo K—00 t—o00

Proposition 4.4.2. If d > 3, then for any a € R and r > 0,

2

t
lim sup %logEymo (exp [%/ ds [e*%ﬁAe%ﬁ _ A<£¢>] (Zs)]> <arp(l— p)iGd.
0

t,k,T—00 2d
(4.4.15)
Proposition 4.4.3. If d > 4, then for any o € R,
K> a [
lim sup — logE,,p70<exp [—/ ds (Pro) (ZS)]> <0. (4.4.16)
t,T—o0 U K Jo

Picking o = 2¢ in Proposition EEZ2 we see that the first term in the r.h.s. of ([ZH) satisfies
the bounds

1
lim sup limsup 21, (k, T) < rp(1 — p)=—=Gq if r > 1,

) A.
lim inf lim inf 2179 (k, T) > r p(1 — p)==Gq if r < 1.
T—oo K—00 2d
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Letting r tend to 1, we obtain

1
lim lim &*17%(k, T) = p(1 — p)=—Gy. (4.4.18)

T— 00 K—00 2d

Picking o = 2¢ in Proposition EEZ3] we see that the second term in the r.h.s. of ([EZLH]) satisfies

lim sup lim sup #*15%(k, T) = 0 if d > 4. (4.4.19)

T—o0 K—00

Combining ([ELIRHEZTT), we see that we have completed the proof of Theorem [[34] for d > 4.

In order to prove Conjecture [LZ1], we would have to extend Proposition to d = 3 and show
that it contributes the second term in the r.h.s. of ([EZTI0]) rather than being negligible.

4.5 Preparatory facts and notation

In order to estimate I7Y(k,T) and I3%(k,T), we need a number of preparatory facts. These are
listed in Lemmas EERTHEL A below.

It follows from (EZ3) that
T
¢(777 b) - ¢(777 a) - /0 ds Z (desl[n}(za b) - p2dsl[/@](zv a)) [77(2) - p] (451)
2€Z4
and
b 4 b
w() = o) = [ ds - paaaleo) [14:) = )]
2€Z° 4.5.2
] (152
- /0 ds (desl[n}(bv .I‘) - p2dsl[/@](aa $)) [77(@) - n(b)] )
where we recall the definitions of 1[x] and n®® in @I and (ZZH), respectively. We need
bounds on both these differences.

Lemma 4.5.1. For anyn € Q, a,b,x € Z% and x, T > 0,

|9 (n,b) —¥(n,a)| < 2T, (4.5.3)
(w(n“”’,x) - w(n,x)‘ < 2G4 < o, (4.5.4)

and
> (?/)(77“’1’,1’) - ¢(77,x))2 < 2—lde < o0, (4.5.5)

{a,b}

where Gy is the Green function at the origin of simple random walk.

Proof. The bound in [@A3) is immediate from @LJ]). By L), we have
, T
‘w(na’ 7-7;) - w(nax)‘ < /0 ds ‘desl[n}(bvx) _desl[n}(aax)‘ : (456)
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Using the bound p:(x,y) < p+(0,0) (which is immediate from the Fourier representation of the
transition kernel), we get

‘w(ﬁa’bax) - w(nvx)‘ < 2/0 d3p2dsl[n](070) < 2Gy. (457)

Again by [LZ), we have

> (vtr) —vine)) = S be) 00 ([ ds (s 0.2) - pm[@(a,m))Q

{a,b} {a,b}
T T
<2 /(] du / dv Z <p2du1[n] (bv .%') — P2dul[x] (av .%')) <p2dv1[/i} (bv .%') — P2dvl[x] (av .%'))

“ {a,b}
T T
= —2/ du/ dv ZPQdul[n](aax) [A1p2dvl[ﬁ}(a’x)}
0 u aczd
2 (T T o)
= —m/o du /u dv Z P2dulfx) (@ T) [%Pmm[n](a@)}
aczd
9 T
= ——/ du Z P2dul[x] (a’x)(deTl[n} (a,z) — P2dul[x] (a,ﬂf))
1[’€] 0 a€Zd
<2 / " 3 P (@ 2)
< — u Dol (@ T
1[x] Jo s 2dullr]
< 2/Ood (0,0) = ———Gu(0) < —C
> 1[1%] 0 U Padul[x)\Ys = 2d(1[/€])2 d =94 ds
(4.5.8)
where Ay denotes the discrete Laplacian acting on the first coordinate, and in the fifth line we
use that (0/0t)p = (1/2d)A1p;. |
For z € Z%, let 7,:  — Q be the z-shift on Q defined by
(12m) (2) = n(z + z), ne, zeczl (4.5.9)
Lemma 4.5.2. For any bounded measurable W: Q x Z% — R,
1 t
limsup;logE,,mO(eXp [/ ds W(S%,Xs)})
fmee X 0 . (4.5.10)
< limsup;logE,,p(exp [/ ds W({g,O)}),
t—00 0 v
provided
W(n,z) =W (rn,0) ¥YneQ, zezl (4.5.11)

Proof. The proof uses arguments similar to those in Section Recall (T3). Proposition
with p = 1 and Remark EZ2Z3, applied to the self-adjoint operator G%, = 1L + A+ W

Tk
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(instead of GY, in (ZZAHZZH)), gives

t
lim 1logIE,,p,o (exp [/ ds W(ZS)]> = sup <Bl(f) - lBg(f) - B3(f)) (4.5.12)
et 0 17122 v iom) =1 8

with

B1) = [ wlan) 3 W.2) 50,2

z€Z4

B = [ w5 X plewlorr )~ fmal o

z€Zd {z,y}czd

<f=/updn2 S f(n, )2,

z€Z4 yezd
lly—=|l=1

An upper bound is obtained by dropping B3(f), i.e., the part associated with the simple random
walk X. After that, split the supremum into two parts,

s (Bi(f) - Ba())

||f||L2(yp®m):1

2
= sup sup E 9(2) /Vp(d"?)
”gHLQ(m):l ||fz||L2(up):1VZEZdzezd Q (4514)

(W 202 -5 X sl - Lo,

{z,y}czd

where f.(n) = f(n,2)/g(z) with g(z)? = [yv,(dn)f(n,z)?. The second supremum in (E514),
which runs over a family of functlons indexed by z, can be brought under the sum. This gives

rhs. @RI =  sup Y g(2)®  sup / vp(dn)
91l .2 () =1 ;e 12122, =1 /€2

. (4.5.15)

(W 0P =g X w0 - £02).

{z,y}czd

By (ERTT) and the shift-invariance of v,, we may replace z by 0 under the second supremum
in (ELTH), in which case the latter no longer depends on z, and we get

rhs. @RT0) =  sup /Ql/p(dn) [W(n,O) f(n)? - % Z plz,y)[f(n™Y) — f(n)]ﬂ

||f||L2(,,p):1 {z,y}czd

1 t
— Jim 10gE,, (eXp [/0 ds W(gz,o)D,
(4.5.16)

where the second equality comes from the analogue of Proposition ZZ2 with self-adjoint operator
1L+ W(-,0) (instead of G), cf. Remark ]
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Lemma 4.5.3. For any p € (0,1),

Joax, (V8 = Wa(B)] ~vp as |0 (4.5.17)

Proof. First, using that ¥4(p) = 0, we obtain the lower bound

Jnax. (V8 = Wa(B)] = vp — Walp) = p- (4.5.18)

Next, for any 6 > 0, we have

max [y0 — ¥4(0)] = max [v8— ¥y4(8)] v max (78 — Wa(B)]

e 5 olzs B pI<s
< <’Y - ﬂfél[gq] \I/d(ﬁ)> \% (’y(p—f—é)) (4.5.19)
[8—p|=6

<7(p+9) for 0 < v < 7(9),

where in the second inequality we use that W, has a unique zero at p. Letting v | 0 followed by
0 | 0, we get the desired upper bound. |

Lemma 4.5.4. There exists C > 0 such that, for allt >0 and z,y € Z°,

p(z,y) < ﬁ (4.5.20)

Proof. This is a standard fact. Indeed, we can decompose the transition kernel of simple random
walk with step rate 1 as

d

0, i
parlz,y) = [V 7),  a=(t .2y =@y, (4.5.21)
j=1
where pgl)(x, y) is the transition kernel of 1-dimensional simple random walk with step rate 1.
In Fourier representation,

1 (7 . R
pgl)(x,y) = —/ dk 'k (v—2) e_w(k), o(k) =1—cosk. (4.5.22)

2 J_,
The bound in [EE20) follows from [EELZI) and

1 (7 5 C
pgl)(x,y) < pil)(0,0) = %/ dke k) <~ 4>, z,y € 7% (4.5.23)

. (141)2

4.6 Proof of Proposition

The proof of Proposition is given in Section EE6.Tl subject to four lemmas. The latter will
be proved in Sections EEG2HAGAL respectively. All results are valid for d > 3.
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4.6.1 Proof of Proposition

Lemma 4.6.1. Uniformly inn € Q and x € Z%, as k — oo,

[(eﬁue%w) —A (%wﬂ (n,x) = 27«_; > (w(n,x+e)—w(n,x))2+0<(%)3>- (4.6.1)

e: Jlell=1

Lemma 4.6.2. For any x,T >0, a € R and r > 0,

/ds 3 (w(g X—l—e)—w<§:,Xs>)2]>

lim sup log Eu 0 ( exp

e e: flel=1
2
< hl;ris;olp2—logE,,p exp / ds Z Kdlag ( )—,0)
z€Z4
+h£nsup—logIE,,p<exp [ / ds Z Koff 21, 29 (gi(zl) —p) (52(22) —p)]),
oo Zl 22 d
Z1¢§2Z
(4.6.2)
where
2
dlag Z ( Z+€ (Z)> ’
=1
(4.6.3)
K (21,22) Z ( ate)—x(z) (Mt o) - x(z),
exllel|=
with
T
€)= [ dupsag(0.2) (46.4)

Lemma 4.6.3. For any o € R and r > 0,

. K2 ar [ T 2 1
lim sup - logE,, | exp F/o ds Z K jag(2) (5% (2) — p) <arp(l-— p)EGd. (4.6.5)

t,k,T—00

Lemma 4.6.4. For any o € R and r > 0,

limsup%zlogE,,p<eXp[ /ds Z KOH 21, 22 (5:(21)—p)<§z(zQ)—p)]> <0.

t,k,T—00
Y 21, ngZd
z1#29

Combining Lemmas LG IHEGAL we obtain the claim in Proposition

4.6.2 Proof of Lemma E.G.1]

Lemma E6T] is immediate from [T and the following two lemmas.
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Lemma 4.6.5. Uniformly inn € Q and x € Z%, as k — 00,

1 T T T 1

(et ;w) L (_ )} —0(=). 4.6.7

K |:(e ¢ /@'w (7],.%') K3 ( )
Lemma 4.6.6. Uniformly inn € Q and x € Z%, as k — 0o,

[(e—%M e£w> A (%p)] (n,z) = % > (¢(n,x +e)— w('n,w))2 +0 (%) . (46.8)
e: |lefl=1
Proof of Lemma[f.6-3 By ([CZ3HLZA), we have
(2e5) -1 (29 o

1 T a,bz. _ T T a
= 5 2 (erlort =@l 1 - St ) i, @)
{a,b}

) . (4.6.9)

Taylor expansion of the r.h.s. of ([EG.) gives that uniformly in n € Q and 2 € Z¢,

l(e#nes) —1 (2o)] 00 = i 3 (600%.0) —viaa)) 0 =0 (L),
{a,b}

(4.6.10)
where we use ([EZHEDLN). |
Proof of Lemma[f.6.0 By (LIZ), we have

(Faet) =a (Zo)] ona)
(4.6.11)

= > (ei[w(n,m+e)—w(w>1 -1- %W(%x +e)— W”””) ‘

et |lell=1

Taylor expansion of the r.h.s. of ([EEG.LT) gives that uniformly in n € Q and z € Z,

2

K@*%ﬁA €£¢) —A (£¢>] (n,x) = o Z (qp(n,:c +e)— 1,[)(17,:6))2 + R.r(n,z) (4.6.12)

2K2
e: lell=1
with 5 5
r 3 8dr
Rer(n2)] < o > (w(n,x te)— w(n,x)‘ oM < WT%O(U, (4.6.13)
e: lell=1
where we use (E23). Combining EETZHLGT), we arrive at [EEF). |
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4.6.3 Proof of Lemmas

Proof. By ([EZ3), we have for all n € Q and z € Z,

> (vtro+e)—vina)

e: |le[=1
T T
= du dv um(z,«%"i‘e)_ un(z7x)
%:1 Zl,;m/o /0 (Prate prsal(21,2)) (4.6.14)
X (devl[n](z27 T+ e) - p2dvl[/ﬂ(z27 $)) [n(zl) - p] [77(22) - p]
= > K™(z1,2) [n(z +x) - p] [n(z2 + x) - p],

21,22€7Z4
where K*®7: 74 x 74 — R is given by
KT ()= 3 (x4 6) = x(2) (x(z + €)= x(22)). (4.6.15)
e:flef|=1
Therefore, for all k,T > 0,

. 1 ar [t
hmsupzlogIE,,mo exp 22 ; ds Z

t—o00
e:llef|=1

(v(ezx.+¢) —%D(fg,Xs))z])

. 1 ar [t T
:llmsupzlogEym()(eXp [2—1%2/0 ds Z K™ (21, 29)

b0 21,29€7Z4
X (5%(21 + Xs) — P) (5%(22 + Xs) — P)])

. 1 ar (! T
< hmsupz logE,, | exp 92 ds g K" (21, 22) (5% (z1) — p) (5;
0

t—o00
21,29€7Z4

w
—~
N
v}
SN—
|
s}
b N—
—_ 1
O N——

where in the last line we use Lemma with
ar

W) =55 >, K*(a,2) [z +2) = p] oz +2) = o], (4.6.17)

21,29€7Z4

which satisfies W (n,xz) = W(r,n,0) as required in ([ELII]). Splitting the sum in the r.h.s. of
(EET6) into its diagonal and off-diagonal part and using the Cauchy-Schwarz inequality, we

arrive at (ELG.2). ]
4.6.4 Proof of Lemma

The proof of Lemma is based on the following two lemmas. Recall ZIT]).
Lemma 4.6.7. For any T > 0 there exists Ct > 0, satisfying limr_,.o Cr = 0, such that

. . 1
lim || K5 = 2Ga+ Cr. (4.6.18)
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Lemma 4.6.8. For anyT >0, a € R and r > 0,

. K2 ar T
lir’?_s)gop - logE,, <exp [?(1 - 2P)||K§{ag||1Tt/x}) < arp(l —2p) hm ||KdlagH . (4.6.19)
Before giving the proofs of Lemmas LB THEG.R, we first prove Lemma
Proof of Lemma[f.6.3 By Jensen’s inequality, we have
K T 2
E,, | exp / ds Z Kdlag ( (2) —p)
zeZd
K51 (2) 2
di ar T
< X ey B o | G IRG L [ s (e~ )
sz 1M diaglln (4.6.20)
¢ 2
ar T
=E,, (exp [ S [ as (6200 - p) D
K 0 K
ar o T ar kT t/w
= €exp |:_2p ||KdlagH1t:| ]EVp exp _(1 - Qp)HKdlang dS 58(0) )
K K 0
where the first equality uses the shift-invariance of v,. Therefore
R o 2
t,n,l%“nioo - logE,, | exp ds Z Kdlag ( (2) — p)
ze (4.6.21)
12
. T .
< K%r_r)loo arp \|K§1ag\|1 + tﬁ}lTn_l)OO " logE,, (exp [ (1- 2p)\|KdlagH1Tz })
Now use Lemmas to obtain (ELE.0]). |

Proof of Lemma[f.0.4 By [EE3), we have

| K lang =2 Z/ du/ dv p2du1[n](0 Y) — P2dufx) (0, 33)) <p2dv1[n}(0 Y) — P2avifx) (0, CC))
{z.y}

= _4/ du/ dv Z P2dul] ,@] 0,z |:A1p2dv1[n}(0 x)}

xE€Z4

0
/ du/ dv ZPQdul[n (0,2 [avmdm[n](ow)],

z€Zd
(4.6.22)
where we recall the remark below ([LLS]). After performing the integration w.r.t. the variable v,
we get

y i (" T
HKdlggH = m (/0 du Z p%dul[n](ovx) _/O du Z p2du1[l€](07x)p2dT1[li] (va)>

zeZd zeZd
4 T T
= / du pagur()(0,0) — / du paaqu+r)1x)(0,0) |-
1[/&] 0 0

554

(4.6.23)



Hence

T 1 2dT 4dT
Tim K5 = /O du pa(0,0) — / du pa(0,0) |, (4.6.24)

2dT
which gives ([EEIR). |

Proof of Lemma[f.6.8 To derive ([EG.I9), we use the large deviation principle for (T})¢>¢ stated
in Section Il By Varadhan’s Lemma we have, for all k,T > 0,

ar T
lim sup 7 10gEy,, (exp [ o (1- QP)HKgiagulﬂ/“]>

t—o0
1

= = max |21 20)[ K516 - wa(8)] -

K B€l0,1]

(4.6.25)

By Lemma EEG7, (1//-;)||K§1§g\|1 l 0as K — oo for any T > 0. Hence LemmaEE03] can be applied

to get (EHEIY). |

4.6.5 Proof of Lemma H.6.4]

The proof of Lemma BG4 is based on the following two lemmas. Recall @63). For 21, 29 € Z¢
with 21 # 20 and v € R, let

(o, 2) = timsup H1og,, (exp [ [ (62— 9) (62— 0)] )

p
e , . (4.6.26)
— limsup — logE,, (exp [” [ ds (e = ) (€l - p)] )
t—oo Kt K Jo
Lemma 4.6.9. For all k, T > 0,
K5l < 8dT?. (4.6.27)
Lemma 4.6.10. For any z1, 29 € Z4 with =z % z9 and any v € R,
lim sup £%h (21, 22) < 0. (4.6.28)

K—00

Before giving the proof of Lemmas ELO.OHLG T, we first prove Lemma LG4
Proof of Lemma[f.6.4 Let Kgf’fT;Jr and K('ff’fT;f denote, respectively, the positive and negative

part of Kgf’fT. By the Cauchy-Schwarz inequality, we have
.T; T !
Z Ky 21722)/ ds (55(21) - p) (55(22) - p)
0
21, ngZd

logE,,p(exp [ / ds Z K zl,zg (fi(zl)—p) (f%@)—p)])
21, ngZd
1
< ElogEVp exp
21, ngZd
z17%2
21722

21729
+ %logEyp (exp [ 20” Z [("6 (21, 22) /Ot ds ({i(zl) — p) (5%(,22) — p)] )
(4.6.29)
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We estimate the first term in the r.h.s. of (E.Z). For R > 0, let

Br = {(z1,22) € 24 x Z¢ : |21 || + || 22|| < R}. (4.6.30)
Then
20 [* K, T+
E,, | exp = ds Z Ky (21,22)<£%(21) - p) (5%(22) - p)
0 zl,ZQEZd
z1#29
2|a|rt T.
< exp [ ~ > KN (e, zg)] (4.6.31)
(21,22)€BR{
z17%2
201 [* .
xE,, <€Xp [?/ ds Z Kgf’fT’Jr(Zl,ZQ)(ﬁ%(h) - P) (5%(22) - P)] )
0 (zl,zgyé)EBR
Zl 22

Applying Jensen’s inequality, we get

%ZlogEVp<eXp [% /Otdg Z Kgf:fT;-i-(zl,zQ)({%(zl) —p) (fz(@)—p)])

zl,zgeZd
z21722
Kk, T+
w0, T+ K K55 " (21, 22)
< 2‘04’7“ Z Koﬂ (2’1, 2’2) + t/—li log Z W
(21722#)63% (zl,zi)GQBR off;R 111
z1#29 z1#%
2ar T t/k
xE,, (exp [7!!%;5!!1/ ds (€s(21) = ) (&(20) p)] )
0
(4.6.32)
where
7Ta 7’1—‘,
||K§ff;R+H1 = Z Kl (21, 22). (4.6.33)
(21;i2¢)262BR

By Lemma EGT0 (with v = 2047“HK§£I§+H1), the second term in the r.h.s. of (632 is asymp-
totically bounded by above by zero (as t — oo) for any x,7 > 0, « € R and r > 0, and any
R finite. The first term in the r.h.s. of [E632) does not depend on ¢ and, by Lemma LG
tends to zero as R — oo. This shows that the first term in the r.h.s of [E29) yields a zero
contribution. The same is true for the second term by the same argument. This completes the

proof of [EG.H). ]
Proof of Lemma[f.6.9 The claim follows from (EGI3HEG). |

Proof of Lemma[{.6.10, The proof of Lemma EGT0 is long, since it is based on three further
lemmas. Let 21, 29 € Z% with z =% zo. Without loss of generality, we may assume that

z71€H™ and 2 € HT (4.6.34)
with
H ={ze2z% 2' <0} and HT ={zec7Z% 2! >0}. (4.6.35)
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Let i
h7,.(z1) = lim L g EmY _3 td £ (z1)
vrl21) = sup3 r oglt;, " | exp T p ; s & (=1 ,

t—o0 K
hZ . (z2) = limsup = log E'™ | exp -—Slp/t ds €F () (4.6.36)
YK oo 3Kt Vp K 0 s )

) 1 3y [t - -
+ _ +
ho (21, 22) = 11?1 sup o log EIIZW(GXP i /0 ds & (21)¢] (22)} >,

where (ft_ )e>0 and (5; )t>0 are independent IRW’s on H~ and H*, respectively, with transition
kernels p~(+,-) and p™(-,-) corresponding to simple random walks stepping at rate 1 such that
steps outside H~ and H™, respectively, are suppressed.

Lemma 4.6.11. For allk >0, 21 € H™, 20 € H' and v € R,
hoy (21, 22) < %p2 +he(z1) + B (22) + B (21, 22). (4.6.37)
Lemma 4.6.12. For all v € R,

limsup x? sup hlx(21) < —vp?® and limsupx® sup h:}t,{(ZQ) < —p°. (4.6.38)

K—=00 z1€H~ K—00 2€Ht

Lemma 4.6.13. For all v € R,

limsup % sup h,:}l/:’,g(Z1,Z2) < p°. (4.6.39)
K—00 2 €H™
z9€Ht

Combining EEINEGIT), we get [EEZY)). |

Proof of Lemma[f.0-11} Similarly as in the proof of LemmaLh2, by cutting the bonds connect-
ing H~ and H™ in the analogue of the variational formula of Proposition ZZZZ (cf. Remark 22Z3)),
we get

. 1 ¢ _
hyk(21,22) <limsup — logE,, (eXP [1/ ds (& (21) = p) (& (22) — P)} >
t—oo Kt K Jo

. 1 t _ _

—timsup g8, (ep |2 s (52 < 0 () 4060 ) 16 (06 ()] )
t—oo Kl Kk Jo
(4.6.40)

where (&, )i>0 and (§t+ )t>0 are independent exclusion processes in H~ and HT, respectively,
obtained from (& )¢>0 by suppressing jumps between H~ and H T. Applying Holder’s inequality
in the r.h.s. of (EGAM) to separate terms, we obtain

7 2 . 1 [ 3y /t —
h <L+l — logE, 2o d
(21, 22) < =507 + limsup —— log p(exp e & (1)

t—00
, 1 [ 3y [t

+limsup —1logE, | exp |——p [ ds & (z2) (4.6.41)
t—00 3kt L L K 0

. 1 3y [+
+ lim sup 3 logE,, (exp — [ ds & (zl)gj(zg)] )

t—o00
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In order to get ([E63T), we apply Proposition [[2ZTl to the last three terms in the r.h.s. of (EGAT]).
For the first two terms, pick, respectively K (z,s) = —(3v/k)p 1, and K(z,s) = —(3v/k)p 1., (2).
For the last term, we have to apply Proposition [CZ1 twice, once for the exclusion process (£, )¢>0
on HT with K(z,s) = —(3v/k) &5 (21) 12,(2) and once for the exclusion process (&; )i>o on H~
with K (z,s) = —(3v/k) £ (22) 1., (2). Here, we in fact apply a modification of Proposition [CZ1]
by considering (&, )¢>0 and (& );>0 on Z? with particles not moving on H* and H~, respectively.
See the proof of Proposition [[Z1] in Appendix [Al to verify that this modification holds true. B

Proof of Lemma[[-6-134 We prove the second line of [EG38)). The first line follows by symmetry.

Let
+ +. —
Hy ={z e H": n(z) =1}, n e Q. (4.6.42)

Fix z € Ht. Then

E12W<exp [—3%,0/; ds 5;(2)] > = /QVp(dn) H BBV <6XP [_ 3%'0/; s 1Z(YS+)}) ’

xEI{;

(4.6.43)
where Ey"'" is expectation w.r.t. simple random walk Y+ = (Y;");50 on H*t with transition
kernel p*(-,-) and step rate 1 starting from Y;" = x € H*. Using that v, is the Bernoulli
product measure with density p, we get

t ~
Elfpw<exp [—3%,0/0 ds fj(z)] )

3y t
= / vp(dn) T[] EEVY <exp [— n(:c)—p/ ds 1z(Ys+)D (4.6.44)
@ xeHt & 0
= 1] (1 —p+ pv(x,t)) < exp [p > (vla,t) - 1)]
x€HT z€HT
with
RW,+ 3y [ +
v(z,t) =E;" T exp | ——p [ ds 1.(Y")] ). (4.6.45)
k- Jo
By the Feynman-Kac formula, v: HT x [0,00) — R is the solution of the Cauchy problem
0 1y 37 _
av(:c,t) = QdA v(z,t) { - plz(az)} v(x,t), v(-,0) =1, (4.6.46)
where
Ato(e,t) = > [v(y,t) —v(z,t)], zeH" (4.6.47)
yeHt
lly—zll=1
Put
w(z,t) =v(z,t) — 1. (4.6.48)

Then w: H* x [0,00) — R is the solution of the Cauchy problem

%—zf(x,t) = %Aﬂu(x,t) — {3% plz(x)} [w(z,t) + 1], w(-,0) = 0. (4.6.49)
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Since Y ey AT f(x) =0 forall f: HY — R, [EEIT) gives

gjizwgiy:—%ﬁm@¢y+m (4.6.50)

zeHt

After integrating ([ELE50) w.r.t. ¢, we obtain

Z w(z,t) = —Slpt - Slp/ ds w(z,s). (4.6.51)

K
zeHt

Combining @E36]), @EA), BEEAS) and ELST), we arrive at

t

1
hfyrﬁ(z) < — A 2<1 + hm n - ds w(z, s)) (4.6.52)

0

The limit in the r.h.s. exists since, by ([6.43]) and @EAY), w(z,t) is monotone in ¢.

We will complete the proof by showing that the second term in the r.h.s. of (G52 tends to
zero as k — oo. This will rely on the following lemma, the proof of which is deferred to the end
of this section.

Lemma 4.6.14. Let Gt (x,y) be the Green kernel on HT associated with p;f(x,y). Then
|G oo < 2G4 < 0.

Return to ([EGZD]). If v > 0, then by Jensen’s inequality we have

3 [ 3
1> wv(x,t) > exp [— %p/ ds pj(m,z)] > exp [— %p||G+||OO], (4.6.53)
0

where ||GT||o < 0o by Lemma EE6I4l To deal with the case v < 0, let G* denote the Green
operator acting on functions V: Ht — [0, 00) as

We have

G V(@)= > GHa,y)V(y), weH' (4.6.54)
| <3l 6 . (46.55)

yeHT
3
‘g+01pu)
K o0
The r.h.s. tends to zero as kK — oo. Hence Lemma 8.2.1 in Gértner and den Hollander (10) can
be applied to [EEZD) for x large enough, to yield

1
3
13y |Gt

1 <o(z,t) <

11 as Kk — o0. (4.6.56)

Therefore, combining ([LG53) and (EEGEGH), we see that for all v € R and ¢ € (0,1) there exists
ko = Ko(7,d) such that

lv —1]jeo <6 VK > Ko. (4.6.57)
By [EGASHEGAT), we have
3y [ RW ,+ + +
w(z, t) = P ds ESVT 1L,(Ys )oY, t—s) |. (4.6.58)
0
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Via [EERT) it therefore follows that

t
- 31,0(1 +6)GT(2,2) < lim 1 ds w(z,s) < —3lp(1 F6)G (2, 2) VK> kg, (4.6.59)
K K

t—o0 0

where the choice of + or — in front of § depends on the sign of . The latter shows that the
second term in the r.h.s. of (EEALZ) is O(1/k). This proves [EG3F)). |

Proof of Lemma[f.6.13 The proof is similar to that of Lemma EEGT2 Let
H;FZ{CCGHJFZ n(x) =1}, ne,
(4.6.60)
Hy={zeH :n(x)=1}, neQ.

Fix z; € H- and 2, € HT. Then

w%wﬁ%f@g@@mﬂ)

=/va(dn) IT II &2 ERW+(exp [3 /ds 1oy oy (Y, Y5 )D (4.6.:61)

0
z€Hy, yeH;}

where Y~ on H~ and Y+ on HT are simple random walks with step rate 1 and transition kernel
p~(-,+) and pT(-,-) starting from Y, =2 € H~ and Y, =y € H™, respectively. Using that v,
is the Bernoulli product measure with density p, we get

e (e |2 [ as i) )

:/Qz/p(dn) II II B3 Bt (exp [77($)77(y)3%/0td8 1(21,22)(Ys_’ys+):|>

x€H~- yeH™
= H H (1—p2+p2v(z1,z2, ) <exp[ Z Z v(z1, 225t 1)]

x€eH~- yeHt z€H- yeHt

(4.6.62)
with

_ 3y [ t _

v(z1, 29;t) = BV E%W’Jr(exp [:/ ds / ds 1, ) (Y ,Kj)]) (4.6.63)
0 0

By the Feynman-Kac formula, v: (H~ x H')x[0,00) — R is the solution of the Cauchy problem

gt (z,y;t) = d(A_ + AT )o(x,y;t) + {3% 121,22(96721)} v(z,y;t),  v(,50) =1, (4.6.64)

where

A7 v(z;t) = Z [v(y,t) —v(x,t)], re H,

s
ly—=ll=1

Ato(zt) = Y [vy,t) —v(z,t)), zeH"
Hzgffllil

(4.6.65)
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Put
w(z,y;t) =v(z,y;t) — 1. (4.6.66)
Then, w: (H~ x HT) x [0,00) — R is the solution of the Cauchy problem

ow 3y
it = 358+ A0 + {2 1 e} o +1) ut0) =0,
(4.6.67)
By [EL6H) and [E661),
_ 3
875 Z Z (z,y;t) = - —[w(z1, z2;t) + 1]. (4.6.68)
z€H- yeHt
After integrating (L6.6]]) w.r.t. ¢, we obtain
3
Z Z w(z,y;t) = — t + — ds w(z1, 22; S). (4.6.69)
reH— yeHT ko Jo
Combining ([E636]), EEEY), (ELGRE) and EEED), we arrive at
g 1
hviﬁ(zl,zQ) < ﬁpQ (1 —i—tlim — [ ds w(zl,,zQ;s)). (4.6.70)

The limit in the r.h.s. exists, since w(z1, z2; s) is monotone in s.

We will complete the proof by showing that the second term in the r.h.s. of ([EGT0) tends to
zero as k — 00. Return to ([EEG.63)). If v < 0, then by Jensen’s inequality we have

3 o _
12 o) 2 op | =220 [ as o) v )| 2 o0 | = 22 (167 1 11671 |
0

(4.6.71)
where |G ||, [GT [0 < 00 by Lemma EEGI4l To deal with the case v > 0, let G= denote the
Green operator acting on functions V: H~ x HT — [0,00) as

G*V)(x,y) = > GE(a,y;a,b)V(ab), zeH ,yeH", (4.6.72)
e
where ~
GE(z,y;a,b) :/0 ds p; (x,a) pt (y,b). (4.6.73)
We have
o (2 1ee0)| < 220650 <32 (161 A 1671, (1.6.74)

The r.h.s. tends to zero as kK — oo. Hence Lemma 8.2.1 in Gértner and den Hollander (L0) can
be applied to [EELT) for k large enough, to yield

1
1 <o(z,t) < 11 as Kk — o0 (4.6.75)

= 211G oo A NIG 1o )
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Therefore, combining EGTT) and ELTH), we see that for all ¥ € R and § > 0 there exists
ko = ko(,9) such that

lv=1l|c <6 VK> Ko. (4.6.76)
By BGG6HEG6T), we have
3y [ _ - -
wtersazit) = 2 [ s B B (1 gV )00, Ve 9)) a6)

Via [ET6) it therefore follows that for all £ > ko,

t

3 1 3
l(l + 5)Gi(z1,z1;22,22) < tlim 7 ds w(z1,22;8) < 1(1 T 5)Gi(z1,z1; z9,722). (4.6.78)
K —00 0 K

Combining @ETM) and ELTH), we arrive at ([EL3T). |

Proof of Lemma, We have G (z,y) = > 02 o) (z,y), z,y € H', with p/ (z, y) the n-step
transition probability of simple random walk on H whose steps outside H ™ are suppressed (i.e.,
the walk pauses when it attempts to leave H). Let p,(x,y) be the n-step transition probability
of simple random walk on Z?. Then

pi(x,y) < 2pn(z,y), x,y € H", n € Ny. (4.6.79)

Indeed, if we reflect simple random walk in the (d — 1)-dimensional hyperplane between H™ and
its complement, then we obtain precisely the random walk that pauses when it attempts to leave
H*. Hence, we have p (z,y) = pn(x,y) + pn(x,yx), z,y € H, n € Ny, with y* the reflection
image of y. Since p,(z,y*) < pn(z,y), z,y € HT, the claim in [ERTLI) follows. Sum on n, to
get Gt (x,y) < 2G(z,y), z,y € HT. Now use that G(z,y) < G(0,0) = Gy, z,y € Z%. |

4.7 Proof of Proposition

The proof of Proposition is given in Section LTl subject to three lemmas. The latter are
proved in Sections ET2HETA respectively. The first two lemmas are valid for d > 3, the third
for d > 4.

4.7.1 Proof of Proposition

Lemma 4.7.1. Forallt >0, k,T >0 and a € R,

Buo(e |2 [ ds Pro) @] ) < Bol e [20 [ s 3 paeria (i) w05 ).

z€Z
(4.7.1)
where w®) : 74 % [0,t) — R is the solution of the Cauchy problem
Ou® L Aw® @ 0 ®
9 (x,s) = ﬂAw (x,s) + — P2dT1|s) (Xi—s, ) [ (2, 5) + 1], w(,0)=0. (4.7.2)
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Lemma 4.7.2. For allt >0, k > 0, T large enough and o € R,

a t
EO(GXP [;P/O ds Z pZdTl[n](Xt—svw)w(t)(xus)])

x€Z4

2042 t t
SEo(exp [?p/o ds/ dupuﬁstTl[H}(Xu,Xs)}).

Lemma 4.7.3. If d > 4, then for any o € R,

2 202 [t t
lim —10gE0<exp [?p/ ds / dupu+4dT1[H}(Xu,Xs)]> =0.
0 s "

T,k t—oo t

Lemmas clearly imply (EEZT0).

4.7.2 Proof of Lemma 7T
For all t >0, k,T > 0 and o € R, let v : Z? x [0,¢) — R be such that
v (z,s) = w®(z,s) + 1,
where w®) is defined by @ZZ). Then v*) is the solution of the Cauchy problem

ov®) 1 o)
W(CE”S) = ﬂAv(t) (CC,S) + EPQdTl[li} (thsax) v(t) (CC,S), U(t)("o) =1,

and has the representation

o S
»® (x,s) = EI;V\’(exp [— / dupngl[,d (Xt—s-i-u’ Yu):| > .
K Jo r
Proof. By @13) and ([EZH), we have

(4.7.3)

(4.7.4)

(4.7.5)

(4.7.6)

(4.7.7)

B e [2 [ s (Pro) 2] ) = Ea(e0 |2 5 [ dsmarnta)(e:)-0)] )

z€74

Therefore, by Proposition [LZTl (with K(z,s) = apagri[](Xks; 2)), we get

Eyp,o(exp [% / s (Pro) (ZS>D

B I Sy

2€7Z4

2€Z4 0

o [t
exp [;/0 ds paari[x] (Xs,Yi)})

< exp |~Spt| Bo / vp(dn) ] EiW(exp [% > paarifn (Xs, 2) / s, (v2)
(

= exp {—%pt] Eg / vp(dn) H By
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where A, = {z € Z? : n(z) = 1} and EEV is expectation w.r.t. to simple random walk ¥ =
(Y2)¢>0 on 74 with step rate 1 starting from Yy = z. Using that v, is the Bernoulli product
measure with density p, we get

Eo< exp [% /O s (Pro) <ZS>D

a1 o [t
< exp —;Pt /QVp(dn)E0< H B3 <6XP [77(50);/0 ds padri[x) (XS)Y%>:|>
i i x€Z
a1
=exp |——pt / vp(dn) E0< H [1 + n(x) w® (x,t)})
A4 x€Z
o] a
= exp —;pt E0< H [1 —i—pw(t)(x,t)]) < exp {—;pt] Eo(exp [p Z w@)(gp,?ﬁ)]),
i i z€Z x€Z
(4.7.10)
where w® : Z? x [0,t) — R solves @TZZ). From E2) we deduce that
0
B8 Z w®(z, s) Z Paar1)(Xi—s, ) [1+ w W (z,5)]. (4.7.11)
z€Z4 xEZd
Integrating (EZLI) w.r.t. s and inserting the result into ([EEZI0), we get ([EZI). |

4.7.3 Proof of Lemma

Next, we consider v and w® as defined in EZZHHETD), but with |a| instead of a.

Proof. We begin by showing that, for 7" large enough and all z, s, ¢t and X ), we have v® (x,5) <
2.

Do a Taylor expansion, to obtain (sop = 0)

v® (2, 5) = Z (|a|> (H /Sl 1dsl> ERW <ﬁ1p2dT1M (th+sm,YsTm)> L (4T12)

In Fourier representation the transition kernel of simple random walk with step rate 1 reads
ps(z,y) = j{dkz etk (y=a) o=sPk) (4.7.13)

where f dk = (2m)~ f[ ) dk and

2d > (1-e*), ke lmm (4.7.14)

z€Z%
ll=l|=1
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Combining (EEZTZHETTH]), we get

x B <exp [z Zn: (Ve = X1, ) k:p} exp [ — (2a71[x)) Zn: @(kq)D

q=1

}[ dkm> exp [—i Xt sisy — x) . kp}

—

(4.7.15)
where in the last line we did a spatial shift of Y by z. Because Y has independent increments,
we have

el s]) (ol e

r=1
i (i v )

Z Dsr— srl()z exp [i(ky + - + ky) - 2]
/A

(4.7.16)

s i :j: i

exp[—L:’"_l@(kr+m+kn)],
1

ﬁ
Il

where the last line uses ([EZLI3)). Since the r.h.s. is non-negative, taking the modulus of the r.h.s.

of (EZZTH), we obtain

00, %i%(%)n (H [ d) (ﬁ y{dkm)

Xexp[ (2dT1 >Z<p }ER"V(eXp[Z o D (4.7.17)

( |a|) (H / 1dsl> BV (mﬂlmm (o,y@) ,

where the last line uses (@ZI3)). Thus

v (2, s) SE%W<6XP [‘n’/ dudeTl[n 0 Y“)})
0

gng(exp [|a| /0 dupaers 0., >D
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Next, let G denote the Green operator acting on functions V: Z¢ — [0, 00) as
GV)(@) = > Gx,yV(y), =z’ (4.7.19)
yez?
With p; denoting the function p;(0, -), we have

Hg<’a‘p2dT1[n])

HOO x€7Z4

= |af sup /0 ds Z Ps(%,Y) P2ar1(x) (0,Y) < || Goarifn) (4.7.20)
y€ezZd

with -
G = / ds ps(0,0) (4.7.21)
t
the truncated Green function at the origin. The r.h.s. of (EEZ20) tends to zero as T' — oo. Hence

Lemma 8.2.1 in Gértner and den Hollander (10) can be applied to the r.h.s. of EZIY) for T
large enough, to yield

(®) 1
v (z,s) < 1 "g(|a|p2dT1[ﬁ1)

11 as T — oo, uniformlyin s > 0. (4.7.22)

I

Thus, for T' large enough and all x, s, t, k and X, we have v® (x,s) < 2, as claimed earlier.
For such T, recalling (fE7H), we conclude from @Z3) that w® < @®), where @® solves

ow®) 1 . 2|a] 4
P (x,8) = %Aw( )(x, s) + — P2arif (Xi—s, ), ' )(-, 0)=0, (4.7.23)
The latter has the representation
) 2o [* 20af [*
w (3573) = T ) du Zp%(xaz)pZdTl[n}(Xt—mz) = T ) dup%.{.QdTl[m](x’Xt—u)'
2€7Z4
(4.7.24)
Hence,
a [ (t)
Eol exp|Zp [ ds S poari (Xims2) w® (a,s)
K Jo
x€Zd
@ t _
< EO(GXP [up/ ds Z Poaripe)(Xi—s, z) 0" (%S)D (4.7.25)
: 0 x€Z4
20[2 t s
= EO(GXP [?P/O ds /0 dUP%HdTlM (th,Xtu)}>,
which proves the claim in EZ3). |
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4.7.4 Proof of Lemma

The proof of Lemma is based on the following lemma. For t > 0, € R and a,x,T > 0,
let

1 4@2 t stak
Ao(t;a,k,T) = ﬂlog E0<exp [?p/o ds / du Pu=s | 4471[x) (Xu,Xs)]> (4.7.26)

and
Aa(a, k,T) = limsup Ay (t;a, 5, T). (4.7.27)
t—o0

Lemma 4.7.4. If d > 4, then for any o € R and a,T > 0,

lim sup £%\o (a, &, T) < 20a%p Gyar, (4.7.28)

R—00

where Gy is the truncated Green function at the origin defined by (ZZIl). Before giving the
proof of Lemma BTl we first prove Lemma,

Proof of Lemma[.7.3 Return to (). By the Cauchy-Schwarz inequality, we have

2 202 [t t
_logE0<exp [—2,0/ ds/ dupu__s+4dT1[n](Xu,Xs)})

2 star?
;—logEo(exp[ 5 p/ ds/ du pu—s s+4dT1[K/](Xu’X )}) (4.7.29)

12
+ 2—tlogE0<exp [?p/o ds /5+aﬁ3 du p%%dTl[H}(Xu,Xs)]).

Moreover, by Lemma EER4] and the fact that d > 3, we have

/ ds/ du pu—s S+4dT1[n}(Xu’X / ds/ du Pus (0,0)
+axd +an3
< —t/ du T < ——1
K ak? (1—|—’U,)5 az K2

with C,C > 0. Combining (729 E730) and Lemma EZ74], and letting a — oo, we get ([E74).

(4.7.30)

|
The proof of Lemma EE74] is based on one further lemma. For v > 0 and a,,T > 0, let
,Y akK o
Ay(a,T) = hmsup— log E (—2/ ds / du pu__s+4dT1[K](Xs,Xu)>. (4.7.31)
k—oo QK K 0 s K
Lemma 4.7.5. If d > 4, then for any v > 0 and a,T > 0,
Av(a, T) S Y G4dT~ (4732)

567



Before giving the proof of Lemma LA, we first prove Lemma B
Proof of Lemma[{_73] Split the integral in the exponent in the r.h.s. of @20 as follows:

t s+ak3
/Ods/ dup?+4dT1[,ﬂ(XuaXs)
S

[t/an®] [t/asd1\  pand sran (4.7.33)
< Z + Z / ds / du pﬁ+4dT1[n}(XmXS)'
k=1 k=1 (k—1)ar? S "

even odd

Note that in each of the two sums, the summands are i.i.d. Hence, substituting ([EZ33]) into
(EZZ8) and applying the Cauchy-Schwarz inequality, we get

t CLK?’ 80[2 a3 s+ar3
Aa(tia, k,T) < [¢/ar"] logEo<eXp [Fp/o dS/ du p“T_s+4dT1[n](XUaXS):|)-

At
(4.7.34)

Letting t — oo and recalling ([EZZ1), we arrive at

1 8@2 ak? s+ar?
Aala,k,T) < e log E0<exp [?p/o ds /S du Pu=s | 44T 1[x] (Xu,Xs)} ) (4.7.35)
Combining this with Lemma (with v = 8a?p), we obtain [{EL2X). |

The proof of Lemma, is based on two further lemmas.

Lemma 4.7.6. For any 8 >0 and M € N,

M oo
E, (eXp [5 Z/ ds ps yaarifs) (Uk-1(0), Uk1(8))]>
k=170

(4.7.36)
M k=1 oo
= l;l:[l y1,...r,2;?iezd Eo <eXp [ﬁ ; /0 ds p%l"'%‘*“ldi’“l[m](o’ Xs + yl) ) ’

where Uy (t) = X (4 ar3 + s), k € Ny and yo = 0.
Lemma 4.7.7. For any >0, M €N, k € Ny, and yo,--- ,y, € Z%,
k
) . exp[ B -0 Gox2y gt ]’

%
1= 62 G%HMTH/@]
(4.7.37)

k=1 oo
Eo <eXp [ﬂZ/O 48 P2\ s 4 garijn) (0, X +u1)
1=0 "

(recall ([EZZZ) ), provided that

k
5ZG%1+M1[H} <1. (4.7.38)
=0

The proofs of Lemmas are similar to those of Lemmas 6.3.1-6.3.2 in Gértner and den
Hollander (L0). We refrain from spelling out the details. We conclude by proving Lemma EL71]
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Proof of Lemma[f. 7.3 As in the proof of Lemma 6.2.1 in Gértner and den Hollander (10),
using Lemmas we obtain

3
1 ,y aK o0
- log Eo <6XP [? / ds /s du puzs 4 471 (X5 Xu)] )

-1 (4.7.39)
Y0y G 52 | 1 4dT1[x]
M— 1 )
1R s G 452 | 4dT 1 [K]
provided that
M-
M Z | L 4dT [k ;< L. (4.7.40)
1=0
But (recall ([EZZZT)))
M-1 M—1
Z Gan2 I 4d T[] = Gaarifw) + Z Gae2) (4.7.41)
I =1 M
From Lemma EEb A we get Gy < C/ ¢2~1. Therefore
G if d =3,
M-1 a2
Cyl e
% Gz < o log M if d =4, (4.7.42)

d
C; M272%2 .
%fl 5 ifd>5,

for some Cy > 0, d > 3. Hence, picking 1 < M < Ck?, (EZZ) holds for k large enough when
d > 4, and so the claim [ZZ32) follows from [EZ39) and ETATHLTA). |

4.8 Extension to arbitrary p

In Sections we proved Theorem [[34] for p = 1. We briefly indicate how the proof can
be extended to arbitrary p.

As in ([T, after time rescaling we have, for any p € N,

" LA : . 1 1t &
A (k) = tli)r&/\p(/i;t) with  Aj(k;t) = i logEVp,oy...p(exp [E/o ds Zfi (Xk(s))]>
k=1
(4.8.1)
We are interested in the quantity
. 1 1t &
A (k) — g = tlirgo 7 logIE,,p,07...70<eXp [E/o ds Z <£§ (Xi(s)) — p)] > (4.8.2)

k=1

As in @ZT), for T > 0 let ¢,: Q x (Z?)P be defined by

T p
Y(n, a1, xp) = /0 ds (Pép)qbp) (myz1,...,xp) with  ¢p(n, 1, - ,2p) = Z [n(mk —
= (4.8.3)
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where (Ps(p )) s>0 18 the semigroup with generator (compare with ([EIZ))
) 1 ;
(p ——L+§ Ag. 4.8.4
< e k ( )

Using (CZH), we obtain the representation (compare with [EZ3))

M@

Yp(, w1, 1) = / ds ) szdsl[ﬁ zay) [0(z) = p] = Y, xp). (4.8.5)
z€74 k=1 k=1
Let (compare with [EE13))
ZP) = (&2, X1(s), -+, Xp(s)).- (4.8.6)

First, we have the analogue of Proposition EEZTE

Proposition 4.8.1. For anyp e N, k,T > 0,
* p < 1 2q ¢ _r r r
602 5 g s [2 [ [(5act) 4 (2)] 0

4q [* () (0)
4qh?lsololpt10gE”’“ (e 3 [ 0 (PP0r) 2)) .

where 1/r+1/q =1, for any r,q > 1 in the first inequality and any ¢ < 0 < r < 1 in the second
inequality.

Next, using ([EEEH), the bound

p
(%(ﬁa’b,xh @) — (@, ,xp)>2 <py, (w(n“’b,xk) - zp(n,xk))2, (4.8.8)
k=1

and the estimate in (@), we also have the analogue of Lemma EGTE

Lemma 4.8.2. Uniformly inn € Q and xy1,--- ,x), € Z4,
i) -4 (20)
S 2 Y wmro-vww) vo((2)). Y

k=le: |e]|=1

Using Holder’s inequality to separate terms, we may therefore reduce to the case p = 1 and deal
with the first term in the r.h.s. of [ZX1) to get the analogue of Proposition EEZ2

For the second term in [E), using (CZH) we have

p
(PP ) (1,21, ) Z > paarip (2w = (Pré)(n,xr).  (4.8.10)
k=1

k=1 zcz74d

Using Holder’s inequality to separate terms, we may therefore again reduce to the case p = 1
and deal with the second term in the r.h.s. of (&) to get the analogue of Proposition EEZ3)
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A Appendix

In this appendix we give the proof of Proposition [LZTl

Proof. Fix t > 0, n € Q and K: Z% x [0,00) — R such that S = Y, ;4 fg ds|K(z,s)| < oo.
First consider the case K > 0. Since the £-process and the g—process are both monotone in their

initial configuration (as is evident from the graphical representation described in Section [2),
it suffices to show that

ex ds K(z,8)&(z )]) <EIRW<6X [
“(l2) p

for all n € Q such that |[{z € Z¢ : n(z) = 1}| < co. This goes as follows.
Since &(z) € {0, 1}, we may write for any r € R\ {0},

erés(z) _
(exp[Z/dussﬁs( )]) <exp Z/dusg 11]>. (A.0.12)

cz4 2€74

Z/ ds K(z,8) &z )D (A.0.11)

z€74

By Taylor expansion, we get

{5 fenenzizc)
_exp[—S} n(m[Z/duss 5_(1)D

z€7Z4
7]
= exp —

S(en) sif e 2 ) (e )o(] o))

2; €24
(A.0.13)

According to Lemma 4.1 in Landim (18), we have for any r € R,

(exp [ ng (%) ]) < Eﬂ?"v(exp [rzgsj(zj)]>. (A.0.14)
j=1

Picking > 0, combining (AI2ZHATLIA), and using the analogue of (AL for (&)i>0, we

obtain
T&A ) _
(exp[Z/dussfs( )]) EIRW(eXp[Z/duss 6_11]>.

z€ZL? z€Z4
(A.0.15)
Now let 7 | 0 and use the dominated convergence theorem to arrive at (AILTT).
For the case K < (0 we can use the same argument with
ee 1
e (A.0.16)
|
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