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Abstract

We continue our study of intermittency for the parabolic Anderson equation ∂u/∂t =
κ∆u+ξu, where u : Z

d× [0,∞)→ R, κ is the diffusion constant, ∆ is the discrete Laplacian,
and ξ : Z

d × [0,∞) → R is a space-time random medium. The solution of the equation
describes the evolution of a “reactant” u under the influence of a “catalyst” ξ.
In this paper we focus on the case where ξ is exclusion with a symmetric random walk tran-
sition kernel, starting from equilibrium with density ρ ∈ (0, 1). We consider the annealed
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Lyapunov exponents, i.e., the exponential growth rates of the successive moments of u. We
show that these exponents are trivial when the random walk is recurrent, but display an
interesting dependence on the diffusion constant κ when the random walk is transient, with
qualitatively different behavior in different dimensions. Special attention is given to the
asymptotics of the exponents for κ → ∞, which is controlled by moderate deviations of ξ
requiring a delicate expansion argument.
In Gärtner and den Hollander (10) the case where ξ is a Poisson field of independent (sim-
ple) random walks was studied. The two cases show interesting differences and similarities.
Throughout the paper, a comparison of the two cases plays a crucial role.

Key words: Parabolic Anderson model, catalytic random medium, exclusion process, Lya-
punov exponents, intermittency, large deviations, graphical representation.
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1 Introduction and main results

1.1 Model

The parabolic Anderson equation is the partial differential equation

∂

∂t
u(x, t) = κ∆u(x, t) + ξ(x, t)u(x, t), x ∈ Z

d, t ≥ 0. (1.1.1)

Here, the u-field is R-valued, κ ∈ [0,∞) is the diffusion constant, ∆ is the discrete Laplacian,
acting on u as

∆u(x, t) =
∑

y∈Zd

‖y−x‖=1

[u(y, t)− u(x, t)] (1.1.2)

(‖ · ‖ is the Euclidian norm), while

ξ = {ξ(x, t) : x ∈ Z
d, t ≥ 0} (1.1.3)

is an R-valued random field that evolves with time and that drives the equation. As initial
condition for (1.1.1) we take

u(·, 0) ≡ 1. (1.1.4)

Equation (1.1.1) is a discrete heat equation with the ξ-field playing the role of a source. What
makes (1.1.1) particularly interesting is that the two terms in the right-hand side compete with
each other : the diffusion induced by ∆ tends to make u flat, while the branching induced by
ξ tends to make u irregular. Intermittency means that for large t the branching dominates,
i.e., the u-field develops sparse high peaks in such a way that u and its moments are each
dominated by their own collection of peaks (see Gärtner and König (11), Section 1.3, and den
Hollander (10), Section 1.2). In the quenched situation this geometric picture of intermittency
is well understood for several classes of time-independent random potentials ξ (see Sznitman
(21) for Poisson clouds and Gärtner, König and Molchanov (12) for i.i.d. potentials with double-
exponential and heavier upper tails). For time-dependent random potentials ξ, however, such
results are not yet available. Instead one restricts attention to understanding the phenomenon
of intermittency indirectly by comparing the successive annealed Lyapunov exponents

λp = lim
t→∞

1

t
log〈u(0, t)p〉1/p, p = 1, 2, . . . (1.1.5)

One says that the solution u is p-intermittent if the strict inequality

λp > λp−1 (1.1.6)

holds. For a geometric interpretation of this definition, see (11), Section 1.3.

In their fundamental paper (3), Carmona and Molchanov succeeded to investigate the annealed
Lyapunov exponents and to draw the qualitative picture of intermittency for potentials of the
form

ξ(x, t) = Ẇx(t), (1.1.7)

where {Wx, x ∈ Z
d} denotes a collection of independent Brownian motions. (In this important

case, equation (1.1.1) corresponds to an infinite system of coupled Îto diffusions.) They showed
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that for d = 1, 2 intermittency of all orders is present for all κ, whereas for d ≥ 3 p-intermittency
holds if and only if the diffusion constant κ is smaller than a critical threshold κ∗p tending to
infinity as p → ∞. They also studied the asymptotics of the quenched Lyapunov exponent in
the limit as κ ↓ 0, which turns out to be singular. Subsequently, the latter was more thoroughly
investigated in papers by Carmona, Molchanov and Viens (4), Carmona, Koralov and Molchanov
(2), and Cranston, Mountford and Shiga (6), (7).

In the present paper we study a different model, describing the spatial evolution of moving
reactants under the influence of moving catalysts. In this model, the potential has the form

ξ(x, t) =
∑

k

δYk(t)(x) (1.1.8)

with {Yk, k ∈ N} a collection of catalyst particles performing a space-time homogeneous re-
versible particle dynamics with hard core repulsion, and u(x, t) describes the concentration of
the reactant particles given the motion of the catalyst particles. We will see later that the
study of the annealed Lyapunov exponents leads to different dimension effects and requires the
development of different techniques than in the white noise case (1.1.7). Indeed, because of the
non-Gaussian nature and the non-independent spatial structure of the potential, it is far from
obvious how to tackle the computation of Lyapunov exponents.

Let us describe our model in more detail. We consider the case where ξ is Symmetric Exclusion
(SE), i.e., ξ takes values in {0, 1}Z

d
× [0,∞), where ξ(x, t) = 1 means that there is a particle at

x at time t and ξ(x, t) = 0 means that there is none, and particles move around according to a
symmetric random walk transition kernel. We choose ξ(·, 0) according to the Bernoulli product
measure with density ρ ∈ (0, 1), i.e., initially each site has a particle with probability ρ and no
particle with probability 1 − ρ, independently for different sites. For this choice, the ξ-field is
stationary in time.

One interpretation of (1.1.1) and (1.1.4) comes from population dynamics. Consider a spatially
homogeneous system of two types of particles, A (catalyst) and B (reactant), subject to:

(i) A-particles behave autonomously, according to a prescribed stationary dynamics, with
density ρ;

(ii) B-particles perform independent random walks with diffusion constant κ and split into
two at a rate that is equal to the number of A-particles present at the same location;

(iii) the initial density of B-particles is 1.

Then
u(x, t) = the average number of B-particles at site x at time t

conditioned on the evolution of the A-particles.
(1.1.9)

It is possible to add that B-particles die at rate δ ∈ (0,∞). This amounts to the trivial
transformation u(x, t)→ u(x, t)e−δt.

In Kesten and Sidoravicius (16) and in Gärtner and den Hollander (10), the case was considered
where ξ is given by a Poisson field of independent simple random walks. The survival versus
extinction pattern (in (16) for δ > 0) and the annealed Lyapunov exponents (in (10) for δ = 0)
were studied, in particular, their dependence on d, κ and the parameters controlling ξ.
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1.2 SE, Lyapunov exponents and comparison with IRW

Throughout the paper, we abbreviate Ω = {0, 1}Z
d

(endowed with the product topology), and
we let p : Z

d × Z
d → [0, 1] be the transition kernel of an irreducible random walk,

p(x, y) = p(0, y − x) ≥ 0 ∀x, y ∈ Z
d,

∑

y∈Zd

p(x, y) = 1 ∀x ∈ Z
d,

p(x, x) = 0 ∀x ∈ Z
d, p(·, ·) generates Z

d,

(1.2.1)

that is assumed to be symmetric,

p(x, y) = p(y, x) ∀x, y ∈ Z
d. (1.2.2)

A special case is simple random walk

p(x, y) =

{
1
2d if ‖x− y‖ = 1,

0 otherwise.
(1.2.3)

The exclusion process ξ is the Markov process on Ω whose generator L acts on cylindrical
functions f as (see Liggett (19), Chapter VIII)

(Lf)(η) =
∑

x,y∈Zd

p(x, y) η(x)[1 − η(y)] [f (ηx,y)− f(η)] =
∑

{x,y}⊂Zd

p(x, y) [f (ηx,y)− f(η)] ,

(1.2.4)
where the latter sum runs over unoriented bonds {x, y} between any pair of sites x, y ∈ Z

d, and

ηx,y(z) =





η(z) if z 6= x, y,

η(y) if z = x,

η(x) if z = y.

(1.2.5)

The first equality in (1.2.4) says that a particle at site x jumps to a vacancy at site y at rate
p(x, y), the second equality says that the states of x and y are interchanged along the bond
{x, y} at rate p(x, y). For ρ ∈ [0, 1], let νρ be the Bernoulli product measure on Ω with density
ρ. This is an invariant measure for SE. Under (1.2.1–1.2.2), (νρ)ρ∈[0,1] are the only extremal
equilibria (see Liggett (19), Chapter VIII, Theorem 1.44). We denote by Pη the law of ξ starting
from η ∈ Ω and write Pνρ =

∫
Ω νρ(dη) Pη .

In the graphical representation of SE, space is drawn sidewards, time is drawn upwards, and
for each pair of sites x, y ∈ Z

d links are drawn between x and y at Poisson rate p(x, y). The
configuration at time t is obtained from the one at time 0 by transporting the local states along
paths that move upwards with time and sidewards along links (see Fig. 1).

We will frequently use the following property, which is immediate from the graphical represen-
tation:

E η (ξ(y, t)) =
∑

x∈Zd

η(x) pt(x, y), η ∈ Ω, y ∈ Z
d, t ≥ 0. (1.2.6)

Similar expressions hold for higher order correlations. Here, pt(x, y) is the probability that
the random walk with transition kernel p(·, ·) and step rate 1 moves from x to y in time t.
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The graphical representation shows that the evolution is invariant under time reversal and, in
particular, the equilibria (νρ)ρ∈[0,1] are reversible. This fact will turn out to be very important
later on.

x

y

0

t

→

←

←

↑

↑

↑

↑

r

r

Z
d

Fig. 1: Graphical representation. The dashed lines are links.
The arrows represent a path from (x, 0) to (y, t).

By the Feynman-Kac formula, the solution of (1.1.1) and (1.1.4) reads

u(x, t) = E x

(
exp

[∫ t

0
ds ξ (Xκ(s), t− s)

])
, (1.2.7)

where Xκ is simple random walk on Z
d with step rate 2dκ and E x denotes expectation with

respect to Xκ given Xκ(0) = x. We will often write ξt(x) and Xκ
t instead of ξ(x, t) and Xκ(t),

respectively.

For p ∈ N and t > 0, define

Λp(t) =
1

pt
log E νρ (u(0, t)p) . (1.2.8)

Then

Λp(t) =
1

pt
log E νρ

(
E 0,...,0

(
exp

[ ∫ t

0
ds

p∑

q=1

ξ
(
Xκ
q (s), s

)]))
, (1.2.9)

where Xκ
q , q = 1, . . . , p, are p independent copies of Xκ, E 0,...,0 denotes expectation w.r.t.

Xκ
q , q = 1, . . . , p, given Xκ

1 (0) = · · · = Xκ
p (0) = 0, and the time argument t − s in (1.2.7) is

replaced by s in (1.2.9) via the reversibility of ξ starting from νρ. If the last quantity admits a
limit as t→∞, then we define

λp = lim
t→∞

Λp(t) (1.2.10)

to be the p-th annealed Lyapunov exponent.

From Hölder’s inequality applied to (1.2.8) it follows that Λp(t) ≥ Λp−1(t) for all t > 0 and
p ∈ N \ {1}. Hence λp ≥ λp−1 for all p ∈ N \ {1}. As before, we say that the system is p-
intermittent if λp > λp−1. In the latter case the system is q-intermittent for all q > p as well
(cf. Gärtner and Molchanov (13), Section 1.1). We say that the system is intermittent if it is
p-intermittent for all p ∈ N \ {1}.

Let (ξ̃t)t≥0 be the process of Independent Random Walks (IRW) with step rate 1, transition

kernel p(·, ·) and state space Ω̃ = N
Z

d

0 with N0 = N ∪ {0}. Let E
IRW
η denote expectation w.r.t.

(ξ̃t)t≥0 starting from ξ̃0 = η ∈ Ω, and write E
IRW
νρ

=
∫
Ω νρ(dη) E

IRW
η . Throughout the paper we

will make use of the following inequality comparing SE and IRW. The proof of this inequality is
given in Appendix A and uses a lemma due to Landim (18).
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Proposition 1.2.1. For any K : Z
d × [0,∞)→ R such that either K ≥ 0 or K ≤ 0, any t ≥ 0

such that
∑

z∈Zd

∫ t
0 ds |K(z, s)| <∞ and any η ∈ Ω,

E η

(
exp

[
∑

z∈Zd

∫ t

0
ds K(z, s) ξs(z)

])
≤ E

IRW
η

(
exp

[
∑

z∈Zd

∫ t

0
ds K(z, s) ξ̃s(z)

])
. (1.2.11)

This powerful inequality will allow us to obtain bounds that are more easily computable.

1.3 Main theorems

Our first result is standard and states that the Lyapunov exponents exist and behave nicely as
a function of κ. We write λp(κ) to exhibit the dependence on κ, suppressing d and ρ.

Theorem 1.3.1. Let d ≥ 1, ρ ∈ (0, 1) and p ∈ N.
(i) For all κ ∈ [0,∞), the limit in (1.2.10) exists and is finite.
(ii) On [0,∞), κ→ λp(κ) is continuous, non-increasing and convex.

Our second result states that the Lyapunov exponents are trivial for recurrent random walk but
are non-trivial for transient random walk (see Fig. 2), without any further restriction on p(·, ·).

Theorem 1.3.2. Let d ≥ 1, ρ ∈ (0, 1) and p ∈ N.
(i) If p(·, ·) is recurrent, then λp(κ) = 1 for all κ ∈ [0,∞).
(ii) If p(·, ·) is transient, then ρ < λp(κ) < 1 for all κ ∈ [0,∞). Moreover, κ 7→ λp(κ) is strictly
decreasing with limκ→∞ λp(κ) = ρ.

0

1

κ

λp(κ)

0

1

ρ

κ

λp(κ)

s

s

Fig. 2: Qualitative picture of κ 7→ λp(κ) for recurrent, respectively,
transient random walk.

Our third result shows that for transient random walk the system is intermittent for small κ.

Theorem 1.3.3. Let d ≥ 1 and ρ ∈ (0, 1). If p(·, ·) is transient, then there exists κ0 ∈ (0,∞]
such that p 7→ λp(κ) is strictly increasing for κ ∈ [0, κ0).

Our fourth and final result identifies the behavior of the Lyapunov exponents for large κ when
d ≥ 4 and p(·, ·) is simple random walk (see Fig. 3).

Theorem 1.3.4. Assume (1.2.3). Let d ≥ 4, ρ ∈ (0, 1) and p ∈ N . Then

lim
κ→∞

κ[λp(κ) − ρ] =
1

2d
ρ(1− ρ)Gd (1.3.1)

with Gd the Green function at the origin of simple random walk on Z
d.
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0

ρ

1

r

r

r

p = 3

p = 2

p = 1
?

κ

λp(κ)

Fig. 3: Qualitative picture of κ 7→ λp(κ) for p = 1, 2, 3 for simple
random walk in d ≥ 4. The dotted line moving down represents
the asymptotics given by the r.h.s. of (1.3.1).

1.4 Discussion

Theorem 1.3.1 gives general properties that need no further comment. We will see that they in
fact hold for any stationary, reversible and bounded ξ.

The intuition behind Theorem 1.3.2 is the following. If the catalyst is driven by a recurrent
random walk, then it suffers from “traffic jams”, i.e., with not too small a probability there is
a large region around the origin that the catalyst fully occupies for a long time. Since with
not too small a probability the simple random walk (driving the reactant) can stay inside this
large region for the same amount of time, the average growth rate of the reactant at the origin
is maximal. This phenomenon may be expressed by saying that for recurrent random walk
clumping of the catalyst dominates the growth of the moments. For transient random walk, on
the other hand, clumping of the catalyst is present (the growth rate of the reactant is > ρ),
but it is not dominant (the growth rate of the reactant is < 1). As the diffusion constant κ of
the reactant increases, the effect of the clumping of the catalyst gradually diminishes and the
growth rate of the reactant gradually decreases to the density of the catalyst.

Theorem 1.3.3 shows that if the reactant stands still and the catalyst is driven by a transient
random walk, then the system is intermittent. Apparently, the successive moments of the reac-
tant, which are equal to the exponential moments of the occupation time of the origin by the
catalyst (take (1.2.7) with κ = 0), are sensitive to successive degrees of clumping. By continuity,
intermittency persists for small κ.

Theorem 1.3.4 shows that, when the catalyst is driven by simple random walk, all Lyapunov
exponents decay to ρ as κ→∞ in the same manner when d ≥ 4. The case d = 3 remains open.
We conjecture:

Conjecture 1.4.1. Assume (1.2.3). Let d = 3, ρ ∈ (0, 1) and p ∈ N . Then

lim
κ→∞

κ[λp(κ)− ρ] =
1

2d
ρ(1− ρ)Gd + [2dρ(1 − ρ)p]2P (1.4.1)

with

P = sup
f∈H1(R3)
‖f‖2=1

[ ∥∥∥(−∆R3)−1/2 f2
∥∥∥

2

2
− ‖∇R3f‖22

]
∈ (0,∞), (1.4.2)
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where ∇R3 and ∆R3 are the continuous gradient and Laplacian, ‖ · ‖2 is the L2(R3)-norm,
H1(R3) = {f : R

3 → R : f,∇R3f ∈ L2(R3)}, and

∥∥∥(−∆R3)−1/2 f2
∥∥∥

2

2
=

∫

R3

dx f2(x)

∫

R3

dy f2(y)
1

4π‖x− y‖
. (1.4.3)

In Section 1.5 we will explain how this conjecture arises in analogy with the case of IRW studied
in Gärtner and den Hollander (10). If Conjecture 1.4.1 holds true, then in d = 3 intermittency
persists for large κ. It would still remain open whether the same is true for d ≥ 4. To decide the
latter, we need a finer asymptotics for d ≥ 4. A large diffusion constant of the reactant hampers
the localization of u around the regions where the catalyst clumps, but it is not a priori clear
whether this is able to destroy intermittency for d ≥ 4.

We further conjecture:

Conjecture 1.4.2. In d = 3, the system is intermittent for all κ ∈ [0,∞).

Conjecture 1.4.3. In d ≥ 4, there exists a strictly increasing sequence 0 < κ2 < κ3 < . . . such
that for p = 2, 3, . . . the system is p-intermittent if and only if κ ∈ [0, κp).

In words, we conjecture that in d = 3 the curves in Fig. 3 never merge, whereas for d ≥ 4 the
curves merge successively.

Let us briefly compare our results for the simple symmetric exclusion dynamics with those of the
IRW dynamics studied in (10). If the catalysts are moving freely, then they can accumulate with
a not too small probability at single lattice sites. This leads to a double-exponential growth of
the moments for d = 1, 2. The same is true for d ≥ 3 for certain choices of the model parameters
(‘strongly catalytic regime’). Otherwise the annealed Lyapunov exponents are finite (‘weakly
catalytic regime’). For our exclusion dynamics, there can be at most one catalytic particle
per site, leading to the degenerate behavior for d = 1, 2 (i.e., the recurrent case) as stated in
Theorem 1.3.2(i). For d ≥ 3, the large κ behavior of the annealed Lyapunov exponents turns out
to be the same as in the weakly catalytic regime for IRW. The proof of Theorem 1.3.4 will be
carried out in Section 4 essentially by ‘reducing’ its assertion to the corresponding statement in
(10), as will be explained in Section 1.5. The reduction is highly technical, but seems to indicate
a degree of ‘universality’ in the behavior of a larger class of models.

Finally, let us explain why we cannot proceed directly along the lines of (10). In that paper,
the key is a Feynman-Kac representation of the moments. For the first moment, for instance,
we have

〈u(0, t)〉 = eνtE0

(
exp

[
ν

∫ t

0
w(X(s), s) ds

])
, (1.4.4)

where X is simple random walk on Z
d with generator κ∆ starting from the origin, ν is the

density of the catalysts, and w denotes the solution of the random Cauchy problem

∂

∂t
w(x, t) = ̺∆w(x, t) + δX(t)(x){w(x, t) + 1}, w(·, 0) ≡ 0, (1.4.5)

with ̺ the diffusion constant of the catalysts. In the weakly catalytic regime, for large κ, we
may combine (1.4.4) with the approximation

w(X(s), s) ≈

∫ s

0
ps−u(X(u),X(s)) du, (1.4.6)
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where pt(x, y) is the transition kernel of the catalysts. Observe that w(X(s), s) depends on the
full past of X up to time s. The entire proof in (10) is based on formula (1.4.4). But for our
exclusion dynamics there is no such formula for the moments.

1.5 Heuristics behind Theorem 1.3.4 and Conjecture 1.4.1

The heuristics behind Theorem 1.3.4 and Conjecture 1.4.1 is the following. Consider the case
p = 1. Scaling time by κ in (1.2.9), we have λ1(κ) = κλ∗1(κ) with

λ∗1(κ) = lim
t→∞

Λ∗
1(κ; t) and Λ∗

1(κ; t) =
1

t
log E νρ,0

(
exp

[
1

κ

∫ t

0
ds ξ

(
X(s),

s

κ

)])
, (1.5.1)

where X = X1 and we abbreviate
E νρ,0 = E νρ E 0. (1.5.2)

For large κ, the ξ-field in (1.5.1) evolves slowly and therefore does not manage to cooperate with
the X-process in determining the growth rate. Also, the prefactor 1/κ in the exponent is small.
As a result, the expectation over the ξ-field can be computed via a Gaussian approximation that
becomes sharp in the limit as κ→∞, i.e.,

Λ∗
1(κ; t)−

ρ

κ
=

1

t
log E νρ,0

(
exp

[
1

κ

∫ t

0
ds
[
ξ
(
X(s),

s

κ

)
− ρ
]])

≈
1

t
logE 0

(
exp

[
1

2κ2

∫ t

0
ds

∫ t

0
du E νρ

([
ξ
(
X(s),

s

κ

)
− ρ
][
ξ
(
X(u),

u

κ

)
− ρ
])])

.

(1.5.3)
(In essence, what happens here is that the asymptotics for κ → ∞ is driven by moderate
deviations of the ξ-field, which fall in the Gaussian regime.) The exponent in the r.h.s. of (1.5.3)
equals

1

κ2

∫ t

0
ds

∫ t

s
du E νρ

([
ξ
(
X(s),

s

κ

)
− ρ
][
ξ
(
X(u),

u

κ

)
− ρ
])
. (1.5.4)

Now, for x, y ∈ Z
d and b ≥ a ≥ 0 we have

E νρ

([
ξ(x, a) − ρ

][
ξ(y, b)− ρ

])
= E νρ

([
ξ(x, 0) − ρ

][
ξ(y, b− a)− ρ

])

=

∫

Ω
νρ(dη)

[
η(x)− ρ

]
E η

([
ξ(y, b− a)− ρ

]))

=
∑

z∈Zd

pb−a(z, y)

∫

Ω
νρ(dη)

[
η(x)− ρ

][
η(z) − ρ

]

= ρ(1− ρ) pb−a(x, y),

(1.5.5)

where the first equality uses the stationarity of ξ, the third equality uses (1.2.6) from the graphical
representation, and the fourth equality uses that νρ is Bernoulli. Substituting (1.5.5) into (1.5.4),
we get that the r.h.s. of (1.5.3) equals

1

t
logE 0

(
exp

[
ρ(1− ρ)

κ2

∫ t

0
ds

∫ t

s
du pu−s

κ
(X(s),X(u))

])
. (1.5.6)
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This is precisely the integral that was investigated in Gärtner and den Hollander (10) (see
Sections 5–8 and equations (1.5.4–1.5.11) of that paper and 1.4.4-1.4.5). Therefore the limit

lim
κ→∞

κ[λ1(κ)− ρ] = lim
κ→∞

κ2 lim
t→∞

[
Λ∗

1(κ; t) −
ρ

κ

]
= lim

κ→∞
κ2 lim

t→∞
(1.5.6) (1.5.7)

can be read off from (10) and yields (1.3.1) for d ≥ 4 and (1.4.1) for d = 3. A similar heuristics
applies for p > 1.

The r.h.s. of (1.3.1), which is valid for d ≥ 4, is obtained from the above computations by moving
the expectation in (1.5.6) into the exponent. Indeed,

E 0

(
pu−s

κ
(X(s),X(u))

)
=
∑

x,y∈Zd

p2ds(0, x)p2d(u−s)(x, y)pu−s
κ

(x, y) = p2d(u−s)(1+ 1
2dκ

)(0, 0)

(1.5.8)
and hence
∫ t

0
ds

∫ t

s
du E 0

(
pu−s

κ
(X(s),X(u))

)
=

∫ t

0
ds

∫ t−s

0
dv p2dv(1+ 1

2dκ
)(0, 0) ∼ t

1

2d(1 + 1
2dκ )

Gd.

(1.5.9)
Thus we see that the result in Theorem 1.3.4 comes from a second order asymptotics on ξ and
a first order asymptotics on X in the limit as κ→∞. Despite this simple fact, it turns out to
be hard to make the above heuristics rigorous. For d = 3, on the other hand, we expect the first
order asymptotics on X to fail, leading to the more complicated behavior in (1.4.1).

Remark 1: In (1.1.1), the ξ-field may be multiplied by a coupling constant γ ∈ (0,∞). This
produces no change in Theorems 1.3.1, 1.3.2(i) and 1.3.3. In Theorem 1.3.2(ii), (ρ, 1) becomes
(γρ, γ), while in the r.h.s. of Theorem 1.3.4 and Conjecture 1.4.1, ρ(1 − ρ) gets multiplied by
γ2. Similarly, if the simple random walk in Theorem 1.3.4 is replaced by a random walk with
transition kernel p(·, ·) satisfying (1.2.1–1.2.2), then we expect that in (1.3.1) and (1.4.1) Gd
becomes the Green function at the origin of this random walk and a factor 1/σ4 appears in front
of the last term in the r.h.s. of (1.4.1) with σ2 the variance of p(·, ·).

Remark 2: In Gärtner and den Hollander (10) the catalyst was γ times a Poisson field with
density ρ of independent simple random walks stepping at rate 2dθ, where γ, ρ, θ ∈ (0,∞) are
parameters. It was found that the Lyapunov exponents are infinite in d = 1, 2 for all p and in
d ≥ 3 for p ≥ 2dθ/γGd, irrespective of κ and ρ. In d ≥ 3 for p < 2dθ/γGd, on the other hand,
the Lyapunov exponents are finite for all κ, and exhibit a dichotomy similar to the one expressed
by Theorem 1.3.4 and Conjecture 1.4.1. Apparently, in this regime the two types of catalyst are
qualitatively similar. Remarkably, the same asymptotic behavior for large κ was found (with
ργ2 replacing ρ(1−ρ) in (1.3.1)), and the same variational formula as in (1.4.2) was seen to play
a central role in d = 3. [Note: In (10) the symbols ν, ρ,Gd were used instead of ρ, θ,Gd/2d.]

1.6 Outline

In Section 2 we derive a variational formula for λp from which Theorem 1.3.1 follows immediately.
The arguments that will be used to derive this variational formula apply to an arbitrary bounded,
stationary and reversible catalyst. Thus, the properties in Theorem 1.3.1 are quite general. In
Section 3 we do a range of estimates, either directly on (1.2.9) or on the variational formula for
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λp derived in Section 2, to prove Theorems 1.3.2 and 1.3.3. Here, the special properties of SE, in
particular, its space-time correlation structure expressed through the graphical representation
(see Fig. 1), are crucial. These results hold for an arbitrary random walk subject to (1.2.1–1.2.2).
Finally, in Section 4 we prove Theorem 1.3.4, which is restricted to simple random walk. The
analysis consists of a long series of estimates, taking up more than half of the paper and, in
essence, showing that the problem reduces to understanding the asymptotic behavior of (1.5.6).
This reduction is important, because it explains why there is some degree of universality in the
behavior for κ→∞ under different types of catalysts: apparently, the Gaussian approximation
and the two-point correlation function in space and time determine the asymptotics (recall the
heuristic argument in Section 1.5). The main steps of this long proof are outlined in Section 4.2.

2 Lyapunov exponents: general properties

In this section we prove Theorem 1.3.1. In Section 2.1 we formulate a large deviation principle
for the occupation time of the origin in SE due to Landim (18), which will be needed in Section
3.2. In Section 2.2 we extend the line of thought in (18) and derive a variational formula for λp
from which Theorem 1.3.1 will follow immediately.

2.1 Large deviations for the occupation time of the origin

Kipnis (17), building on techniques developed by Arratia (1), proved that the occupation time
of the origin up to time t,

Tt =

∫ t

0
ξ(0, s) ds, (2.1.1)

satisfies a strong law of large numbers and a central limit theorem. Landim (18) subsequently
proved that Tt satisfies a large deviation principle, i.e.,

lim sup
t→∞

1

t
log Pνρ (Tt/t ∈ F ) ≤ − inf

α∈F
Ψd(α), F ⊆ [0, 1] closed,

lim inf
t→∞

1

t
log Pνρ (Tt/t ∈ G) ≥ − inf

α∈G
Ψd(α), G ⊆ [0, 1] open,

(2.1.2)

with the rate function Ψd : [0, 1] → [0,∞) given by an associated Dirichlet form. This rate
function is continuous, for transient random walk kernels p(·, ·) it has a unique zero at ρ, whereas
for recurrent random walk kernels it vanishes identically.

2.2 Variational formula for λp(κ): proof of Theorem 1.3.1

Return to (1.2.9). In this section we show that, by considering ξ and Xκ
1 , . . . ,X

κ
p as a joint

random process and exploiting the reversibility of ξ, we can use the spectral theorem to express
the Lyapunov exponents in terms of a variational formula. From the latter it will follow that
κ 7→ λp(κ) is continuous, non-increasing and convex on [0,∞).

Define
Y (t) =

(
ξ(t),Xκ

1 (t), . . . ,Xκ
p (t)

)
, t ≥ 0, (2.2.1)
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and

V (η, x1, . . . , xp) =

p∑

i=1

η(xi), η ∈ Ω, x1, . . . , xp ∈ Z
d. (2.2.2)

Then we may write (1.2.9) as

Λp(t) =
1

pt
log E νρ,0,...,0

(
exp

[∫ t

0
V (Y (s))ds

])
. (2.2.3)

The random process Y = (Y (t))t≥0 takes values in Ω× (Zd)p and has generator

Gκ = L+ κ

p∑

i=1

∆i (2.2.4)

in L2(νρ ⊗m
p) (endowed with the inner product (·, ·)), with L given by (1.2.4), ∆i the discrete

Laplacian acting on the i-th spatial coordinate, and m the counting measure on Z
d. Let

GκV = Gκ + V. (2.2.5)

By (1.2.2), this is a self-adjoint operator. Our claim is that λp equals 1
p times the upper boundary

of the spectrum of GκV .

Proposition 2.2.1. λp = 1
pµp with µp = supSp (GκV ).

Although this is a general fact, the proofs known to us (e.g. Carmona and Molchanov (3), Lemma
III.1.1) do not work in our situation.

Proof. Let (Pt)t≥0 denote the semigroup generated by GκV .

Upper bound: Let Qt log t = [−t log t, t log t]d ∩ Z
d. By a standard large deviation estimate for

simple random walk, we have

E νρ,0,...,0

(
exp

[∫ t

0
V (Y (s))ds

])

= E νρ,0,...,0

(
exp

[∫ t

0
V (Y (s))ds

]
11 {Xκ

i (t) ∈ Qt log t for i = 1, . . . , p}

)
+Rt

(2.2.6)

with limt→∞
1
t logRt = −∞. Thus it suffices to focus on the term with the indicator.

Estimate, with the help of the spectral theorem (Kato (15), Section VI.5),

E νρ,0,...,0

(
exp

[∫ t

0
V (Y (s))ds

]
11 {Xκ

i (t) ∈ Qt log t for i = 1, . . . , p}

)

≤
(
11(Qt log t)p ,Pt11(Qt log t)p

)
=

∫

(−∞,µp]
eµt d‖Eµ11(Qt log t)p‖2L2(νρ⊗mp)

≤ eµpt ‖11(Qt log t)p‖2L2(νρ⊗mp),

(2.2.7)

where 11(Qt log t)p is the indicator function of (Qt log t)
p ⊂ (Zd)p and (Eµ)µ∈R denotes the spectral

family of orthogonal projection operators associated with GκV . Since ‖11(Qt log t)p‖2L2(νρ⊗mp) =
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|Qt log t|
p does not increase exponentially fast, it follows from (1.2.10), (2.2.3) and (2.2.6–2.2.7)

that λp ≤
1
pµp.

Lower bound: For every δ > 0 there exists an fδ ∈ L
2(νρ ⊗m

p) such that

(Eµp − Eµp−δ)fδ 6= 0 (2.2.8)

(see Kato (15), Section VI.2; the spectrum of GκV coincides with the set of µ’s for which Eµ+δ −
Eµ−δ 6= 0 for all δ > 0). Approximating fδ by bounded functions, we may without loss of
generality assume that 0 ≤ fδ ≤ 1. Similarly, approximating fδ by bounded functions with finite
support in the spatial variables, we may assume without loss of generality that there exists a
finite Kδ ⊂ Z

d such that
0 ≤ fδ ≤ 11(Kδ)p . (2.2.9)

First estimate

E νρ,0,...,0

(
exp

[∫ t

0
V (Y (s))ds

])

≥
∑

x1,...,xp∈Kδ

E νρ,0,...,0

(
11{Xκ

1 (1) = x1, . . . ,X
κ
p (1) = xp} exp

[∫ t

1
V (Y (s))ds

])

=
∑

x1,...,xp∈Kδ

pκ1(0, x1) . . . p
κ
1(0, xp) E νρ,x1,...,xp

(
exp

[∫ t−1

0
V (Y (s))ds

])

≥ Cpδ

∑

x1,...,xp∈Kδ

E νρ,x1,...,xp

(
exp

[∫ t−1

0
V (Y (s))ds

])
,

(2.2.10)

where pκt (x, y) = Px(X
κ(t) = y) and Cδ = minx∈Kδ

pκ1(0, x) > 0. The equality in (2.2.10) uses
the Markov property and the fact that νρ is invariant for the SE-dynamics. Next estimate

r.h.s. (2.2.10) ≥ Cpδ

∫

Ω
νρ(dη)

∑

x1,...,xp∈Zd

fδ(η, x1, . . . , xp)

× E η,x1,...,xp

(
exp

[∫ t−1

0
V (Y (s))ds

])
fδ(Y (t− 1))

= Cpδ (fδ,Pt−1fδ) ≥
Cpδ
|Kδ |p

∫

(µp−δ,µp]
eµ(t−1) d‖Eµfδ‖

2
L2(νρ⊗mp)

≥ Cpδ e
(µp−δ)(t−1) ‖(Eµp − Eµp−δ)fδ‖

2
L2(νρ⊗mp),

(2.2.11)

where the first inequality uses (2.2.9). Combine (2.2.10–2.2.11) with (2.2.8), and recall (2.2.3),
to get λp ≥

1
p(µp − δ). Let δ ↓ 0, to obtain λp ≥

1
pµp.

The Rayleigh-Ritz formula for µp applied to Proposition 2.2.1 gives (recall (1.2.4), (2.2.2) and
(2.2.4–2.2.5)):

Proposition 2.2.2. For all p ∈ N,

λp =
1

p
µp =

1

p
sup

‖f‖L2(νρ⊗mp)=1
(GκV f, f) (2.2.12)
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with
(GκV f, f) = A1(f)−A2(f)− κA3(f), (2.2.13)

where

A1(f) =

∫

Ω
νρ(dη)

∑

z1,...,zp∈Zd

V (η; z1, . . . , zp) f(η, z1, . . . , zp)
2,

A2(f) =

∫

Ω
νρ(dη)

∑

z1,...,zp∈Zd

1

2

∑

{x,y}⊂Zd

p(x, y) [f(ηx,y, z1, . . . , zp)− f(η, z1, . . . , zp)]
2,

A3(f) =

∫

Ω
νρ(dη)

∑

z1,...,zp∈Zd

1

2

p∑

i=1

∑

yi∈Zd

‖yi−zi‖=1

[f(η, z1, . . . , zp)|zi→yi
− f(η, z1, . . . , zp)]

2,

(2.2.14)

and zi → yi means that the argument zi is replaced by yi.

Remark 2.2.3. Propositions 2.2.1–2.2.2 are valid for general bounded measurable potentials V
instead of (2.2.2). The proof also works for modifications of the random walk Y for which a
lower bound similar to that in the last two lines of (2.2.10) can be obtained. Such modifications
will be used later in Sections 4.5–4.6.

We are now ready to give the proof of Theorem 1.3.1.

Proof. The existence of λp was established in Proposition 2.2.1. By (2.2.13–2.2.14), the r.h.s.
of (2.2.12) is a supremum over functions that are linear and non-increasing in κ. Consequently,
κ 7→ λp(κ) is lower semi-continuous, convex and non-increasing on [0,∞) (and, hence, also
continuous).

The variational formula in Proposition 2.2.2 is useful to deduce qualitative properties of λp,
as demonstrated above. Unfortunately, it is not clear how to deduce from it more detailed
information about the Lyapunov exponents. To achieve the latter, we resort in Sections 3 and
4 to different techniques, only occasionally making use of Proposition 2.2.2.

3 Lyapunov exponents: recurrent vs. transient random walk

In this section we prove Theorems 1.3.2 and 1.3.3. In Section 3.1 we consider recurrent random
walk, in Section 3.2 transient random walk.

3.1 Recurrent random walk: proof of Theorem 1.3.2(i)

The key to the proof of Theorem 1.3.2(i) is the following.

Lemma 3.1.1. If p(·, ·) is recurrent, then for any finite box Q ⊂ Z
d,

lim
t→∞

1

t
log Pνρ

(
ξ(x, s) = 1 ∀ s ∈ [0, t] ∀x ∈ Q

)
= 0. (3.1.1)
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Proof. In the spirit of Arratia (1), Section 3, we argue as follows. Let

HQ
t =

{
x ∈ Z

d : there is a path from (x, 0) to Q× [0, t] in the graphical representation
}
.

(3.1.2)

x
0

t

[ ]Q −→←−

→

→

→

↑

↑

↑

r

r

Z
d

Fig. 4: A path from (x, 0) to Q× [0, t] (recall Fig. 1).

Note that HQ
0 = Q and that t 7→ HQ

t is non-decreasing. Denote by P and E , respectively,
probability and expectation associated with the graphical representation. Then

Pνρ

(
ξ(x, s) = 1 ∀ s ∈ [0, t] ∀x ∈ Q

)
= (P ⊗ νρ)

(
HQ
t ⊆ ξ(0)

)
, (3.1.3)

where ξ(0) = {x ∈ Z
d : ξ(x, 0) = 1} is the set of initial locations of the particles. Indeed, (3.1.3)

holds because if ξ(x, 0) = 0 for some x ∈ HQ
t , then this 0 will propagate into Q prior to time t

(see Fig. 4).

By Jensen’s inequality,

(P ⊗ νρ)
(
HQ
t ⊆ ξ(0)

)
= E

(
ρ|H

Q
t |
)
≥ ρE|H

Q
t |. (3.1.4)

Moreover, HQ
t ⊆ ∪y∈QH

{y}
t , and hence

E|HQ
t | ≤ |Q| E|H

{0}
t |. (3.1.5)

Furthermore, we have

E|H
{0}
t | = E

p(·,·)
0 Rt, (3.1.6)

where Rt is the range after time t of the random walk with transition kernel p(·, ·) driving ξ and

E
p(·,·)
0 denotes expectation w.r.t. this random walk starting from 0. Indeed, by time reversal,

the probability that there is a path from (x, 0) to {0} × [0, t] in the graphical representation is
equal to the probability that the random walk starting from 0 hits x prior to time t. It follows
from (3.1.3–3.1.6) that

1

t
log Pνρ

(
ξ(x, s) = 1 ∀ s ∈ [0, t] ∀x ∈ Q

)
≥ −|Q| log

(
1

ρ

){
1

t
E
p(·,·)
0 Rt

}
. (3.1.7)

Finally, since limt→∞
1
tE

p(·,·)
0 Rt = 0 when p(·, ·) is recurrent (see Spitzer (20), Chapter 1, Section

4), we get (3.1.1).
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We are now ready to give the proof of Theorem 1.3.2(i).

Proof. Since p 7→ λp is non-decreasing and λp ≤ 1 for all p ∈ N, it suffices to give the proof for
p = 1. For p = 1, (1.2.9) gives

Λ1(t) =
1

t
log E νρ,0

(
exp

[∫ t

0
ξ (Xκ(s), s) ds

])
. (3.1.8)

By restricting Xκ to stay inside a finite box Q ⊂ Z
d up to time t and requiring ξ to be 1

throughout this box up to time t, we obtain

E νρ,0

(
exp

[∫ t

0
ξ(Xκ(s), s) ds

])

≥ et Pνρ

(
ξ(x, s) = 1 ∀ s ∈ [0, t] ∀x ∈ Q

)
P0

(
Xκ(s) ∈ Q ∀ s ∈ [0, t]

)
.

(3.1.9)

For the second factor, we apply (3.1.1). For the third factor, we have

lim
t→∞

1

t
logP0

(
Xκ(s) ∈ Q ∀ s ∈ [0, t]

)
= −λκ(Q) (3.1.10)

with λκ(Q) > 0 the principal Dirichlet eigenvalue on Q of −κ∆, the generator of the simple
random walk Xκ. Combining (3.1.1) and (3.1.8–3.1.10), we arrive at

λ1 = lim
t→∞

Λ1(t) ≥ 1− λκ(Q). (3.1.11)

Finally, let Q → Z
d and use that limQ→Zd λκ(Q) = 0 for any κ, to arrive at λ1 ≥ 1. Since,

trivially, λ1 ≤ 1, we get λ1 = 1.

3.2 Transient random walk: proof of Theorems 1.3.2(ii) and 1.3.3

Theorem 1.3.2(ii) is proved in Sections 3.2.1 and 3.2.3–3.2.5, Theorem 1.3.3 in Section 3.2.2.
Throughout the present section we assume that the random walk kernel p(·, ·) is transient.

3.2.1 Proof of the lower bound in Theorem 1.3.2(ii)

Proposition 3.2.1. λp(κ) > ρ for all κ ∈ [0,∞) and p ∈ N.

Proof. Since p 7→ λp(κ) is non-decreasing for all κ, it suffices to give the proof for p = 1. For
every ǫ > 0 there exists a function φǫ : Z

d → R such that

∑

x∈Zd

φǫ(x)
2 = 1 and

∑

x,y∈Zd

‖x−y‖=1

[φǫ(x)− φǫ(y)]
2 ≤ ǫ2. (3.2.1)

Let

fǫ(η, x) =
1 + ǫη(x)

[1 + (2ǫ+ ǫ2)ρ]1/2
φǫ(x), η ∈ Ω, x ∈ Z

d. (3.2.2)
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Then

‖fǫ‖
2
L2(νρ⊗m) =

∫

Ω
νρ(dη)

∑

x∈Zd

[1 + ǫη(x)]2

1 + (2ǫ+ ǫ2)ρ
φǫ(x)

2 =
∑

x∈Zd

φǫ(x)
2 = 1. (3.2.3)

Therefore we may use fǫ as a test function in (2.2.12) in Proposition 2.2.2. This gives

λ1 = µ1 ≥
1

1 + (2ǫ+ ǫ2)ρ
(I − II − κ III) (3.2.4)

with

I =

∫

Ω
νρ(dη)

∑

z∈Zd

η(z) [1 + ǫη(z)]2 φǫ(z)
2 = (1 + 2ǫ+ ǫ2)ρ

∑

z∈Zd

φǫ(z)
2 = (1 + 2ǫ+ ǫ2)ρ (3.2.5)

and

II =

∫

Ω
νρ(dη)

∑

z∈Zd

1

4

∑

x,y∈Zd

p(x, y) ǫ2[ηx,y(z)− η(z)]2φǫ(z)
2

=
1

2

∫

Ω
νρ(dη)

∑

x,y∈Zd

p(x, y) ǫ2[η(x) − η(y)]2 φǫ(x)
2

= ǫ2ρ(1− ρ)
∑

x,y∈Zd

x 6=y

p(x, y)φǫ(x)
2 ≤ ǫ2ρ(1− ρ)

(3.2.6)

and

III =
1

2

∫

Ω
νρ(dη)

∑

x,y∈Zd

‖x−y‖=1

{
[1 + ǫη(x)]φǫ(x)− [1 + ǫη(y)]φǫ(y)

}2

=
1

2

∑

x,y∈Zd

‖x−y‖=1

{
[1 + (2ǫ+ ǫ2)ρ][φǫ(x)

2 + φǫ(y)
2]− 2(1 + ǫρ)2φǫ(x)φǫ(y)

}

=
1

2
[1 + (2ǫ+ ǫ2)ρ]

∑

x,y∈Zd

‖x−y‖=1

[φǫ(x)− φǫ(y)]
2 + ǫ2ρ(1− ρ)

∑

x,y∈Zd

‖x−y‖=1

φǫ(x)φǫ(y)

≤
1

2
[1 + (2ǫ+ ǫ2)ρ]ǫ2 + 2dǫ2ρ(1− ρ).

(3.2.7)

In the last line we use that φǫ(x)φǫ(y) ≤
1
2φǫ(x)

2 + 1
2φǫ(y)

2. Combining (3.2.4–3.2.7), we find

λ1 = µ1 ≥ ρ
1 + 2ǫ+O(ǫ2)

1 + 2ǫρ+O(ǫ2)
. (3.2.8)

Because ρ ∈ (0, 1), it follows that for ǫ small enough the r.h.s. is strictly larger than ρ.
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3.2.2 Proof of Theorem 1.3.3

Proof. It is enough to show that λ2(0) > λ1(0). Then, by continuity (recall Theorem 1.3.1(ii)),
there exists κ0 ∈ (0,∞] such that λ2(κ) > λ1(κ) for all κ ∈ [0, κ0), after which the inequality
λp+1(κ) > λp(κ) for κ ∈ [0, κ0) and arbitrary p follows from general convexity arguments (see
Gärtner and Heydenreich (9), Lemma 3.1).

For κ = 0, (1.2.9) reduces to

Λp(t) =
1

pt
log E νρ

(
exp

[
p

∫ t

0
ξ(0, s)ds

])
=

1

pt
log E νρ (exp [pTt]) (3.2.9)

(recall (2.1.1)). In order to compute λp(0) = limt→∞ Λp(t), we may use the large deviation
principle for (Tt)t≥0 cited in Section 2.1 due to Landim (18). Indeed, by applying Varadhan’s
Lemma (see e.g. den Hollander (14), Theorem III.13) to (3.2.9), we get

λp(0) =
1

p
max
α∈[0,1]

[
pα−Ψd(α)

]
(3.2.10)

with Ψd the rate function introduced in (2.1.2). Since Ψd is continuous, (3.2.10) has at least one
maximizer αp:

λp(0) = αp −
1

p
Ψd(αp). (3.2.11)

By Proposition 3.2.1 for κ = 0, we have λp(0) > ρ. Hence αp > ρ (because Ψd(ρ) = 0). Since
p(·, ·) is transient, it follows that Ψd(αp) > 0. Therefore we get from (3.2.10–3.2.11) that

λp+1(0) ≥
1

p+ 1
[αp(p+ 1)−Ψd(αp)] = αp −

1

p+ 1
Ψd(αp) > αp −

1

p
Ψd(αp) = λp(0). (3.2.12)

In particular λ2(0) > λ1(0), and so we are done.

3.2.3 Proof of the upper bound in Theorem 1.3.2(ii)

Proposition 3.2.2. λp(κ) < 1 for all κ ∈ [0,∞) and p ∈ N.

Proof. By Theorem 1.3.3, which was proved in Section 3.2.2, we know that p 7→ λp(0) is strictly
increasing. Since λp(0) ≤ 1 for all p ∈ N, it therefore follows that λp(0) < 1 for all p ∈ N.
Moreover, by Theorem 1.3.1(ii), which was proved in Section 2.2, we know that κ 7→ λp(κ) is
non-increasing. It therefore follows that λp(κ) < 1 for all κ ∈ [0,∞) and p ∈ N.

3.2.4 Proof of the asymptotics in Theorem 1.3.2(ii)

The proof of the next proposition is somewhat delicate.

Proposition 3.2.3. limκ→∞ λp(κ) = ρ for all p ∈ N.

534



Proof. We give the proof for p = 1. The generalization to arbitrary p is straightforward and will
be explained at the end. We need a cube Q = [−R,R]d ∩Z

d of length 2R, centered at the origin
and δ ∈ (0, 1). Limits are taken in the order

t→∞, κ→∞, δ ↓ 0, Q ↑ Z
d. (3.2.13)

The proof proceeds in 4 steps, each containing a lemma.

Step 1: Let Xκ,Q be simple random walk on Q obtained fromXκ by suppressing jumps outside of

Q. Then (ξt,X
κ,Q
t )t≥0 is a Markov process on Ω×Q with self-adjoint generator in L2(νρ⊗mQ),

where mQ is the counting measure on Q.

Lemma 3.2.4. For all Q finite (centered and cubic) and κ ∈ [0,∞),

E νρ,0

(
exp

[∫ t

0
ds ξ(Xκ

s , s)

])
≤ eo(t) E νρ,0

(
exp

[∫ t

0
ds ξ

(
Xκ,Q
s , s

)])
, t→∞. (3.2.14)

Proof. We consider the partition of Z
d into cubes Qz = 2Rz + Q, z ∈ Z

d. The Lyapunov
exponent λ1(κ) associated with Xκ is given by the variational formula (2.2.12–2.2.14) for p = 1.
It can be estimated from above by splitting the sums over Z

d in (2.2.14) into separate sums
over the individual cubes Qz and suppressing in A3(f) the summands on pairs of lattice sites
belonging to different cubes. The resulting expression is easily seen to coincide with the original
variational expression (2.2.12), except that the supremum is restricted in addition to functions
f with spatial support contained in Q. But this is precisely the Lyapunov exponent λQ1 (κ)

associated with Xκ,Q. Hence, λ1(κ) ≤ λ
Q
1 (κ), and this implies (3.2.14).

Step 2: For large κ the random walk Xκ,Q moves fast through the finite box Q and therefore
samples it in a way that is close to the uniform distribution.

Lemma 3.2.5. For all Q finite and δ ∈ (0, 1), there exist ε = ε(κ, δ,Q) and N0 = N0(δ, ε),
satisfying limκ→∞ ε(κ, δ,Q) = 0 and limδ,ε↓0N0(δ, ε) = N0 > 1, such that

E νρ,0

(
exp

[∫ t

0
ds ξ

(
Xκ,Q
s , s

)])
≤ o(1) + exp

[((
1 +

1 + ε

1− δ

)
δN0|Q|+

δ + ε

1− δ

)
(t+ δ)

]

× E νρ

(
exp

[ ∫ t+δ

0
ds

1

|Q|

∑

y∈Q

ξ(y, s)

])
, t→∞.

(3.2.15)

Proof. We split time into intervals of length δ > 0. Let Ik be the indicator of the event that
ξ has a jump time in Q during the k-th time interval. If Ik = 0, then ξs = ξ(k−1)δ for all
s ∈ [(k − 1)δ, kδ). Hence,

∫ kδ

(k−1)δ
ds ξs

(
Xκ,Q
s

)
≤

∫ kδ

(k−1)δ
ds ξ(k−1)δ

(
Xκ,Q
s

)
+ δIk (3.2.16)

and, consequently, we have for all x ∈ Z
d and k = 1, . . . , ⌈t/δ⌉,

Ex

(
exp

[ ∫ δ

0
ds ξ(k−1)δ+s

(
Xκ,Q
s

)])
≤ eδIk Ex

(
exp

[ ∫ δ

0
ds η

(
Xκ,Q
s

)])
, (3.2.17)
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where we abbreviate ξ(k−1)δ = η. Next, we do a Taylor expansion and use the Markov property

of Xκ,Q, to obtain (s0 = 0)

Ex

(
exp

[∫ δ

0
ds η

(
Xκ,Q
s

)])
=

∞∑

n=0

(
n∏

l=1

∫ δ

sl−1

dsl

)
Ex

(
n∏

m=1

η
(
Xκ,Q
sm

)
)

≤
∞∑

n=0

(
n∏

l=1

∫ δ

sl−1

dsl

)(
n∏

m=1

max
x∈Q

Ex

(
η
(
Xκ,Q
sm−sm−1

))
)

≤
∞∑

n=0

{∫ δ

0
ds max

x∈Q
Ex

(
η
(
Xκ,Q
s

))}n
≤ exp

[
1

1− δ

∫ δ

0
ds max

x∈Q
Ex

(
η
(
Xκ,Q
s

))]

≤ exp

[
1

1− δ

∑

y∈Q

η(y)

∫ δ

0
ds max

x∈Q
Ex

(
δy
(
Xκ,Q
s

))
]
,

(3.2.18)

where we use that maxx∈QEx

(∫ δ
0 ds η

(
Xκ,Q
s

))
≤ δ. Now, let pκ,Qs (·, ·) denote the transition

kernel of Xκ,Q. Note that

lim
κ→∞

pκ,Qs (x, y) =
1

|Q|
for all s > 0, Q finite and x, y ∈ Q. (3.2.19)

Hence

lim
κ→∞

Ex

(
δy
(
Xκ,Q
s

))
=

1

|Q|
for all s > 0, Q finite and x, y ∈ Q. (3.2.20)

Therefore, by the Lebesgue dominated convergence theorem, we have

lim
κ→∞

∫ δ

0
ds max

x∈Q
Ex

(
δy
(
Xκ,Q
s

))
= δ

1

|Q|
for all δ > 0, Q finite and y ∈ Q. (3.2.21)

This implies that the expression in the exponent in the r.h.s. of (3.2.18) converges to

δ

1− δ

1

|Q|

∑

y∈Q

η(y), (3.2.22)

uniformly in η ∈ Ω. Combining the latter with (3.2.18), we see that there exists some ε =
ε(κ, δ,Q), satisfying limκ→∞ ε(κ, δ,Q) = 0, such that for all x ∈ Q,

Ex

(
exp

[ ∫ δ

0
ds η

(
Xκ,Q
s

)])
≤ exp


1 + ε

1− δ
δ

1

|Q|

∑

y∈Q

η(y)


 for all δ ∈ (0, 1) and Q finite.

(3.2.23)
Next, similarly as in (3.2.16), we have

δ
1

|Q|

∑

y∈Q

ξ(k−1)δ(y) ≤

∫ kδ

(k−1)δ
ds

1

|Q|

∑

y∈Q

ξs(y) + δIk. (3.2.24)

Applying the Markov property to Xκ,Q, and using (3.2.16) and (3.2.23-3.2.24), we find that

E νρ,0

(
exp

[∫ t

0
ds ξ

(
Xκ,Q
s , s

)])
≤ E νρ

(
exp

[(
1 +

1 + ε

1− δ

)
δ Nt+δ +

δ + ǫ

1− δ
(t+ δ)

]

× exp

[ ∫ t+δ

0
ds

1

|Q|

∑

y∈Q

ξs(y)

])
,

(3.2.25)
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where Nt+δ is the total number of jumps that ξ makes inside Q up to time t + δ. The second
term in the r.h.s. of (3.2.25) equals the second term in the r.h.s. of (3.2.15). The first term
will be negligible on an exponential scale for δ ↓ 0, because, as can be seen from the graphical
representation, Nt+δ is stochastically smaller that the total number of jumps up to time t+ δ of
a Poisson process with rate |Q ∪ ∂Q|. Indeed, abbreviating

a =

(
1 +

1 + ε

1− δ

)
δ, b =

δ + ε

1− δ
, Mt+δ =

∫ t+δ

0
ds

1

|Q|

∑

y∈Q

ξs(y), (3.2.26)

we estimate, for each N ,

r.h.s. (3.2.25) = E νρ

(
eaNt+δ+b(t+δ)+Mt+δ

)

≤ e(b+1)(t+δ)
E νρ

(
eaNt+δ 1{Nt+δ ≥ N |Q|(t+ δ)}

)
+ e(aN |Q|+b)(t+δ)

E νρ

(
eMt+δ

)
.

(3.2.27)

For N ≥ N0 = N0(a, b), the first term tends to zero as t→∞ and can be discarded. Hence

r.h.s. (3.2.25) ≤ e(aN0|Q|+b)(t+δ)
E νρ

(
ebMt+δ

)
, (3.2.28)

which is the desired bound in (3.2.15). Note that a ↓ 0, b ↓ 1 as δ, ε ↓ 0 and hence N0(a, b) ↓
N0 > 1.

Step 3: By combining Lemmas 3.2.4–3.2.5, we now know that for any Q finite,

lim
κ→∞

λ1(κ) ≤ lim
t→∞

1

t
log E νρ

(
exp

[∫ t

0
ds

1

|Q|

∑

y∈Q

ξs(y)

])
, (3.2.29)

where we have taken the limits κ → ∞ and δ ↓ 0. According to Proposition 1.2.1 (with
K(z, s) = (1/|Q|)1Q(z)),

E νρ

(
exp

[∫ t

0
ds

1

|Q|

∑

y∈Q

ξs(y)

])
≤ E

IRW
νρ

(
exp

[∫ t

0
ds

1

|Q|

∑

y∈Q

ξ̃s(y)

])
, (3.2.30)

where (ξ̃t)t≥0 is the process of Independent Random Walks on Z
d with step rate 1 and transition

kernel p(·, ·), and E
IRW
νρ

=
∫
Ω νρ(dη) E

IRW
η . The r.h.s. can be computed and estimated as follows.

Write
(∆(p)f)(x) =

∑

y∈Zd

p(x, y)[f(y)− f(x)], x ∈ Z
d, (3.2.31)

to denote the generator of the random walk with step rate 1 and transition kernel p(·, ·).

Lemma 3.2.6. For all Q finite,

r.h.s. (3.2.30) ≤ eρt exp



∫ t

0
ds

1

|Q|

∑

x∈Q

wQ(x, s)


 , (3.2.32)
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where wQ : Z
d × [0,∞)→ R is the solution of the Cauchy problem

∂wQ

∂t
(x, t) = ∆(p)wQ(x, t) +

{
1

|Q|
1Q(x)

}
[wQ(x, t) + 1], wQ(·, 0) ≡ 0, (3.2.33)

which has the representation

wQ(x, t) = ERW
x

(
exp

[∫ t

0
ds

1

|Q|
1Q(Ys)

])
− 1 ≥ 0, (3.2.34)

where Y = (Yt)t≥0 is the single random walk with step rate 1 and transition kernel p(·, ·), and
ERW
x denotes the expectation w.r.t. to Y starting from Y0 = x.

Proof. Let
Aη = {x ∈ Z

d : η(x) = 1}, η ∈ Ω. (3.2.35)

Then

r.h.s. (3.2.30) =

∫

Ω
νρ(dη) E

IRW
η


exp

[ ∫ t

0
ds

1

|Q|

∑

x∈Aη

∑

y∈Q

1y(ξ̃s,x)

]


=

∫

Ω
νρ(dη)

∏

x∈Aη

ERW
x

(
exp

[ ∫ t

0
ds

1

|Q|
1Q(Ys)

])
,

(3.2.36)

where ξ̃s,x is the position at time s of the random walk starting from ξ̃0,x = x (in the process of
Independent Random Walks ξ̃ = (ξ̃t)t≥0). Let

vQ(x, t) = ERW
x

(
exp

[ ∫ t

0
ds

1

|Q|
1Q(Ys)

])
. (3.2.37)

By the Feynman-Kac formula, vQ(x, t) is the solution of the Cauchy problem

∂vQ

∂t
(x, t) = ∆(p)vQ(x, t) +

{
1

|Q|
1Q(x)

}
vQ(x, t), vQ(·, 0) ≡ 1. (3.2.38)

Now put
wQ(x, t) = vQ(x, t)− 1. (3.2.39)

Then (3.2.38) can be rewritten as (3.2.33). Combining (3.2.36–3.2.37) and (3.2.39), we get

r.h.s. (3.2.30) =

∫

Ω
νρ(dη)

∏

x∈Aη

(
1 + wQ(x, t)

)
=

∫

Ω
νρ(dη)

∏

x∈Zd

(
1 + η(x)wQ(x, t)

)

=
∏

x∈Zd

(
1 + ρwQ(x, t)

)
≤ exp


ρ
∑

x∈Zd

wQ(x, t)


 ,

(3.2.40)

where we use that νρ is the Bernoulli product measure with density ρ. Summing (3.2.33) over
Z
d, we have

∂

∂t

(
∑

x∈Zd

wQ(x, t)

)
=
∑

x∈Q

1

|Q|
wQ(x, t) + 1. (3.2.41)
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Integrating (3.2.41) w.r.t. time, we get

∑

x∈Zd

wQ(x, t) =

∫ t

0
ds
∑

x∈Q

1

|Q|
wQ(x, s) + t. (3.2.42)

Combining (3.2.40) and(3.2.42), we get the claim.

Step 4: The proof is completed by showing the following:

Lemma 3.2.7.

lim
Q↑Zd

lim
t→∞

1

t

∫ t

0
ds

1

|Q|

∑

x∈Q

wQ(x, s) = 0. (3.2.43)

Proof. Let G denote the Green operator acting on functions V : Z
d → [0,∞) as

(GV )(x) =
∑

y∈Zd

G(x, y)V (y), x ∈ Z
d, (3.2.44)

where G(x, y) =
∫∞
0 dt pt(x, y) denotes the Green kernel on Z

d. We have

∥∥∥∥G
( 1

|Q|
1|Q|

)∥∥∥∥
∞

= sup
x∈Zd

∑

y∈Q

G(x, y)
1

|Q|
. (3.2.45)

The r.h.s. tends to zero as Q ↑ Z
d, because G(x, y) tends to zero as ‖x−y‖ → ∞. Hence Lemma

8.2.1 in Gärtner and den Hollander (10) can be applied to (3.2.34) for Q large enough, to yield

sup
x∈Zd

s≥0

wQ(x, s) ≤ ε(Q) ↓ 0 as Q ↑ Z
d, (3.2.46)

which proves (3.2.43).

Combine (3.2.29–3.2.30), (3.2.32) and (3.2.43) to get the claim in Proposition 3.2.3.

This completes the proof of Proposition 3.2.3 for p = 1. The generalization to arbitrary p is
straightforward and runs as follows. Return to (1.2.9). Separate the p terms under the sum with
the help of Hölder’s inequality with weights 1/p. Next, use (3.2.14) for each of the p factors,
leading to 1

p log of the r.h.s. of (3.2.14) with an extra factor p in the exponent. Then proceed as

before, which leads to Lemma 3.2.6 but with wQ the solution of (3.2.33) with p
|Q|1Q(x) between

braces. Then again proceed as before, which leads to (3.2.40) but with an extra factor p in the
r.h.s. of (3.2.42). The latter gives a factor epρt replacing eρt in (3.2.32). Now use Lemma 3.2.7
to get the claim.

3.2.5 Proof of the strict monotonicity in Theorem 1.3.2(ii)

By Theorem 1.3.1(ii), κ 7→ λp(κ) is convex. Because of Proposition 3.2.1 and Proposition 3.2.3,
it must be strictly decreasing. This completes the proof of Theorem 1.3.2(ii).
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4 Lyapunov exponents: transient simple random walk

This section is devoted to the proof of Theorem 1.3.4, where d ≥ 4 and p(·, ·) is simple random
walk given by (1.2.3), i.e., ξ is simple symmetric exclusion (SSE). The proof is long and technical,
taking up more than half of the present paper. After a time scaling in Section 4.1, an outline of
the proof will be given in Section 4.2. The proof for p = 1 will then be carried out in Sections
4.3–4.7. In Section 4.8, we will indicate how to extend the proof to arbitrary p.

4.1 Scaling

As before, we write Xκ
s , ξs(x) instead of Xκ(s), ξ(x, s). We abbreviate

1[κ] = 1 +
1

2dκ
, (4.1.1)

and write {a, b} to denote the unoriented bond between nearest-neighbor sites a, b ∈ Z
d (recall

(1.2.3)–(1.2.4)). Three parameters will be important: t, κ and T . We will take limits in the
following order:

t→∞, κ→∞, T →∞. (4.1.2)

For t ≥ 0, let
Zt = (ξ t

κ
,Xt) (4.1.3)

and denote by Pη,x the law of Z starting from Z0 = (η, x). Then Z = (Zt)t≥0 is a Markov
process on Ω× Z

d with generator

A =
1

κ
L+ ∆ (4.1.4)

(acting on the Banach space of bounded continuous functions on Ω × Z
d, equipped with the

supremum norm). Abbreviate Xκ
t = Xκt, t ≥ 0, where X = (Xt)t≥0 is simple random walk with

step rate 2d, being independent of (ξt)t≥0. We therefore have

E νρ,0

(
exp

[∫ t

0
ds ξs (Xκ

s )

])
= E νρ,0

(
exp

[
1

κ

∫ κt

0
ds ξ s

κ
(Xs)

])
. (4.1.5)

Define the scaled Lyapunov exponent (recall (1.2.9–1.2.10))

λ∗1(κ) = lim
t→∞

Λ∗
1(κ; t) with Λ∗

1(κ; t) =
1

t
log E νρ,0

(
exp

[
1

κ

∫ t

0
ds ξ s

κ
(Xs)

])
. (4.1.6)

Then λ1(κ) = κλ∗1(κ). Therefore, in what follows we will focus on the quantity

λ∗1(κ)−
ρ

κ
= lim

t→∞

1

t
log E νρ,0

(
exp

[
1

κ

∫ t

0
ds
(
ξ s

κ
(Xs)− ρ

)])
(4.1.7)

and compute its asymptotic behavior for large κ. We must show that

lim
κ→∞

2dκ2
[
λ∗1(κ)−

ρ

κ

]
= ρ(1− ρ)Gd. (4.1.8)
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4.2 Outline

To prove (4.1.8), we have to study the asymptotics of the expectation on the r.h.s. of (4.1.7) as
t→∞ and κ→∞ (in this order). This expectation has the form

E νρ,0

(
exp

[
1

κ

∫ t

0
ds φ(Zs)

])
, (4.2.1)

where φ(η, x) = η(x)− ρ. Let ψ be the bounded solution of the equation

−Aψ = φ. (4.2.2)

(In fact, such a solution exists only after an appropriate regularization, which turns out to be
asymptotically correct for d ≥ 4 but not for d = 3.) Then the term in the exponent of (4.2.1) is
a martingale Mt modulo a remainder that stays bounded as t→∞:

1

κ

∫ t

0
ds φ(Zs) = Mt +

1

κ

[
ψ(Z0)− ψ(Zt)

]
(4.2.3)

(Lemma 4.3.1(i) below). Hence, the asymptotic investigation of (4.2.1) reduces to the study of

E νρ,0

(
eMt

)
= E νρ,0

((
N r
t

)1/r
exp

[
1

r

∫ t

0
ds
[(
e−

r
κ
ψAe

r
κ
ψ
)
−A

( r
κ
ψ
)]

(Zs)

])
, (4.2.4)

where

N r
t = exp

[
rMt −

∫ t

0
ds
[(
e−

r
κ
ψAe

r
κ
ψ
)
−A

( r
κ
ψ
)]

(Zs)

]
(4.2.5)

is an exponential martingale (Lemma 4.3.1(iii) below) and r is close to 1. Hence, applying
Hölder’s inequality, we may bound the expectation in the r.h.s. of (4.2.4) from above by

(
E νρ,0

(
exp

[
q

r

∫ t

0
ds
[(
e−

r
κ
ψAe

r
κ
ψ
)
−A

( r
κ
ψ
)]

(Zs)

]))1/q

(4.2.6)

with 1/r + 1/q = 1 (and q large). A reverse Hölder inequality shows that this is a lower bound
for large negative q. Because of the structure of the expected result (coming from a linear
approximation of the exponential), the choice of a large |q| does not hurt. (This is not true for
the result in Conjecture 1.4.1 pertaining to d = 3.) Hence, the whole proof essentially reduces
to the derivation of an appropriate upper bound for

E νρ,0

(
exp

[
α

r

∫ t

0
ds
[(
e−

r
κ
ψAe

r
κ
ψ
)
−A

( r
κ
ψ
)]

(Zs)

])
(4.2.7)

with arbitrary α ∈ R (c.f. Proposition 4.4.1 below). A Taylor expansion up to second order
shows that

[(
e−

r
κ
ψA e

r
κ
ψ
)
−A

( r
κ
ψ
)]

(η, x) =
r2

2κ2

∑

e : ‖e‖=1

(
ψ(η, x+ e)− ψ(η, x)

)2
+O

((1

κ

)3
)

(4.2.8)

as κ → ∞ (Lemma 4.6.1 below). The expression under the integral in (4.2.7) depends on the
process (Xs)s≥0. A combination of the spectral representation of the associated semigroup with
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the Rayleigh-Ritz formula shows that, asymptotically as t→∞, the expectation in (4.2.7) gets
larger when we replace Xs by 0. Using an explicit representation of ψ, we see that

∑

e : ‖e‖=1

(
ψ(η, e) − ψ(η, 0)

)2
=
∑

z∈Zd

Kdiag(z)
(
η(z)− ρ

)2

+
∑

z1,z2∈Zd

z1 6=z2

Koff(z1, z2)
(
η(z1)− ρ

)(
η(z2)− ρ

) (4.2.9)

for certain kernels Kdiag and Koff (Lemma 4.6.2 below). Substituting this into the previous
formulas and separating the “diagonal” term from the “off-diagonal” term by use of the Cauchy-
Schwarz inequality, we finally see that the whole proof reduces to showing that

lim sup
κ→∞

lim sup
t→∞

κ2

t
log E νρ

(
exp

[
αr

κ2

∫ t

0
ds
∑

z∈Zd

Kdiag(z)
(
ξ s

κ
(z)− ρ

)2
])
≤ αr ρ(1− ρ)

1

d
Gd

(4.2.10)
and

lim sup
κ→∞

lim sup
t→∞

κ2

t
log E νρ

(
exp

[
αr

κ2

∫ t

0
ds

∑

z1,z2∈Zd

z1 6=z2

Koff(z1, z2)
(
ξ s

κ
(z1)− ρ

)(
ξ s

κ
(z2)− ρ

)])
≤ 0

(4.2.11)
(Lemmas 4.6.3 and 4.6.4 below). To prove the latter statements, we use Jensen’s inequality to
move the kernels Kdiag and Koff out of the exponents. Then we are left with the derivation of
upper bounds for terms of the form

E νρ

(
exp

[
β

κ2

∫ t

0
ds
(
ξ s

κ
(z)− ρ

)2
])
, z ∈ Z

d, (4.2.12)

and

E νρ

(
exp

[
β

κ2

∫ t

0
ds
(
ξ s

κ
(z1)− ρ

)(
ξ s

κ
(z2)− ρ

)])
, z1, z2 ∈ Z

d, z1 6= z2 (4.2.13)

(Lemmas 4.6.8 and 4.6.10 below). The first expectation can be handled with the help of the IRW
approximation (Proposition 1.2.1). The handling of the second expectation is more involved and
requires, in addition, spectral methods.

4.3 SSE+RW generator and an auxiliary exponential martingale

Recall (4.1.3–4.1.4). Let (Pt)t≥0 be the semigroup generated by A. The following lemma will
be crucial to rewrite the expectation in the r.h.s. of (4.1.7) in a more manageable form.

Lemma 4.3.1. Fix κ > 0 and r > 0. For all t ≥ 0 and all bounded continuous functions
ψ : Ω× Z

d → R such that ψ and exp [(r/κ)ψ] belong to the domain of A, define

M r
t =

r

κ

[
ψ(Zt)− ψ(Z0)−

∫ t

0
dsAψ(Zs)

]
,

N r
t = exp

[
M r
t −

∫ t

0
ds
[(
e−

r
κ
ψAe

r
κ
ψ
)
−A

( r
κ
ψ
)]

(Zs)

]
.

(4.3.1)
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Then:
(i) M r = (M r

t )t≥0 is a Pη,x-martingale for all (η, x).
(ii) For t ≥ 0, let Pnew

t be the operator defined by

(Pnew
t f)(η, x) = e−

r
κ
ψ(η,x)

E η,x

(
exp

[
−

∫ t

0
ds
(
e−

r
κ
ψAe

r
κ
ψ
)

(Zs)

] (
e

r
κ
ψf
)

(Zt)

)
(4.3.2)

for bounded continuous f : Ω × Z
d → R. Then (Pnew

t )t≥0 is a strongly continuous semigroup
with generator

(Anewf)(η, x) =
[
e−

r
κ
ψA
(
e

r
κ
ψf
)
−
(
e−

r
κ
ψAe

r
κ
ψ
)
f
]
(η, x). (4.3.3)

(iii) N r = (N r
t )t≥0 is a Pη,x-martingale for all (η, x).

(iv) Define a new path measure P
new
η,x by putting

dP
new
η,x

dPη,x
((Zs)0≤s≤t) = N r

t , t ≥ 0. (4.3.4)

Then, under P
new
η,x , (Zt)t≥0 is a Markov process with semigroup (Pnew

t )t≥0.

Proof. The proof is standard.

(i) This follows from the fact that A is a Markov generator and ψ belongs to its domain (see
Liggett (19), Chapter I, Section 5).

(ii) Let η ∈ Ω, x ∈ Z
d and f : Ω× Z

d → R bounded measurable. Rewrite (4.3.2) as

(Pnew
t f)(η, x) = E η,x

(
exp

[
r

κ
ψ(Zt)−

r

κ
ψ(Z0)−

∫ t

0
ds
(
e−

r
κ
ψAe

r
κ
ψ
)

(Zs)

]
f(Zt)

)

= E η,x (N r
t f(Zt)) .

(4.3.5)

This gives
(Pnew

0 f)(η, x) = f(η, x) (4.3.6)

and

(Pnew
t1+t2f)(η, x) = E η,x

(
N r
t1+t2f(Zt1+t2)

)
= E η,x

(
N r
t1

N r
t1+t2

N r
t1

f(Zt1+t2)

)

= E η,x

(
N r
t1EZt1

(
N r
t2f(Zt2)

))
=
(
Pnew
t1 (Pnew

t2 f)
)
(η, x),

(4.3.7)

where we use the Markov property of Z at time t1 (under Pη,x) together with the fact that
N r
t1+t2/N

r
t1 only depends on Zt for t ∈ [t1, t1 + t2]. Equations (4.3.6–4.3.7) show that (Pnew

t )t≥0

is a semigroup which is easily seen to be strongly continuous.

Taking the derivative of (4.3.2) in the norm w.r.t. t at t = 0, we get (4.3.3). Next, if f ≡ 1, then
(4.3.3) gives Anew1 = 0. This last equality implies that

1

λ
(λId −Anew) 1 = 1 ∀λ > 0. (4.3.8)

Since λId −Anew is invertible, we get

(λId −Anew)−1 1 =
1

λ
∀λ > 0, (4.3.9)
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i.e., ∫ ∞

0
dt e−λt Pnew

t 1 =
1

λ
∀λ > 0. (4.3.10)

Inverting this Laplace transform, we see that

Pnew
t 1 = 1 ∀ t ≥ 0. (4.3.11)

(iii) Fix t ≥ 0 and h > 0. Since N r
t is Ft-measurable, with Ft the σ-algebra generated by

(Zs)0≤s≤t, we have

E η,x

(
N r
t+h

∣∣Ft
)

= N r
t E η,x

(
exp

[
M r
t+h −M

r
t −

∫ t+h

t
ds
[(
e−

r
κ
ψAe

r
κ
ψ
)
−A

( r
κ
ψ
)]

(Zs)

] ∣∣∣∣Ft
)
.

(4.3.12)

Applying the Markov property of Z at time t, we get

E η,x

(
N r
t+h | Ft

)
= N r

t EZt

(
exp

[
r

κ
ψ(Zh)−

r

κ
ψ(Z0)−

∫ h

0
ds
(
e−

r
κ
ψAe

r
κ
ψ
)

(Zs)

])

= N r
t (Pnew

h 1) (Zt) = N r
t ,

(4.3.13)

where the third equality uses (4.3.11).

(iv) This follows from (iii) via a calculation similar to (4.3.7).

4.4 Proof of Theorem 1.3.4

In this section we compute upper and lower bounds for the r.h.s. of (4.1.7) in terms of certain
key quantities (Proposition 4.4.1 below). We then state two propositions for these quantities
(Propositions 4.4.2–4.4.3 below), from which Theorem 1.3.4 will follow. The proof of these two
propositions is given in Sections 4.6–4.7.

For T > 0, let ψ : Ω× Z
d be defined by

ψ(η, x) =

∫ T

0
ds (Psφ) (η, x) with φ(η, x) = η(x)− ρ, (4.4.1)

where (Pt)t≥0 is the semigroup generated by A (recall (4.1.4)). We have

ψ(η, x) =

∫ T

0
dsE η,x (φ(Zs)) =

∫ T

0
dsE η

∑

y∈Zd

p2ds(y, x)
(
ξ s

κ
(y)− ρ

)
, (4.4.2)

where pt(x, y) is the probability that simple random walk with step rate 1 moves from x to y in
time t (recall that we assume (1.2.3)). Using (1.2.6), we obtain the representation

ψ(η, x) =

∫ T

0
ds
∑

z∈Zd

p2ds1[κ](z, x)
[
η(z) − ρ

]
, (4.4.3)
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where 1[κ] is given by (4.1.1). Note that ψ depends on κ and T . We suppress this dependence.
Similarly,

−Aψ =

∫ T

0
ds (−APsφ) = φ− PTφ, (4.4.4)

with

(PTφ)(η, x) = E η,x (φ(ZT )) = E η,x

(
ξT

κ
(XT )− ρ

)
=
∑

z∈Zd

p2dT1[κ](z, x) [η(z) − ρ]. (4.4.5)

The auxiliary function ψ will play a key role throughout the remaining sections. The integral in
(4.4.1) is a regularization that is useful when dealing with central limit type behavior of Markov
processes (see e.g. Kipnis (17)). Heuristically, T = ∞ corresponds to −Aψ = φ. Later we will
let T →∞.

The following proposition serves as the starting point of our asymptotic analysis.

Proposition 4.4.1. For any κ, T > 0,

λ∗1(κ) −
ρ

κ

≤

≥
Ir,q1 (κ, T ) + Ir,q2 (κ, T ), (4.4.6)

where

Ir,q1 (κ, T ) =
1

2q
lim sup
t→∞

1

t
log E νρ,0

(
exp

[
2q

r

∫ t

0
ds
[(
e−

r
κ
ψAe

r
κ
ψ
)
−A

( r
κ
ψ
)]

(Zs)

])
,

Ir,q2 (κ, T ) =
1

2q
lim sup
t→∞

1

t
log E νρ,0

(
exp

[
2q

κ

∫ t

0
ds (PTφ) (Zs)

])
,

(4.4.7)

and 1/r + 1/q = 1 for any r, q > 1 in the first inequality and any q < 0 < r < 1 in the second
inequality.

Proof. Recall (4.1.7). From the first line of (4.3.1) and (4.4.4) it follows that

1

r
M r
t +

1

κ
ψ(Z0)−

1

κ
ψ(Zt) =

1

κ

∫ t

0
ds [(−A)ψ](Zs) =

1

κ

∫ t

0
ds φ(Zs)−

1

κ

∫ t

0
ds (PTφ) (Zs).

(4.4.8)
Hence

E νρ,0

(
exp

[
1

κ

∫ t

0
ds φ(Zs)

])

= E νρ,0

(
exp

[
1

r
M r
t +

1

κ
ψ(Z0)−

1

κ
ψ(Zt) +

1

κ

∫ t

0
ds (PTφ)(Zs)

])

= E νρ,0

(
exp

[
U rt +

1

r
V r
t

])
(4.4.9)

with

U rt =
1

r

∫ t

0
ds
[(
e−

r
κ
ψAe

r
κ
ψ
)
−A

( r
κ
ψ
)]

(Zs) +
1

κ

(
ψ(Z0)− ψ(Zt)

)
+

1

κ

∫ t

0
ds (PTφ) (Zs)

(4.4.10)
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and

V r
t = M r

t −

∫ t

0
ds
[(
e−

r
κ
ψAe

r
κ
ψ
)
−A

( r
κ
ψ
)]

(Zs). (4.4.11)

By Hölder’s inequality, with r, q > 1 such that 1/r + 1/q = 1, it follows from (4.4.9) that

E νρ

(
exp

[
1

κ

∫ t

0
ds φ(Zs)

])
≤
(
E νρ,0

(
exp

[
V r
t

]))1/r(
E νρ,0

(
exp

[
qU rt

]))1/q

=
(
E νρ,0

(
exp

[
qU rt

]))1/q
,

(4.4.12)

where the second line of (4.4.12) comes from the fact that N r
t = exp[V r

t ] is a martingale, by
Lemma 4.3.1(iii). Similarly, by the reverse of Hölder’s inequality, with q < 0 < r < 1 such that
1/r + 1/q = 1, it follows from (4.4.9) that

E νρ

(
exp

[
1

κ

∫ t

0
ds φ(Zs)

])
≥
(
E νρ,0

(
exp

[
V r
t

]))1/r(
E νρ,0

(
exp

[
qU rt

]))1/q

=
(
E νρ,0

(
exp

[
qU rt

]))1/q
.

(4.4.13)

The middle term in the r.h.s. of (4.4.10) can be discarded, because (4.4.3) shows that −ρT ≤
ψ ≤ (1− ρ)T . Apply the Cauchy-Schwarz inequality to the r.h.s. of (4.4.12–4.4.13) to separate
the other two terms in the r.h.s. of (4.4.10).

Note that in the r.h.s. of (4.4.7) the prefactors of the logarithms and the prefactors in the
exponents are both positive for the upper bound and both negative for the lower bound. This will
be important later on.

The following two propositions will be proved in Sections 4.6-4.7, respectively. Abbreviate

lim sup
t,κ,T→∞

= lim sup
T→∞

lim sup
κ→∞

lim sup
t→∞

. (4.4.14)

Proposition 4.4.2. If d ≥ 3, then for any α ∈ R and r > 0,

lim sup
t,κ,T→∞

κ2

t
log E νρ,0

(
exp

[
α

r

∫ t

0
ds
[
e−

r
κ
ψAe

r
κ
ψ −A

( r
κ
ψ
)]

(Zs)

])
≤ αr ρ(1− ρ)

1

2d
Gd.

(4.4.15)

Proposition 4.4.3. If d ≥ 4, then for any α ∈ R,

lim sup
t,κ,T→∞

κ2

t
log E νρ,0

(
exp

[
α

κ

∫ t

0
ds (PTφ) (Zs)

])
≤ 0. (4.4.16)

Picking α = 2q in Proposition 4.4.2, we see that the first term in the r.h.s. of (4.4.6) satisfies
the bounds

lim sup
T→∞

lim sup
κ→∞

κ2Ir,q1 (κ, T ) ≤ r ρ(1− ρ)
1

2d
Gd if r > 1,

lim inf
T→∞

lim inf
κ→∞

κ2Ir,q1 (κ, T ) ≥ r ρ(1− ρ)
1

2d
Gd if r < 1.

(4.4.17)
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Letting r tend to 1, we obtain

lim
T→∞

lim
κ→∞

κ2Ir,q1 (κ, T ) = ρ(1− ρ)
1

2d
Gd. (4.4.18)

Picking α = 2q in Proposition 4.4.3, we see that the second term in the r.h.s. of (4.4.6) satisfies

lim sup
T→∞

lim sup
κ→∞

κ2Ir,q2 (κ, T ) = 0 if d ≥ 4. (4.4.19)

Combining (4.4.18–4.4.19), we see that we have completed the proof of Theorem 1.3.4 for d ≥ 4.

In order to prove Conjecture 1.4.1, we would have to extend Proposition 4.4.3 to d = 3 and show
that it contributes the second term in the r.h.s. of (4.4.16) rather than being negligible.

4.5 Preparatory facts and notation

In order to estimate Ir,q1 (κ, T ) and Ir,q2 (κ, T ), we need a number of preparatory facts. These are
listed in Lemmas 4.5.1–4.5.4 below.

It follows from (4.4.3) that

ψ(η, b) − ψ(η, a) =

∫ T

0
ds
∑

z∈Zd

(
p2ds1[κ](z, b) − p2ds1[κ](z, a)

)
[η(z) − ρ] (4.5.1)

and

ψ
(
ηa,b, x

)
− ψ(η, x) =

∫ T

0
ds
∑

z∈Zd

p2ds1[κ](z, x)
[
ηa,b(z)− η(z)

]

=

∫ T

0
ds
(
p2ds1[κ](b, x) − p2ds1[κ](a, x)

)
[η(a)− η(b)] ,

(4.5.2)

where we recall the definitions of 1[κ] and ηa,b in (4.1.1) and (1.2.5), respectively. We need
bounds on both these differences.

Lemma 4.5.1. For any η ∈ Ω, a, b, x ∈ Z
d and κ, T > 0,

∣∣ψ
(
η, b
)
− ψ(η, a)

∣∣ ≤ 2T, (4.5.3)

∣∣∣ψ
(
ηa,b, x

)
− ψ(η, x)

∣∣∣ ≤ 2Gd <∞, (4.5.4)

and ∑

{a,b}

(
ψ
(
ηa,b, x

)
− ψ(η, x)

)2
≤

1

2d
Gd <∞, (4.5.5)

where Gd is the Green function at the origin of simple random walk.

Proof. The bound in (4.5.3) is immediate from (4.5.1). By (4.5.2), we have

∣∣∣ψ
(
ηa,b, x

)
− ψ(η, x)

∣∣∣ ≤
∫ T

0
ds
∣∣p2ds1[κ](b, x) − p2ds1[κ](a, x)

∣∣ . (4.5.6)
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Using the bound pt(x, y) ≤ pt(0, 0) (which is immediate from the Fourier representation of the
transition kernel), we get

∣∣∣ψ
(
ηa,b, x

)
− ψ(η, x)

∣∣∣ ≤ 2

∫ ∞

0
ds p2ds1[κ](0, 0) ≤ 2Gd. (4.5.7)

Again by (4.5.2), we have

∑

{a,b}

(
ψ
(
ηa,b, x

)
− ψ(η, x)

)2
=
∑

{a,b}

[η(a) − η(b)]2
(∫ T

0
ds
(
p2ds1[κ](b, x)− p2ds1[κ](a, x)

))2

≤ 2

∫ T

0
du

∫ T

u
dv
∑

{a,b}

(
p2du1[κ](b, x) − p2du1[κ](a, x)

)(
p2dv1[κ](b, x)− p2dv1[κ](a, x)

)

= −2

∫ T

0
du

∫ T

u
dv
∑

a∈Zd

p2du1[κ](a, x)
[
∆1p2dv1[κ](a, x)

]

= −
2

1[κ]

∫ T

0
du

∫ T

u
dv
∑

a∈Zd

p2du1[κ](a, x)

[
∂

∂v
p2dv1[κ](a, x)

]

= −
2

1[κ]

∫ T

0
du

∑

a∈Zd

p2du1[κ](a, x)
(
p2dT1[κ](a, x)− p2du1[κ](a, x)

)

≤
2

1[κ]

∫ T

0
du

∑

a∈Zd

p2
2du1[κ](a, x)

≤
2

1[κ]

∫ ∞

0
du p4du1[κ](0, 0) =

1

2d(1[κ])2
Gd(0) ≤

1

2d
Gd,

(4.5.8)
where ∆1 denotes the discrete Laplacian acting on the first coordinate, and in the fifth line we
use that (∂/∂t)pt = (1/2d)∆1pt.

For x ∈ Z
d, let τx : Ω→ Ω be the x-shift on Ω defined by

(
τxη
)
(z) = η(z + x), η ∈ Ω, z ∈ Z

d. (4.5.9)

Lemma 4.5.2. For any bounded measurable W : Ω× Z
d → R,

lim sup
t→∞

1

t
log E νρ,0

(
exp

[ ∫ t

0
ds W

(
ξ s

κ
,Xs

)])

≤ lim sup
t→∞

1

t
log E νρ

(
exp

[ ∫ t

0
ds W

(
ξ s

κ
, 0
)])

,

(4.5.10)

provided
W (η, x) = W (τxη, 0) ∀ η ∈ Ω, x ∈ Z

d. (4.5.11)

Proof. The proof uses arguments similar to those in Section 2.2. Recall (4.1.3). Proposition
2.2.2 with p = 1 and Remark 2.2.3, applied to the self-adjoint operator GκW = 1

κL + ∆ + W
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(instead of GκV in (2.2.4–2.2.5)), gives

lim
t→∞

1

t
log E νρ,0

(
exp

[ ∫ t

0
dsW (Zs)

])
= sup

‖f‖
L2(νρ⊗m)=1

(
B1(f)−

1

κ
B2(f)−B3(f)

)
(4.5.12)

with

B1(f) =

∫

Ω
νρ(dη)

∑

z∈Zd

W (η, z) f(η, z)2,

B2(f) =

∫

Ω
νρ(dη)

∑

z∈Zd

1

2

∑

{x,y}⊂Zd

p(x, y)[f(ηx,y, z)− f(η, z)]2,

B3(f) =

∫

Ω
νρ(dη)

∑

z∈Zd

1

2

∑

y∈Zd

‖y−z‖=1

[f(η, y)− f(η, z)]2.

(4.5.13)

An upper bound is obtained by dropping B3(f), i.e., the part associated with the simple random
walk X. After that, split the supremum into two parts,

sup
‖f‖

L2(νρ⊗m)=1

(
B1(f)−B2(f)

)

= sup
‖g‖L2(m)=1

sup
‖fz‖L2(νρ)=1∀ z∈Zd

∑

z∈Zd

g(z)2
∫

Ω
νρ(dη)

×

(
W (η, z) fz(η)

2 −
1

2

∑

{x,y}⊂Zd

p(x, y)[fz(η
x,y)− fz(η)]

2

)
,

(4.5.14)

where fz(η) = f(η, z)/g(z) with g(z)2 =
∫
Ω νρ(dη)f(η, z)2. The second supremum in (4.5.14),

which runs over a family of functions indexed by z, can be brought under the sum. This gives

r.h.s. (4.5.14) = sup
‖g‖

L2(m)=1

∑

z∈Zd

g(z)2 sup
‖fz‖L2(νρ)=1

∫

Ω
νρ(dη)

×

(
W (η, z) fz(η)

2 −
1

2

∑

{x,y}⊂Zd

p(x, y)[fz(η
x,y)− fz(η)]

2

)
.

(4.5.15)

By (4.5.11) and the shift-invariance of νρ, we may replace z by 0 under the second supremum
in (4.5.15), in which case the latter no longer depends on z, and we get

r.h.s. (4.5.15) = sup
‖f‖L2(νρ)=1

∫

Ω
νρ(dη)

[
W (η, 0) f(η)2 −

1

2

∑

{x,y}⊂Zd

p(x, y)[f(ηx,y)− f(η)]2
]

= lim
t→∞

1

t
log E νρ

(
exp

[ ∫ t

0
ds W

(
ξ s

κ
, 0
)])

,

(4.5.16)
where the second equality comes from the analogue of Proposition 2.2.2 with self-adjoint operator
1
κL+W (·, 0) (instead of GκV ), cf. Remark 2.2.3.
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Lemma 4.5.3. For any ρ ∈ (0, 1),

max
β∈[0,1]

[
γβ −Ψd(β)

]
∼ γρ as γ ↓ 0. (4.5.17)

Proof. First, using that Ψd(ρ) = 0, we obtain the lower bound

max
β∈[0,1]

[
γβ −Ψd(β)

]
≥ γρ−Ψd(ρ) = γρ. (4.5.18)

Next, for any δ > 0, we have

max
β∈[0,1]

[
γβ −Ψd(β)

]
= max

β∈[0,1]
|β−ρ|≥δ

[
γβ −Ψd(β)

]
∨ max

β∈[0,1]
|β−ρ|<δ

[
γβ −Ψd(β)

]

≤

(
γ − min

β∈[0,1]
|β−ρ|≥δ

Ψd(β)

)
∨
(
γ(ρ+ δ)

)

≤ γ(ρ+ δ) for 0 < γ ≤ γ0(δ),

(4.5.19)

where in the second inequality we use that Ψd has a unique zero at ρ. Letting γ ↓ 0 followed by
δ ↓ 0, we get the desired upper bound.

Lemma 4.5.4. There exists C > 0 such that, for all t ≥ 0 and x, y ∈ Z
d,

pt(x, y) ≤
C

(1 + t)
d
2

. (4.5.20)

Proof. This is a standard fact. Indeed, we can decompose the transition kernel of simple random
walk with step rate 1 as

pdt(x, y) =

d∏

j=1

p
(1)
t (xj , yj), x = (x1, . . . , xd), y = (y1, . . . , yd), (4.5.21)

where p
(1)
t (x, y) is the transition kernel of 1-dimensional simple random walk with step rate 1.

In Fourier representation,

p
(1)
t (x, y) =

1

2π

∫ π

−π
dk eik·(y−x) e−tϕ̂(k), ϕ̂(k) = 1− cos k. (4.5.22)

The bound in (4.5.20) follows from (4.5.21) and

p
(1)
t (x, y) ≤ p

(1)
t (0, 0) =

1

2π

∫ π

−π
dk e−tϕ̂(k) ≤

C

(1 + t)
1
2

, t ≥ 0, x, y ∈ Z
d. (4.5.23)

4.6 Proof of Proposition 4.4.2

The proof of Proposition 4.4.2 is given in Section 4.6.1 subject to four lemmas. The latter will
be proved in Sections 4.6.2–4.6.5, respectively. All results are valid for d ≥ 3.
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4.6.1 Proof of Proposition 4.4.2

Lemma 4.6.1. Uniformly in η ∈ Ω and x ∈ Z
d, as κ→∞,

[(
e−

r
κ
ψA e

r
κ
ψ
)
−A

( r
κ
ψ
)]

(η, x) =
r2

2κ2

∑

e : ‖e‖=1

(
ψ(η, x+ e)−ψ(η, x)

)2
+O

(( 1

κ

)3
)
. (4.6.1)

Lemma 4.6.2. For any κ, T > 0, α ∈ R and r > 0,

lim sup
t→∞

1

t
log E νρ,0

(
exp

[
αr

2κ2

∫ t

0
ds

∑

e : ‖e‖=1

(
ψ
(
ξ s

κ
,Xs + e

)
− ψ

(
ξ s

κ
,Xs

))2
])

≤ lim sup
t→∞

1

2t
log E νρ

(
exp

[
αr

κ2

∫ t

0
ds
∑

z∈Zd

Kκ,T
diag(z)

(
ξ s

κ
(z)− ρ

)2
])

+ lim sup
t→∞

1

2t
log E νρ

(
exp

[
αr

κ2

∫ t

0
ds

∑

z1,z2∈Zd

z1 6=z2

Kκ,T
off (z1, z2)

(
ξ s

κ
(z1)− ρ

)(
ξ s

κ
(z2)− ρ

)])
,

(4.6.2)
where

Kκ,T
diag(z) =

∑

e : ‖e‖=1

(
χ(z + e)− χ(z)

)2
,

Kκ,T
off (z1, z2) =

∑

e:‖e‖=1

(
χ(z1 + e)− χ(z1)

)(
χ(z2 + e)− χ(z2)

)
, z1 6= z2,

(4.6.3)

with

χ(z) =

∫ T

0
du p2du1[κ](0, z). (4.6.4)

Lemma 4.6.3. For any α ∈ R and r > 0,

lim sup
t,κ,T→∞

κ2

t
log E νρ

(
exp

[
αr

κ2

∫ t

0
ds
∑

z∈Zd

Kκ,T
diag(z)

(
ξ s

κ
(z)− ρ

)2
])
≤ αr ρ(1− ρ)

1

d
Gd. (4.6.5)

Lemma 4.6.4. For any α ∈ R and r > 0,

lim sup
t,κ,T→∞

κ2

t
log E νρ

(
exp

[
αr

κ2

∫ t

0
ds

∑

z1,z2∈Zd

z1 6=z2

Kκ,T
off (z1, z2)

(
ξ s

κ
(z1)− ρ

)(
ξ s

κ
(z2)− ρ

)])
≤ 0.

(4.6.6)

Combining Lemmas 4.6.1–4.6.4, we obtain the claim in Proposition 4.4.2.

4.6.2 Proof of Lemma 4.6.1

Lemma 4.6.1 is immediate from (4.1.4) and the following two lemmas.
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Lemma 4.6.5. Uniformly in η ∈ Ω and x ∈ Z
d, as κ→∞,

1

κ

[(
e−

r
κ
ψLe

r
κ
ψ
)
− L

( r
κ
ψ
)]

(η, x) = O

(
1

κ3

)
. (4.6.7)

Lemma 4.6.6. Uniformly in η ∈ Ω and x ∈ Z
d, as κ→∞,

[(
e−

r
κ
ψ∆ e

r
κ
ψ
)
−∆

( r
κ
ψ
)]

(η, x) =
r2

2κ2

∑

e : ‖e‖=1

(
ψ(η, x + e)− ψ(η, x)

)2
+O

(
1

κ3

)
. (4.6.8)

Proof of Lemma 4.6.5. By (1.2.3–1.2.4), we have

[(
e−

r
κ
ψLe

r
κ
ψ
)
− L

( r
κ
ψ
)]

(η, x)

=
1

2d

∑

{a,b}

(
e

r
κ
[ψ(ηa,b,x)−ψ(η,x)] − 1−

r

κ
[ψ(ηa,b, x)− ψ(η, x)]

)
.

(4.6.9)

Taylor expansion of the r.h.s. of (4.6.9) gives that uniformly in η ∈ Ω and x ∈ Z
d,

1

κ

[(
e−

r
κ
ψLe

r
κ
ψ
)
− L

( r
κ
ψ
)]

(η, x) =
r2

4dκ3

∑

{a,b}

(
ψ
(
ηa,b, x

)
− ψ(η, x)

)2
eo(1) = O

(
1

κ3

)
,

(4.6.10)
where we use (4.5.4–4.5.5).

Proof of Lemma 4.6.6. By (1.1.2), we have

[(
e−

r
κ
ψ∆ e

r
κ
ψ
)
−∆

( r
κ
ψ
)]

(η, x)

=
∑

e : ‖e‖=1

(
e

r
κ
[ψ(η,x+e)−ψ(η,x)] − 1−

r

κ
[ψ(η, x + e)− ψ(η, x)]

)
.

(4.6.11)

Taylor expansion of the r.h.s. of (4.6.11) gives that uniformly in η ∈ Ω and x ∈ Z
d,

[(
e−

r
κ
ψ∆ e

r
κ
ψ
)
−∆

( r
κ
ψ
)]

(η, x) =
r2

2κ2

∑

e : ‖e‖=1

(
ψ(η, x+ e)− ψ(η, x)

)2
+Rκ,T (η, x) (4.6.12)

with

|Rκ,T (η, x)| ≤
r3

6κ3

∑

e : ‖e‖=1

∣∣∣ψ(η, x + e)− ψ(η, x)
∣∣∣
3
eo(1) ≤

8dr3

3κ3
T 3eo(1), (4.6.13)

where we use (4.5.3). Combining (4.6.12–4.6.13), we arrive at (4.6.8).
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4.6.3 Proof of Lemmas 4.6.2

Proof. By (4.4.3), we have for all η ∈ Ω and x ∈ Z
d,

∑

e : ‖e‖=1

(
ψ
(
η, x+ e

)
− ψ

(
η, x
))2

=
∑

e : ‖e‖=1

∑

z1,z2∈Zd

∫ T

0
du

∫ T

0
dv
(
p2du1[κ](z1, x+ e)− p2du1[κ](z1, x)

)

×
(
p2dv1[κ](z2, x+ e)− p2dv1[κ](z2, x)

)[
η(z1)− ρ

][
η(z2)− ρ

]

=
∑

z1,z2∈Zd

Kκ,T (z1, z2)
[
η(z1 + x)− ρ

][
η(z2 + x)− ρ

]
,

(4.6.14)

where Kκ,T : Z
d × Z

d 7→ R is given by

Kκ,T (z1, z2) =
∑

e:‖e‖=1

(
χ(z1 + e)− χ(z1)

)(
χ(z2 + e)− χ(z2)

)
. (4.6.15)

Therefore, for all κ, T > 0,

lim sup
t→∞

1

t
log E νρ,0

(
exp

[
αr

2κ2

∫ t

0
ds

∑

e:‖e‖=1

(
ψ
(
ξ s

κ
,Xs + e

)
− ψ

(
ξ s

κ
,Xs

))2
])

= lim sup
t→∞

1

t
log E νρ,0

(
exp

[
αr

2κ2

∫ t

0
ds

∑

z1,z2∈Zd

Kκ,T (z1, z2)

×
(
ξ s

κ
(z1 +Xs)− ρ

)(
ξ s

κ
(z2 +Xs)− ρ

)])

≤ lim sup
t→∞

1

t
log E νρ

(
exp

[
αr

2κ2

∫ t

0
ds

∑

z1,z2∈Zd

Kκ,T (z1, z2)
(
ξ s

κ
(z1)− ρ

)(
ξ s

κ
(z2)− ρ

)])
,

(4.6.16)
where in the last line we use Lemma 4.5.2 with

W (η, x) =
αr

2κ2

∑

z1,z2∈Zd

Kκ,T (z1, z2)
[
η(z1 + x)− ρ

][
η(z2 + x)− ρ

]
, (4.6.17)

which satisfies W (η, x) = W (τxη, 0) as required in (4.5.11). Splitting the sum in the r.h.s. of
(4.6.16) into its diagonal and off-diagonal part and using the Cauchy-Schwarz inequality, we
arrive at (4.6.2).

4.6.4 Proof of Lemma 4.6.3

The proof of Lemma 4.6.3 is based on the following two lemmas. Recall (2.1.1).

Lemma 4.6.7. For any T > 0 there exists CT > 0, satisfying limT→∞CT = 0, such that

lim
κ→∞

‖Kκ,T
diag‖1 =

1

d
Gd + CT . (4.6.18)
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Lemma 4.6.8. For any T > 0, α ∈ R and r > 0,

lim sup
t,κ→∞

κ2

t
log E νρ

(
exp

[
αr

κ
(1− 2ρ)‖Kκ,T

diag‖1Tt/κ

])
≤ αrρ(1− 2ρ) lim

κ→∞
‖Kκ,T

diag‖1. (4.6.19)

Before giving the proofs of Lemmas 4.6.7–4.6.8, we first prove Lemma 4.6.3.

Proof of Lemma 4.6.3. By Jensen’s inequality, we have

E νρ

(
exp

[
αr

κ2

∫ t

0
ds
∑

z∈Zd

Kκ,T
diag(z)

(
ξ s

κ
(z)− ρ

)2
])

≤
∑

z∈Zd

Kκ,T
diag(z)

‖Kκ,T
diag‖1

E νρ

(
exp

[
αr

κ2
‖Kκ,T

diag‖1

∫ t

0
ds
(
ξ s

κ
(z) − ρ

)2
])

= E νρ

(
exp

[
αr

κ2
‖Kκ,T

diag‖1

∫ t

0
ds
(
ξ s

κ
(0) − ρ

)2
])

= exp
[αr
κ2
ρ2‖Kκ,T

diag‖1t
]

E νρ

(
exp

[
αr

κ
(1− 2ρ)‖Kκ,T

diag‖1

∫ t/κ

0
ds ξs(0)

])
,

(4.6.20)

where the first equality uses the shift-invariance of νρ. Therefore

lim
t,κ,T→∞

κ2

t
log E νρ

(
exp

[
αr

κ2

∫ t

0
ds
∑

z∈Zd

Kκ,T
diag(z)

(
ξ s

κ
(z)− ρ

)2
])

≤ lim
κ,T→∞

αrρ2‖Kκ,T
diag‖1 + lim

t,κ,T→∞

κ2

t
log E νρ

(
exp

[
αr

κ
(1− 2ρ)‖Kκ,T

diag‖1T t
κ

])
.

(4.6.21)

Now use Lemmas 4.6.7–4.6.8 to obtain (4.6.5).

Proof of Lemma 4.6.7. By (4.6.3), we have

‖Kκ,T
diag‖1 = 2

∑

{x,y}

∫ T

0
du

∫ T

u
dv
(
p2du1[κ](0, y)− p2du1[κ](0, x)

)(
p2dv1[κ](0, y) − p2dv1[κ](0, x)

)

= −4

∫ T

0
du

∫ T

u
dv
∑

x∈Zd

p2du1[κ](0, x)
[
∆1p2dv1[κ](0, x)

]

= −
4

1[κ]

∫ T

0
du

∫ T

u
dv
∑

x∈Zd

p2du1[κ](0, x)

[
∂

∂v
p2dv1[κ](0, x)

]
,

(4.6.22)
where we recall the remark below (4.5.8). After performing the integration w.r.t. the variable v,
we get

‖Kκ,T
diag‖1 =

4

1[κ]

(∫ T

0
du

∑

x∈Zd

p2
2du1[κ](0, x) −

∫ T

0
du

∑

x∈Zd

p2du1[κ](0, x)p2dT1[κ](0, x)

)

=
4

1[κ]

(∫ T

0
du p4du1[κ](0, 0) −

∫ T

0
du p2d(u+T )1[κ](0, 0)

)
.

(4.6.23)
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Hence

lim
κ→∞

‖Kκ,T
diag‖1 =

1

d

(∫ 2dT

0
du pu(0, 0) −

∫ 4dT

2dT
du pu(0, 0)

)
, (4.6.24)

which gives (4.6.18).

Proof of Lemma 4.6.8. To derive (4.6.19), we use the large deviation principle for (Tt)t≥0 stated
in Section 2.1. By Varadhan’s Lemma we have, for all κ, T > 0,

lim sup
t→∞

1

t
log E νρ

(
exp

[
αr

κ
(1− 2ρ)‖Kκ,T

diag‖1Tt/κ

])

=
1

κ
max
β∈[0,1]

[αr
κ

(1− 2ρ)‖Kκ,T
diag‖1β −Ψd(β)

]
.

(4.6.25)

By Lemma 4.6.7, (1/κ)‖Kκ,T
diag‖1 ↓ 0 as κ→∞ for any T > 0. Hence Lemma 4.5.3 can be applied

to get (4.6.19).

4.6.5 Proof of Lemma 4.6.4

The proof of Lemma 4.6.4 is based on the following two lemmas. Recall (4.6.3). For z1, z2 ∈ Z
d

with z1 6= z2 and γ ∈ R, let

hγ,κ(z1, z2) = lim sup
t→∞

1

t
log E νρ

(
exp

[
γ

κ2

∫ t

0
ds
(
ξ s

κ
(z1)− ρ

)(
ξ s

κ
(z2)− ρ

)])

= lim sup
t→∞

1

κt
log E νρ

(
exp

[
γ

κ

∫ t

0
ds
(
ξs(z1)− ρ

)(
ξs(z2)− ρ

)])
.

(4.6.26)

Lemma 4.6.9. For all κ, T > 0,
‖Kκ,T

off ‖1 ≤ 8dT 2. (4.6.27)

Lemma 4.6.10. For any z1, z2 ∈ Z
d with z1 6= z2 and any γ ∈ R,

lim sup
κ→∞

κ2hγ,κ(z1, z2) ≤ 0. (4.6.28)

Before giving the proof of Lemmas 4.6.9–4.6.10, we first prove Lemma 4.6.4.

Proof of Lemma 4.6.4. Let Kκ,T ;+
off and Kκ,T ;−

off denote, respectively, the positive and negative

part of Kκ,T
off . By the Cauchy-Schwarz inequality, we have

log E νρ

(
exp

[
αr

κ2

∫ t

0
ds

∑

z1,z2∈Zd

z1 6=z2

Kκ,T
off (z1, z2)

(
ξ s

κ
(z1)− ρ

)(
ξ s

κ
(z2)− ρ

)])

≤
1

2
log E νρ

(
exp

[
2αr

κ2

∑

z1,z2∈Zd

z1 6=z2

Kκ,T ;+
off (z1, z2)

∫ t

0
ds
(
ξ s

κ
(z1)− ρ

)(
ξ s

κ
(z2)− ρ

)])

+
1

2
log E νρ

(
exp

[
−

2αr

κ2

∑

z1,z2∈Zd

z1 6=z2

Kκ,T ;−
off (z1, z2)

∫ t

0
ds
(
ξ s

κ
(z1)− ρ

)(
ξ s

κ
(z2)− ρ

)])
.

(4.6.29)
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We estimate the first term in the r.h.s. of (4.6.29). For R > 0, let

BR = {(z1, z2) ∈ Z
d × Z

d : ‖z1‖+ ‖z2‖ ≤ R}. (4.6.30)

Then

E νρ

(
exp

[
2αr

κ2

∫ t

0
ds

∑

z1,z2∈Zd

z1 6=z2

Kκ,T ;+
off (z1, z2)

(
ξ s

κ
(z1)− ρ

)(
ξ s

κ
(z2)− ρ

)])

≤ exp

[
2|α|rt

κ2

∑

(z1,z2)∈Bc
R

z1 6=z2

Kκ,T ;+
off (z1, z2)

]

× E νρ

(
exp

[
2αr

κ2

∫ t

0
ds

∑

(z1,z2)∈BR
z1 6=z2

Kκ,T ;+
off (z1, z2)

(
ξ s

κ
(z1)− ρ

)(
ξ s

κ
(z2)− ρ

)])
.

(4.6.31)

Applying Jensen’s inequality, we get

κ2

t
log E νρ

(
exp

[
2αr

κ2

∫ t

0
ds

∑

z1,z2∈Zd

z1 6=z2

Kκ,T ;+
off (z1, z2)

(
ξ s

κ
(z1)− ρ

)(
ξ s

κ
(z2)− ρ

)])

≤ 2|α|r
∑

(z1,z2)∈Bc
R

z1 6=z2

Kκ,T ;+
off (z1, z2) +

κ

t/κ
log

∑

(z1,z2)∈BR
z1 6=z2

Kκ,T ;+
off (z1, z2)∥∥Kκ,T ;+

off;R

∥∥
1

× E νρ

(
exp

[
2αr

κ

∥∥Kκ,T ;+
off;R

∥∥
1

∫ t/κ

0
ds
(
ξs(z1)− ρ

)(
ξs(z2)− ρ

)])
,

(4.6.32)
where

‖Kκ,T ;+
off;R

∥∥
1

=
∑

(z1,z2)∈BR
z1 6=z2

Kκ,T ;+
off (z1, z2). (4.6.33)

By Lemma 4.6.10 (with γ = 2αr‖Kκ,T ;+
off;R ‖1), the second term in the r.h.s. of (4.6.32) is asymp-

totically bounded by above by zero (as t → ∞) for any κ, T > 0, α ∈ R and r > 0, and any
R finite. The first term in the r.h.s. of (4.6.32) does not depend on t and, by Lemma 4.6.9,
tends to zero as R → ∞. This shows that the first term in the r.h.s of (4.6.29) yields a zero
contribution. The same is true for the second term by the same argument. This completes the
proof of (4.6.6).

Proof of Lemma 4.6.9. The claim follows from (4.6.3–4.6.4).

Proof of Lemma 4.6.10. The proof of Lemma 4.6.10 is long, since it is based on three further
lemmas. Let z1, z2 ∈ Z

d with z1 6= z2. Without loss of generality, we may assume that

z1 ∈ H
− and z2 ∈ H

+ (4.6.34)

with
H− = {z ∈ Z

d : z1 ≤ 0} and H+ = {z ∈ Z
d : z1 > 0}. (4.6.35)
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Let

h−γ,κ(z1) = lim sup
t→∞

1

3κt
log E

IRW
νρ

(
exp

[
−

3γ

κ
ρ

∫ t

0
ds ξ̃−s (z1)

])
,

h+
γ,κ(z2) = lim sup

t→∞

1

3κt
log E

IRW
νρ

(
exp

[
−

3γ

κ
ρ

∫ t

0
ds ξ̃+s (z2)

])
,

h±γ,κ(z1, z2) = lim sup
t→∞

1

3κt
log E

IRW
νρ

(
exp

[
3γ

κ

∫ t

0
ds ξ̃−s (z1)ξ̃

+
s (z2)

])
,

(4.6.36)

where (ξ̃−t )t≥0 and (ξ̃+t )t≥0 are independent IRW’s on H− and H+, respectively, with transition
kernels p−(·, ·) and p+(·, ·) corresponding to simple random walks stepping at rate 1 such that
steps outside H− and H+, respectively, are suppressed.

Lemma 4.6.11. For all κ > 0, z1 ∈ H
−, z2 ∈ H

+ and γ ∈ R,

hγ,κ(z1, z2) ≤
γ

κ2
ρ2 + h−γ,κ(z1) + h+

γ,κ(z2) + h±γ,κ(z1, z2). (4.6.37)

Lemma 4.6.12. For all γ ∈ R,

lim sup
κ→∞

κ2 sup
z1∈H−

h−γ,κ(z1) ≤ −γρ
2 and lim sup

κ→∞
κ2 sup

z2∈H+

h+
γ,κ(z2) ≤ −γρ

2. (4.6.38)

Lemma 4.6.13. For all γ ∈ R,

lim sup
κ→∞

κ2 sup
z1∈H−

z2∈H+

h±γ,κ(z1, z2) ≤ γρ
2. (4.6.39)

Combining (4.6.37–4.6.39), we get (4.6.28).

Proof of Lemma 4.6.11. Similarly as in the proof of Lemma 4.5.2, by cutting the bonds connect-
ingH− andH+ in the analogue of the variational formula of Proposition 2.2.2 (cf. Remark 2.2.3),
we get

hγ,κ(z1, z2) ≤ lim sup
t→∞

1

κt
log E νρ

(
exp

[
γ

κ

∫ t

0
ds
(
ξ−s (z1)− ρ

)(
ξ+s (z2)− ρ

)])

= lim sup
t→∞

1

κt
log E νρ

(
exp

[
γ

κ

∫ t

0
ds
(
ρ2 − ρ ξ−s (z1) + ρ ξ+s (z2) + ξ−s (z1)ξ

+
s (z2)

)])
,

(4.6.40)
where (ξ−t )t≥0 and (ξ+t )t≥0 are independent exclusion processes in H− and H+, respectively,
obtained from (ξt)t≥0 by suppressing jumps between H− and H+. Applying Hölder’s inequality
in the r.h.s. of (4.6.40) to separate terms, we obtain

hγ,κ(z1, z2) ≤
γ

κ2
ρ2 + lim sup

t→∞

1

3κt
log E νρ

(
exp

[
−

3γ

κ
ρ

∫ t

0
ds ξ−s (z1)

])

+ lim sup
t→∞

1

3κt
log E νρ

(
exp

[
−

3γ

κ
ρ

∫ t

0
ds ξ+s (z2)

])

+ lim sup
t→∞

1

3κt
log E νρ

(
exp

[
3γ

κ

∫ t

0
ds ξ−s (z1)ξ

+
s (z2)

])
.

(4.6.41)
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In order to get (4.6.37), we apply Proposition 1.2.1 to the last three terms in the r.h.s. of (4.6.41).
For the first two terms, pick, respectivelyK(z, s) = −(3γ/κ)ρ 1z1 andK(z, s) = −(3γ/κ)ρ 1z2(z).
For the last term, we have to apply Proposition 1.2.1 twice, once for the exclusion process (ξ+t )t≥0

on H+ with K(z, s) = −(3γ/κ) ξ−s (z1) 1z2(z) and once for the exclusion process (ξ−t )t≥0 on H−

with K(z, s) = −(3γ/κ) ξ̃−s (z2) 1z1(z). Here, we in fact apply a modification of Proposition 1.2.1
by considering (ξ−t )t≥0 and (ξ+t )t≥0 on Z

d with particles not moving on H+ and H−, respectively.
See the proof of Proposition 1.2.1 in Appendix A to verify that this modification holds true.

Proof of Lemma 4.6.12. We prove the second line of (4.6.38). The first line follows by symmetry.

Let
H+
η = {x ∈ H+ : η(x) = 1}, η ∈ Ω. (4.6.42)

Fix z ∈ H+. Then

E
IRW
νρ

(
exp

[
−

3γ

κ
ρ

∫ t

0
ds ξ̃+s (z)

])
=

∫

Ω
νρ(dη)

∏

x∈H+
η

ERW,+
x

(
exp

[
−

3γ

κ
ρ

∫ t

0
ds 1z(Y

+
s )

])
,

(4.6.43)
where ERW,+

x is expectation w.r.t. simple random walk Y + = (Y +
t )t≥0 on H+ with transition

kernel p+(·, ·) and step rate 1 starting from Y +
0 = x ∈ H+. Using that νρ is the Bernoulli

product measure with density ρ, we get

E
IRW
νρ

(
exp

[
−

3γ

κ
ρ

∫ t

0
ds ξ̃+s (z)

])

=

∫

Ω
νρ(dη)

∏

x∈H+

ERW,+
x

(
exp

[
− η(x)

3γ

κ
ρ

∫ t

0
ds 1z(Y

+
s )

])

=
∏

x∈H+

(
1− ρ+ ρv(x, t)

)
≤ exp

[
ρ
∑

x∈H+

(
v(x, t)− 1

)]
(4.6.44)

with

v(x, t) = ERW,+
x

(
exp

[
−

3γ

κ
ρ

∫ t

0
ds 1z(Y

+
s )

])
. (4.6.45)

By the Feynman-Kac formula, v : H+ × [0,∞)→ R is the solution of the Cauchy problem

∂

∂t
v(x, t) =

1

2d
∆+v(x, t)−

{
3γ

κ
ρ 1z(x)

}
v(x, t), v(·, 0) ≡ 1, (4.6.46)

where
∆+v(x, t) =

∑

y∈H+

‖y−x‖=1

[v(y, t)− v(x, t)], x ∈ H+. (4.6.47)

Put
w(x, t) = v(x, t)− 1. (4.6.48)

Then w : H+ × [0,∞)→ R is the solution of the Cauchy problem

∂w

∂t
(x, t) =

1

2d
∆+w(x, t) −

{
3γ

κ
ρ 1z(x)

}
[w(x, t) + 1], w(·, 0) ≡ 0. (4.6.49)
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Since
∑

x∈H+ ∆+f(x) = 0 for all f : H+ → R, (4.6.49) gives

∂

∂t

∑

x∈H+

w(x, t) = −
3γ

κ
ρ[w(z, t) + 1]. (4.6.50)

After integrating (4.6.50) w.r.t. t, we obtain

∑

x∈H+

w(x, t) = −
3γ

κ
ρ t−

3γ

κ
ρ

∫ t

0
ds w(z, s). (4.6.51)

Combining (4.6.36), (4.6.44), (4.6.48) and (4.6.51), we arrive at

h+
γ,κ(z) ≤ −

γ

κ2
ρ2

(
1 + lim

t→∞

1

t

∫ t

0
ds w(z, s)

)
. (4.6.52)

The limit in the r.h.s. exists since, by (4.6.45) and (4.6.48), w(z, t) is monotone in t.

We will complete the proof by showing that the second term in the r.h.s. of (4.6.52) tends to
zero as κ→∞. This will rely on the following lemma, the proof of which is deferred to the end
of this section.

Lemma 4.6.14. Let G+(x, y) be the Green kernel on H+ associated with p+
t (x, y). Then

‖G+‖∞ ≤ 2Gd <∞.

Return to (4.6.45). If γ > 0, then by Jensen’s inequality we have

1 ≥ v(x, t) ≥ exp

[
−

3γ

κ
ρ

∫ t

0
ds p+

s (x, z)

]
≥ exp

[
−

3γ

κ
ρ‖G+‖∞

]
, (4.6.53)

where ‖G+‖∞ < ∞ by Lemma 4.6.14. To deal with the case γ ≤ 0, let G+ denote the Green
operator acting on functions V : H+ → [0,∞) as

(G+V )(x) =
∑

y∈H+

G+(x, y)V (y), x ∈ H+. (4.6.54)

We have ∥∥∥∥G
+
(3γ

κ
ρ 1z

)∥∥∥∥
∞

≤
3|γ|

κ
ρ ‖G+‖∞. (4.6.55)

The r.h.s. tends to zero as κ→∞. Hence Lemma 8.2.1 in Gärtner and den Hollander (10) can
be applied to (4.6.45) for κ large enough, to yield

1 ≤ v(x, t) ≤
1

1− 3|γ|
κ ρ ‖G+‖∞

↓ 1 as κ→∞. (4.6.56)

Therefore, combining (4.6.53) and (4.6.56), we see that for all γ ∈ R and δ ∈ (0, 1) there exists
κ0 = κ0(γ, δ) such that

‖v − 1‖∞ ≤ δ ∀κ > κ0. (4.6.57)

By (4.6.48–4.6.49), we have

w(z, t) = −
3γ

κ
ρ

∫ t

0
ds ERW,+

z

(
1z(Y

+
s ) v(Y +

s , t− s)

)
. (4.6.58)
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Via (4.6.57) it therefore follows that

−
3γ

κ
ρ(1± δ)G+(z, z) ≤ lim

t→∞

1

t

∫ t

0
ds w(z, s) ≤ −

3γ

κ
ρ(1∓ δ)G+(z, z) ∀κ > κ0, (4.6.59)

where the choice of + or − in front of δ depends on the sign of γ. The latter shows that the
second term in the r.h.s. of (4.6.52) is O(1/κ). This proves (4.6.38).

Proof of Lemma 4.6.13. The proof is similar to that of Lemma 4.6.12. Let

H+
η = {x ∈ H+ : η(x) = 1}, η ∈ Ω,

H−
η = {x ∈ H− : η(x) = 1}, η ∈ Ω.

(4.6.60)

Fix z1 ∈ H
− and z2 ∈ H

+. Then

E
IRW
νρ

(
exp

[
3γ

κ

∫ t

0
ds ξ̃−s (z1)ξ̃

+
s (z2)

])

=

∫

Ω
νρ(dη)

∏

x∈H−
η

∏

y∈H+
η

ERW,−
x ERW,+

y

(
exp

[
3γ

κ

∫ t

0
ds 1(z1,z2)(Y

−
s , Y

+
s )

])
,

(4.6.61)

where Y − on H− and Y + on H+ are simple random walks with step rate 1 and transition kernel
p−(·, ·) and p+(·, ·) starting from Y −

0 = x ∈ H− and Y +
0 = y ∈ H+, respectively. Using that νρ

is the Bernoulli product measure with density ρ, we get

E
IRW
νρ

(
exp

[
3γ

κ

∫ t

0
ds ξ̃−s (z1)ξ̃

+
s (z2)

])

=

∫

Ω
νρ(dη)

∏

x∈H−

∏

y∈H+

ERW,−
x ERW,+

y

(
exp

[
η(x)η(y)

3γ

κ

∫ t

0
ds 1(z1,z2)(Y

−
s , Y

+
s )

])

=
∏

x∈H−

∏

y∈H+

(
1− ρ2 + ρ2v(z1, z2; t)

)
≤ exp

[
ρ2
∑

x∈H−

∑

y∈H+

(
v(z1, z2; t)− 1

)]

(4.6.62)
with

v(z1, z2; t) = ERW,−
x ERW,+

y

(
exp

[
3γ

κ

∫ t

0
ds

∫ t

0
ds 1(z1,z2)(Y

−
s , Y

+
s )

])
. (4.6.63)

By the Feynman-Kac formula, v : (H−×H+)×[0,∞)→ R is the solution of the Cauchy problem

∂

∂t
v(x, y; t) =

1

2d

(
∆− + ∆+

)
v(x, y; t) +

{
3γ

κ
1z1,z2(x, y)

}
v(x, y; t), v(·, ·; 0) ≡ 1, (4.6.64)

where
∆−v(x; t) =

∑

y∈H−

‖y−x‖=1

[v(y, t) − v(x, t)], x ∈ H−,

∆+v(x; t) =
∑

y∈H+

‖y−x‖=1

[v(y, t) − v(x, t)], x ∈ H+.

(4.6.65)
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Put
w(x, y; t) = v(x, y; t)− 1. (4.6.66)

Then, w : (H− ×H+)× [0,∞)→ R is the solution of the Cauchy problem

∂w

∂t
(x, y; t) =

1

2d
(∆− + ∆+)w(x, y; t) +

{
3γ

κ
1(z1,z2)(x, y)

}
[w(x, y; t) + 1], w(·, · ; 0) ≡ 0.

(4.6.67)
By (4.6.65) and (4.6.67),

∂

∂t

∑

x∈H−

∑

y∈H+

w(x, y; t) =
3γ

κ
[w(z1, z2; t) + 1]. (4.6.68)

After integrating (4.6.68) w.r.t. t, we obtain

∑

x∈H−

∑

y∈H+

w(x, y; t) =
3γ

κ
t+

3γ

κ

∫ t

0
ds w(z1, z2; s). (4.6.69)

Combining (4.6.36), (4.6.62), (4.6.66) and (4.6.69), we arrive at

h±γ,κ(z1, z2) ≤
γ

κ2
ρ2

(
1 + lim

t→∞

1

t

∫ t

0
ds w(z1, z2; s)

)
. (4.6.70)

The limit in the r.h.s. exists, since w(z1, z2; s) is monotone in s.

We will complete the proof by showing that the second term in the r.h.s. of (4.6.70) tends to
zero as κ→∞. Return to (4.6.63). If γ ≤ 0, then by Jensen’s inequality we have

1 ≥ v(x, y; t) ≥ exp

[
−

3|γ|

κ

∫ ∞

0
ds p−s (x, z1) p

+
s (y, z2)

]
≥ exp

[
−

3|γ|

κ

(
‖G−‖∞ ∧ ‖G

+‖∞

)]
,

(4.6.71)
where ‖G−‖∞, ‖G

+‖∞ < ∞ by Lemma 4.6.14. To deal with the case γ > 0, let G± denote the
Green operator acting on functions V : H− ×H+ → [0,∞) as

(G±V )(x, y) =
∑

a∈H−

b∈H+

G±(x, y; a, b)V (a, b), x ∈ H−, y ∈ H+, (4.6.72)

where

G±(x, y; a, b) =

∫ ∞

0
ds p−s (x, a) p+

s (y, b). (4.6.73)

We have ∥∥∥∥G
±
(3γ

κ
1(z1,z2)

)∥∥∥∥
∞

≤
3γ

κ
‖G±‖∞ ≤

3γ

κ

(
‖G−‖∞ ∧ ‖G

+‖∞

)
. (4.6.74)

The r.h.s. tends to zero as κ→∞. Hence Lemma 8.2.1 in Gärtner and den Hollander (10) can
be applied to (4.6.63) for κ large enough, to yield

1 ≤ v(x, t) ≤
1

1− 3γ
κ

(
‖G−‖∞ ∧ ‖G+‖∞

) ↓ 1 as κ→∞. (4.6.75)
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Therefore, combining (4.6.71) and (4.6.75), we see that for all γ ∈ R and δ > 0 there exists
κ0 = κ0(γ, δ) such that

‖v − 1‖∞ ≤ δ ∀κ > κ0. (4.6.76)

By (4.6.66–4.6.67), we have

w(z1, z2; t) =
3γ

κ

∫ t

0
ds ERW,−

z1 ERW,+
z2

(
1(z1,z2)(Y

−
s , Y

+
s ) v(Y −

s , Y
+
s ; t− s)

)
. (4.6.77)

Via (4.6.76) it therefore follows that for all κ > κ0,

3γ

κ
(1± δ)G±(z1, z1; z2, z2) ≤ lim

t→∞

1

t

∫ t

0
ds w(z1, z2; s) ≤

3γ

κ
(1∓ δ)G±(z1, z1; z2, z2). (4.6.78)

Combining (4.6.70) and (4.6.78), we arrive at (4.6.39).

Proof of Lemma 4.6.14. We haveG+(x, y) =
∑∞

n=0 p
+
n (x, y), x, y ∈ H+, with p+

n (x, y) the n-step
transition probability of simple random walk on H+ whose steps outside H+ are suppressed (i.e.,
the walk pauses when it attempts to leave H+). Let pn(x, y) be the n-step transition probability
of simple random walk on Z

d. Then

p+
n (x, y) ≤ 2pn(x, y), x, y ∈ H+, n ∈ N0. (4.6.79)

Indeed, if we reflect simple random walk in the (d−1)-dimensional hyperplane between H+ and
its complement, then we obtain precisely the random walk that pauses when it attempts to leave
H+. Hence, we have p+

n (x, y) = pn(x, y) + pn(x, y∗), x, y ∈ H
+, n ∈ N0, with y∗ the reflection

image of y. Since pn(x, y∗) ≤ pn(x, y), x, y ∈ H
+, the claim in (4.6.79) follows. Sum on n, to

get G+(x, y) ≤ 2G(x, y), x, y ∈ H+. Now use that G(x, y) ≤ G(0, 0) = Gd, x, y ∈ Z
d.

4.7 Proof of Proposition 4.4.3

The proof of Proposition 4.4.3 is given in Section 4.7.1 subject to three lemmas. The latter are
proved in Sections 4.7.2–4.7.4, respectively. The first two lemmas are valid for d ≥ 3, the third
for d ≥ 4.

4.7.1 Proof of Proposition 4.4.3

Lemma 4.7.1. For all t ≥ 0, κ, T > 0 and α ∈ R,

E νρ,0

(
exp

[
α

κ

∫ t

0
ds (PTφ) (Zs)

])
≤ E 0

(
exp

[
α

κ
ρ

∫ t

0
ds
∑

x∈Zd

p2dT1[κ](Xt−s, x)w
(t)(x, s)

])
,

(4.7.1)
where w(t) : Z

d × [0, t)→ R is the solution of the Cauchy problem

∂w(t)

∂s
(x, s) =

1

2dκ
∆w(t)(x, s) +

α

κ
p2dT1[κ](Xt−s, x)[w

(t)(x, s) + 1], w(t)(·, 0) ≡ 0. (4.7.2)
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Lemma 4.7.2. For all t ≥ 0, κ > 0, T large enough and α ∈ R,

E 0

(
exp

[
α

κ
ρ

∫ t

0
ds
∑

x∈Zd

p2dT1[κ](Xt−s, x)w
(t)(x, s)

])

≤ E 0

(
exp

[
2α2

κ2
ρ

∫ t

0
ds

∫ t

s
du pu−s

κ
+4dT1[κ](Xu,Xs)

])
.

(4.7.3)

Lemma 4.7.3. If d ≥ 4, then for any α ∈ R,

lim
T,κ,t→∞

κ2

t
logE 0

(
exp

[
2α2

κ2
ρ

∫ t

0
ds

∫ t

s
du pu−s

κ
+4dT1[κ](Xu,Xs)

])
= 0. (4.7.4)

Lemmas 4.7.1–4.7.3 clearly imply (4.4.16).

4.7.2 Proof of Lemma 4.7.1

For all t ≥ 0, κ, T > 0 and α ∈ R, let v(t) : Z
d × [0, t)→ R be such that

v(t)(x, s) = w(t)(x, s) + 1, (4.7.5)

where w(t) is defined by (4.7.2). Then v(t) is the solution of the Cauchy problem

∂v(t)

∂s
(x, s) =

1

2dκ
∆v(t)(x, s) +

α

κ
p2dT1[κ](Xt−s, x) v

(t)(x, s), v(t)(·, 0) ≡ 1, (4.7.6)

and has the representation

v(t)(x, s) = ERW
x

(
exp

[
α

κ

∫ s

0
du p2dT1[κ]

(
Xt−s+u, Yu

κ

)])
. (4.7.7)

Proof. By (4.1.3) and (4.4.5), we have

E νρ,0

(
exp

[
α

κ

∫ t

0
ds (PTφ) (Zs)

])
= E νρ,0

(
exp

[
α

κ

∑

z∈Zd

∫ t

0
ds p2dT1[κ](Xs, z)

(
ξ s

κ
(z)− ρ

)])
.

(4.7.8)
Therefore, by Proposition 1.2.1 (with K(z, s) = α p2dT1[κ](Xκs, z)), we get

E νρ,0

(
exp

[
α

κ

∫ t

0
ds (PTφ) (Zs)

])

≤ E 0 E
IRW
νρ

(
exp

[
α

κ

∑

z∈Zd

p2dT1[κ](Xs, z)

∫ t

0
ds
(
ξ̃ s

κ
(z)− ρ

)])

≤ exp
[
−
α

κ
ρt
]
E 0

∫

Ω
νρ(dη)

∏

x∈Aη

ERW
x

(
exp

[
α

κ

∑

z∈Zd

p2dT1[κ](Xs, z)

∫ t

0
ds δz

(
Y s

κ

)])

= exp
[
−
α

κ
ρt
]
E 0

∫

Ω
νρ(dη)

∏

x∈Aη

ERW
x

(
exp

[
α

κ

∫ t

0
ds p2dT1[κ]

(
Xs, Y s

κ

)])
,

(4.7.9)
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where Aη = {x ∈ Z
d : η(x) = 1} and E

RW
x is expectation w.r.t. to simple random walk Y =

(Yt)t≥0 on Z
d with step rate 1 starting from Y0 = x. Using that νρ is the Bernoulli product

measure with density ρ, we get

E νρ,0

(
exp

[
α

κ

∫ t

0
ds (PTφ) (Zs)

])

≤ exp
[
−
α

κ
ρt
] ∫

Ω
νρ(dη)E 0

(
∏

x∈Zd

ERW
x

(
exp

[
η(x)

α

κ

∫ t

0
ds p2dT1[κ]

(
Xs, Y s

κ

)])

= exp
[
−
α

κ
ρt
] ∫

Ω
νρ(dη)E 0

(
∏

x∈Zd

[
1 + η(x)w(t)(x, t)

])

= exp
[
−
α

κ
ρt
]
E 0

( ∏

x∈Zd

[
1 + ρw(t)(x, t)

])
≤ exp

[
−
α

κ
ρt
]
E 0

(
exp

[
ρ
∑

x∈Zd

w(t)(x, t)

])
,

(4.7.10)
where w(t) : Z

d × [0, t)→ R solves (4.7.2). From (4.7.2) we deduce that

∂

∂s

∑

x∈Zd

w(t)(x, s) =
α

κ

∑

x∈Zd

p2dT1[κ](Xt−s, x)
[
1 + w(t)(x, s)

]
. (4.7.11)

Integrating (4.7.11) w.r.t. s and inserting the result into (4.7.10), we get (4.7.1).

4.7.3 Proof of Lemma 4.7.2

Next, we consider v(t) and w(t) as defined in (4.7.5–4.7.7), but with |α| instead of α.

Proof. We begin by showing that, for T large enough and all x, s, t and X(.), we have v(t)(x, s) ≤
2.

Do a Taylor expansion, to obtain (s0 = 0)

v(t)(x, s) =

∞∑

n=0

(
|α|

κ

)n( n∏

l=1

∫ s

sl−1

dsl

)
ERW
x

(
n∏

m=1

p2dT1[κ]

(
Xt−s+sm , Y sm

κ

))
. (4.7.12)

In Fourier representation the transition kernel of simple random walk with step rate 1 reads

ps(x, y) =

∮
dk e−i k·(y−x) e−sbϕ(k), (4.7.13)

where
∮
dk = (2π)−d

∫
[−π,π)d dk and

ϕ̂(k) =
1

2d

∑

x∈Z
d

‖x‖=1

(
1− ei k·x

)
, k ∈ [−π, π)d.

(4.7.14)
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Combining (4.7.12–4.7.13), we get

v(t)(x, s) =

∞∑

n=0

(
|α|

κ

)n( n∏

l=1

∫ s

sl−1

dsl

)(
n∏

m=1

∮
dkm

)

× E
RW
x

(
exp

[
i
n∑

p=1

(
Y sp

κ
−Xt−s+sp

)
· kp

]
exp

[
−
(
2dT1[κ]

) n∑

q=1

ϕ̂(kq)

])

=
∞∑

n=0

(
|α|

κ

)n( n∏

l=1

∫ s

sl−1

dsl

)(
n∏

m=1

∮
dkm

)
exp

[
− i

n∑

p=1

(
Xt−s+sp − x

)
· kp

]

× exp

[
−
(
2dT1[κ]

) n∑

q=1

ϕ̂(kq)

]
ERW

0

(
exp

[
i

n∑

r=1

Y sr
κ
· kr

])
,

(4.7.15)
where in the last line we did a spatial shift of Y by x. Because Y has independent increments,
we have

ERW
0

(
exp

[
i

n∑

r=1

Y sr
κ
· kr

])
= ERW

0

(
exp

[
i

n∑

r=1

(kr + · · ·+ kn) ·
(
Y sr

κ
− Y sr−1

κ

)])

=
n∏

r=1

ERW
0

(
exp

[
i(kr + · · ·+ kn) · Y sr−sr−1

κ

])

=

n∏

r=1

∑

z∈Zd

p sr−sr−1
κ

(0, z) exp
[
i(kr + · · ·+ kn) · z

]

=
n∏

r=1

exp

[
−
sr − sr−1

κ
ϕ̂(kr + · · · + kn)

]
,

(4.7.16)

where the last line uses (4.7.13). Since the r.h.s. is non-negative, taking the modulus of the r.h.s.
of (4.7.15), we obtain

v(t)(x, s) ≤

∞∑

n=0

(
|α|

κ

)n( n∏

l=1

∫ s

sl−1

dsl

)(
n∏

m=1

∮
dkm

)

× exp

[
−
(
2dT1[κ]

) n∑

q=1

ϕ̂(kq)

]
ERW

0

(
exp

[
i
n∑

r=1

Y sr
κ
· kr

])

=
∞∑

n=0

(
|α|

κ

)n( n∏

l=1

∫ s

sl−1

dsl

)
ERW

0

(
n∏

m=1

p2dT1[κ]

(
0, Y sm

κ

))
,

(4.7.17)

where the last line uses (4.7.13). Thus

v(t)(x, s) ≤ ERW
0

(
exp

[
|α|

κ

∫ s

0
du p2dT1[κ]

(
0, Yu

κ

)])

≤ ERW
0

(
exp

[
|α|

∫ ∞

0
du p2dT1[κ](0, Yu)

])
.

(4.7.18)
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Next, let G denote the Green operator acting on functions V : Z
d → [0,∞) as

(GV )(x) =
∑

y∈Zd

G(x, y)V (y), x ∈ Z
d. (4.7.19)

With pt denoting the function pt(0, ·), we have

∥∥∥G
(
|α| p2dT1[κ]

)∥∥∥
∞

= |α| sup
x∈Zd

∫ ∞

0
ds

∑

y∈Zd

ps(x, y) p2dT1[κ](0, y) ≤ |α|G2dT1[κ] (4.7.20)

with

Gt =

∫ ∞

t
ds ps(0, 0) (4.7.21)

the truncated Green function at the origin. The r.h.s. of (4.7.20) tends to zero as T →∞. Hence
Lemma 8.2.1 in Gärtner and den Hollander (10) can be applied to the r.h.s. of (4.7.18) for T
large enough, to yield

v(t)(x, s) ≤
1

1−
∥∥∥G
(
|α| p2dT1[κ]

)∥∥∥
∞

↓ 1 as T →∞, uniformly in κ > 0. (4.7.22)

Thus, for T large enough and all x, s, t, κ and X(.), we have v(t)(x, s) ≤ 2, as claimed earlier.

For such T , recalling (4.7.5), we conclude from (4.7.2) that w(t) ≤ w̄(t), where w̄(t) solves

∂w̄(t)

∂s
(x, s) =

1

2dκ
∆w̄(t)(x, s) +

2|α|

κ
p2dT1[κ](Xt−s, x), w̄(t)(·, 0) ≡ 0, (4.7.23)

The latter has the representation

w̄(t)(x, s) =
2|α|

κ

∫ s

0
du

∑

z∈Zd

p s−u
κ

(x, z) p2dT1[κ](Xt−u, z) =
2|α|

κ

∫ s

0
du p s−u

κ
+2dT1[κ](x,Xt−u).

(4.7.24)
Hence,

E 0

(
exp

[
α

κ
ρ

∫ t

0
ds
∑

x∈Zd

p2dT1[κ](Xt−s, x)w
(t)(x, s)

])

≤ E 0

(
exp

[
|α|

κ
ρ

∫ t

0
ds
∑

x∈Zd

p2dT1[κ](Xt−s, x) w̄
(t)(x, s)

])

= E 0

(
exp

[
2α2

κ2
ρ

∫ t

0
ds

∫ s

0
du pu−s

κ
+4dT1[κ](Xt−s,Xt−u)

])
,

(4.7.25)

which proves the claim in (4.7.3).
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4.7.4 Proof of Lemma 4.7.3

The proof of Lemma 4.7.3 is based on the following lemma. For t ≥ 0, α ∈ R and a, κ, T > 0,
let

Λα(t; a, κ, T ) =
1

2t
logE 0

(
exp

[
4α2

κ2
ρ

∫ t

0
ds

∫ s+aκ3

s
du pu−s

κ
+4dT1[κ](Xu,Xs)

])
(4.7.26)

and
λα(a, κ, T ) = lim sup

t→∞
Λα(t; a, κ, T ). (4.7.27)

Lemma 4.7.4. If d ≥ 4, then for any α ∈ R and a, T > 0,

lim sup
κ→∞

κ2λα(a, κ, T ) ≤ 2α2ρG4dT , (4.7.28)

where Gt is the truncated Green function at the origin defined by (4.7.21). Before giving the
proof of Lemma 4.7.4, we first prove Lemma 4.7.3.

Proof of Lemma 4.7.3. Return to (4.7.4). By the Cauchy-Schwarz inequality, we have

κ2

t
logE 0

(
exp

[
2α2

κ2
ρ

∫ t

0
ds

∫ t

s
du pu−s

κ
+4dT1[κ](Xu,Xs)

])

≤
κ2

2t
logE 0

(
exp

[
4α2

κ2
ρ

∫ t

0
ds

∫ s+aκ3

s
du pu−s

κ
+4dT1[κ](Xu,Xs)

])

+
κ2

2t
logE 0

(
exp

[
4α2

κ2
ρ

∫ t

0
ds

∫ ∞

s+aκ3

du pu−s
κ

+4dT1[κ](Xu,Xs)

])
.

(4.7.29)

Moreover, by Lemma 4.5.4 and the fact that d ≥ 3, we have

1

κ2

∫ t

0
ds

∫ ∞

s+aκ3

du pu−s
κ

+4dT1[κ](Xu,Xs) ≤
1

κ2

∫ t

0
ds

∫ ∞

s+aκ3

du pu−s
κ

(0, 0)

≤
C

κ
t

∫ ∞

aκ2

du
1

(1 + u)
d
2

≤
C̃

a
1
2κ2

t

(4.7.30)

with C, C̃ > 0. Combining (4.7.29–4.7.30) and Lemma 4.7.4, and letting a→∞, we get (4.7.4).

The proof of Lemma 4.7.4 is based on one further lemma. For γ ≥ 0 and a, κ, T > 0, let

Λγ(a, T ) = lim sup
κ→∞

1

aκ
logE 0

(
γ

κ2

∫ aκ3

0
ds

∫ ∞

s
du pu−s

κ
+4dT1[κ](Xs,Xu)

)
. (4.7.31)

Lemma 4.7.5. If d ≥ 4, then for any γ ≥ 0 and a, T > 0,

Λγ(a, T ) ≤ γ G4dT . (4.7.32)
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Before giving the proof of Lemma 4.7.5, we first prove Lemma 4.7.4.

Proof of Lemma 4.7.4. Split the integral in the exponent in the r.h.s. of (4.7.26) as follows:

∫ t

0
ds

∫ s+aκ3

s
du pu−s

κ
+4dT1[κ](Xu,Xs)

≤




⌈t/aκ3⌉∑

k=1
even

+

⌈t/aκ3⌉∑

k=1
odd



∫ kaκ3

(k−1)aκ3

ds

∫ s+aκ3

s
du pu−s

κ
+4dT1[κ](Xu,Xs).

(4.7.33)

Note that in each of the two sums, the summands are i.i.d. Hence, substituting (4.7.33) into
(4.7.26) and applying the Cauchy-Schwarz inequality, we get

Λα(t; a, κ, T ) ≤
⌈t/aκ3⌉

4t
logE 0

(
exp

[
8α2

κ2
ρ

∫ aκ3

0
ds

∫ s+aκ3

s
du pu−s

κ
+4dT1[κ](Xu,Xs)

])
.

(4.7.34)
Letting t→∞ and recalling (4.7.27), we arrive at

λα(a, κ, T ) ≤
1

4aκ3
logE 0

(
exp

[
8α2

κ2
ρ

∫ aκ3

0
ds

∫ s+aκ3

s
du pu−s

κ
+4dT1[κ](Xu,Xs)

])
. (4.7.35)

Combining this with Lemma 4.7.5 (with γ = 8α2ρ), we obtain (4.7.28).

The proof of Lemma 4.7.5 is based on two further lemmas.

Lemma 4.7.6. For any β > 0 and M ∈ N,

E 0

(
exp

[
β

M∑

k=1

∫ ∞

0
ds p s

κ
+4dT1[κ]

(
Uk−1(0), Uk−1(s)

)
])

≤

M∏

k=1

max
y1,··· ,yk−1∈Zd

E 0

(
exp

[
β

k−1∑

l=0

∫ ∞

0
ds p aκ2

M
l+ s

κ
+4dT1[κ]

(0,Xs + yl)

])
,

(4.7.36)

where Uk(t) = X( kM aκ3 + s), k ∈ N0 and y0 = 0.

Lemma 4.7.7. For any β > 0, M ∈ N, k ∈ N0, and y0, · · · , yk ∈ Z
d,

E 0

(
exp

[
β

k−1∑

l=0

∫ ∞

0
ds p aκ2

M
l+ s

κ
+4dT1[κ]

(0,Xs + yl)

])
≤ exp

[
β
∑k

l=0Gaκ2

M
l+4dT1[κ]

1− β
∑k

l=0Gaκ2

M
l+4dT1[κ]

]
,

(4.7.37)
(recall (4.7.21)), provided that

β
k∑

l=0

Gaκ2

M
l+4dT1[κ]

< 1. (4.7.38)

The proofs of Lemmas 4.7.6–4.7.7 are similar to those of Lemmas 6.3.1–6.3.2 in Gärtner and den
Hollander (10). We refrain from spelling out the details. We conclude by proving Lemma 4.7.5.
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Proof of Lemma 4.7.5. As in the proof of Lemma 6.2.1 in Gärtner and den Hollander (10),
using Lemmas 4.7.6–4.7.7 we obtain

1

aκ
logE 0

(
exp

[
γ

κ2

∫ aκ3

0
ds

∫ ∞

s
du pu−s

κ
+4dT1[κ](Xs,Xu)

])

≤
γ
∑M−1

l=0 Gaκ2

M
l+4dT1[κ]

1− γ aκM
∑M−1

l=0 Gaκ2

M
l+4dT1[κ]

,

(4.7.39)

provided that

γ
aκ

M

M−1∑

l=0

Gaκ2

M
l+4dT1[κ]

< 1. (4.7.40)

But (recall (4.7.21))
M−1∑

l=0

Gaκ2

M
l+4dT1[κ]

≤ G4dT1[κ] +

M−1∑

l=1

Gaκ2

M
l
. (4.7.41)

From Lemma 4.5.4 we get Gt ≤ C/t
d
2
−1. Therefore

κ

M

M−1∑

l=1

Gaκ2

M
l
≤





C3

a
1
2

if d = 3,

C4
a

1
κ logM if d = 4,

Cd

a
d
2−1

M
d
2−2

κd−3 if d ≥ 5,

(4.7.42)

for some Cd > 0, d ≥ 3. Hence, picking 1 ≪ M ≤ Cκ2, (4.7.40) holds for κ large enough when
d ≥ 4, and so the claim (4.7.32) follows from (4.7.39) and (4.7.41–4.7.42).

4.8 Extension to arbitrary p

In Sections 4.2–4.7 we proved Theorem 1.3.4 for p = 1. We briefly indicate how the proof can
be extended to arbitrary p.

As in (4.1.6), after time rescaling we have, for any p ∈ N,

λ∗p(κ) = lim
t→∞

Λ∗
p(κ; t) with Λ∗

p(κ; t) =
1

t
log E νρ,0,··· ,0

(
exp

[
1

κ

∫ t

0
ds

p∑

k=1

ξ s
κ

(
Xk(s)

)])
.

(4.8.1)
We are interested in the quantity

λ∗p(κ)−
ρ

κ
= lim

t→∞

1

t
log E νρ,0,··· ,0

(
exp

[
1

κ

∫ t

0
ds

p∑

k=1

(
ξ s

κ

(
Xk(s)

)
− ρ
)])

. (4.8.2)

As in (4.4.1), for T > 0 let ψp : Ω× (Zd)p be defined by

ψ(η, x1, · · · , xp) =

∫ T

0
ds
(
P(p)
s φp

)
(η, x1, . . . , xp) with φp(η, x1, · · · , xp) =

p∑

k=1

[
η(xk)− ρ

]
,

(4.8.3)
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where (P
(p)
s )s≥0 is the semigroup with generator (compare with (4.1.4))

A(p) =
1

κ
L+

p∑

k=1

∆k. (4.8.4)

Using (1.2.6), we obtain the representation (compare with (4.4.3))

ψp(η, x1, · · · , xp) =

∫ T

0
ds
∑

z∈Zd

p∑

k=1

p2ds1[κ](z, xk)
[
η(z) − ρ

]
=

p∑

k=1

ψ(η, xk). (4.8.5)

Let (compare with (4.1.3))
Z(p)
s =

(
ξ s

κ
,X1(s), · · · ,Xp(s)

)
. (4.8.6)

First, we have the analogue of Proposition 4.4.1:

Proposition 4.8.1. For any p ∈ N, κ, T > 0,

λ∗p(κ) −
ρ

κ

≤

≥

1

2q
lim sup
t→∞

1

t
log E νρ,0

(
exp

[
2q

r

∫ t

0
ds
[(
e−

r
κ
ψpAe

r
κ
ψp

)
−A

( r
κ
ψp

)]
(Z(p)

s )

])

+
1

4q
lim sup
t→∞

1

t
log E νρ,0

(
exp

[
4q

κ

∫ t

0
ds
(
P

(p)
T φp

)
(Z(p)

s )

])
,

(4.8.7)
where 1/r+ 1/q = 1, for any r, q > 1 in the first inequality and any q < 0 < r < 1 in the second
inequality.

Next, using (4.8.5), the bound

(
ψp
(
ηa,b, x1, · · · , xp

)
− ψp(η, x1, · · · , xp)

)2
≤ p

p∑

k=1

(
ψ
(
ηa,b, xk

)
− ψ(η, xk)

)2
, (4.8.8)

and the estimate in (4.5.4), we also have the analogue of Lemma 4.6.1:

Lemma 4.8.2. Uniformly in η ∈ Ω and x1, · · · , xp ∈ Z
d,

[(
e−

r
κ
ψpA e

r
κ
ψp

)
−A

( r
κ
ψp

)]
(η, x1, · · · , xp)

=
r2

2κ2

p∑

k=1

∑

e : ‖e‖=1

(
ψ(η, xk + e)− ψ(η, xk)

)2
+O

(( 1

κ

)3
)
.

(4.8.9)

Using Hölder’s inequality to separate terms, we may therefore reduce to the case p = 1 and deal
with the first term in the r.h.s. of (4.8.7) to get the analogue of Proposition 4.4.2.

For the second term in (4.8.7), using (1.2.6) we have

(
P

(p)
T φp

)
(η, x1, · · · , xp) =

p∑

k=1

∑

z∈Zd

p2dT1[κ](z, xk)
[
η(z) − ρ

]
=

p∑

k=1

(
PTφ

)
(η, xk). (4.8.10)

Using Hölder’s inequality to separate terms, we may therefore again reduce to the case p = 1
and deal with the second term in the r.h.s. of (4.8.7) to get the analogue of Proposition 4.4.3.
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A Appendix

In this appendix we give the proof of Proposition 1.2.1.

Proof. Fix t ≥ 0, η ∈ Ω and K : Z
d × [0,∞) → R such that S =

∑
z∈Zd

∫ t
0 ds |K(z, s)| < ∞.

First consider the case K ≥ 0. Since the ξ-process and the ξ̃-process are both monotone in their
initial configuration (as is evident from the graphical representation described in Section 1.2),
it suffices to show that

E η

(
exp

[
∑

z∈Zd

∫ t

0
ds K(z, s) ξs(z)

])
≤ E

IRW
η

(
exp

[
∑

z∈Zd

∫ t

0
ds K(z, s) ξ̃s(z)

])
, (A.0.11)

for all η ∈ Ω such that |{x ∈ Z
d : η(x) = 1}| <∞. This goes as follows.

Since ξs(z) ∈ {0, 1}, we may write for any r ∈ R \ {0},

E η

(
exp

[
∑

z∈Zd

∫ t

0
ds K(z, s) ξs(z)

])
= E η

(
exp

[
∑

z∈Zd

∫ t

0
ds K(z, s)

er ξs(z) − 1

er − 1

])
. (A.0.12)

By Taylor expansion, we get

E η

(
exp

[
∑

z∈Zd

∫ t

0
ds K(z, s)

er ξs(z) − 1

er − 1

])

= exp

[
−t

er − 1
S

]
E η

(
exp

[
∑

z∈Zd

∫ t

0
ds K(z, s)

er ξs(z)

er − 1

])

= exp

[
−t

er − 1
S

]

×

∞∑

n=0

(
1

er − 1

)n
1

n!

(
n∏

j=1

∫ t

0
dsj

∑

zj∈Zd

)(
n∏

j=1

K(zj , sj)

)
E η

(
exp

[
r

n∑

j=1

ξsj
(zj)

])
.

(A.0.13)
According to Lemma 4.1 in Landim (18), we have for any r ∈ R,

E η

(
exp

[
r

n∑

j=1

ξsj
(zj)

])
≤ E

IRW
η

(
exp

[
r

n∑

j=1

ξ̃sj
(zj)

])
. (A.0.14)

Picking r ≥ 0, combining (A.0.12–A.0.14), and using the analogue of (A.0.13) for (ξ̃t)t≥0, we
obtain

E η

(
exp

[
∑

z∈Zd

∫ t

0
ds K(z, s) ξs(z)

])
≤ E

IRW
η

(
exp

[
∑

z∈Zd

∫ t

0
ds K(z, s)

er ξ̃s(z) − 1

er − 1

])
.

(A.0.15)
Now let r ↓ 0 and use the dominated convergence theorem to arrive at (A.0.11).

For the case K ≤ 0 we can use the same argument with

− ξs =
e−rξs − 1

1− e−r
. (A.0.16)
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