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Abstract

We show that if Σ = (V,E) is a regular bipartite graph for which the expansion of subsets of
a single parity of V is reasonably good and which satisfies a certain local condition (that the
union of the neighbourhoods of adjacent vertices does not contain too many pairwise non-
adjacent vertices), and if M is a Markov chain on the set of proper 3-colourings of Σ which
updates the colour of at most ρ|V | vertices at each step and whose stationary distribution
is uniform, then for ρ ≈ .22 and d sufficiently large the convergence to stationarity of M
is (essentially) exponential in |V |. In particular, if Σ is the d-dimensional hypercube Qd

(the graph on vertex set {0, 1}d in which two strings are adjacent if they differ on exactly
one coordinate) then the convergence to stationarity of the well-known Glauber (single-site
update) dynamics is exponentially slow in 2d/(

√
d log d). A combinatorial corollary of our

main result is that in a uniform 3-colouring of Qd there is an exponentially small probability
(in 2d) that there is a colour i such the proportion of vertices of the even subcube coloured i
differs from the proportion of the odd subcube coloured i by at most .22. Our proof combines
a conductance argument with combinatorial enumeration methods.
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1 Introduction and statement of the result

Markov chain Monte Carlo algorithms (MCMC’s) occur frequently in computer science in algo-
rithms designed to sample from or estimate the size of large combinatorially defined structures;
they are also used in statistical physics and the study of networks to help understand the behav-
ior of models of physical systems and networks in equilibrium. In this paper we study a class of
natural MCMC’s that sample from proper 3-colourings of a regular bipartite graph.

Let Σ = (V,E) be a simple, loopless, finite graph on vertex set V and edge set E. (For graph
theory basics, see e.g. (4), (9).) For a positive integer q write Cq = Cq(Σ) for the set of proper
q-colourings of Σ; that is,

Cq = {χ : V (Σ) → {0, 1, . . . , q − 1} : xy ∈ E(Σ) ⇒ χ(x) 6= χ(y)}.

Let πq = πq(Σ) be the uniform probability distribution on Cq.

The notion of q-colouring is fundamental in graph theory; see e.g. (3, Chapter 5) for a survey.
The notion also occurs in statistical physics; the pair (Cq, πq) is the zero-temperature limit of
the q-state antiferromagnetic Potts model (see e.g. (27; 28)).

Glauber dynamics for proper q-colourings is the single-site update Markov chain Mq = Mq(Σ)
on state space Cq with transition probabilities Pq(χ1, χ2), χ1, χ2 ∈ Cq, given by

Pq(χ1, χ2) =











0 if |{v ∈ V : χ1(v) 6= χ2(v)}| > 1
1
|V |

1
q if |{v ∈ V : χ1(v) 6= χ2(v)}| = 1

1 − ∑

χ1 6=χ′
2∈Cq

Pq(χ1, χ
′
2) if χ1 = χ2.

We may think of Mq dynamically as follows. From a q colouring χ, choose a vertex v uniformly
from V and a colour j uniformly from {0, . . . , q−1}. Then define a function χ′ : V → {0, . . . , q−
1} by

χ′(w) =

{

χ(w) if w 6= v
j if w = v.

Finally, move to χ′ if χ′ is a proper q-colouring, and stay at χ otherwise. (A variant of Glauber
dynamics chooses j uniformly from {0, . . . , q − 1} \ {χ(w) : w ∼ v}, ensuring that χ′ is always
a proper colouring. This changes the transition probabilities, but does not significantly change
the qualitative behavior of the chain.)

For all Σ the chain Mq is aperiodic, but it is not in general irreducible (consider, for example,
Σ = Kq, the complete graph on q vertices), and so not ergodic. In the case when Mq is ergodic
(e.g., when Σ has maximum degree ∆ and q ≥ ∆ + 2; see (15)) it is readily checked that it has
(unique) stationary distribution πq. (One only has to check that Mq is reversible with respect to
πq; that is, that it satisfies the detailed balance equations πq(χ1)Pq(χ1, χ2) = πq(χ2)Pq(χ2, χ1)
for all χ1, χ2 ∈ Cq.) A natural and important question to ask about Mq in this case is how
quickly it converges to its stationary distribution. We define the mixing time τMq of Mq by

τMq = min

{

t : dTV (P t
q , πq) ≤ 1

e

}
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where P t
q (χ, χ′) is the probability of moving from χ to χ′ in t steps and

dTV (P t
q , πq) = max

χ1∈Cq

1

2

∑

χ2∈Cq

|P t
q (χ1, χ2) − πq(χ2)|

is total variation distance. The mixing time of Mq captures the speed at which the chain
converges to its stationary distribution: for every ε > 0, in order to get a sample from Cq which
is within ε of πq (in total variation distance), it is necessary and sufficient to run the chain from
some arbitrarily chosen distribution for some multiple (depending on ε) of the mixing time. For
surveys of issues related to the mixing time of a Markov chain, see e.g. (1; 21; 22).

Jerrum (15) and Salas and Sokal (24) independently showed that if Σ has maximum degree ∆
and q > 2∆ then there is rapid mixing of the Glauber dynamics; i.e., τMq(Σ) is polynomial in
|V |. In fact, they showed that the mixing time is optimal (O(|V | log |V |)). Bubley and Dyer (7)
showed that there is rapid mixing for q = 2∆ and Molloy (20) improved this to optimal mixing.
In a breakthrough result Vigoda (29) showed rapid mixing for q ≥ (11/6)∆. More recently
Dyer, Greenhill and Molloy (11) exhibited optimal mixing for q ≥ (2 − ε)∆ for a small positive
constant ε.

In this paper our aim is to explore the limitations of Glauber dynamics as a sampling tool
by exhibiting a class of graphs for which the mixing time is essentially as far from optimal as
possible. In this direction,  Luczak and Vigoda (19) have exhibited families of planar graphs
for which Mq is not rapidly mixing for each fixed q ≥ 3 and families of bipartite graphs with
maximum degree ∆ for which Mq is not rapidly mixing for any 3 ≤ q ≤ O(∆/ log ∆). A
drawback of these negative results is that the families exhibited consist of random graphs. Here,
we attempt to remedy this by constructing explicit families of graphs for which Glauber dynamics
is inefficient. We focus exclusively on the case q = 3 (we cannot see at the moment how to apply
our techniques to any q > 3) and Σ regular bipartite. Specifically, we establish certain local and
expansion conditions in a regular bipartite graph Σ that force τM3(Σ) to be (almost) exponential
in |V |. The discrete hypercube is among the families of graphs which satisfy our conditions.

Our techniques actually apply to the class of ρ-local chains (considered in (6) and also in (10),
where the terminology ρ|V |-cautious is employed) for suitably small ρ. A Markov chain M
on state space Cq is ρ-local if in each step of the chain at most ρ|V | vertices have their colour
changed; that is, if

PM(χ1, χ2) 6= 0 ⇒ |{v ∈ V : χ1(v) 6= χ2(v)}| ≤ ρ|V |.

Before stating our main result, we establish some notation. From now on, Σ = (V,E) will be a
d-regular bipartite graph with partition classes E and O. For u, v ∈ V we write u ∼ v if there is
an edge in Σ joining u and v. Set N(u) = {w ∈ V : w ∼ u} (N(u) is the neighbourhood of u)
and for A ⊆ V set N(A) = ∪w∈AN(w). For A ⊆ E (or A ⊆ O) set

[A] = {x ∈ V : N(x) ⊆ N(A)}
(we think of [A] as an external closure of A) and say that such an A is small if |[A]| ≤ |V |/4.
Note that N(A) determines [A] but not A itself.

Define the bipartite expansion of Σ by

δ(Σ) = min

{ |N(A)| − |[A]|
|N(A)| : A ⊆ E (or O) small, A 6= ∅

}

;
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note that 0 ≤ δ < 1. The second inequality is clear. To see the first, note that since Σ is regular
and bipartite it has a perfect matching, and so satisfies

|X| ≤ |N(X)| for all X ⊆ E or O. (1)

That 0 ≤ δ now follows from |[A]| ≤ |N([A])| = |N(A)|. The bipartite expansion constant is a
measure of the proportion by which the neighbourhood size of a small set exceeds the size of the
set itself, in the worst case.

Finally, define the locality ℓ(Σ) of Σ to be the largest ℓ ≥ 0 such that for all x ∼ y ∈ V and
for all independent sets I (sets of vertices spanning no edges) in the subgraph of Σ induced by
N(x) ∪ N(y) we have |I| ≤ 2d − ℓ. (So, for example, if Σ is the d-regular tree then ℓ(Σ) = 2
since the subgraph induced by the neighbourhoods of adjacent vertices contains an independent
set of size 2d− 2; whereas if Σ is the complete d-regular bipartite graph then ℓ(Σ) = d.)

Our main result is the following. Recall that H(x) = −x log x − (1 − x) log(1 − x) is the usual
binary entropy function.

Theorem 1.1. Fix ρ > 0 satisfying H(ρ) + ρ < 1. There are constants d0, C1, C
′
1, C2 > 0 all

depending on ρ such that if Σ is a d-regular bipartite graph on N vertices with bipartite expansion
δ and locality ℓ > 0 satisfying

δ ≥ max

{

C1 log3 d

d
,
C ′

1 log d

ℓ

}

(2)

and with d ≥ d0 and if M(Σ) is an ergodic ρ-local Markov chain on state space C3(Σ) with
stationary distribution π3(Σ) then

τM(Σ) ≥ exp2

{

C2Nδ

log d

}

.

Note that for all ρ ≤ .22 we have H(ρ) + ρ < 1. Here and throughout we use “log” for log2 and
write exp2 x for 2x.

Remark 1.2. The second inequality in (2) implies ℓ ≥ Ω(log d/δ). This condition appears in
the derivation of (10), where it is only used in the weaker form ℓ = ω(1) (which follows since
δ ≤ 1). It is used in a more essential way in the derivation of (16) where it serves to limit,
somewhat artificially, the number of 3-colourings of a bipartite graph with a given pre-image of
0. We expect that Theorem 1.1 should remain true with the second inequality in (2) removed.

We now return to Glauber dynamics. This changes the colour of at most one vertex at each
step, and so (as long as the underlying graph has at least five vertices) it is a ρ-local chain for
ρ = .2. Fixing ρ to this value, all of the constants in Theorem 1.1 become absolute, and we have
the following corollary.

Corollary 1.3. There are constants d0, C1, C
′
1, C2 > 0 such that if Σ satisfies the conditions of

Theorem 1.1 and if the Glauber dynamics chain M3(Σ) is ergodic then

τM3(Σ) ≥ exp2

{

C2Nδ

log d

}

.
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Let us apply Theorem 1.1 to the case Σ = Qd, the d-dimensional Hamming cube. This is the
graph on vertex set {0, 1}d with x ∼ y iff x and y differ on exactly one coordinate. For d ≥ 2
we have ℓ(Qd) = d (the graph induced by the union of the neighbourhoods of adjacent vertices
is a perfect matching, so all independent sets are of size at most d), and δ(Qd) = Ω(1/

√
d) (see

e.g. (18, Lemma 1.3)). So the following is an immediate corollary of Theorem 1.1.

Corollary 1.4. Fix ρ > 0 satisfying H(ρ) + ρ < 1. There is a constant C = C(ρ) > 0 such that
for all d ≥ 2, if M(Qd) is an ergodic ρ-local Markov chain on state space C3(Qd) with stationary
distribution π3(Qd) then

τM ≥ exp2

{

C2d

√
d log d

}

.

In particular this result applies to the Glauber dynamics chain, although in this case it is not
necessary to hypothesize ergodicity.

Corollary 1.5. There is a constant C > 0 such that for all d ≥ 2,

τM3(Qd) ≥ exp2

{

C2d

√
d log d

}

.

Proof: In the presence of Corollary 1.4, it suffices to show that the chain M3(Qd) is ergodic.
We will show that if χ1 is a 3-colouring of Qd with χ1(v0) = 0 for some v0 ∈ E then there is a
sequence of steps in the Glauber dynamics chain that takes χ1 to a 2-colouring χ2 of Qd with
χ2(v) = 0 for all v ∈ E . This suffices, since it is clear that any one of the six 2-colourings of Qd

can be reached from any other via steps in the chain.

We make use of a correspondence between proper 3-colourings of Qd and homomorphisms from
Qd to Z that send v0 to 0. Formally, set

Fv0 = {f : V → Z : f(v0) = 0 and x ∼ y ⇒ |f(x) − f(y)| = 1}.

(This set was introduced in (2) and further studied in (12; 17).) Then, as observed by Randall
(23), there is a bijection from Fv0 to Cv0

3 := {χ ∈ C3 : χ(v0) = 0} given by f −→ Φ(f) where
Φ(f)(v) = i iff f(v) ≡ i (mod 3). Before verifying that this is indeed a bijection, we use the
correspondence to establish the corollary.

For f ∈ Fv0 set R(f) = {f(v) : v ∈ V }. Now consider χ1 ∈ Cv0
3 . If |R(Φ−1(χ1))| = 2, then

we may take χ2 = χ1 and we are done. If |R(Φ−1(χ1))| = k > 2, then it suffices to exhibit a
sequence of steps in the chain that takes χ1 to some χ3 ∈ Cv0

3 with |R(Φ−1(χ3))| = k − 1.

Without loss of generality we may assume that Φ−1(χ1) takes on some strictly positive values.
Let ℓ be the largest such value, and let v ∈ V be any vertex satisfying Φ−1(χ1)(v) = ℓ. Note that
ℓ− 2 ∈ R(Φ−1(χ1)). Let f : V → Z be the function that agrees with Φ−1(χ1) off v and satisfies
f(v) = ℓ − 2. Since Φ−1(χ1)(y) = ℓ − 1 for all y ∈ N(v) and v 6= v0 we have that f ∈ Fv0 and
Φ(f) ∈ Cv0

3 and that the Glauber dynamics chain permits a move from χ1 to Φ(f). But we also
have that R(f) ⊆ R(Φ−1(χ1)) and |{v ∈ V : f(v) = ℓ}| < |{v ∈ V : Φ−1(χ1)(v) = ℓ}|, so that
by repeating the above described procedure m more times (where m = |{v ∈ V : f(v) = ℓ}|) we
arrive at the desired χ3.

It remains to verify that Φ is a bijection. That it is injective is clear. To see that it is surjective,
consider χ′ ∈ Cv0

3 . We shall construct from χ′ an f ∈ Fv0 with Φ(f) = χ′ by setting f(v0) = 0
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and then extending f level by level, where the kth level of Qd (k = 0, . . . , d) is Lk := {v ∈ V :
dist(v, v0) = k} (here we are using dist(·, ·) for the usual graph distance). Note that for v ∈ Lk,
N(v) ⊆ Lk−1 ∪Lk+1 and that for f ∈ Fv0 the values that f takes on Lk must all have the same
parity.

So suppose we have specified f up to Lk for some 0 ≤ k ≤ d − 1. Consider v ∈ Lk+1. If f is
constant on N(v) ∩ Lk then (since the construction of f has succeeded up to Lk) we also have
that χ′ is constant on N(v) ∩ Lk with χ′(y) ≡ f(y) (mod 3) for all y ∈ N(v) ∩ Lk. In this case
we choose f(v) such that |f(v) − f(y)| = 1 for all y ∈ N(v) ∩ Lk and χ′(v) ≡ f(v) (mod 3).

If f is not constant on N(v) ∩ Lk, then we claim that there is some ℓ ∈ Z such that f takes
on only the values ℓ and ℓ + 2 on N(v) ∩ Lk. For if not, then we have y1, y2 ∈ N(v) ∩ Lk with
|f(y1) − f(y2)| ≥ 4. But by the structure of Qd there must be v′ ∈ Lk−1 with v′ ∼ y1 and
v′ ∼ y2, which forces |f(y1) − f(y2)| ≤ 2. This contradiction establishes the two-value claim.
We now set f(v) = ℓ + 1, allowing the construction to continue. Since Lk+1 is an independent
set in Qd, we may repeat the above-described procedure on each vertex of Lk+1 independently,
thus extending the construction of f to all of Lk+1.

Remark 1.6. Glauber dynamics for q-colourings of Qd is not in general ergodic for 3 < q <
∆(Qd) + 1. Indeed, it is straightforward to construct a 4-colouring χ of Q3 which is frozen in
the sense that P4(χ, χ′) = 0 for all χ′ 6= χ; one simply assigns the colours 0, 1, 2 and 3 to
a particular vertex and its three neighbours and then extend to a colouring of the whole of Q3

according to the rule that on each face (4-cycle) of Q3 all of the colours 0, 1, 2 and 3 must
appear.

Remark 1.7. While this paper was under review, Galvin and Randall (13) used methods different
to those of the present work to extend Corollary 1.5 to the discrete torus TL,d, the graph on vertex
set {0, . . . , L− 1}d in which two strings are adjacent if they differ on exactly one coordinate and
differ by 1 (mod L) on that coordinate. The main result of (13) is that for L ≥ 4 even and d
large, the Glauber dynamics chain M3 on C3(TL,d) satisfies τM3 ≥ exp{Ld−1/(d4 log2 L)}.

We prove Theorem 1.1 via a well-known conductance argument (introduced in (16)). A partic-
ularly useful form of the argument was given by Dyer, Frieze and Jerrum (10). Let M be an
ergodic Markov chain on state space Ω with transition probabilities P and stationary distribution
π. Let A ⊆ Ω and M ⊆ Ω\A satisfy π(A) ≤ 1/2 and ω1 ∈ A,ω2 ∈ Ω\(A∪M) ⇒ P (ω1, ω2) = 0.
Then from (10) we have

τM ≥ π(A)

8π(M)
.

We may think of M as a bottleneck set through which any run of the chain must pass in order
to mix; if the bottleneck has small measure, then the mixing time is high.

Now let us return to the setup of Theorem 1.1. Set

Cb,ρ,0
3 = Cb,ρ,0

3 (Σ) = {χ ∈ C3 :
∣

∣|χ−1(0) ∩ E| − |χ−1(0) ∩ O|
∣

∣ ≤ ρN/2}

(Cb,ρ,0
3 is the set of 3-colourings that are balanced with respect to 0) and

CE,ρ,0
3 = CE,ρ

3 (Σ) = {χ ∈ C3 : |χ−1(0) ∩ E| > |χ−1(0) ∩ O| + ρN/2}.
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We may assume without loss of generality that π3(CE,ρ,0
3 ) ≤ 1/2. Notice that since M changes the

colour of at most ρN vertices in each step, we have that if χ1 ∈ CE,ρ,0
3 and χ2 ∈ C3\(CE,ρ,0

3 ∪Cb,ρ,0
3 )

then PM(χ1, χ2) = 0. We therefore have

τM ≥ π3(CE,ρ,0
3 )

8π3(Cb,ρ
3 )

≥ 2N/2

8|Cb,ρ,0
3 |

,

the second inequality coming from the trivial lower bound |CE,ρ,0
3 | ≥ 2N/2 (consider those χ with

χ(v) = 0 for all v ∈ E). Theorem 1.1 thus follows from the following theorem, whose proof will
be the main business of this paper.

Theorem 1.8. Fix ρ > 0 satisfying H(ρ) + ρ < 1. There are constants d0, C1, C
′
1, C2 > 0 all

depending on ρ such that if Σ is a d-regular bipartite graph on N vertices with bipartite expansion
δ and locality ℓ satisfying (2) and with d ≥ d0 then

|Cb,ρ,0
3 | ≤ exp2

{

N

2

(

1 − C2δ

log d

)}

.

Theorem 1.8 says more about the structure of C3 than just that the dynamics mixes slowly. From
it, we can infer that for Σ and ρ satisfying the conditions of the theorem, C3 breaks naturally
into six sets in such a way that once a ρ-local chain enters one of these dominant sets, it tends
to remain there for an exponential time. These sets are characterized by a predominance of one
(of three) colours on one (of two) partition classes. Indeed, defining Cb,ρ,1

3 and Cb,ρ,2
3 by analogy

with Cb,ρ,0
3 and setting R3 = C3 \ ∪2

i=0Cb,ρ,i
3 , we may partition R3 into six pieces by

R3 = ∪(x,y,z)∈{E,O}3\{(E,E,E),(O,O,O)}R(x,y,z)
3

where R(x,y,z)
3 = {χ ∈ R3 : χ ∈ Cx,ρ,0

3 ∩ Cy,ρ,1
3 ∩ Cz,ρ,2

3 }. If a ρ-local chain leaves R(x,y,z)
3 (for any

(x, y, z)) it must enter ∪2
i=0Cb,ρ,i

3 which, by Theorem 1.1 and a union bound, has exponentially
small measure.

Before turning to the proof of Theorem 1.8 we pause to give a pleasing combinatorial corollary
in the special case Σ = Qd.

Corollary 1.9. Fix ρ satisfying H(ρ) + ρ < 1. There is a constant C = C(ρ) > 0 such that for
all d ≥ 2, if χ is a uniformly chosen 3-colouring of Qd then

P

(

∃i :

∣

∣

∣

∣

|χ−1(i) ∩ E|
|E| − |χ−1(i) ∩ O|

|O|

∣

∣

∣

∣

≤ ρ

)

≤ exp2

{

− C2d

√
d log d

}

.

In other words, the typical 3-colouring of Qd exhibits strong E/O imbalance on all colours.

Proof of Corollary 1.9: As previously observed, ℓ(Qd) = d and δ(Qd) ≤ Ω(1/
√
d), so (2) is

satisfied for large enough d. It follows that there is a C ′(ρ) such that for large enough d and for
each i = 0, 1, 2,

∣

∣

∣
{χ ∈ C3(Qd) :

∣

∣|χ−1(i) ∩ E| − |χ−1(i) ∩ O|
∣

∣ ≤ ρ2d−1}
∣

∣

∣
≤ exp2

{

2d−1 − C ′2d

√
d log d

}

.
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Using 22d−1
as a lower bound on |C3(Qd)| (consider those colourings for which χ−1(0) = E) we

obtain

P

(

∣

∣|χ−1(i) ∩ E| − |χ−1(i) ∩ O|
∣

∣ ≤ ρ2d−1
)

≤ exp2

{

− C ′2d

√
d log d

}

for χ chosen uniformly from C3(Qd). The stated bound follows for large d (with a constant C ′′

slightly larger than C ′) via a union bound and the fact that |E| = |O| = 2d−1; we may obtain
the bound for all d by appropriately modifying the constant C ′′.

2 Proof of Theorem 1.8

2.1 Overview of the proof

In this section we give an informal overview of the proof of Theorem 1.8.

We bound the number of balanced 3-colourings by bounding, for each pair E ⊆ E , O ⊆ O with
||E| − |O|| ≤ ρN/2 and E 6∼ O (that is, with no edge in Σ joining E and O), the number of
3-colourings of Σ in which E ∪O is the pre-image of 0. We then sum over all choices of E and
O.

How many ways are there to 3-colour Σ given that E ∪ O is the pre-image of 0? Write I(E)
for the set of vertices in N(E) all of whose neighbours are in E, and I(O) for the neighbours
of O all of whose neighbours are in O. There are two choices for each vertex in I(E) and two
for each vertex in I(O), as well as two choices for each component in the graph obtained from
Σ by removing E, O, I(E) and I(O) (each such component is a connected bipartite graph), all
choices independent. The first step in the proof is an easy graph theory lemma that shows that
the contribution from components in Σ− (E∪O∪ I(E)∪ I(O)) is negligible. (This step uses the
locality of Σ in an essential way.) This reduces the problem of bounding the number of balanced
3-colorings to the problem of estimating a sum of the form

∑

E,O:E 6∼O

2|I(E)|+|I(O)|. (3)

When |E| and |O| are both small (less than cN for a suitably small constant c) a naive count
suffices to give an appropriate bound. For largerE andO, we must work harder. We partition the
set of pairs (E,O) according to the parameters a = |[E]|, g = |N(E)|, b = |I(E)|, h = |N(I(E))|,
b′ = |I(O)| and h′ = |N(I(O))|. Within each class, each pair gives the same contribution (2b+b′)
to the sum in (3). The main point of the proof is an estimate on the size of H = {(E,O) : (E,O)
has parameters a, g, b, h, b′ and h′} of the form

|H| ≤ exp2

{

N

2
− b− b′ − cNδ

log d

}

(4)

for sufficiently large d = d(ρ) and suitable c = c(ρ). The proof is completed by invoking (4) and
summing over all choices of a, g, et cetera.

The proof of (4) involves the idea of approximation. To bound |H|, we produce a small set U
with the properties that each (E,O) ∈ H is approximated (in an appropriate sense) by some
U ∈ U , and for each U ∈ U , the number of (E,O) ∈ H that could possibly be approximated
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by U is small. (Each U ∈ U will consist of six parts; one each approximating E, N(E), I(E),
N(I(E)), I(O) and N(I(O)).) The product of the bound on |U| and the bound on the number
of those (E,O) ∈ H that may be approximated by any U is then a bound on |H|.
The main inspiration for our approximation scheme is the work of A. Sapozhenko, who, in (26),
gave a relatively simple derivation for the asymptotics of the number of independent sets in
Qd, earlier derived in a more involved way in (18). We produce the set U by appealing to a
lemma from (14) where a similar approximation scheme was used to show that the mixing time
of Glauber dynamics for the hard-core model on Qd with activity λ is (essentially) exponential
in 2d for large enough λ. The proof that each U ∈ U approximates only a small number of
(E,O) ∈ H is a modification of a similar proof from (12) in which it is shown that a uniformly
chosen homomorphism from Qd to Z almost surely takes on at most 5 values, and also that the
number of proper 3-colourings of Qd is asymptotic to 2e22d−1

as d goes to infinity.

2.2 The proof

We begin by establishing some more notation. From now on, we write M for N/2. For A ⊆ E and
B ⊆ O write A 6∼ B if for all x ∈ A and y ∈ B, x 6∼ y (this is equivalent to both N(A) ∩B = ∅
and N(B) ∩ A = ∅). For S ⊆ V write dS(u) for |N(u) ∩ S| and comp(S) for the number of
components of the subgraph induced by S. Finally for T ⊆ E (or O) set

I(T ) = {x ∈ N(T ) : N(x) ⊆ T} (= {x ∈ V : N(x) ⊆ T}).

We think of I(T ) as an internal closure of N(T ). Note that for all T ⊆ E (or O), [I(T )] = I(T ),
I(T ) ⊆ N(T ) and N(I(T )) ⊆ T .

For χ ∈ Cb,ρ,0
3 set

E = χ−1(0) ∩ E ,
O = χ−1(0) ∩ O,

I = I(E),

J = I(O)

and
R = V \ (E ∪O ∪ I ∪ J).

We assume the convention that whenever E and O have been specified, I, J and R will be used
as shorthand for I(E), I(O) and V \ (E ∪O ∪ I ∪ J).

For E ⊆ E and O ⊆ O set

C3(E,O) = {χ ∈ C3 : E(χ) = E, O(χ) = O}.

Note that C3(E,O) 6= ∅ iff E 6∼ O. For C3(E,O) 6= ∅ we have

|C3(E,O)| = 2|I|+|J |+comp(R).

To see this, note that once we have specified that the set of vertices coloured 0 is E∪O, we have
a free choice between 1 and 2 for the colour at x ∈ I ∪ J , with each choice independent. This
accounts for the factor 2|I|+|J |. The subgraph induced by R breaks into comp(R) components,
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each of which is bipartite and may be coloured in exactly two ways using the colours 1 and 2.
This accounts for the factor 2comp(R). We therefore have

|Cb,ρ,0
3 | =

∑

E⊆E, O⊆O:
||E|−|O||≤ρM, E 6∼O

2|I|+|J |+comp(R).

A key observation is the following.

Proposition 2.1. For E 6∼ O, comp(R) ≤ 2M/ℓ.

Proof: Let C be a component of V \ (E ∪ O). If C = {v} consists of a single vertex, then
(depending on the parity of v) we have either N(v) ⊆ E or N(v) ⊆ O and so v ∈ I(E) ∪ I(O).
Otherwise, let vw be an edge of C. We have

|(N(v) ∪N(w)) ∩ (E ∪O)| ≤ 2d− ℓ

(recall that E ∪O = χ−1(0) is an independent set), and so |C| ≥ ℓ. The result follows.

We now decompose Cb,ρ,0
3 into four pieces. Set

α = sup

{

α′ ∈
[

0,
1

2
− ρ

]

: 2α′ + ρ+H(α′) +H(ρ+ α′) ≤ 1

2
(1 + ρ+H(ρ))

}

. (5)

Since H(ρ) + ρ < 1, α is a strictly positive constant depending on ρ. Set

Cb,ρ,0
3 (triv, E) = {χ ∈ Cb,ρ,0

3 : |E| ≤ αM, |E| ≤ |O|}

and define Cb,ρ,0
3 (triv,O) analogously. Set

Cb,ρ,0
3 (nt, E) = {χ ∈ Cb,ρ,0

3 \ (Cb,ρ,0
3 (triv, E) ∪ Cb,ρ,0

3 (triv,O)) : E small}

(recall that E is small if |[E]| ≤ M/2) and define Cb,ρ,0
3 (nt,O) similarly. Since Σ has a perfect

matching, it is easy to see that for χ ∈ C3 at least one of |E| ≤M/2, |O| ≤M/2 holds; moreover,
it is straightforward to check that at least one of |[E]| ≤ M/2, |[O]| ≤ M/2 holds also; that is,
that at least one of E, O is small, and so

Cb,ρ,0
3 = Cb,ρ

3 (triv, E) ∪ Cb,ρ,0
3 (triv,O) ∪ Cb,ρ

3 (nt, E) ∪ Cb,ρ,0
3 (nt,O).

In what follows we make extensive use of a result concerning the sums of binomial coefficients
which follows from the Chernoff bounds (8) (see also (5), p.11):

[βM ]
∑

i=0

(

M

i

)

≤ 2H(β)M for β ≤ 1
2 . (6)

Also, since H(x) ≤ 2x log 1/x for x ≤ e−1,

[βM ]
∑

i=0

(

M

i

)

≤ 22βM log(1/β) for β ≤ e−1. (7)
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We begin by bounding |Cb,ρ,0
3 (triv, E)|. Noting that |I| ≤ |E| and |J | ≤ |O| always (this follows

from (1)) we have

|Cb,ρ,0
3 (triv, E)| =

∑

E⊆E, O⊆O:
|E|≤αM, |O|≤(α+ρ)M

2|E|+|O|+comp(R)

≤ exp2

{

2M

ℓ

}

∑

E⊆E, O⊆O:
|E|≤αM, |O|≤(α+ρ)M

2|E|+|O| (8)

≤ exp2

{

M

(

2α+ ρ+
2

ℓ

)} [αM ]
∑

i=0

(

M

i

) [(α+ρ)M ]
∑

i=0

(

M

i

)

≤ exp2

{

M

(

2α+ ρ+H(α) +H(ρ+ α) +
2

ℓ

)}

(9)

≤ exp2

{

N

2

(

1 − δ

log d

)}

(10)

for sufficiently large d = d(ρ). In (8) we have used Proposition 2.1. In (9) we use (6) while in
(10) we use (5) to obtain

2α+ ρ+H(α) +H(ρ+ α) +
2

ℓ
≤ 1 − ε+

2

ℓ

for some ε = ε(α), and then use the second inequality in (2) (in the weak form that ℓ = ω(1))
to obtain

1 − ε+
2

ℓ
≤ 1 − δ

log d

(note that δ/ log d = o(1)). Similarly, we have

|Cb,ρ,0
3 (triv,O)| ≤ exp2

{

N

2

(

1 − δ

log d

)}

(11)

for suitable d.

Next we turn to Cb,ρ,0
3 (nt, E) and Cb,ρ,0

3 (nt,O). Without loss of generality we may assume

|Cb,ρ,0
3 (nt, E)| ≤ |Cb,ρ,0

3 (nt,O)|. Bearing (10) and (11) in mind, Theorem 1.8 now follows from

|Cb,ρ,0
3 (nt, E)| ≤ exp2

{

N

2

(

1 − cδ

log d

)}

(12)

for some constant c = c(ρ).

For integers a, g, b, h, b′ and h′, set

H(a, g, b, h, b′, h′) =

{

(E,O) :
E ⊆ E , O ⊆ O, E 6∼ O, |[E]| = a, |N(E)| = g,

|I| = b, |N(I)| = h, |J | = b′, |N(J)| = h′

}

.

Our main lemma is the following (cf. (14, Theorem 2.1)).

Lemma 2.2. For each β1, β2 > 0, there are constants d0, c > 0 depending on both β1 and β2

such that the following holds. If G is a d-regular bipartite graph with bipartite expansion δ ≥ d−β1

and d ≥ d0 and if a satisfies β2M ≤ a ≤M/2, then for any g, b, h, b′ and h′ we have

|H(a, g, b, h, b′, h′)| ≤ exp2

{

M

(

1 +
15 log2 d

d

)

− b− b′ − cδg

log d

}

.
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For G = Σ we may take β1 = 2 (say). Note that for each (E,O) ∈ Cb,ρ,0
3 (nt, E) with |I| = b and

|J | = b′, (E,O) ∈ H(a, g, b, h, b′, h′) for some a, g, h and h′ with αM ≤ a ≤ M/2. With the
steps justified below, we therefore have

|Cb,ρ,0
3 (nt, E)| ≤ exp2

{

2M

ℓ

}

∑

a,g,b,h,b′,h′:
αM≤a≤M/2

|H(a, g, b, h, b′, h′)|2b+b′

≤ exp2

{

M

(

1 +
2

ℓ
+

15 log2 d

d

)}

∑

a,g,b,h,b′,h′:
αM≤a≤M/2

exp2

{

− cδg

log d

}

(13)

≤ exp2{M
(

1 +
2

ℓ
+

21 log2 d

d

)

max
αM≤a≤M/2

a≤g

{

exp2

{

− cδg

log d

}}

(14)

≤ exp2

{

M

(

1 +
2

ℓ
+

21 log2 d

d
− cαδ

log d

)}

(15)

≤ exp2

{

N

2

(

1 − c′δ
log d

)}

(16)

verifying (12) and completing the proof of Theorem 1.8. The main point, (13), is an application
of Lemma 2.2. Here the constant c depends on α and therefore on ρ. In (14) we use that
M ≤ exp{M log2 d/d} for all d. In (15) we have chosen g = αM to maximize the exponent.
Finally in (16) we may (for example) take C1 = 43/(αc) and C ′

1 = 4/(αc), and use both
inequalities in (2). The final constant c′ depends only on c and α and therefore only on ρ, as
claimed.

To prove Lemma 2.2, we use a notion of approximation introduced in (25). An approximation
for A ⊆ E is a pair (F, S) ⊆ O × E satisfying

F ⊆ N(A), S ⊇ [A],

dF (u) ≥ d−
√
d ∀u ∈ S

and
dE\S(v) ≥ d−

√
d ∀v ∈ O \ F.

For A ⊆ O we make the analogous definition.

The following lemma is from (14) (a combination of Lemmata 3.2 and 3.3). We use the shorthand
(

t
≤k

)

for
∑

0≤i≤k

(

t
i

)

.

Lemma 2.3. Let G be a d-regular bipartite graph with 2M vertices. For each a and g set

A(a, g) = {A ⊆ E : |[A]| = a, |N(A)| = g}.

There is a family W = W(a, g) ⊆ 2O × 2E with

|W| ≤
(

M

≤ 2g log d
d

)(

2g log d

≤ 2g
d

)(

2d3g log d

≤ 2(g−a)√
d

)(

2g log d

≤ (g − a)
√

d
(d−

√
d)

)

such that every A ∈ A(a, g) has an approximation in W. The analogous result holds with O
replacing E in the definition of A(a, g).
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Remark 2.4. If a and g satisfy g− a ≥ d−βg for some constant β then using (7) the bound on
|W| from Lemma 2.3 may be rewritten as

|W| ≤ exp2

{

5M log2 d

d
+

(6β + 17)(g − a) log d√
d

}

as long as d is sufficiently large (as a function of β).

Say that a sextuple (F, S, P,Q, P ′, Q′) ⊆ O × E × E × O × O × E is an approximation for
(E,O) ∈ H(a, g, b, h, b′, h′) if (F, S) is an approximation for E, (P,Q) is an approximation for I
and (P ′, Q′) is an approximation for J .

Lemma 2.5. Let G, a, g, b, h, b′ and h′ be as in Lemma 2.2. There are constants c1 = c1(β1) > 0
and c2 = c2(β1, β2) > 0 and a family X = X (a, g, b, h, b′, h′) ⊆ 2O × 2E × 2E × 2O × 2O × 2E with

|X | ≤ exp2

{

15M log2 d

d
+
c1(g − a) log d√

d
+
c1(h− b) log d√

d
+
c2(h′ − b′) log d√

d

}

such that every (E,O) ∈ H(a, g, b, h, b′, h′) has an approximation in X .

Proof: We apply Lemma 2.3 (in the form given in Remark 2.4) to each of E, I and J indepen-
dently. Note that g− a ≥ d−β1g and h− b ≥ d−β1h follow from the assumptions on δ in Lemma
2.2 (recall |[E]| = a ≤M/2 and |[I]| = |I| ≤ |E| ≤M/2), justifying the first two applications of
Lemma 2.3 and the dependence of c1 on β1 alone.

For the third application, note that if b′ ≤ M/2 we have h′ − b′ ≥ d−β1h′ (recall |[J ]| = |J |).
If b′ > M/2, then |O \ N(J)| ≤ M/2. Since [J ] = J we also have [O \ N(J)] = O \ N(J)
and N(O \ N(J)) = E \ J and so (by the bound on δ) (M − b′) − (M − h′) ≥ d−β1(M − b′).
Using h′ ≥ b′ it follows that h′ − b′ ≥ d−β1(M − h′). But since N(J) ∩ N(E) = ∅ we have
h′ ≤ M − g ≤ M − a ≤ (1 − β2)M and so h′ − b′ ≥ d−β1(1/(1 − β2) − 1)h′ ≥ d−ch′, where the
constant c depends on both β1 and β2.

Before going on to the final step in the proof of Lemma 2.2, we need the following simple
inequalities ((14, Lemma 3.1) in the case ψ =

√
d). If (F, S, P,Q, P ′, Q′) is an approximation

for (E,O) ∈ H(a, g, b, h, b′, h′) then for suitably large d

|S| ≤ |F | +
3(g − a)√

d
, |Q| ≤ |P | +

3(h− b)√
d

and |Q′| ≤ |P ′| +
3(h′ − b′)√

d
. (17)

Bearing this and the fact that g− a ≥ δg in mind, Lemma 2.2 is implied by Lemma 2.5 and the
following reconstruction lemma.

Lemma 2.6. Let G, a, g, b, h, b′ and h′ be as in Lemma 2.2. There are constants c1 = c1(β1) > 0
and c2 = c2(β1, β2) > 0 such that for each (F, S, P,Q, P ′, Q′) ⊆ O×E ×E ×O×O×E satisfying
(17) there are at most

exp2

{

M − b− b′ − c1(g − a)

log d
− c1(h− b)

log d
− c2(h′ − b′)

log d

}

pairs (E,O) ⊆ E ×O satisfying

F ⊆ N(E), S ⊇ [E], P ⊆ N(I), Q ⊇ I, P ′ ⊆ N(J) and Q′ ⊇ J. (18)
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Proof: For notational convenience, write t for g − a, s for h− b and s′ for h′ − b′. Say that S is
tight if |S| < g − c′1t/ log d and slack otherwise, that Q is tight if |Q| < b + c′1s/ log d, and slack
otherwise, and that Q′ is tight if |Q′| < b′+c′2s

′/ log d, and slack otherwise, where c′1 = c′1(β1) > 0
and c′2 = c′2(β1, β2) > 0 are constants that will be specified presently.

We now describe a procedure which, for input (F, S, P,Q, P ′, Q′) satisfying (17), produces an
output (E,O) which satisfies (18). The procedure involves a sequence of choices, the nature of
the choices depending on whether S, Q and Q′ are tight or slack.

We begin by identifying a subset D of E which can be specified relatively cheaply: if Q is tight,
we pick I ⊆ Q with |I| = b and take D = N(I); if Q is slack, we simply take D = P (recalling
that P ⊆ N(I) ⊆ E).

If S is tight, we complete the specification of E by choosing E \D ⊆ S \D. If S is slack, we first
complete the specification of N(E) by choosing N(E) \ F ⊆ N(S) \ F . We then complete the
specification of E by choosing E \D ⊆ [E] \D (noting that we do know [E] \D at this point).

Next we turn to the specification of O. As with E, we begin by identifying a subset D′ of O:
if Q′ is tight, we pick J ⊆ Q′ with |J | = b′ and take D′ = N(J); if Q′ is slack, we simply take
D′ = P ′. From here, we complete the specification of O by choosing O \D′ ⊆ O \ (N(E) ∪D′)
(recall that E 6∼ O).

This procedure produces all pairs (E,O) satisfying (18). Before bounding the number of outputs,
we gather together some useful observations.

First note that as established in the proof of Lemma 2.5 we have

g − a ≥ d−β1g, h− b ≥ d−β1h and h′ − b′ ≥ d−ch′ (19)

where the constant c > 0 depends on both β1 and β2, while from (17) we have

|S| ≤ 2g, |Q| ≤ 2h and |Q′| ≤ 2h′ (20)

for suitably large d.

If Q is tight then there are at most

∑

i≤c′1s/ log d

( |Q|
|Q| − i

)

≤
∑

i≤c′1s/ log d

(

2h

i

)

≤ 2s/2

possibilities for D (for sufficiently small choice of the constant c′1, depending on β1), and in this
case |D| = h. Here we are using (7) and (19). If Q is slack there is just one possibility for D,
and in this case (using (17))

|D| > b+ c′1s/ log d− 3s/
√
d ≥ b+ c′1s/2 log d (21)

for suitably large d.

Similarly if Q′ is tight then there are at most 2s′/2 possibilities for D′ (for suitably small c′2
depending on both β1 and β2; here we use (19)), and in this case |D′| = h′; while if Q′ is slack
there is just one possibility for D′, and in this case |D′| > b′ + c′2s

′/2 log d for suitably large d.

If S is slack then (17) implies |N(E) \ F | < 2c′1t/ log d and since |N(S) \ F | ≤ d|S| ≤ 2dg (see
(20)) the number of possibilities for N(E) \ F is at most

∑

i<2c′1t/ log d

(

2gd

i

)

≤ 2t/2 (22)
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for suitable small c′1 depending on β1 (here again we use (19)).

Now we assume that d, c′1 and c′2 are suitably chosen so that all the previously made observa-
tions hold. We bound the number of outputs of the procedure, considering first the four cases
determined by whether S and Q are slack or tight, and then considering the two cases of whether
Q′ is slack or tight. If S and Q are both tight then the number of possibilities for E is at most

exp2{(s/2) + (g − c′1t/ log d− h)} ≤ exp2{g − c′1t/ log d− b− s/2}. (23)

(The first term in the exponent on the left-hand side corresponds to the choice of D (using
(21)), and the second to the choice of E \D ⊆ S \D (note that since S and Q are both tight,
|S \D| ≤ g − c′1t/ log d− h).

If S is tight and Q is slack then the total is at most

exp2{g − c′1t/ log d− b− c′1s/2 log d}. (24)

(Here there is no choice for D, and the exponent corresponds to the choice of E \ D ⊆ S \ D
(using (21)).)

If Q is tight then |[E] \ D| = a − h, so that if S is slack (and Q tight) then the number of
possibilities for E is at most

exp2{(s/2) + (t/2) + (a− h)} ≤ exp2{g − t/2 − b− s/2}. (25)

(The first term in the exponent on the left-hand side corresponds to the choice of D (using (21)),
the second to the choice of N(E) \ F (using (22)) and the third to the choice of E \D.)

If Q is slack then |[E] \D| ≤ a− b− c′1s/2 log d (see (21)), so that if S and Q are both slack the
number of possibilities for E is at most

exp2{(t/2) + (a− b− c′1s/2 log d)} ≤ exp2{g − t/2 − b− c′1s/ log d}. (26)

(The first term in the exponent on the left-hand side corresponds to the choice of N(E) \F and
the second to the choice of E \D.)

Now we consider the number of choices for O, given our choice of E. Note that O ⊆ (O\N(E)),
a set of size M − g. If Q′ is tight then the number of possibilities for O is at most

exp2{(s′/2) + (M − g − h′)} ≤ exp2{M − g − b′ − s′/2}. (27)

(The first term in the exponent on the left-hand side corresponds to the choice of D′, and the
second to the choice of O \D′ ⊆ O \ (N(E) ∪D′).)

Finally if Q′ is slack then the number of possibilities for O is at most

exp2{M − g − b′ − c′2s
′/2 log d}. (28)

(Here there is no choice for D′, and the exponent corresponds to the choice of O \ D′ ⊆ O \
(N(E) ∪D′).)

Combining (23), (24), (25), (26), (27) and (28) we obtain the lemma.
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