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Winterthurertrasse 190

CH-8057 ZÜRICH
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Abstract

Small world models are networks consisting of many local links and fewer long range ‘short-
cuts’, used to model networks with a high degree of local clustering but relatively small
diameter. Here, we concern ourselves with the distribution of typical inter-point network
distances. We establish approximations to the distribution of the graph distance in a dis-
crete ring network with extra random links, and compare the results to those for simpler
models, in which the extra links have zero length and the ring is continuous
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1 Introduction

There are many variants of the mathematical model introduced by Watts and Strogatz (15)
to describe the “small–world” networks popular in the social sciences; one of them, the great
circle model of Ball et. al. (4), actually precedes (15). See (1) for a recent overview, as well as
the books (5) and (8). A typical description is as follows. Starting from a ring lattice with L
vertices, each vertex is connected to all of its neighbours within distance k by an undirected
edge. Then a number of shortcuts are added between randomly chosen pairs of sites. Interest
centres on the statistics of the shortest distance between two (randomly chosen) vertices, when
shortcuts are taken to have length zero.

Newman, Moore and Watts (12), (13) proposed an idealized version, in which the lattice is
replaced by a circle and distance along the circle is the usual arc length, shortcuts now being
added between random pairs of uniformly distributed points. Within their [NMW] model, they
made a heuristic computation of the mean distance between a randomly chosen pair of points.
Then Barbour and Reinert (7) proved an asymptotic approximation for the distribution of this
distance as the mean number 1

2Lρ of shortcuts tends to infinity; the parameter ρ describes the
average intensity of end points of shortcuts around the circle. In this paper, we move from
the continuous model back to a genuinely discrete model, in which the ring lattice consists
of exactly L vertices, each with connections to the k nearest neighbours on either side, but
in which the random shortcuts, being edges of the graph, are taken to have length 1; thus
distance becomes the usual graph distance between vertices. However, this model is rather
complicated to analyze, so we first present a simpler version, in which time runs in discrete
steps, but the process still lives on the continuous circle, and which serves to illustrate the main
qualitative differences between discrete and continuous models. This intermediate model would
be reasonable for describing the spread of a simple epidemic, when the incubation time of the
disease is a fixed value, and the infectious period is very short in comparison. In each of these
more complicated models, we also show that the approximation derived for the [NMW] model
gives a reasonable approximation to the distribution of inter-point distances, provided that ρ
(or its equivalent) is small; here, the error in Kolmogorov distance dK is of order O(ρ

1
3 log(1

ρ )),
although the distribution functions are only O(ρ) apart in the bulk of the distribution.

The main idea is to find the shortest distance between two randomly chosen points P and P ′

by considering the sets of points R(n) and R′(n) that can be reached within distance n from P
and P ′, respectively, as n increases. The value of n at which R(n) and R′(n) first intersect then
gives half the shortest path between P and P ′.

Each of the sets R(n) and R′(n) consists of a union of intervals, which grow in size as n in-
creases. Their numbers may increase, because of new intervals added through shortcuts, and
they may decrease, if pairs of intervals grow into one another. This makes their evolution rather
complicated to analyze. However, in the tradition of branching process approximations in epi-
demic theory, there is a simpler process with branching structure which acts as a good enough
approximation until the value of n at which the first intersection takes place, and with which we
can work. Conditional on the number and sizes of the intervals in this process, the number of
intersections has a distribution which is close to Poisson, and removing the conditioning leads
to a mixed Poisson approximation for the number of intersections. To calculate the mixing
distribution, and thence to characterize the limiting distribution of the shortest path length, the
existence of the martingale limit for the branching process and its limiting distribution play a
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crucial role.

In Section 2, we introduce the continuous model in discrete time. Here, the branching approx-
imation is not a Yule process, as was the case for the continuous circle [NMW] model treated
in (7), and the distribution of its martingale limit is not available in closed form; as a result, our
limiting approximation to the shortest path length is not as explicit as it was there. Another
main difference from the [NMW] model is that the limiting distribution of the shortest path
length may be concentrated on just one or two points, when the probability of shortcuts is large;
the distribution is discrete but more widely spread if the probability of shortcuts is moderate;
and only if the probability of shortcuts is very small is the distribution close to the continuous
limiting distribution of the [NMW] model, for which (7) gives a closed-form expression.

The proofs of these results are to be found in Section 3. In Section 3.1, the mixed Poisson
approximation for the number of intersections in the approximating branching process is given
in Proposition 3.1. This is converted in Corollary 3.4 to an approximation to the probability
that the two original processes started at P and P ′ have not yet met. The approximation is good
for the times that we are interested in. In Section 3.2, we give a limiting distribution for the
shortest path length in Corollary 3.6, and a uniform bound for the distributional approximation
in Theorem 3.10. Finally, in Section 3.4, we show that the limiting distribution in the [NMW]
model is recovered, if the probability of shortcuts is very small. For this, we employ a contraction
argument to show that the Laplace transforms of the two limiting distributions are close. The
resulting bound on the Kolmogorov distance between the limiting distribution in our model and
that for the [NMW] model is given in Theorem 3.16.

Section 4 describes the discrete circle model in discrete time, which is the usual small-world
model, and gives the main results. Shortcuts now have length 1 instead of length 0, and so a
newly created interval, which consists of a single point, makes relatively little contribution to the
creation of new intervals at the next time step; there are only the possible shortcuts from a single
point available for this, whereas established intervals typically have 2k points to act as sources
of potential shortcuts. This leads to a hesitation in the growth of the process, with significant
consequences in the large ρ regime. Mathematically, the analysis becomes more complicated,
because we now have to consider a two-type branching process, the types corresponding to
newly created and established intervals. The largest eigenvalue and corresponding eigenvector
of the branching process mean matrix now play a major role in the martingale limit and in
the mixed Poisson approximation, and hence in the limiting distribution of the shortest path.
Again, this limiting distribution may be concentrated on just one or two points if the probability
of shortcuts is large; the distribution is discrete but spread out if the probability of shortcuts
is intermediate; and it approaches the limiting distribution of the [NMW] model only if the
probability of shortcuts is very small.

Section 5 gives the proofs; its structure is similar to that of Section 3. Lemma 5.4 in Section 5.1
gives the mixed Poisson approximation for the probability that there are no intersections, and
Theorem 5.9 in Subsection 5.2 converts the result into a uniform approximation for the dis-
tribution of the shortest path length. In Subsection 5.3, to assess the distance to the limiting
distribution for the [NMW] model, we again employ Laplace transforms and a contraction ar-
gument, leading to the uniform bound in Theorem 5.14.

It should be noted that, in all our results, the probability of shortcuts and the neighbourhood
size are both allowed to vary with the circumference of the circle. Our approximations come
complete with error bounds, which are explicitly expressed in terms of these quantities. Limiting
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behaviour is investigated under conditions in which the expected number of shortcuts grows to
infinity.

2 The continuous circle model for discrete time

In this section, we consider the continuous model of (7), which consists of a circle C of
circumference L, to which are added a Poisson Po (Lρ/2) distributed number of uniform and
independent random chords, but now with a new measure of distance d(P,P ′) between points P
and P ′. This distance is the minimum of d(γ) over paths γ along the graph between P and P ′,
where, if γ consists of s arcs of lengths l1, . . . , ls connected by shortcuts, then d(γ) :=

∑s
r=1⌈lr⌉,

where, as usual, ⌈l⌉ denotes the smallest integer m ≥ l; shortcuts make no contribution to the
distance. We are interested in asymptotics as Lρ→ ∞, and so assume throughout that Lρ > 1.

We begin with a dynamic realization of the network, which describes, for each n ≥ 0, the
set of points R(n) ⊂ C that can be reached from a given point P within time n, where time
corresponds to the d(·) distance along paths. Pick Poisson Po (Lρ) uniformly and independently
distributed ‘potential’ chords of the circle C; such a chord is an unordered pair of independent
and uniformly distributed random points of C. Label one point of each pair with 1 and the
other with 2, making the choices equiprobably, independently of everything else. We call the
set of label 1 points Q, and, for each q ∈ Q, we let q′ = q′(q) denote the label 2 end point. Our
construction realizes a random subset of these potential chords as shortcuts.

We start by taking R(0) = {P} and B(0) = 1, and let time increase in integer steps. R(n) then
consists of a union of B(n) intervals of C. Each interval is increased by unit length at each
end point at time n + 1, but with the rule that overlapping intervals are merged into a single
interval; this results in a new union R′(n+ 1) of B′(n+ 1) intervals; note that B′(n+ 1) may be
less than B(n).

Then, to get from R′(n+ 1) to R(n+ 1), we need to add any new one point intervals which are
connected to ∂R(n + 1) := R′(n + 1) \ R(n) by shortcuts (since these are taken to have length
zero). These arise principally from those chords whose label 1 end points lie in ∂R(n+ 1), and
whose label 2 end points lie outside R′(n+ 1); thus shortcuts are in essence those chords whose
label 1 end points are reached before their label 2 end points. However, if both ends of a chord
are first reached at the same time point, then we flip a fair coin to decide whether or not to
accept it. Thus, for each q ∈ ∂R(n+1)∩Q, we accept the chord {q, q′} if q′ = q′(q) 6∈ R′(n+1),
we reject it if q′ ∈ R(n), and we accept the chord {q, q′} with probability 1/2 if q′ ∈ ∂R(n+ 1),
independently of all else. Letting Q(n + 1) := {q′ /∈ R′(n + 1) : {q, q′} newly accepted}, take
R(n+ 1) = R′(n+ 1)∪Q(n+ 1) and set B(n+ 1) = B′(n+ 1) + |Q(n+ 1)|. Note that B(n+ 1)
may be either larger or smaller than B(n), and that B⌈L/2⌉ = 1 a.s. After at most ⌈L/2⌉
time steps, each of the potential chords has been either accepted or rejected independently with
probability 1/2, because of auxiliary randomization for those chords such that {q, q′} ∈ ∂R(n)
for some n, and because of the random labelling of the end points of the chords for the remainder.
Hence this construction does indeed lead to Po (Lρ/2) independent uniform chords of C.

We shall actually use the construction with different initial conditions. We shall start with
R(0) = {P,P ′} and B(0) = 2, to realize the sets of points accessible from either of the two
points P,P ′ ∈ C within distance n, for each n ≥ 1; and with R(0) = P and B(0) = 1, but
then adding the point P ′ to R(1) and increasing B(1) by 1, in order to realize the sets of points
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accessible either from P within distance n or from P ′ within distance n − 1, for each n ≥ 1.
In either case, we can also record, at each time n, the information as to which intervals are
accessible from P and which from P ′ within the allotted distances. If, at time n, there is an
interval which is accessible from both P and P ′, then there are some points in it (not necessarily
all of them) which can be reached from both P and P ′; this implies that d(P,P ′) ≤ 2n with the
first initial condition, and that d(P,P ′) ≤ 2n− 1 with the second. If not, then d(P,P ′) > 2n or
d(P,P ′) > 2n − 1, respectively. Thus whether or not d(P,P ′) ≤ k is true for any particular k,
even or odd, can be determined by knowing whether, at the appropriate time step and with the
appropriate initial condition, there are intervals accessible from both P and P ′.

For our analysis, as in (7), we define a closely related birth and growth process S∗(n), starting
from the same initial conditions, using the same set of potential chords, and having the same
unit growth per time step. The differences are that every potential chord is included in S∗, so
that no thinning takes place, and the chords that were not accepted for R initiate independent
birth and growth processes having the same distribution as S∗, starting from their label 2 end
points. Additionally, whenever two intervals intersect, they continue to grow, overlapping one
another; in R, the pair of end points that meet at the intersection contribute no further to
growth, and the number of intervals in R decreases by 1, whereas, in S∗, each end point of the
pair continues to generate further chords according to independent Poisson processes of rate ρ,
each of these then initiating further independent birth and growth processes.

This birth and growth process S∗(n) agrees with R during the initial development, and only
becomes substantially different when it has grown enough that there are many overlapping
intervals. Its advantage is that it has a branching structure, and is thus much more easily
analyzed. For instance, with initial conditions as above, let S(n) denote the set of intervals
generated up to time n starting from P and let M(n) denote their number; let S′(n) and M ′(n)
denote the same quantities generated starting from P ′. Then M and M ′ are independent pure
birth chains with offspring distribution 1 + Po (2ρ), and the centres of the intervals, excluding
P and P ′, are independent and uniformly distributed on C. Hence EM(n) = (1 + 2ρ)n, and

W (n) := (1 + 2ρ)−nM(n)

forms a square integrable martingale, so that

(1 + 2ρ)−nM(n) → Wρ a.s. (2.1)

for some Wρ such that Wρ > 0 a.s. and EWρ = 1. Note that VarW (n) ≤ 1 for all n. Similar
formulae hold also for M ′, modified appropriately when the initial conditions are such that P ′

only initiates its birth and growth process starting at time 1, rather than at time 0; for example,
we would then have EM ′(n) = (1 + 2ρ)n−1 and W ′(n) := (1 + 2ρ)−(n−1)M ′(n) →W ′

ρ a.s.

Our strategy is to pick initial conditions as above, and to run the construction up to integer
times τr, chosen in such a way that R(n) and S∗(n) are still (almost) the same for n ≤ τr. We
then use the probability that there is a pair of intervals, one in S(τr) and the other in S′(τr),
that (i) intersect, but (ii) such that (roughly speaking) neither is contained in the other; this
we can use as an approximation for the probability that there are points accessible from both P
and P ′ in R(τr). Note that a condition of the form (ii) has to be included, because the smaller
interval in any such pair would (probably) have been rejected in the R-construction; see the
discussion around (2.5) for the details. This is the only way in which the distinction between R
and S∗ makes itself felt.
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The time at which the first intersection occurs lies with high probability in an interval around
the value

n0 =

⌊
log (Lρ)

2 log(1 + 2ρ)

⌋
,

where ⌊x⌋ denotes the largest integer no greater than x. This is because then (1+2ρ)n0 ≈ √
Lρ,

relevant for ‘birthday problem’ reasons to be explained below. It is in fact enough for the
asymptotics to consider the interval of times τr = n0 + r, for r such that

|r| + 1 ≤ 1

6 log(1 + 2ρ)
log (Lρ) . (2.2)

The choice of 6 in the denominator is such that, within this range, both η1(r, r
′)(Lρ)−

1
2 and

η3(r, r
′)(Lρ)−

1
4 , quantities that appear in the error bounds in Corollaries 3.4 and 3.6 and The-

orem 3.8, are bounded (and mostly small); outside it, the intersection probability is close to
either 0 or 1.

For an r satisfying (2.2) to exist, L and ρ must be such that Lρ ≥ (1 + 2ρ)6, a condition
asymptotically satisfied if Lρ → ∞ and ρ remains bounded, but imposing restrictions on the
rate of growth of ρ as a function of L, if ρ → ∞. In this choice, one already sees a typical
manifestation of the effect of discretization. In the continuous model of Newman, Moore and
Watts (13), either of L or ρ could have been arbitrarily fixed, and the other then determined by
the value of the product 1

2Lρ, the (expected) number of shortcuts, this being the only essential
variable in their model. Here, in the discrete variant, the values of L and ρ each have their
separate meaning in comparison with the value 1 of the discrete time step. In particular, if any
such r exists, then it follows that

2 ≤ log(Lρ)

3 log(1 + 2ρ)
≤ τr ≤ 2 log(Lρ)

3 log(1 + 2ρ)
; (2.3)

we shall for convenience also always assume that Lρ ≥ 10.

Let φ0 := φ0(L, ρ) be defined by the equations

(1 + 2ρ)n0 = φ0

√
Lρ and (1 + 2ρ)−1 ≤ φ0 ≤ 1, (2.4)

so that φ0 = (Lρ)−1/2(1 + 2ρ)n0 ; note that φ0 ≈ 1 if ρ is small. Then, writing Rr = R(τr),
Sr = S(τr) and Mr = M(τr), we have EMr = φ0

√
Lρ(1 + 2ρ)r; similarly, writing r′ = r if M ′

starts at time 0 and r′ = r − 1 if M ′ starts at time 1, we have EM ′
r = φ0

√
Lρ(1 + 2ρ)r

′
. For

later use, label the intervals in Sr as I1, . . . , IMr , and the intervals in S′
r as J1, . . . , JM ′

r
, with the

indices respecting chronological order: if i < j, then Ii was created earlier than or at the same
time as Ij.

At least for small ρ, we can make a ‘birthday problem’ calculation. There are about φ2
0Lρ(1 +

2ρ)r+r
′

pairs of intervals at time τr such that one is in Sr and the other in S′
r, and each is of

typical length ρ−1; thus the expected number of intersecting pairs of intervals is about

2

Lρ
φ2

0Lρ(1 + 2ρ)r+r
′

= 2φ2
0(1 + 2ρ)r+r

′

,

and this, in the chosen range of r, grows from almost nothing to the typically large value
2φ2

0(Lρ)
1/3.
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We now introduce the key event Ar,r′ , that no interval in Rr can be reached from both P and P ′

— equivalent to d(P,P ′) > 2(n0 + r) if r′ = r, and to d(P,P ′) > 2(n0 + r) − 1 if r′ = r − 1
— whose probability we wish to approximate. We do so by way of an event defined in terms
of Sr and S′

r, which we show to be almost the same. Clearly, if the intervals of Sr and S′
r have

no intersection, then Ar,r′ is true. However, the event {Ii ∩ Jj 6= ∅} does not necessarily imply
that Ar,r′ is not true, if either of Ii or Jj was ‘descended’ from one of the birth and growth
processes initiated in S or S′ independently of R, after a merging of intervals or the rejection
of a chord, or if either Ii or Jj was itself centred at the second end–point q′ of a rejected chord.
As indicated above, the only one of these possibilities that has an appreciable effect is when the
chord generating Ii is rejected because its q′ belongs to the interval which grows to become Jj
at time τr, or vice versa.

More precisely, we formulate our approximating event using not only knowledge of Sr and S′
r,

but also that of the auxiliary random variables used to distinguish rejection or acceptance of a
chord when both q and q′ belong to ∂R(n+1) for some n. We let (Zi, i ≥ 1) and (Z ′

j , j ≥ 1) be

sequences of independent Bernoulli Be (1
2)–distributed random variables which are independent

of each other and everything else, and if Ii is such that, for some j, Ii ⊂ Jj but I1
i 6⊂ Jj , where,

for an interval K = [a, b] ⊂ C, K1 := [a− 1, b+1], then we reject (accept) the (chord generating
the) interval Ii in the construction of R if Zi = 0 (Zi = 1); the Z ′

j are used similarly to randomize

the acceptance or rejection of Jj . Note that Ii is always rejected if I1
i ⊂ Jj for some j, and

that Ii is always accepted if Ii is contained in none of the Jj . (Recall that I1
i ⊂ Jj translates

into the process starting from P ′ taking a shortcut into an interval that was already covered by
the process starting from P ).

Then we define

Xij = 1{Ii ∩ Jj 6= ∅}1{I1
i 6⊂ Jj}1{J1

j 6⊂ Ii}(1 −Kij)(1 −K ′
ji), (2.5)

where
Kij := 1{Ii ⊂ Jj , Zi = 0}; K ′

ji := 1{Jj ⊂ Ii, Z
′
j = 0},

so that Xij certainly takes the value 1 if Ii and Jj are both realized in R and intersect one other,
but may also take the value 1 if, for instance, Ii is not realized in R because I1

i ⊂ Jj′ for some
j′ 6= j.

We set

Vr,r′ =

Mr∑

i=1

M ′
r∑

j=1

Xij , (2.6)

noting that therefore {Vr,r′ = 0} ⊂ Ar,r′ . In the next section, we show that these two events
are in fact almost equal. Furthermore, we are able to approximate the distribution of Vr,r′ by
a mixed Poisson distribution whose mixture distribution we can identify, and this gives us our
approximation to P[Ar,r′ ].

After this preparation, we are in a position to summarize our main results. We let D denote
the small worlds distance between a randomly chosen pair of points P and P ′ on C, so that, as
above,

P[D > 2n0 + r + r′] = P[Ar,r′ ].
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As approximation, we use the distribution of a random variable D∗ whose distribution is given
by

P [D∗ > 2n0 + x] = E{e−φ2
0(1+2ρ)xWρW ′

ρ}, x ∈ Z, (2.7)

where Wρ and W ′
ρ are independent copies of the random variable defined in (2.1). The following

theorem (c.f. Theorem 3.10) gives conditions for the approximation to be good asymptotically.
In this theorem, the parameter ρ may be chosen to vary with L, within rather broad limits. The
derived quantities φ0 and n0 both implicitly depend on L and ρ, as does the distribution of D∗.

Theorem 2.1. If Lρ→ ∞ and ρ = ρ(L) = O(Lβ), with β < 4/31, then

dK(L(D),L(D∗)) → 0 as L→ ∞.

The limiting behaviour for the two different ρ(L)-regimes corresponding to Corollary 3.11 and
Theorem 3.16 is described in the following theorems. Once again, derived quantities such as
φ0, n0, N0 and x0 all implicitly depend on L and ρ.

Theorem 2.2. Let N0 be such that (1 + 2ρ)N0 ≤ Lρ < (1 + 2ρ)N0+1, and define α ∈ [0, 1) to
be such that Lρ = (1 + 2ρ)N0+α; then

P [D∗ ≥ N0 + 1] ≥ 1 − (1 + 2ρ)−α;

P [D∗ ≥ N0 + 2] ≤ (1 + 2ρ)−1+α log{2(1 + ρ)},

so that D∗ concentrates almost all of its mass on N0 + 1 if ρ is large, unless α is very close to
0 or 1.

Theorem 2.3. If ρ→ 0, the distribution of ρ(D∗−2n0) approaches that of the random variable T
defined in (7), Corollary 3.10:

P[ρ(D∗ − 2n0) > x] → P [T > x] =

∫ ∞

0

e−y

1 + e2xy
dy.

In the detailed versions below, the errors in these distributional approximations are also quan-
tified.

This latter result shows that, for ρ small and x = lρ with l ∈ Z,

P[ρ(D∗ − 2n0) > x] = E{e−φ2
0(1+2ρ)x/ρWρW ′

ρ}
≈ E{e−e2xWW ′} = P[T > x], (2.8)

where W and W ′ are independent negative exponential NE(1) random variables, i.e. P(W >
x) = e−x for x > 0. Indeed, it follows from Lemma 3.14 below that Wρ →D W as ρ → 0. One
way of realizing a random variable T with the above distribution is to realize W and W ′, and
then to sample T from the conditional distribution

P[T > x |W,W ′] = e−e
2xWW ′

= e− exp{2x+logW+logW ′}

= e− exp{2x−G1−G2}, (2.9)
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where G1 := − logW and G2 := − logW ′ both have the Gumbel distribution. With this
construction,

P[2T − {G1 +G2} > x |W,W ′] = e−e
x
,

whatever the values of W and W ′, and hence of G1 and G2, implying that

2T =D G1 +G2 −G3,

where G1, G2 and G3 are independent random variables with the Gumbel distribution (see
Janson (11) for an analogous result in a somewhat different context). The cumulants of T can
thus immediately be deduced from those of the Gumbel distribution, given in Gumbel (9):

ET = γ/2 ≈ 0.2886;

Var T = π2/8.

Note that the conditional construction given above is visible in the arguments of the next sec-
tion. The proofs are based on first conditioning on the processes S and S′ up to time τr, and
Corollary 3.6 below justifies an approximation of the same form as in (2.8), with W and W ′

replaced by Wρ and W ′
ρ. These random variables are, however, essentially determined by the

early stages of the respective pure birth processes; the extra randomness, once the values of Wρ

and W ′
ρ have been fixed, comes from the random arrangement of the intervals of Sr and S′

r on
the circle C.

In the NMW heuristic, the random variable TNMW is logistic, having distribution function
e2x(1+e2x)−1; note that this is just the distribution of 1

2 (G1−G3). Hence the heuristic effectively
neglects some of the initial branching variation.

3 The continuous circle model: proofs

3.1 Poisson approximation for the intersection probability

The first step in the argument outlined above is to establish a Poisson approximation theorem
for the distribution of Vr,r′ , conditional on Fr := σ(M(l),M ′(l), 0 ≤ l ≤ τr). This is rather easy,
because Vr,r′ is a sum of dissociated random variables.

Proposition 3.1. Let Vr,r′ be defined as in (2.6). Then, if P and P ′ are chosen uniformly and
independently on C, we have

dTV {L(Vr,r′ | Fr),Po (λr(M,M ′))} ≤ 8(Mr +M ′
r)τr/L,

where

λr(M,M ′) :=

Mr∑

i=1

M ′
r∑

j=1

E{Xij | Fr}.
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Proof. Since, at time τr, each interval has length at most 2τr, and because their centres are
independently and uniformly distributed on C, it follows that

E{Xij | Fr} ≤ 4τrL
−1, E{XijXil | Fr} ≤ 4τrL

−1E{Xij | Fr}
and E{XijXkj | Fr} ≤ 4τrL

−1E{Xij | Fr},

for all 1 ≤ i, k ≤ Mr and 1 ≤ j, l ≤ M ′
r, and that Xij is independent of the random variables

{Xkl, 1 ≤ k 6= i ≤ Mr, 1 ≤ l 6= j ≤ M ′
r}. The proposition now follows directly from the

Stein–Chen local approach: see ((6), Theorem 1.A). 2

Remark. If P and P ′ are not chosen at random, but are fixed points of C, the result of
Proposition 3.1 remains essentially unchanged, provided that P and P ′ are more than an arc
distance of 2n0 + r+ r′ apart. The only difference is that then X11 = 0 a.s., and that λr(M,M ′)
is replaced by λr(M,M ′) − 2(2n0 + r + r′)L−1, because the two points P and P ′ are already
forced to be at least 2n0 + r + r′ apart in both directions on the circle. If P and P ′ are less
than 2n0 + r + r′ apart, then P[Ar,r′ ] = 0.

From Proposition 3.1, P[Vr,r′ = 0] can be well approximated by E{e−λr(M,M ′)}, provided that
we can show that τrEMr/L is small. The next lemma shows that, with somewhat better
control of the distribution of Mr, the probability P[Ar,r′ ] that we are interested in is itself
well approximated by P[Vr,r′ = 0]. To prove it, we compare suitably chosen random variables
in the joint construction.

Lemma 3.2. With notation as above, we have

0 ≤ P[Ar,r′ ] − P[Vr,r′ = 0]

≤ 16τ2
r L

−2E{MrM
′
r(Mr +M ′

r)(1 + logMr + logM ′
r)}.

Proof. The proof requires some extra notation, involving ancestry. Each interval I in S is created
at some time n by a single label 2 endpoint q′ of a chord {q, q′}, whose label 1 endpoint belonged
to the extension of an interval of S(n − 1). This latter interval is considered to be the parent
of I. Using this notion, we can construct a ‘family tree’ for the intervals of S. In particular, for
any l ≥ 1, we can take the set of intervals Il := {I1, . . . , Il} to be ‘ancestor’ intervals, and then
determine, for each i, the index Al(i), 1 ≤ Al(i) ≤ l, of the most recent ancestor of Ii among Il.
Then, letting Sir :=

⋃
l 6=i Il and S′

r
j :=

⋃
l 6=j Jl, we define

Hi1 := {Ii ∩ Sir 6= ∅}; Hi2 :=
⋃

1≤l<i

(
{Il ∩ Slr 6= ∅} ∩ {Al(i) = l}

)

Hi3 :=
⋃

1≤l<i

(
{Il ∩ S′

r 6= ∅} ∩ {Al(i) = l}
)
,

and set Hi :=
⋃3
v=1Hiv; we also define H ′

iv, 1 ≤ v ≤ 3 and H ′
i analogously. Thus Hi1 is the

event that the interval Ii is not isolated in Sr; Hi2 is the event that some ancestor of interval
Ii is not isolated in Sr; and Hi3 is the event that some ancestor of interval Ii intersects S′

r; Hi

summarises the event that Ii or one or more of its ancestors intersect either S′
r or the remainder

of Sr.
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Then, with Xij defined as in (2.5),

{Vr,r′ = 0} ⊂ Ar,r′ ⊂ {Ṽr,r′ = 0}, (3.1)

where

Ṽr,r′ :=

Mr∑

i=1

M ′
r∑

j=1

XijI[H
c
i ] I[H

′
j
c],

so that

P[Ar,r′ \ {Vr,r′ = 0}] ≤ P[Vr,r′ 6= Ṽr,r′ ] ≤ E(Vr,r′ − Ṽr,r′) (3.2)

≤ E





Mr∑

i=1

M ′
r∑

j=1

Xij

3∑

v=1

(I[Hiv] + I[H ′
jv])



 .

Now, conditional on Fr, the indicator Xij is (pairwise) independent of each of the events Hiv

and H ′
jv, 1 ≤ v ≤ 3, because Hi1, Hi2 and H ′

j3 are each independent of ζ ′j, the centre of Jj , and

H ′
j1, H

′
j2 and Hi3 are each independent of ζi. Moreover, the event {Al(i) = l} is independent of

M , M ′ and all ζi’s and ζ ′j’s, and has probability 1/l, since the l birth processes, one generated
from each interval Iv, 1 ≤ v ≤ l, which combine to make up S from time that Il was initiated
onwards, are independent and identically distributed. Hence, observing also that no interval at
time τr can have length greater than 2τr, it follows that

E{XijI[Hi1] | Fr} ≤ 4τrL
−1(Mr − 1)E{Xij | Fr},

E{XijI[Hi2] | Fr} ≤ 4τrL
−1(Mr − 1)

i−1∑

l=1

l−1E{Xij | Fr}

≤ 4τrL
−1(Mr − 1) logMrE{Xij | Fr}

and
E{XijI[Hi3] | Fr} ≤ 4τrL

−1M ′
r logMrE{Xij | Fr}.

Hence it follows that

Mr∑

i=1

M ′
r∑

j=1

3∑

v=1

E{XijI[Hiv] | Fr}

≤ 4τrL
−1{(Mr − 1)(1 + logMr) +M ′

r logMr}λr(M,M ′),

and combining this with a similar contribution from the quantities E{XijI[H
′
jv] | Fr} gives

E





Mr∑

i=1

M ′
r∑

j=1

Xij

3∑

v=1

(I[Hiv] + I[H ′
jv])

∣∣∣∣ Fr





≤ 4τrL
−1(Mr +M ′

r − 1)(1 + logMr + logM ′
r)λr(M,M ′).

Observing that λr(M,M ′) ≤ 4τrL
−1MrM

′
r completes the proof. 2

To apply Proposition 3.1 and Lemma 3.2, we need in particular to bound the moments of Mr

appearing in Lemma 3.2, which we accomplish in the following lemma. The corresponding
results for M ′

r can be obtained by replacing r with r′.
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Lemma 3.3. The random variable M(n) has as probability generating function

GM(n)(s) := EsM(n) = f (n)(s), f(s) = se2ρ(s−1),

where f (n) denotes the nth iteration of f . In particular, we have

EMr = φ0

√
Lρ(1 + 2ρ)r, EM2

r ≤ 2φ2
0Lρ(1 + 2ρ)2r,

EM3
r ≤ 6φ3

0(Lρ)
3/2(1 + 2ρ)3r

and

E{Mr logMr} ≤ {τr log(1 + 2ρ) + 2}φ0

√
Lρ(1 + 2ρ)r,

E{M2
r logMr} ≤ 2{τr log(1 + 2ρ) + 3}φ2

0Lρ(1 + 2ρ)2r.

Proof. Since M(n) is a branching process with 1+Po (2ρ) offspring distribution, the probability

generating function is immediate, as is the formula for its first moment mn := m
(1)
n = (1 +

2ρ)n, where we write m
(v)
n := E{Mv(n)}. Considering the outcome of the first generation, and

letting Z denote a Poisson random variable with mean 1 + 2ρ, we then have the recurrences

m(2)
n = m

(2)
n−1EZ +m2

n−1E{Z(Z − 1)}
= (1 + 2ρ)m

(2)
n−1 + 4ρ(1 + ρ)(1 + 2ρ)2n−2

and

m(3)
n = m

(3)
n−1EZ + 3mn−1m

(2)
n−1E{Z(Z − 1)} +m3

n−1E{Z(Z − 1)(Z − 2)}
= (1 + 2ρ)m

(3)
n−1 + 12ρ(1 + ρ)(1 + 2ρ)n−1m

(2)
n−1 + 4ρ2(3 + 2ρ)(1 + 2ρ)3n−3.

From the first recurrence, it follows easily that

m(2)
n ≤ 2(1 + ρ)(1 + 2ρ)2n−1 ≤ 2(1 + 2ρ)2n, (3.3)

and then from the second that

m(3)
n ≤

{
24ρ(1 + ρ)2 + 4ρ2(3 + 2ρ)(1 + 2ρ)

}
(1 + 2ρ)3n−4

/ {
1 − (1 + 2ρ)−2

}

≤ 6(1 + 2ρ)3n.

The bounds for the moments of Mr follow by replacing n by τr. The remaining bounds are
deduced using the inequality

logm ≤ n log(1 + 2ρ) +m(1 + 2ρ)−n. 2

These estimates can be directly applied in Lemma 3.2 and Proposition 3.1. Define

η1(r, r
′) := 704ρ2(n0 + r)3 log(1 + 2ρ)φ3

0(1 + 2ρ)2r+r
′

; (3.4)

η2(r, r
′) := 16ρ(n0 + r)φ0(1 + 2ρ)r, (3.5)

and note, for the calculations, that 3τr log(1 + 2ρ) ≥ 2, from (2.3) and because Lρ ≥ 10.

Corollary 3.4. We have

0 ≤ P[Ar,r′ ] − P[Vr,r′ = 0] ≤ η1(r, r
′)(Lρ)−1/2,

and hence, recalling that Ar,r′ = {D > 2n0 + r + r′},
|P[D > 2n0 + r + r′] − E exp{−λr(M,M ′)}| ≤ {η1(r, r

′) + η2(r, r
′)}(Lρ)−1/2. 2
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3.2 The shortest path length: first asymptotics

In view of Corollary 3.4, the asymptotics of P[D > 2n0 + r + r′], where D denotes the
“small world” shortest path distance between P and P ′, require closer consideration of the
quantity E(exp{−λr(M,M ′)}). Now λr(M,M ′) can be expressed quite neatly in terms of the
processes M and M ′. Such a formula is given in following lemma, together with a second, less
elegant representation, which is useful for the asymptotics. For a sequence H(·), we use the
notation ∇H(s) for the backward difference H(s) −H(s − 1). We define X(s) := M(s) − (1 +
2ρ)M(s − 1) and X ′(s) := M ′(s) − (1 + 2ρ)M ′(s − 1), and set M(−1) = M ′(−1) = 0; we also
write

Er(M,M ′) :=

τr∑

s=2

(
2ρ{M(s − 1)X ′(s) +M ′(s− 1)X(s)} +X(s)X ′(s)

)

− 3M(0)M ′(0) + ∇M(1)∇M ′(1). (3.6)

Lemma 3.5. With the above definitions, we have

Lλr(M,M ′) = 4

τr−1∑

s=0

M(s)M ′(s) +MrM
′
r −

τr∑

s=0

∇M(s)∇M ′(s)

= 4(1 − ρ2)

τr−1∑

s=1

M(s)M ′(s) +MrM
′
r − Er(M,M ′).

Proof. Let the intervals Ii and Jj have lengths si and uj respectively. By construction, both
lengths must be even integers, and the centres of the intervals are independently and uniformly
chosen on C. Then, fixing Ii, and supposing that uj ≤ si− 2, there are two intervals on C, each
of length uj, in whose union the centre of Jj must lie, if Ii and Jj are to overlap without Jj
being contained in Ii; and there are two further intervals, each of length 1, for which one has
Jj ⊂ Ii but J1

j 6⊂ Ii, in which case E(1 − K ′
ji) = 1

2 . From these and similar considerations, it
follows from (2.5) that

E{Xij | Fr} = L−1{2min(si, uj) + 1 − δsi,uj} =: L−1f(si, uj),

where δkl denotes the Kronecker delta and f(x, y) := 2min(x, y) + 1 − δx,y. Hence

Lλr(M,M ′) =

τr∑

l=0

τr∑

l′=0

∇M(l)∇M ′(l′)f(2(τr − l), 2(τr − l′))

=

τr∑

l=0

{
(4(τr − l) + 1){∇M(l)M ′(l − 1) + ∇M ′(l)M(l − 1)}

+ 4(τr − l)∇M(l)∇M ′(l)
}

=
τr∑

l=0

{
(4(τr − l) + 1)∇{M(l)M ′(l)} − ∇M(l)∇M ′(l)

}
,

and summation by parts completes the proof of the first formula. The second follows from the
observation that ∇M(s) = X(s) + 2ρM(s − 1). 2
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As a result of this lemma, combined with Corollary 3.4, we can approximate the distribution of
the shortest path length D in terms of that of the random variable D∗, introduced in (2.7).

Corollary 3.6. If ρ = ρ(L) is bounded above and Lρ→ ∞, then, as L→ ∞,

|P[D > s] − P[D∗ > s]| → 0

uniformly in |s− 2n0| + 2 ≤ 2 log(Lρ)
7 log(1+2ρ) .

Proof. For s in the given range, we write r = ⌈(s − 2n0)/2⌉ and r′ = s − 2n0 − r, and observe
that, under the stated conditions, τr tends to infinity as L→ ∞ at least as fast at c log(Lρ), for
some c > 0, because of (2.3). We also observe that

{η1(r, r
′) + η2(r, r

′)}(Lρ)−1/2 → 0

uniformly in the given range of r.

Now W (n) = (1 + 2ρ)−nM(n) → Wρ a.s. and, for X(s) appearing in the definition (3.6)
of Er(M,M ′), we have E{X(s) |M(0), . . . ,M(s − 1)} = 0 and

VarX(s) = 2ρEM(s− 1) = 2ρ(1 + 2ρ)s−1; (3.7)

furthermore, (1 + 2ρ)2n0+r+r′ = φ2
0(1 + 2ρ)r+r

′
Lρ. Hence, and from Lemma 3.5, it follows that

λr(M,M ′) ∼ (1 + 2ρ)2n0+r+r′L−1WρW
′
ρ

{
4(1 − ρ2)

τr−1∑

l=1

(1 + 2ρ)−2l + 1

}

∼ φ2
0Lρ(1 + 2ρ)r+r

′

L−1

{
4(1 − ρ2)

4ρ(1 + ρ)
+ 1

}
WρW

′
ρ

= φ2
0(1 + 2ρ)r+r

′

WρW
′
ρ, (3.8)

uniformly for r in the given range. This, together with the fact that

P[D∗ > 2n0 + r + r′] = E{e−φ2
0(1+2ρ)xWρW ′

ρ},

from (2.7), completes the proof. 2

Hence P[D > s] can be approximated in terms of the distribution of D∗, which is itself de-
termined by that of the limiting random variable Wρ associated with the pure birth chain M .
However, in contrast to the model with time running continuously, this distribution is not al-
ways the negative exponential distribution NE (1) with mean 1, but genuinely depends on ρ. Its
properties are not so easy to derive, though moments can be calculated, and, in particular,

EWρ = 1; VarWρ = 1/(1 + 2ρ); (3.9)

it is also shown in Lemma 3.14 that L(Wρ) is close to NE (1) for ρ small.
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3.3 The shortest path length: error bounds

The simple asymptotics of Corollary 3.6 can be sharpened, to provide bounds for the errors
involved. The main effort lies in proving a more accurate approximation to λr(M,M ′) than that
given in (3.8).

At first sight surprisingly, it turns out that it is not actually necessary for the time τr to tend
to infinity, since, for values of ρ so large that n0 is bounded, the quantities W (n) are (almost)
constant for all n.

Lemma 3.7. We have

λr(M,M ′) = (1 + 2ρ)r+r
′

φ2
0{W (τr)W

′(τr) + Ur},

where Ur, given in (3.11) below, is such that

E|Ur| ≤ 11(1 + 2ρ)(3−τr)/2.

Proof. We begin by observing that

ρ(1 + 2ρ)−(2n0+r+r′)
τr−1∑

s=1

M(s)M ′(s)

= ρ

τr−1∑

l=1

(1 + 2ρ)−2lW (τr − l)W ′(τr − l)

=
1

4(1 + ρ)
W (τr)W

′(τr) − Ur1 + Ur2, (3.10)

where

Ur1 =
W (τr)W

′(τr)

4(1 + ρ)(1 + 2ρ)2(τr−1)
,

Ur2 = ρ

τr−1∑

l=1

(1 + 2ρ)−2lW ∗
r (l)

and
W ∗
r (l) := W (τr − l)W ′(τr − l) −W (τr)W

′(τr).

Hence, since also
ρ(1 + 2ρ)−(2n0+r+r′)MrM

′
r = ρW (τr)W

′(τr),

we have shown that

Lρ(1 + 2ρ)−(2n0+r+r′)λr(M,M ′)

= W (τr)W
′(τr) + 4(1 − ρ2)(Ur2 − Ur1) − Ur3,

where

Ur3 := ρ(1 + 2ρ)−(2n0+r+r′)Er(M,M ′) =
4∑

v=1

Vrv,
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with

Vr1 = 2ρ2
τr∑

s=2

(1 + 2ρ)−2(τr−s)−1W (s− 1)∇W ′(s),

Vr2 = 2ρ2
τr∑

s=2

(1 + 2ρ)−2(τr−s)−1∇W (s)W ′(s − 1),

Vr3 = ρ

τr∑

s=2

(1 + 2ρ)−2(τr−s)∇W (s)∇W ′(s)

and
Vr4 = ρ(1 + 2ρ)−(2n0+r+r′){∇M(1)∇M ′(1) − 3δr,r′}.

Thus we have assembled Ur; recalling that (1 + 2ρ)2n0 = φ2
0Lρ from (2.4), we have

Ur = 4(1 − ρ2)(Ur2 − Ur1) − Ur3. (3.11)

It remains to bound E|Ur|. It is immediate that Ur1 ≥ 0, so that

E|Ur1| =
1

4(1 + ρ)(1 + 2ρ)2(τr−1)
. (3.12)

Then E|Ur2| ≤
√

EU2
r2; to bound the latter, we begin by defining

vlm := E{W ∗
r (l)W ∗

r (m)}, 1 ≤ l ≤ m ≤ τr − 1,

and vlm = vml if l > m, so that

EU2
r2 = ρ2

τr−1∑

l=1

τr−1∑

m=1

(1 + 2ρ)−2(l+m)vlm.

As W and W ′ are independent martingales, with ∇W (s) = (1 + 2ρ)−sX(s), we have from (3.3)
and (3.7) that

EW 2(s) ≤ 2, s ≥ 1; E{(W (s) −W (t))2} ≤ (1 + 2ρ)−(s+1), 1 ≤ s ≤ t ≤ ∞. (3.13)

Thus, for 1 ≤ l ≤ m ≤ τr − 1,

vlm = E{(W ∗
r (l))2}

= E{(W ′(τr − l)2}E{(W (τr − l) −W (τr))
2}

+ E{W 2(τr)}E{(W ′(τr − l) −W ′(τr))
2}

≤ 4(1 + 2ρ)−(τr−l+1).

Hence it follows that

EU2
r2 ≤ 2ρ2

τr−1∑

l=1

(1 + 2ρ)−4l

4ρ(1 + ρ)
4(1 + 2ρ)−(τr−l+1)

+
4ρ2

(1 + 2ρ)3 − 1
(1 + 2ρ)−τr−1

≤
{

2

ρ(1 + ρ)
+ 4

}
ρ2

(1 + 2ρ)3 − 1
(1 + 2ρ)−τr−1

≤ (1 + ρ)−1(1 + 2ρ)−τr−1,
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and so

E|Ur2| ≤ (1 + ρ)−1(1 + 2ρ)−τr/2. (3.14)

In order to bound E|Ur3|, we begin by noting that EVr1 = EVr2 = EVr3 = 0. Then, by the
orthogonality of the martingale differences ∇W (s) and ∇W ′(s), we have

EV 2
r1 = 4ρ4

τr∑

s=2

(1 + 2ρ)−4(τr−s)−2EW 2(s − 1)E{(∇W ′(s))2}

≤ 16ρ5
τr−2∑

l=0

(1 + 2ρ)−(τr+3+3l)

≤ 8ρ4(1 + 2ρ)

1 + 2ρ+ 4ρ2
(1 + 2ρ)−τr ≤ 8ρ4(1 + 2ρ)−τr−1,

and the same bound is true for EV 2
r2 as well. Then, similarly, we obtain the bound

EV 2
r3 ≤ ρ2

τr∑

s=2

(1 + 2ρ)−4(τr−s) 4ρ2(1 + 2ρ)−2s−1

≤ ρ3(1 + 2ρ)

1 + ρ
(1 + 2ρ)−2τr ≤ 2ρ3(1 + 2ρ)−2τr ,

and, finally,
E|Vr4| ≤ ρ(1 + 2ρ)−2τr+1 max{4ρ2, 3}.

Hence

E|Ur3| ≤ 4
√

2ρ2(1 + 2ρ)−(τr+1)/2

+
√

2ρ3/2(1 + 2ρ)−τr + 4ρmax{1, ρ2}(1 + 2ρ)−2τr+1. (3.15)

Substituting from (3.12), (3.14) and (3.15) into (3.11), we obtain, after some calculation,

E|Ur| ≤ 11max{1, ρ3/2}(1 + 2ρ)−τr/2,

proving the result. 2

From Lemma 3.7, observing that |e−x − e−y| ≤ |x− y| for x, y ≥ 0, we note that
∣∣∣E exp{−λr(M,M ′)} − E exp{−φ2

0(1 + 2ρ)r+r
′

W (τr)W
′(τr)}

∣∣∣

≤ φ2
0(1 + 2ρ)r+r

′

E|Ur| (3.16)

and, because also EW (n) = 1 for all n, that
∣∣∣E exp{−φ2

0(1 + 2ρ)r+r
′

W (τr)W
′(τr)} − E exp{−φ2

0(1 + 2ρ)r+r
′

WρW
′
ρ}
∣∣∣

≤ φ2
0(1 + 2ρ)r+r

′{E|Wρ −W (τr)| + E|W ′
ρ −W ′(τr)|}. (3.17)

Using these results, we obtain the following theorem, giving a pointwise bound for the difference
between the distribution functions of D and D∗.
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Theorem 3.8. If P and P ′ are randomly chosen on C, then

∣∣P[D > 2n0 + r + r′] − P[D∗ > 2n0 + r + r′]
∣∣

≤ {η1(r, r
′) + η2(r, r

′)}(Lρ)−1/2 + η3(r, r
′)(Lρ)−1/4,

where η1, η2 are given in (3.4) and (3.5),

η3(r, r
′) := 13φ

3/2
0 (1 + 2ρ)r

′+(r+3)/2, (3.18)

and where, as before, D denotes the shortest distance between P and P ′ on the shortcut graph.

Proof. We use Corollary 3.4, Lemma 3.7 and (3.16) and (3.17) to give

∣∣∣P[D > 2n0 + r + r′] − E{e−φ2
0(1+2ρ)r+r′WρW ′

ρ}
∣∣∣

≤ {η1(r, r
′) + η2(r, r

′)}(Lρ)−1/2 + φ2
0(1 + 2ρ)r+r

′

E|Ur|
+ φ2

0(1 + 2ρ)r+r
′{E|Wρ −W (τr)| + E|W ′

ρ −W ′(τr)|}, (3.19)

where E|Ur| ≤ 11(1 + 2ρ)(3−τr)/2. Now

E{(W ′
ρ −W ′(τr))

2} ≤ (1 + 2ρ)−τr

from (3.13) (note that, if r′ = r − 1, W ′ is a step behind W ), and hence

E|Wρ −W (τr)| + E|W ′
ρ −W ′(τr)| ≤ 2(1 + 2ρ)−τr/2.

The theorem now follows from (2.7). 2

For fixed ρ and r, r′ bounded, the error in Theorem 3.8 is of order (Lρ)−1/4. However, if r + r′

grows, it rapidly becomes larger, because of the powers of (1 + 2ρ) appearing in the quantities
ηl(r, r

′). Thus, in order to translate it into a uniform distributional approximation, a separate
bound for the upper tail of L(D∗) is needed. This is given by way of the following lemmas.

Lemma 3.9. If X is a random variable such that

E{e−θX} ≤ (1 + θ)−1, (3.20)

then, for independent copies X1,X2 of X, we have

E
(
e−θX1X2

)
≤ θ−1 log(1 + θ).

In particular, for all θ, ρ > 0,

E
(
e−θWρW ′

ρ

)
≤ θ−1 log(1 + θ).

Proof. We begin by noting that

(1 + θw)−1 = θ−1

∫ ∞

0
e−twe−t/θ dt.
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Hence, applying (3.20) twice, and because the function (1+t)−1 is decreasing in t ≥ 0, we obtain

E
(
e−θX1X2

)
≤ E{(1 + θX1)

−1}

= θ−1

∫ ∞

0
Ee−tX1e−t/θ dt

≤ θ−1

∫ ∞

0
(1 + t)−1e−t/θ dt

≤ θ−1

∫ θ

0
(1 + t)−1 dt = θ−1 log(1 + θ),

as required.

Now, the offspring generating function of the birth process M satisfies

f(s) = se2ρ(s−1) ≤ s{1 + 2ρ(1 − s)}−1 =: f1(s)

for all 0 ≤ s ≤ 1. Hence, with m = 1 + 2ρ,

E(e−ψWρ) = lim
n→∞

f (n)(e−ψm
−n

) ≤ lim
n→∞

f
(n)
1 (e−ψm

−n
) = (1 + ψ)−1.

The last equality follows from (8.11), p.17 in (10), noting that the right-hand side is the Laplace
transform of the NE(1) - distribution. So (3.20) holds, and the first part of the lemma applies,
giving the assertion. 2

We can now prove the following uniform bound on the distance between the distributions of D
and D∗. For probability distributions Q and Q′ on R, we use dK to denote the Kolmogorov
distance:

dK(Q,Q′) := sup
x

|Q{(−∞, x]} −Q′{(−∞, x]}|.

Theorem 3.10. For D the shortest path between randomly chosen points P and P ′ and D∗ with
distribution as in (2.7), we have

dK(L(D),L(D∗))

= O

(
log(Lρ)(1 + 2ρ)3/2(Lρ)−

1
7 +

(
ρ

log(1 + 2ρ)

)2

(1 + 2ρ)1/2(Lρ)−
2
7 log3(Lρ)

)
.

In particular, for ρ = ρ(L) = O(Lβ) with β < 4/31,

dK(L(D),L(D∗)) → 0 as L→ ∞.

Proof. From Lemma 3.9 and (2.7), it follows that

P[D∗ > 2n0 + x] ≤ φ−2
0 (1 + 2ρ)−x(1 + x log(1 + 2ρ)) (3.21)
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for any x > 0, since φ0 ≤ 1 and log(1 + y) ≤ 1 + log y in y ≥ 1. Then, for any x ∈ Z, writing
r′(x) = ⌊x/2⌋ and r(x) = x− r′(x) ≤ (x+ 1)/2, it follows from Theorem 3.8 that

|P[D > 2n0 + x] − P[D∗ > 2n0 + x]|
≤ {η1(r(x), r

′(x)) + η2(r(x), r
′(x))}(Lρ)−1/2 + η3(r(x), r

′(x))(Lρ)−1/4

= O

((
ρ

log(1 + 2ρ)

)2

(1 + 2ρ)
1
2 (Lρ)−

2
7 log3(Lρ)

+

(
ρ log(Lρ)

log(1 + 2ρ)

)
(1 + 2ρ)

1
2 (Lρ)−

3
7 + (1 + 2ρ)3/2(Lρ)−

1
7

)
,

so long as x ≤ ⌊
1
7

log(Lρ)−2 log φ0

log(1+2ρ) ⌋. This is combined with the bound (3.21) evaluated at the value

x = ⌈
1
7

log(Lρ)−2 log φ0

log(1+2ρ) ⌉, which gives rise to a term of order O
(
(Lρ)−

1
7 log(Lρ)

)
, and the main

estimate follows.

The above bound tends to zero as L→ ∞ as long as ρ = ρ(L) = O(Lβ) for β < 4/31. Thus the
theorem is proved. 2

For larger ρ and for L large, it is easy to check that n0 can be no larger than 4, so that
interpoint distances are extremely short, few steps in each branching process are needed, and
the closeness of L(D) and L(D∗) could be justified by direct arguments. Even in the range
covered by Theorem 3.10, it is clear that L(D) becomes concentrated on very few values, once ρ
is large, since the factor φ2

0(1 + 2ρ)x in the exponent in (2.7) is multiplied by the large factor
(1 + 2ρ) if x is increased by 1. The following corollary makes this more precise.

Corollary 3.11. If N0 is such that

(1 + 2ρ)N0 ≤ Lρ < (1 + 2ρ)N0+1,

and if Lρ = (1 + 2ρ)N0+α, for some α ∈ [0, 1), then

P[D∗ ≥ N0 + 1] ≥ 1 − (1 + 2ρ)−α,

and

P[D∗ ≥ N0 + 2] = E exp{−(1 + 2ρ)1−αWρW
′
ρ} ≤ (1 + 2ρ)−1+α log{2(1 + ρ)}.

Proof. The result follows immediately from Jensen’s inequality:

E exp{−(1 + 2ρ)−αWρW
′
ρ} ≥ exp

{
−(1 + 2ρ)−αEWρEW

′
ρ

}

≥ 1 − (1 + 2ρ)−α

as EWρ = 1, and from Lemma 3.9 with θ = (1 + 2ρ)1−α. 2

Thus the distribution of D∗ is essentially concentrated on the single value N0 + 1 if ρ is large
and α is bounded away from 0 and 1. If, for instance, α is close to 1, then both N0 + 1 and
N0 + 2 may carry appreciable probability.
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If ρ→ ρ0 as L→ ∞, then the distribution of ρ(D∗−2n0) becomes spread out over Z, converging
to a non–trivial limit as L→ ∞ along any subsequence such that φ0 = φ0(L, ρ) converges. Both
this behaviour and that for larger ρ are quite different from the behaviour found for the [NMW]
model in (7). In the next section, we show that, if ρ becomes smaller, then the differences
become less.

3.4 Distance to the continuous circle model

We now show that, as ρ → 0, the distribution of ρ(D∗ − 2n0) approaches the limit dis-
tribution T obtained in (7). Indeed, Theorem 3.10 shows that P [ρ(D∗ − 2n0) > z] is close to
E{exp(−e2zWρW

′
ρ)}. If Wρ and W ′

ρ were replaced by independent standard exponential random
variables W and W ′, the result would be just P[T > z]. Hence our argument is based on showing
that the distribution of Wρ is close to NE (1). We do so by way of Laplace transforms, showing
that the Laplace transform

ϕρ(θ) := Ee−θWρ

of L(Wρ) is close to
ϕe(θ) := (1 + θ)−1, (3.22)

the Laplace transform of the NE (1) distribution, when ρ ≈ 0. For this, we employ the character-
izing Poincaré equation for Galton–Watson branching processes (see Harris (10), Theorem 8.2,
p.15);

ϕρ((1 + 2ρ)θ) = f(ϕρ(θ)). (3.23)

We show this to be the fixed point equation corresponding to a contraction Ψ, which also almost
fixes ϕe, thus entailing the closeness of ϕρ and ϕe. The main distributional approximation
theorem that results is Theorem 3.16.

To define the operator Ψ, we first need the appropriate function spaces. Let

G =

{
g : [0,∞) → [0, 1] : ‖g‖G := sup

θ>0
θ−2|g(θ)| <∞

}
,

and then set

H = {χ : [0,∞) → [0, 1] : χ(θ) = 1 − θ + g(θ) for some g ∈ G} .

Then H contains all Laplace transforms of probability distributions with mean 1 and finite
variance. On H, define the operator Ψ by

(Ψχ)(θ) = f

(
χ

(
θ

m

))
,

where
f(s) = se2ρ(s−1)

is the probability generating function of 1 + Po (2ρ), and

m = 1 + 2ρ > 1.
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Thus, if χ is the Laplace transform of a random variable X, and if X1,X2, . . . are i.i.d. copies of
X, then Ψχ is the Laplace transform of Z = m−1

∑N
i=1Xi, with N , independent of X1,X2, . . .,

having the distribution 1 + Po (2ρ). The Laplace transform ϕρ of interest to us is a fixed point
of Ψ.

Lemma 3.12. The operator Ψ is a contraction, and, for all χ,ψ ∈ H,

‖Ψχ− Ψψ‖G ≤ 1

m
‖χ− ψ‖G .

Proof. For all χ,ψ ∈ H and θ > 0, we have

θ−2|Ψχ(θ) − Ψψ(θ)| = θ−2

∣∣∣∣f
(
χ

(
θ

m

))
− f

(
ψ

(
θ

m

))∣∣∣∣

≤ sup
0≤t≤1

|f ′(t)| θ−2

∣∣∣∣χ
(
θ

m

)
− ψ

(
θ

m

)∣∣∣∣

= θ−2m

∣∣∣∣χ
(
θ

m

)
− ψ

(
θ

m

)∣∣∣∣

= m−1(θ/m)−2

∣∣∣∣χ
(
θ

m

)
− ψ

(
θ

m

)∣∣∣∣

≤ m−1‖χ− ψ‖G ,

as required. 2

Lemma 3.13. For the Laplace transform ϕe, we have

‖Ψϕe − ϕe‖G ≤ 2ρ2

(1 + 2ρ)2
.

Proof. For all θ > 0, we have

∣∣∣∣
|Ψϕe(θ) − ϕe(θ)

θ2

∣∣∣∣ =
1

1 + θ

1

θ2

∣∣∣∣
(

1 +
2ρθ

m+ θ

)
e−2 ρθ

m+θ − 1

∣∣∣∣

≤ 1

2(1 + θ)θ2

(
2ρθ

m+ θ

)2

,

using the inequality |(1 + x)e−x − 1| ≤ x2

2 for x > 0. The lemma now follows because m+ θ >
m = 1 + 2ρ and 1 + θ > 1. 2

Lemmas 3.12 and 3.13 together yield the following result.

Lemma 3.14. For any ρ > 0,

‖ϕρ − ϕe‖G ≤ ρ

1 + 2ρ
.
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Proof. Note that indeed ϕρ − ϕe ∈ G. With Lemmas 3.12 and 3.13, it follows that

‖ϕρ − ϕe‖G = ‖Ψϕρ − ϕe‖G
≤ ‖Ψϕρ − Ψϕe‖G + ‖Ψϕe − ϕe‖G

≤ 1

m
‖ϕρ − ϕe‖G +

2ρ2

(1 + 2ρ)2
.

Thus, since m > 1, we obtain

‖ϕρ − ϕe‖G ≤ m

m− 1

2ρ2

(1 + 2ρ)2
=

ρ

1 + 2ρ
,

as required. 2

As an immediate consequence, L(Wρ) → NE(1) as ρ → 0. This is the basis of our argument
for showing that the distribution of ρ(D∗ − 2n0) is like that of T . What we actually need to
compare are the expectations Ee−θWρW ′

ρ and Ee−θWW ′
, for θ = e2z and any z ∈ R. The next

lemma does this.

Lemma 3.15. Let W,W ′ be independent NE (1) random variables. Then, for all θ > 0, we have

∣∣∣Ee−θWρW ′
ρ − Ee−θWW ′

∣∣∣ ≤ 4ρ

1 + 2ρ
θ2.

Proof. We have

Ee−θWρW ′
ρ − Ee−θWW ′

= E{E(e−θWρW ′
ρ|W ′

ρ)} − E{E(e−θWW ′|W ′)}
= Eϕρ(θW

′
ρ) − Eϕe(θW )

= EΨϕρ(θW
′
ρ) − EΨϕe(θW

′
ρ) + EΨϕe(θW

′
ρ) − Eϕe(θW

′
ρ)

+ Eϕe(θW
′
ρ) − Eϕe(θW ).

Since

Eϕe(θW
′
ρ) = Ee−θWW ′

ρ = Eϕρ(θW ),

we obtain from the triangle inequality, (3.9) and Lemmas 3.12, 3.13 and 3.14 that

∣∣∣Ee−θWρW ′
ρ − Ee−θWW ′

∣∣∣ ≤ 1

m
‖ϕρ − ϕe‖Gθ2E(W 2

ρ ) +
2ρ2

(1 + 2ρ)2
θ2E(W 2

ρ )

+ ‖ϕρ − ϕe‖Gθ2E(W 2
ρ )

≤ 2θ2(1 + ρ)

1 + 2ρ

{(
1

1 + 2ρ
+ 1

)
ρ

1 + 2ρ
+

2ρ2

(1 + 2ρ)2

}

≤ 4ρ

1 + 2ρ
θ2,

as required. 2
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The quantity Ee−θWW ′
can be more neatly expressed:

Ee−θWW ′

=

∫ ∞

0

e−y

1 + θy
dy. (3.24)

From this, we obtain the following theorem.

Theorem 3.16. Let T denote a random variable on R with distribution given by

P [T > z] =

∫ ∞

0

e−y

1 + ye2z
dy.

Then, for D∗ as in (2.7), we have

sup
z∈R

|P[ρ(D∗ − 2n0) > z] −P[T > z]| = O
(
ρ1/3(1 + log(1/ρ))

)
.

Proof. We use an argument similar to that used for Theorem 3.10. First, writing ∆ := D∗−2n0,
it follows from (2.7), Lemma 3.15 and (3.24) that

∣∣∣∣P[ρ∆ > z] −
∫ ∞

0

e−y

1 + yφ2
0(1 + 2ρ)z/ρ

dy

∣∣∣∣ ≤ 4ρ

1 + 2ρ
(1 + 2ρ)2z/ρ

≤ 4ρ

1 + 2ρ
e4z, z ∈ ρZ. (3.25)

Define c(ρ) by requiring that (1 + 2ρ)1/ρ = e2c(ρ); then, in view of the fact that (1 + 2ρ)−1 ≤
φ0 ≤ 1, and because, for a, b > 0,

∣∣∣∣
∫ ∞

0

e−y

1 + ay
dy −

∫ ∞

0

e−y

1 + by
dy

∣∣∣∣ ≤ |b− a|
max{1, a, b} , (3.26)

it also follows that
∣∣∣∣
∫ ∞

0

e−y

1 + yφ2
0(1 + 2ρ)z/ρ

dy − P[T > zc(ρ)]

∣∣∣∣

≤ |φ2
0 − 1|(1 + 2ρ)z/ρ ≤ 4ρ

1 + 2ρ
e2z. (3.27)

Finally, again from (3.26), we have

|P[T > zc(ρ)] − P[T > z]| ≤ 2|z|(1 − c(ρ))min{1, e2zc(ρ)}. (3.28)

Combining the bounds (3.25), (3.27) and (3.28) for e2z ≤ ρ−1/3 gives a supremum of order ρ1/3

for |P[ρ(D∗ − 2n0) > z]−P[T > z]|; note that z may actually be allowed to take any real value
in this range, since T has bounded density.

For larger values of z, we can use the bound

P[T > z] =

∫ ∞

0

e−ydy
1 + ye2z

≤
∫ 1

0

dy

1 + ye2z

= e−2z log(1 + e2z) ≤ ρ1/3 log(1 + ρ−1/3), (3.29)
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implying a maximum discrepancy of order O{ρ1/3(1 + log(1/ρ))}, as required. Note that, in the
main part of the distribution, for z of order 1, the discrepancy is actually of order ρ. 2

Numerically, instead of calculating the limiting distribution of Wρ, as required for Theorem 3.10,

we would use E
{
e−φ

2
0(1+2ρ)r+r′W (τr)W ′(τr)

}
in place of E

{
e−φ

2
0(1+2ρ)r+r′WρW ′

ρ

}
to approximate

P[D > 2n0 + r+ r′]. The distributions of W (τr) and W ′(τr) can be calculated iteratively, using
the generating function from Lemma 3.3. As D is centred near 2n0 = 2⌊N2 ⌋, and as r is of order

at most log(Lρ)
log(1+2ρ) , only order log(Lρ)

log(1+2ρ) iterations would be needed.

4 The discrete circle model: description

Now suppose, as in the discrete circle model of Newman et al. (13), that the circle C becomes
a ring lattice with Λ = Lk vertices, where each vertex is connected to all its neighbours within
distance k by an undirected edge. Shortcuts are realized by taking the union of the ring lattice
with a Bernoulli random graph GΛ, σ

Λ
having edge probability σ/Λ. In contrast to the previous

setting, it is natural in the discrete model to use graph distance, which implies that all edges,
including shortcuts, have length 1. This turns out to make a significant difference to the results,
when shortcuts are very plentiful.

For comparison with the previous model, in which the k-neighbourhoods on a ring of Lk vertices
are replaced by unit intervals on a circle of circumference L, we would define ρ = kσ, so that the
expected number of shortcuts, the edges in GΛ, σ

Λ
that are not already in the ring lattice, is close

to the value Lρ/2 in the previous model. The notation used by (13) is somewhat different.

The model can also be realized by a dynamic construction. Choosing a point P ∈ {1, . . . ,Λ}
at random, set R(0) = {P0}. Then, at the first step (distance 1), the interval consisting of P

is increased by k points at each end, and, in addition, a binomially distributed number M
(1)
1 ∼

Bi (Λ − 2k − 1, σΛ) of shortcuts connect P to centres of new intervals. At each subsequent step,
starting from the set R(n) of vertices within distance n of P , each interval is increased by the
addition of k points at either end, but with overlapping intervals merged, to form a set R′(n+1).
This is then increased to R(n+1) by choosing as shortcuts the edges formed by a random subset
of pairs of points, one in R(n) \R(n− 1) and one C \R(n− 1), each of the possible pairs being
independently chosen with probability σ/Λ; those with second end-point in C \R′(n+1) actually
contribute new points to R(n+ 1).

The main complication, compared to the continuous circle model in discrete time, arises from
shortcuts having length 1, instead of 0. An interval, when first ‘created’, consists of a single
point. At the next time step, it can start new intervals only from shortcuts originating at that
single point, whereas, at each subsequent step, there may be as many as 2k new points acting as
origins for new intervals. Thus there is a one-step hesitation in growth, which makes itself felt
if ρ is large. In the same way, because one-point intervals behave differently from all others, the
growth and branching analogue of the process needs to have two distinct types of individuals,
with type 1 individuals representing one-point intervals, and type 2 individuals representing all
others. The quantity corresponding to (1 + 2ρ) now becomes the largest eigenvalue λ of the
mean matrix for this two-type branching process.
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In this growth and branching analogue, a type 1 interval at time n becomes a type 2 interval
at time n+ 1, increasing its length by k vertices at each end, and, in addition, has a Bi (Λ, σΛ)–
distributed number of type 1 intervals as ‘offspring’. A type 2 interval at time n stays a type 2
interval at time n+1, increasing its length by k vertices at each end, and each of the 2k vertices of
a type 2 interval that were added at time n is the ‘parent’ of an independent Bi (Λ, σΛ)–distributed
number of type 1 intervals as offspring. Each new interval starts at an independent and uniformly
chosen point of the circle, and pairs of parent vertices and their offspring correspond to shortcuts.
The initial condition could be a single, randomly chosen point (type 1 interval) P , as above, or
a more complicated choice, as in Section 2; a pair of points P and P ′ at time zero, or just P at
time 0, but with a second point P ′ added at time 1.

In this model, we couple a pair of S- and R-processes by first realizing S, and then realizing R
as a sub-process of S, with the help of some extra randomization. In the process R, at each
time n + 1, n ≥ 0, all shortcuts {l, l′} joining S(n) \ S(n − 1) to S(n − 1) are rejected; and if l
and l′ both belong to S(n) \S(n− 1), the shortcut {l, l′} is accepted with probability 1/2 if just
one of the events E(l, l′;n) and E(l′, l;n) has occurred, where

E(l, l′;n) = {S(n) \ S(n − 1) ∋ l, l′; l′ is an offspring of l at time n+ 1}, (4.1)

and with probability 1 if both of these events have occurred. All descendants of rejected offspring
are also rejected, as are the descendants of shortcuts {l, l′} joining S(n)\S(n−1) to S(n+1), to
avoid a vertex in R having shortcuts sampled more than once. Likewise, when intervals overlap,
so that the same vertex in S has offspring assigned more than once, because it is in more than
one interval of S, only one set (chosen at random) is accepted for R.

For the growth and branching process S starting from a single point P , write

M̂(n) :=

(
M̂ (1)(n)

M̂ (2)(n)

)
, n ≥ 0,

for the numbers of intervals of the two types at time n. Their development over time is given
by the branching recursion

M̂ (1)(n) ∼ Bi
(
(M̂ (1)(n− 1) + 2kM̂ (2)(n− 1))Λ,

σ

Λ

)
,

M̂ (2)(n) = M̂ (1)(n− 1) + M̂ (2)(n− 1) : (4.2)

M̂ (1)(0) = 1, M̂ (2)(0) = 0.

The total number of intervals at time n is denoted by

M̂+(n) = M̂ (1)(n) + M̂ (2)(n). (4.3)

As before, we use the branching process as the basic tool in our argument. It is now a two type
Galton–Watson process with mean matrix

A =

(
σ 2kσ
1 1

)
.

The characteristic equation

(t− 1)(t− σ) = 2kσ (4.4)
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of A yields the eigenvalues

λ = λ1 = 1
2{σ + 1 +

√
(σ + 1)2 + 4σ(2k − 1)} > σ + 1; (4.5)

−λ < λ2 = 1
2{σ + 1 −

√
(σ + 1)2 + 4σ(2k − 1)} < 0. (4.6)

We note a number of relations involving these eigenvalues, which are useful in what follows.
First, from (4.5) and (4.6), we have

λ2 = σ + 1 − λ, (4.7)

and, from (4.4) and (4.5),

λ− 1 ≤ 2kσ; (4.8)

then, from (4.5), and since
√
a+ b ≤ √

a+
√
b in a, b ≥ 0, we have

λ ≤ 1 + σ +
√
σ(2k − 1); (4.9)

finally, again from (4.4),

0 ≤ ω2 :=
2kσ

λ(λ− 1)
= 1 − σ/λ ≤ 1. (4.10)

From the equation fTA = λfT , we find that the left eigenvectors f (i), i = 1, 2, satisfy

f
(i)
2 = (λi − σ)f

(i)
1 . (4.11)

We standardize the positive left eigenvector f (1) of A, associated with the eigenvalue λ, so that

f
(1)
1 = (λ− σ)−

1
2 , f

(1)
2 = (λ− σ)

1
2 ; (4.12)

for f (2), we choose

f
(2)
1 = (σ − λ2)

− 1
2 , f

(2)
2 = −(σ − λ2)

1
2 .

Then, for i = 1, 2, we have

E((f (i))T M̂n+1 | F(n)) = (f (i))TAM̂ (n) = λi(f
(i))T M̂(n),

where F(n) denotes the σ-algebra σ(M̂ (0), . . . , M̂(n)) and the superscript T the vector trans-
pose. Thus, from (4.11),

W (i)(n) := λ−ni (f (i))T M̂(n) (4.13)

= λ−ni f
(i)
1 (M̂ (1)

n + (λi − σ)M̂ (2)
n )

is a (non-zero mean) martingale, for i = 1, 2. Note that

EW (i)(n) = W
(i)
0 = (f (i))T M̂+

0 = (f (i))T (1, 0)T = f
(i)
1 (4.14)
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for all n, by the martingale property. From (4.13) and (4.11), we also have

(f
(1)
1 )−1λnW (1)(n) = M̂ (1)(n) + (λ− σ)M̂ (2)(n);

(f
(2)
1 )−1λn2W

(2)(n) = M̂ (1)(n) + (λ2 − σ)M̂ (2)(n),

and thus

M̂ (1)(n) = λnW (1)(n)
σ − λ2

(λ− λ2)f
(1)
1

+ λn2W
(2)(n)

λ− σ

(λ− λ2)f
(2)
1

; (4.15)

M̂ (2)(n) = λnW (1)(n)
1

(λ− λ2)f
(1)
1

− λn2W
(2)(n)

1

(λ− λ2)f
(2)
1

.

Define

Wk,σ := lim
n→∞

W (1)(n) a.s. = lim
n→∞

λ−n1 (f (1))T M̂(n) a.s. (4.16)

to be the almost sure limit of the martingale W (1)(n).

Our main conclusions can be summarized as follows; the detailed results and their proofs are
given in Theorems 5.9 and 5.12. Let D∗

d denote a random variable on the integers with distri-
bution given by

P [D∗
d > 2nd + x] = E exp

{
− λ2

(λ− λ2)
(λ− σ)φ2

dλ
xWk,σW

′
k,σ

}
, (4.17)

for any x ∈ Z. Here, nd and φd are such that λnd = φd(Λσ)1/2 and λ−1 < φd ≤ 1, and W ′
k,σ

is an independent copy of Wk,σ. Let Dd denote the graph distance between a randomly chosen
pair of vertices P and P ′ on the ring lattice C.

Theorem 4.1. If Λσ → ∞ and ρ = kσ remains bounded, then dK(L(Dd),L(D∗
d)) → 0. If

ρ→ 0, then ρ(D∗
d − 2nd) →D T , where T is as in Theorem 2.1.

Note that, in (4.17), the expectation is taken with respect to independent random variables Wk,σ

and W ′
k,σ, each having the distribution of the martingale limit limn→∞W (1)(n) conditional on

the initial condition M̂ (0) = e(1). We shall later need also to consider the distribution of Wk,σ

under other initial conditions.

5 The discrete circle model: proofs

As in the previous section, we run the growth and branching process starting from two initial
points P and P ′, the second either being present at time 0 or else only at time 1; from the
branching property, we can regard the process as the sum of two independent processes M̂
and N̂ having the same distribution, with N̂ started either at time 0 or at time 1. We then
investigate, at times m ≥ 1, whether or not there are intervals of M̂ and N̂ that overlap in a
way which implies that there are points of R which can be reached from P within distance m
and from P ′ within distance m or m − 1, implying that the distance D between P and P ′ is
no greater than 2m or 2m − 1, respectively. It is convenient to write the times m in the form
nd + r, where nd is such that λnd ≤ (Λσ)1/2 < λnd+1, using notation of the form M̂r to denote
M̂(nd + r), and we write 2τr := {2k(nd + r) + 1} for the length of the longest possible interval
in the growth and branching process at time nd + r.
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5.1 Poisson approximation for the intersection probability

The first step is to find an approximation to the event Ar,r′ := {Dd > 2nd+ r+ r′} — where,

as before, r′ = r if the process N̂ starts at time 0, and r′ = r − 1 if it starts at time 1 — which
can be represented as the event that a dissociated sum of indicator random variables takes the

value 0, enabling the Stein–Chen method to be used. If, at time nd+ r, the M̂+
r := M̂

(1)
r + M̂

(2)
r

intervals of M̂ and the N̂+
r := N̂

(1)
r + N̂

(2)
r intervals of N̂ are I1, I2, . . . , IM̂+

r
and J1, J2, . . . , JN̂+

r

respectively, we define

Vr,r′ :=

M̂+
r∑

i=1

N̂+
r∑

j=1

Xij ,

much as in (2.5), where

Xij := 1{Ii ∩ Jj 6= ∅}1{I2k
i 6⊂ Jj}1{J2k

j 6⊂ Ii}(1 −Kij)(1 −K ′
ji), i, j ≥ 1, (5.1)

and
Kij := 1{Iki ⊂ Jj , Zi = 0}; K ′

ji := 1{Jkj ⊂ Ii, Z
′
j = 0},

and where (Zi, i ≥ 2) and (Z ′
j , j ≥ 2) are sequences of independent Bernoulli Be (1/2) random

variables; for an interval K = [a, b], the notation K l once again denotes the interval [a− l, b+ l].
This definition of Vr,r′ has some slight differences from that previously defined in (2.6), occasioned
largely because shortcuts are now taken to have length 1, rather than 0. It does not count
overlaps which result from links between S(n) \ S(n − 1) and S(n − 1), n ≥ 1, which can
be distinguished at time nd + r because they give rise to intervals Ii and Jj such that either
{I2k
i ⊂ Jj} or {J2k

j ⊂ Ii}; and it only counts links between pairs of points in S(n)\S(n−1) with
probability 1/2. These provisions ensure that the event {Vr,r′ = 0} is close enough to Ar,r′ , but
the two events are not exactly the same. The definition of Xij does not exclude any descendants
of rejected intervals from consideration, so that Vr,r′ counts more intersections than are actually
represented in R. Furthermore, with this definition ofXij , if two vertices l, l′ are in S(n)\S(n−1)
for some n, and E(l, l′;n) and E(l′, l;n) (as defined in (4.1)) both occur, then the pair contributes
0, 1 or 2 to Vr,r′ , depending on the values of the corresponding indicators Zi and Z ′

j , instead
of the value 1 for the single intersection in R. Finally, note that, if r′ = r − 1, the random
variable Z ′

1 needs to be defined, since it is possible to have Jk1 ⊂ I1 (when P ′ = P ); it is then
correct to take Z ′

1 = 1 a.s., since the point P ′ is never rejected.

To address the possibility of there being pairs l, l′ for which E(l, l′;n) and E(l′, l;n) both occur,
we define the event

Er,r′ :=

M̂+
r⋃

i=1

N̂+
r⋃

j=1

1{|Ii| = |Jj |}1{ζi = ξ′j}1{ζ ′j = ξi}, (5.2)

where ζi, ξi and ζ ′j, ξ
′
j denote the centres and parent vertices of the intervals Ii and Jj , re-

spectively: Er,r′ is the event that there is some edge {l, l′} chosen simultaneously by both
growth and branching processes before time nd + r. Then, writing Fr,r′ for the σ-algebra

σ{(M̂ (l), N̂ (l)), 0 ≤ l ≤ nd + r}, we have

P[Er,r′ | Fr,r′ ] =

nd+r∑

l=1

M̂ (1)(l)N̂ (1)(l)Λ−2, (5.3)
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because two centres must coincide with specific points of C. The possible overcounting in Vr,r′

is accounted for just as in the proof of Lemma 3.2 by defining a corresponding sum Ṽr,r′ , and
then using the relationship

{Vr,r′ = 0} \ Er,r′ ⊂ Ar,r′ ⊂ {Ṽr,r′ = 0} ∪ Er,r′ , (5.4)

in place of (3.1). This leads to the following analogue of Lemma 3.2. The proof is very similar,
and is therefore omitted.

Lemma 5.1. With the above assumptions and definitions, it follows that

|P[Ar,r′ ] − P[Vr,r′ = 0]|
≤ 16τ2

r Λ−2E{M̂+
r N̂

+
r (M̂+

r + N̂+
r )(1 + log M̂+

r + log N̂+
r )}

+ Λ−2
nd+r∑

l=1

E{M̂ (1)(l)N̂ (1)(l)}.

Then, defining

λ̂r(M̂, N̂ ) :=

M̂+
r∑

i=1

N̂+
r∑

j=1

E{Xij | Fr,r′}, (5.5)

an argument similar to that of Proposition 3.1 establishes the following result.

Proposition 5.2. We have

|P[Vr,r′ = 0 | Fr,r′ ] − exp{−λ̂r(M̂ , N̂)}| ≤ 8τrΛ
−1(M̂+

r + N̂+
r ). 2

The next step is to establish fomulae for the moments appearing in the bounds of the previous
two results. The corresponding results are much more complicated that those of Lemma 3.3,
and their proofs are deferred to the appendix.

Lemma 5.3. For the means,

EM̂ (1)(n) =
1

λ− λ2
(λn(σ − λ2) + λn2 (λ− σ)) ≤ λn; (5.6)

EM̂ (2)(n) =
1

λ− λ2
(λn − λn2 ),

and

E(M̂ (1)(n) + 2kM̂ (2)(n)) =
1

(λ− λ2)
{(1 − λ2/σ)λn+1 + (λ2/σ)(λ − σ)λn2}

≤ 2kλn. (5.7)

For the variances, for j ≤ n,

Var (W (1)(j) −W (1)(n)) ≤ ω2(λ− σ)−1λ−j; (5.8)

Var (W (2)(j) −W (2)(n)) (5.9)

≤ 2kσ

(
1

λ2

√
σ − λ2

)2

min

{
λ2

2

|λ− λ2
2|
, (n− j)

}(
λ

λ2
2

)j
max

{
1,
λ

λ2
2

}n−j
.
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Then, for M̂+(n), we have

EM̂+(n) =
1

λ− λ2
(λn+1 − λn+1

2 ) ≤ 2λn; (5.10)

Var M̂+(n) ≤ 4ω2λ2n; E{M̂+(n)}2 ≤ 4(1 + ω2)λ2n; (5.11)

E{M̂+(n) log M̂+(n)} ≤ 2(4 + n log λ)λn; (5.12)

and
E{(M̂+(n))2 log M̂+(n)} ≤ 8(5 + n log λ)λ2n. (5.13)

Applying the bounds in the preceding lemma to Lemma 5.1 and Proposition 5.2, we deduce the
following approximation.

Lemma 5.4. With the above notation and definitions, we have

|P[Dd > 2nd + r + r′] − E(exp{−λ̂r(M̂, N̂)})|
≤ 256τ2

r Λ−2λ3nd+2r+r′{14 + 3(nd + r) log λ}
+ Λ−2(λ− 1)−1λ2nd+r+r′+1 + 32τrΛ

−1λnd+r.

5.2 The shortest path length: error bounds

In order to make use of Lemma 5.4, we now need a simpler expression in place of λ̂r(M̂ , N̂).
We begin by deriving a computable representation in terms of the processes M̂ and N̂ .

Lemma 5.5. We have the expression

Λλ̂r(M̂, N̂ ) = 4k

nd+r−1∑

l=0

M̂+(l)N̂+(l) + 3kM̂+
r N̂

+
r

− (k − 1
2 )

nd+r∑

l=1

{
M̂ (1)(l)N̂ (1)(l − 1) + M̂ (1)(l − 1)N̂ (1)(l)

}

− (3k − 1)

nd+r∑

l=0

M̂ (1)(l)N̂ (1)(l) + 1
21{N̂ (1)(0) = 0, N̂ (1)(1) = 1}.

Proof. In view of the definition (5.5) of λ̂r(M̂ , N̂), we first need an expression for E{Xij | Fr,r′}.
This is a function of the lengths si and uj of the corresponding intervals Ii and Jj , quantities
which are indeed Fr,r′–measurable. Writing mij := min(si, uj), and recalling that both si and uj
belong to the set 2kZ + 1, it follows from the definition (5.1) of Xij that

E{Xij | |Ii| = si, |Jj | = uj} = Λ−1





2(mij − 1) + 3k if |si − uj| ≥ 4k;

2(mij − 1) + 2k + 1
2 if |si − uj| = 2k;

2(mij − 1) + 1 if si = uj,
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except that, if r′ = r − 1, then X11 is special:

E{X11 | Fr,r′} = Λ−1(2(m11 − 1) + 2k + 1).

Hence, rewriting the sum defining λ̂r(M̂ , N̂) in terms of the steps of the processes M̂ and N̂ ,
we find that

Λλ̂r(M̂ , N̂) =

nd+r∑

s=0

nd+r∑

s′=0

M̂ (1)(s)N̂ (1)(s′)

×
{
2(2τr − 1 − 2kmax(s, s′)) + 3k − (k − 1

2 )1{|s − s′| = 1} − (3k − 1)1{s = s′}
}

+1
2(r − r′)

=

nd+r∑

s=2

(
M̂ (1)(s)N̂+(s− 2) + M̂+(s− 2)N̂ (1)(s)

)
{2(2τr − 1 − 2ks) + 3k}

+

nd+r∑

s=1

(
M̂ (1)(s)N̂ (1)(s − 1) + M̂ (1)(s− 1)N̂ (1)(s)

)
{2(2τr − 1 − 2ks) + 2k + 1

2}

+

nd+r∑

s=0

M̂ (1)(s)N̂ (1)(s){2(2τr − 1 − 2ks) + 1} + 1
2(r − r′)

=

nd+r∑

s=1

∇{M̂+(s)N̂+(s)}{2(2τr − 1 − 2ks) + 3k}

− (k − 1
2)

nd+r∑

s=1

(
M̂ (1)(s)N̂ (1)(s− 1) + M̂ (1)(s− 1)N̂ (1)(s)

)

− (3k − 1)

nd+r∑

s=0

M̂ (1)(s)N̂ (1)(s) + 1
2(r − r′),

where we also use the fact that M̂+(l − 1) = M̂ (2)(l) for each l. The lemma follows by partial
summation. 2

Armed with this expression for λ̂r(M̂ , N̂), we can now derive a more tractable approximation.
We introduce the notation

γ := γ(k, σ) := min{1
2 , (log(λ/|λ2|)/ log λ}. (5.14)

Note that, for fixed kσ = ρ, simple differentiation shows that λ1 is an increasing function of σ
and |λ2| a decreasing function, so that λ1(σ) ≥ λ1(0), |λ2(σ)| ≤ |λ2(0)|, and hence

log(λ/|λ2|)
log λ

= 1 − log |λ2|
log λ

≥ 1 − log(
√

1 + 8ρ− 1)

log(
√

1 + 8ρ+ 1)
≥ 1

2

in ρ ≤ 1. Thus, for ρ ≤ 1, we have γ = 1
2 .
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Lemma 5.6. We have the approximation

E

∣∣∣∣λ̂r(M̂, N̂ ) − λ2

(λ− λ2)
(λ− σ)(Λσ)−1λ2nd+r+r′Wk,σW

′
k,σ

∣∣∣∣

≤ (Λσ)−1
{
11λ(λ − σ)λ(2−γ)nd+r+r′−γr′{1 +

√
(λ− 1)(nd + r + 1)} + λ2

}
.

Proof. We give the argument only for the case r′ = r − 1, which is slightly more complicated;
note that, in this situation, L(N̂(s)) = L(M̂(s − 1)) for s ≥ 1, and that N̂(0) = 0. We begin
by observing that, from (4.15), (5.8), (4.7) and (5.9), and from the definition of ω in (4.10), we
have

E

∣∣∣∣∣M̂
(1)(s) − λsWk,σ(σ − λ2)

(λ− λ2)f
(1)
1

∣∣∣∣∣

= E

∣∣∣∣∣
λs(W (1)(s) −Wk,σ)(σ − λ2)

(λ− λ2)f
(1)
1

+
λs2(W

(2)(s) − f
(2)
1 )(λ− σ)

(λ− λ2)f
(2)
1

+
λs2(λ− σ)

λ− λ2

∣∣∣∣∣

≤ λs(λ− 1)

λ− λ2
ωλ−s/2

+
|λ2|s(λ− σ)

λ− λ2

(
1 +

√
2kσmin

{
s

λ2
2

,
1

|λ− λ2
2|

})
max

{
1,

λ

|λ2|2
}s/2

. (5.15)

Now, because min{x−1s, |λ−x|−1} ≤ λ−1(s+1) for x > 0 and because, from the definition of γ
in (5.14), we have max{λ1/2, |λ2|} ≤ λ1−γ , it follows from (5.15) that

E

∣∣∣∣∣M̂
(1)(s) − λsWk,σ(σ − λ2)

(λ− λ2)f
(1)
1

∣∣∣∣∣ ≤ λs(1−γ)

λ− λ2

{
(λ− 1) + (λ− σ)

(
1 +

√
2kσ(s + 1)

λ

)}
;

using (4.10) and (4.7), together with the fact that λ2 < 0 < σ, it now follows that

E

∣∣∣∣∣M̂
(1)(s) − λsWk,σ(σ − λ2)

(λ− λ2)f
(1)
1

∣∣∣∣∣ ≤ λs(1−γ){1 +
√

(1 + s)(λ− 1)} =: χ(s). (5.16)
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By a similar argument, we also obtain

E

∣∣∣∣∣M̂
+(s) − λs+1Wk,σ

(λ− λ2)f
(1)
1

∣∣∣∣∣

= E

∣∣∣∣∣
λs+1(W (1)(s) −Wk,σ)

(λ− λ2)f
(1)
1

− λs+1
2 (W (2)(s) − f

(2)
1 )

(λ− λ2)f
(2)
1

− λs+1
2

λ− λ2

∣∣∣∣∣

≤ λs+1

λ− λ2
ωλ−s/2 +

|λ2|s+1

λ− λ2

(
1 +

√
2kσmin

{
s

λ2
2

,
1

|λ− λ2
2|

})
max

{
1,

λ

|λ2|2
}s/2

≤ λs(1−γ)

λ− λ2

{
λω + |λ2|

(
1 +

√
2kσ(s + 1)

λ

)}

≤ λs(1−γ){1 +
√

(1 + s)(λ− 1)} = χ(s); (5.17)

the corresponding results for N̂(s) follow from these, since L(N̂(s)) = L(M̂(s − 1)) for s ≥ 1.
Hence, and from (5.6) and (5.10), noting also that

E

{
λsWk,σ(σ − λ2)

(λ− λ2)f
(1)
1

}
=

λs(λ− 1)

λ− λ2
≤ λs

and that

E

{
λs+1Wk,σ

(λ− λ2)f
(1)
1

}
=

λs+1

λ− λ2
≤ λs,

we have, for example, for substitution into Lemma 5.5, the inequalities

E

∣∣∣∣∣M̂
+(l)N̂+(l) −

λ2l+1Wk,σW
′
k,σ

(λ− λ2)2(f
(1)
1 )2

∣∣∣∣∣

≤ E{N̂+(l)}E
∣∣∣∣∣M̂

+(l) − λl+1Wk,σ

(λ− λ2)f
(1)
1

∣∣∣∣∣+ E

{
λl+1Wk,σ

(λ− λ2)f
(1)
1

}
E

∣∣∣∣∣N̂
+(l) −

λlW ′
k,σ

(λ− λ2)f
(1)
1

∣∣∣∣∣

≤ 2λl−1χ(l) + λlχ(l − 1)

and

E

∣∣∣∣∣M̂
(1)(l)N̂ (1)(l − 1) −

λ2l−2Wk,σW
′
k,σ(σ − λ2)

2

(λ− λ2)2(f
(1)
1 )2

∣∣∣∣∣ ≤ λl−2χ(l) + λlχ(l − 2).
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Thus it follows from Lemma 5.5 that

E|λ̂r(M̂, N̂ ) − Λ−1Wk,σW
′
k,σC1(k, σ, r)| (5.18)

≤ 4kΛ−1
nd+r−1∑

s=1

{2λs−1χ(s) + λsχ(s− 1)}

+ 3kΛ−1{2λnd+r−1χ(nd + r) + λnd+rχ(nd + r − 1)}

+ (k − 1
2)Λ−1

{
1 +

nd+r∑

s=2

{λs−2χ(s) + λsχ(s− 2) + 2λs−1χ(s− 1)}
}

+ (3k − 1)Λ−1
nd+r∑

s=1

{λs−1χ(s) + λsχ(s− 1)} + 1
2Λ−1, (5.19)

where

{(λ− λ2)f
(1)
1 }2C1(k, σ, r)

:= 4k

nd+r−1∑

s=1

λ2s+1 + 3kλ2(nd+r)+1 − (2k − 1)

nd+r∑

s=2

λ2s−2(σ − λ2)
2

− (3k − 1)

nd+r∑

s=1

λ2s−1(σ − λ2)
2

=
λ2(nd+r)

λ2 − 1
{4kλ+ 3kλ(λ2 − 1) − (σ − λ2)

2(2k − 1 + λ(3k − 1))}

− λ

λ2 − 1
{4kλ2 − (σ − λ2)

2(λ(2k − 1) + 3k − 1)}.

The expression for {(λ − λ2)f
(1)
1 }2C1(k, σ, r) simplifies astonishingly. For the coefficient of

λ2(nd+r), using (4.4) and (4.7) to express it in terms of λ and σ alone, one obtains λσ−1(2λ−σ−1),
which is just λσ−1(λ− λ2), again by (4.7). By the same strategy, the remaining term yields

λ(2σ)−1{λ(2λ2 − 7λ+ 3) − σ(2λ2 − 5λ+ 1)},

which, since 0 < σ < λ, is in modulus less than σ−1λ4 in λ ≥ 1. This implies that

|{(λ − λ2)f
(1)
1 }2C1(k, σ, r) − (λ− λ2)σ

−1λ2nd+r+r′+2| ≤ σ−1λ4, (5.20)

so that

Λ−1EWk,σW
′
k,σ

∣∣∣∣C1(k, σ, r) −
λ2(λ− σ)

σ(λ− λ2)
λ2nd+r+r′

∣∣∣∣ ≤ Λ−1(EWk,σ)
2 λ

4(λ− σ)

σ(λ− λ2)2
≤ (Λσ)−1λ2.

(5.21)

Next, substitute the expression (5.16) into the right-hand side of (5.19), and simplify. We use
the simple bound

χ(s) ≤ λs(1−γ){1 +
√

(λ− 1)(nd + r + 1)},
express k in terms of λ and σ using (4.4), and note that

λ(2−γ)(nd+r)(λ− 1)

λ2−γ − 1
= λ(2−γ)nd+r+r′−γr′ · λ

1−γ(λ− 1)

λ2−γ − 1
≤ λ(2−γ)nd+r+r′−γr′ ,
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and that
{3

2(λ− 1) + 2}{2λ−γ + 1} ≤ 6λ

in λ ≥ 1; collecting terms, we obtain at most

11(Λσ)−1λ(λ− σ)λ(2−γ)nd+r+r′−γr′{1 +
√

(λ− 1)(nd + r + 1)}, (5.22)

and the lemma follows from (5.19), (5.21) and (5.22). 2

Lemma 5.6 can now be combined with Lemma 5.4 to obtain our main approximation for the
shortest path length Dd. Recall that nd is such that λnd = φd(Λσ)1/2, where we require λ−1 <
φd ≤ 1, so that Lemma 5.6 approximates λ̂r(M̂, N̂ ) by

λ2

(λ− λ2)
(λ− σ)φ2

dλ
r+r′Wk,σW

′
k,σ,

a quantity appearing in the definition (4.17) of L(D∗
d). Recall also that 2τr = 2k(nd + r) + 1,

and define the quantities

η′1(r, r
′) := 64φ3

d{σ(2k(nd + r) + 1)}2λ2r+r′{14 + 3(nd + r) log λ};
η′2(r, r

′) := 16φd{σ(2k(nd + r) + 1)}λr ;
η′3(r, r

′) := 1
2φ

2
dσλ

r+r′+2 + λ2,

and
η′4(r, r

′) := 11φ2−γ
d λ(λ− σ){1 +

√
(λ− 1)(nd + r + 1)}λr+r′−γr′ ,

which are used to express the approximation. The quantity η′1(r, r
′) comes from the approxi-

mation of Ar,r′ by {Vr,r′ = 0} in Lemma 5.1, η′2(r, r
′) comes from the Poisson approximation of

Proposition 5.2, and η′4(r, r
′) comes from the approximation of λ̂r(M̂ , N̂) in Lemma 5.6; η′3(r, r

′)
relates to elements of smaller order arising in Lemmas 5.1 and 5.6. Then we have the following
analogue of Theorem 3.8.

Theorem 5.7. With the above assumptions and definitions, for x ∈ Z and r′ = r′(x) = ⌊x/2⌋,
r = r(x) = x− r′(x) ≤ (x+ 1)/2, we have

|P[Dd > 2nd + x] − P[D∗
d > 2nd + x]|

≤ {η′1(r, r′) + η′2(r, r
′)}(Λσ)−1/2 + η′3(r, r

′)(Λσ)−1 + η′4(r, r
′)(Λσ)−γ/2.

In particular, if ρ = kσ ≤ 1, then

|P[Dd > 2nd + x] − P[D∗
d > 2nd + x]|

≤ {η′1(r, r′) + η′2(r, r
′)}(Λσ)−1/2 + η′3(r, r

′)(Λσ)−1 + η′4(r, r
′)(Λσ)−1/4.

The theorem can be translated into a uniform bound, similar to that of Theorem 3.10. To do
so, we need to be able to control E{e−ψWk,σW

′
k,σ} for large ψ. The following analogue of Lemma

3.9 makes this possible. To state it, we first need some notation.

For Wk,σ as in (4.16), let ϕ = ϕk,σ = (ϕ(1), ϕ(2)) denote the Laplace transforms

ϕ(1)(θ) = E
{
e−θ

√
λ−σWk,σ | M̂ (0) = e(1)

}
; (5.23)

ϕ(2)(θ) = E
{
e−θ

√
λ−σWk,σ | M̂ (0) = e(2)

}
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of L(
√
λ− σWk,σ), where e(i) is the i’th unit vector. Although we now need to distinguish

other initial conditions for the branching process, unconditional expectations will always in
what follows presuppose the initial condition M̂0 = e(1), as before. Then, as in Harris (10), p.45,
ϕ satisfies the Poincaré equation

ϕ(i)(λθ) = gi(ϕ(1)(θ), ϕ(2)(θ)) in ℜθ ≥ 0; i = 1, 2, (5.24)

where gi is the generating function of M̂1 if M̂0 = e(i):

gi(s1, s2) =
∞∑

r1,r2=0

pi(r1, r2)s
r1
1 s

r2
2 ,

where pi(r1, r2) is the probability that an individual of type i has r1 children of type 1 and r2
children of type 2. Here, from the binomial structure,

g1(s1, s2) = s2

(σ
Λ
s1 + 1 − σ

Λ

)Λ
< s2e

σ(s1−1)

and

g2(s1, s2) = s2

(σ
Λ
s1 + 1 − σ

Λ

)2kΛ
< s2e

2kσ(s1−1).

The Laplace transforms ϕk,σ can be bounded as follows.

Lemma 5.8. For θ, σ > 0, we have

ϕ
(1)
k,σ(θ) =: ϕ(1)(θ) ≤ 1

1 + θ
;

ϕ
(2)
k,σ(θ) =: ϕ(2)(θ) ≤ 1

1 + θ(λ− σ)
,

and hence

E
{
e−θ(λ−σ)Wk,σW

′
k,σ | M̂(0) = M̂ ′(0) = e(1)

}
≤ θ−1 log (1 + θ) .

Proof. Put

ϕ(i)
n (θ) = E

(
e−θ

√
λ−σW (1)(n) | M̂(0) = e(i)

)
, i = 1, 2.

We proceed by induction on n. First, we have

ϕ
(1)
0 (θ) = e−θ ≤ 1

1 + θ
;

ϕ
(2)
0 (θ) = e−θ(λ−σ) ≤ 1

1 + θ(λ− σ)
.

Assume that

ϕ(1)
n (θ) ≤ 1

1 + θ
;

ϕ(2)
n (θ) ≤ 1

1 + θ(λ− σ)
.
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By the Poincaré recursion,

ϕ
(i)
n+1(θ) = gi

(
ϕ(1)
n

(
θ

λ

)
, ϕ(2)

n

(
θ

λ

))

for i = 1, 2. Hence, using the induction assumption,

ϕ
(1)
n+1(θ) ≤ λ

λ+ θ(λ− σ)
exp

{
σ

(
λ

λ+ θ
− 1

)}

≤ λ

λ(1 + θ) − θσ

λ+ θ

λ+ θ + θσ

=
λ(λ+ θ)

λ(1 + θ)(λ+ θ) + θ2(λ− 1 − σ)σ

≤ 1

1 + θ
,

and, also from (4.4),

ϕ
(2)
n+1(θ) ≤ λ

λ+ θ(λ− σ)
exp

{
2kσ

(
λ

λ+ θ
− 1

)}

≤ λ

λ+ θ + θ(λ− σ − 1)

λ+ θ

λ+ θ + 2kσθ

=
λ

λ+ θ + θ(λ− σ − 1)

λ+ θ

λ+ θ + (λ− 1)(λ− σ)θ

=
λ(λ+ θ)

λ(λ+ θ)(1 + θ(λ− σ)) + θ2(λ− 1 − σ)(λ− σ)(λ− 1)

≤ 1

1 + θ(λ− σ)
.

Taking limits as n→ ∞ proves the first two assertions. The last assertion follows from Lemma
3.9. 2

Theorem 5.9. For Dd the shortest path length and D∗
d with distribution given by (4.17), we

have

dK(L(Dd),L(D∗
d)) = O

(
(Λσ)−γ/(4−γ) log(Λσ)

)
,

uniformly in Λ, k and σ such that kσ ≤ ρ0, for any fixed 0 < ρ0 < ∞, where γ is given as
in (5.14). Hence dK(L(Dd),L(D∗

d)) → 0 if Λσ → ∞ and kσ remains bounded. In particular,
γ = 1/2 if kσ ≤ 1, and the approximation error is then of order O(log(Λσ)(Λσ)−1/7).

Proof. Fix 0 < G < 1, and consider x satisfying x ≤
⌊
G log(Λσ)−2 logφd

log λ

⌋
; set r′(x) = ⌊x/2⌋,

r(x) = x− r′(x) ≤ (x+ 1)/2. Then we have

(nd + r(x)) log λ = O (log(Λσ)) , σ{2k(nd + r(x)) + 1} = O

(
kσ log(Λσ)

log λ

)
,

φdλ
r(x) ≤ λ1/2(Λσ)G/2 and φ2

dλ
r(x)+r′(x) ≤ (Λσ)G.
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Hence it follows from Theorem 5.7 and (4.10) that

|P[Dd > 2nd + x] − P[D∗
d > 2nd + x]|

≤ {η′1(r(x), r′(x)) + η′2(r(x), r
′(x))}(Λσ)−1/2

+η′3(r(x), r
′(x))(Λσ)−1 + η′4(r(x), r

′(x))(Λσ)−γ/2

= O

(
λ1/2

(
kσ log(Λσ)

log λ

)2

(Λσ)−(1−3G)/2 log(Λσ)

+ λ1/2

(
kσ log(Λσ)

log λ

)
(Λσ)−(1−G)/2 log(Λσ)

+ λ2σ(Λσ)G−1 + λ2(Λσ)−1

+ λ(5+γ)/2

(
log(Λσ)

log λ

)1/2

(Λσ)−(γ−G(2−γ))/2
)
.

Noting that λ = O(1 + σ +
√
kσ) from (4.9), that kσ is bounded by some fixed ρ0, and re-

membering that γ ≤ 1/2, the final term is of largest asymptotic order. Also, from Lemma 5.8,

recalling from (4.17) that P[D∗
d > 2nd+x] = E exp

{
−θWk,σW

′
k,σ

}
with θ = λ2

(λ−λ2)(λ−σ)φ2
dλ

x,

and taking x =
⌈
G log(Λσ)−2 log φd

log λ

⌉
, we have the upper tail estimate

P[D∗
d > 2nd + x] ≤ λ−2(λ− λ2) log

(
1 +

λ2

λ− λ2
(Λσ)G

)
(Λσ)−G

= O
(
log(Λσ)(Λσ)−G

)
.

Comparing the exponents of Λσ, the best choice of G is G = γ/(4 − γ), which makes
G = (γ −G(2 − γ))/2, proving the theorem. 2

Remembering that the choices kσ = ρ and Λ = Lk match this model with that of Section 2,
we see that Λσ = Lρ, and that thus Theorem 5.9 matches Theorem 3.10 closely for ρ ≤ 1, but
that the total variation distance estimate here becomes bigger as ρ increases. Indeed, if ρ→ ∞
and σ = O(k), then γ(k, σ) → 0, and no useful approximation is obtained. This reflects the
fact that, when |λ2|/λ is close to 1, the martingale W (1)(n) only slowly comes to dominate the
behaviour of the two-type branching process; for example, from (6.4),

M̂+(n) =
1

λ− λ2

(
λn+1

f
(1)
1

W (1)(n) − λn+1
2

f
(2)
1

W (2)(n)

)

then retains a sizeable contribution from W (2)(n) until n becomes extremely large. This is in
turn a consequence of taking the shortcuts to have length 1, rather than 0; as a result, the
big multiplication, by a factor of 2ρ, occurs only at the second time step, inducing substantial
fluctuations of period 2 in the branching process, which die away only slowly when ρ is large.
However, if ρ → ∞ and k = O(σ1−ε) for any ε > 0, then lim inf γ(k, σ) > 0, and it becomes
possible for L(D) and L(D∗) to be asymptotically close in total variation. This can be deduced
from the proof of the theorem by taking k ∼ Lα and σ ∼ Lα+β , for choices of α and β
which ensure that σ2 dominates ρ. Under such circumstances, the effect of two successive
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multiplications by σ in the branching process dominates that of a single multiplication by 2ρ at
the second step, and approximately geometric growth at rate λ ∼ σ results. However, as in all
situations in which ρ is a positive power of Λ, interpoint distances are asymptotically bounded,
and take one or at most two values with very high probability; an analogue of Corollary 3.11
could for instance also be proved.

5.3 The distance to the continuous circle – continuous time model

If ρ = kσ is small, we can again compare the distribution of Wk,σ with the NE(1) distribution
of the limiting variableW in the Yule process (see (7)), using the fact that its Laplace transforms,
given in (5.23), satisfy the Poincaré equation (5.24). The argument runs parallel to that in
Section 3.4, though it is rather more complicated. Define the operator Ξ, analogous to the
operator Ψ in Section 3.4, by

(Ξϕ)1(θ) := g1

(
ϕ(1)

(
θ

λ

)
, ϕ(2)

(
θ

λ

))

= ϕ(2)

(
θ

λ

)(
σ

Λ
ϕ(1)

(
θ

λ

)
+ 1 − σ

Λ

)Λ

;

(Ξϕ)2(θ) := g2

(
ϕ(1)

(
θ

λ

)
, ϕ(2)

(
θ

λ

))

= ϕ(2)

(
θ

λ

)(
σ

Λ
ϕ(1)

(
θ

λ

)
+ 1 − σ

Λ

)2kΛ

.

Let

G :=

{
γ = (γ1, γ2) : [0,∞)2 → [0, 1] : ‖γ‖G := sup

θ>0
max

{ |γ1(θ)|, |γ2(θ)|
θ2

}
<∞

}
,

and

H :=
{
ψ = (ψ1, ψ2) : [0,∞)2 → [0, 1] : (ψ1(θ) − {1 − θ}, ψ2(θ) − {1 − θ(λ− σ)}) ∈ G

}
.

Then H contains ϕk,σ = (ϕ1, ϕ2) as defined in (5.23), since

E{
√
λ− σWk,σ | M̂ (0) = e(1)} = 1; E{

√
λ− σWk,σ | M̂(0) = e(2)} = λ− σ,

and taking limits in (5.8) shows that VarWk,σ exists. Furthermore, from (5.24), Ξ has ϕk,σ as
a fixed point. We next show that Ξ is a contraction on H.

Lemma 5.10. The operator Ξ is a contraction on H, and, for all ψ,χ ∈ H,

‖Ξψ − Ξχ‖G ≤
(

2kσ + 1

λ2

)
‖ψ − χ‖G .

Remark. Note that

2kσ + 1

λ2
=

λ2 − (λ− 1)(σ + 1)

λ2
< 1.
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Proof. For all ψ,χ ∈ H and θ > 0, observe that ψ − χ ∈ G. We then compute

|(Ξψ)1(θ) − (Ξχ)1(θ)| ≤
∣∣∣∣ψ2

(
θ

λ

)
− χ2

(
θ

λ

)∣∣∣∣

+ σ

∣∣∣∣ψ1

(
θ

λ

)
− χ1

(
θ

λ

)∣∣∣∣ ,

so that

|(Ξψ)1(θ) − (Ξχ)1(θ)|
θ2

≤ 1

λ2

∣∣ψ2

(
θ
λ

)
− χ2

(
θ
λ

)∣∣
(
θ
λ

)2

+
σ

λ2

∣∣ψ1

(
θ
λ

)
− χ1

(
θ
λ

)∣∣
(
θ
λ

)2

≤ σ + 1

λ2
‖ψ − χ‖G . (5.25)

Similarly,

|(Ξψ)2(θ) − (Ξχ)2(θ)| ≤
∣∣∣∣ψ2

(
θ

λ

)
− χ2

(
θ

λ

)∣∣∣∣

+ 2kσ

∣∣∣∣ψ1

(
θ

λ

)
− χ1

(
θ

λ

)∣∣∣∣ ,

and

|(Ξψ)2(θ) − (Ξχ)2(θ)|
θ2

≤
(

2kσ + 1

λ2

)
‖ψ − χ‖G .

Taking the maximum of the bounds finishes the proof. 2

Thus, for any starting function ψ = (ψ1, ψ2) ∈ H and for ϕk,σ = (ϕ(1), ϕ(2)) given in (5.23), we
have

‖ϕk,σ − ψ‖G ≤ ‖Ξϕk,σ − Ξψ‖G + ‖Ξψ − ψ‖G
≤ 2kσ + 1

λ2
‖ϕk,σ − ψ‖G + ‖Ξψ − ψ‖G ,

so that

‖ϕk,σ − ψ‖G ≤ λ2

λ2 − (2kσ + 1)
‖Ξψ − ψ‖G . (5.26)

Hence a function ψ such that ‖Ξψ − ψ‖G is small provides a good approximation to φk,σ.

As a candidate ψ, we try

ψ1(θ) =
1

1 + θ
,

ψ2(θ) =
1

1 + θ(λ− σ)
; (5.27)

Lemma 5.8 shows that this pair dominates φk,σ.
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Lemma 5.11. For ψ given in (5.27), we have

‖Ξψ − ψ‖G ≤ 2kσ(λ2 − λσ − 1 + kσ)

λ2
.

Proof. For θ > 0, we have

(Ξψ)1(θ) − ψ1(θ)

=
λ

λ+ θ(λ− σ)

(
1 − σθ

Λ(λ+ θ)

)Λ

− 1

1 + θ

=
1

1 + θ

{
λ(1 + θ)

λ+ θ(λ− σ)

(
1 − σθ

(λ+ θ)

)
− 1

}
+R1,

where

R1 =
λ

λ+ θ(λ− σ)

[(
1 − σθ

Λ(λ+ θ)

)Λ

− 1 +
σθ

λ+ θ

]
.

Moreover,

1

1 + θ

{
λ(1 + θ)

λ+ θ(λ− σ)

(
1 − σθ

λ+ θ

)
− 1

}

=
θ2σ(1 − λ)

(1 + θ)(λ+ (λ− σ)θ)(λ+ θ)
.

From Taylor’s expansion, it follows that

|R1| ≤ λΛ(Λ − 1)σ2θ2

2(λ+ (λ− σ)θ)Λ2(λ+ θ)2

≤ σ2θ2

2λ2
.

Hence

|(Ξψ)1(θ) − ψ1(θ)|
θ2

≤ σ(2(λ − 1) + σ)

2λ2
. (5.28)

Since
2(λ2 − λσ − 1 + kσ) = 2(λ− 1) + 2(3k − 1)σ > 2(λ− 1) + σ,

this is enough for the first component.

Similarly,

(Ξψ)2(θ) − ψ2(θ)

=
λ

λ+ θ(λ− σ)

(
1 − σθ

Λ(λ+ θ)

)2kΛ

− 1

1 + θ(λ− σ)

=
1

1 + θ(λ− σ)

{
λ(1 + θ(λ− σ))

λ+ θ(λ− σ)

(
1 − 2kσθ

λ+ θ

)
− 1

}
+R2,
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where

R2 =
λ

λ+ θ(λ− σ)

[(
1 − σθ

Λ(λ+ θ)

)2kΛ

− 1 +
2kσθ

λ+ θ

]
.

Using (4.4), we obtain

1

1 + θ(λ− σ)

{
λ(1 + θ(λ− σ))

λ+ θ(λ− σ)

(
1 − 2kσθ

λ+ θ

)
− 1

}

=
θ2(λ− 1)(λ− σ)(1 + λσ − λ2)

(1 + θ(λ− σ))(λ+ (λ− σ)θ)(λ+ θ)

=
2kσθ2(1 + λσ − λ2)

(1 + θ(λ− σ))(λ+ (λ− σ)θ)(λ+ θ)
.

From Taylor’s expansion, it now follows that

|R2| ≤ 2kΛ(2kΛ − 1)λσ2θ2

2(λ+ (λ− σ)θ)Λ2(λ+ θ)2

≤ 2k2σ2θ2

λ2
.

Hence

|(Ξψ)2(θ) − ψ2(θ)|
θ2

≤ 2kσ(λ2 − λσ − 1 + kσ)

λ2
,

completing the proof. 2

This enables us to prove the exponential approximation to L(Wk,σ) when kσ is small.

Theorem 5.12. As kσ → 0, L(Wk,σ) → NE(1).

Proof. Let ϕk,σ be as in (5.23), and ψ as in (5.27). Then (ϕk,σ)1 is the Laplace transform of

L(
√
λ− σWk,σ) := L(

√
λ− σWk,σ | M̂ (0) = e(1)),

and ψ1 that of NE(1), and (λ− σ)1/2 → 1 as kσ → 0. Hence it is enough to show that

lim
kσ→0

‖ϕk,σ − ψ‖G = 0.

However, using Lemma 5.11 and (5.26), we obtain

‖ϕk,σ − ψ‖G

≤
(

λ2

λ2 − 1 − 2kσ

)
‖Ξψ − ψ‖G

≤ 2kσ
λ2 − λσ − 1 + kσ

λ2 − 1 − 2kσ
.
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Now, from (4.4), we have

λ2 − λσ − 1 + kσ

λ2 − 1 − 2kσ
=

λ− 1 + (3k − 1)σ

(λ− 1)(1 + σ)

=
1

1 + σ

{
1 +

(3k − 1)σ

2kσ
(λ− σ)

}

≤ 1 + 3
2(1 + 2kσ),

this last from (4.8). Hence

‖ϕk,σ − ψ‖G ≤ kσ(5 + 6kσ) → 0, (5.29)

since kσ → 0. This proves the theorem. 2

Again we can use this result to derive an approximation to the distribution of the distance for
D, based on a corresponding distribution derived from the NE(1) distribution. The starting
point is the following result.

Lemma 5.13. Let W,W ′ be independent NE(1) variables. Then, for all θ > 0,
∣∣∣E exp

{
−θ(λ− σ)Wk,σW

′
k,σ

}
− Ee−θWW ′

∣∣∣ ≤ θ2kσ {25 + 24kσ} .

Proof. As in the proof of Lemma 3.15, with ϕk,σ as in (5.23) and ψ as in (5.27), we have

E exp
{
−θ(λ− σ)Wk,σW

′
k,σ

}
− Ee−θWW ′

= E
{
ϕ

(1)
k,σ(θ

√
λ− σW ′

k,σ)
}
− Eψ1(θW )

= E
{
(Ξϕk,σ)1(θ

√
λ− σW ′

k,σ)
}
− E

{
(Ξψ)1(θ

√
λ− σW ′

k,σ)
}

+E
{
(Ξψ)1(θ

√
λ− σW ′

k,σ)
}
− E

{
ψ1(θ

√
λ− σW ′

k,σ)
}

+E
{
ψ1(θ

√
λ− σW ′

k,σ)
}
−Eψ1(θW ). (5.30)

Now (5.25) in the proof of Lemma 5.10 gives
∣∣∣E
{

(Ξϕk,σ)1(θ
√
λ− σW ′

k,σ)
}
− E

{
(Ξψ)1(θ

√
λ− σW ′

k,σ)
}∣∣∣

≤ θ2(λ− σ)
σ + 1

λ2
‖ϕk,σ − ψ‖GE{(W ′

k,σ)
2}. (5.31)

Since, from (4.13), (4.16), (5.8) and (4.10),

E{(W ′
k,σ)

2} ≤ (1 + ω2)/(λ − σ) ≤ 2/(λ− σ),

and since λ2 > λ > σ + 1 from (4.5), it follows from (5.29) that the expression (5.31) can be
bounded by 2θ2kσ(5 + 6kσ). Similarly, from (5.28) in the proof of Lemma 5.11,

∣∣∣E
{

(Ξψ)1(θ
√
λ− σW ′

k,σ)
}
−E

{
ψ1(θ

√
λ− σW ′

k,σ)
}∣∣∣

≤ 2θ2 σ{2(λ− 1) + σ}
2λ2

≤ θ2 σ
2(4k + 1)

1 + σ
≤ 5θ2kσ,
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from (4.8) and because λ2 > 1 + σ. Then, with W ∼ NE (1) independent of W ′
k,σ, we have

E
{
ψ1(θ

√
λ− σW ′

k,σ)
}

= E
{
e−θ

√
λ−σWW ′

k,σ

}
= E

{
ϕ

(1)
k,σ(θW )

}
,

and hence, from (5.29) in the proof of Theorem 5.12, it follows that

∣∣∣E
{
ψ1(θ

√
λ− σW ′

k,σ)
}
− Eψ1(θW )

∣∣∣ =
∣∣∣E
{
ϕ

(1)
k,σ(θW )

}
−Eψ1(θW )

∣∣∣

≤ 2θ2kσ(5 + 6kσ).

The assertion now follows from (5.30). 2

Recalling from (3.24) that

Ee−θWW ′

=

∫ ∞

0

e−y

1 + θy
dy, (5.32)

we can now derive the analogue of Theorem 3.16.

Theorem 5.14. Let T denote a random variable on R with distribution given by

P [T > z] =

∫ ∞

0

e−y

1 + ye2z
dy.

Then

sup
z∈R

∣∣P
[
λ−1

2 (D∗
d − 2nd) > z

]
− P[T > z]

∣∣ = O
{

(kσ)1/3 (1 + log (1/kσ))
}
,

uniformly in kσ ≤ 1/2, where L(D∗
d) is as in (4.17).

Remark. For comparison with Theorem 3.16, note that λ−1
2 = ρ(1 + O(ρ)) as ρ = kσ → 0, so

that ρ(D∗
d − 2nd) can be approximated by T to the same order of accuracy.

Proof. We use an argument similar to the proof of Theorem 3.16. Putting

c(λ) =
log λ

λ− 1
=

log(1 + 2 λ−1
2 )

2 λ−1
2

,

we have, as before,

1 ≥ c(λ) ≥ 1 − λ− 1

2
;

we also write

β(λ) :=
λ2φ2

d

λ− λ2
.

Then, because λ−1 ≤ φd ≤ 1 and λ2 < 0, and from (4.9), we have

β(λ) ≤ λ ≤ 1 + σ +
√
σ(2k − 1)
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and

β(λ) ≥ (λ− λ2)
−1 =

1

2λ− 1 − σ

≥ 1 − σ + 2
√
σ(2k − 1)

1 + σ + 2
√
σ(2k − 1)

≥ 1 − {σ + 2
√
σ(2k − 1)}.

This in turn gives

|β(λ) − 1| ≤ σ + 2
√
σ(2k − 1) =: Γ(σ, k)

= O
(
σ +

√
kσ
)
.

For the main part of the distribution, writing ∆d = D∗
d − 2nd, we have

P
[
λ−1

2 ∆d > z
]
− P[T > z]

= P
[
λ−1

2 ∆d > z
]
−
∫ ∞

0
e−y

(
1 + yβ(λ)e2zc(λ)

)−1
dy (5.33)

+

∫ ∞

0
e−y

(
1 + yβ(λ)e2zc(λ)

)−1
dy − P[T > zc(λ)] (5.34)

+ P[T > zc(λ)] − P[T > z]. (5.35)

Now, considering first (5.33), we combine (5.32), Lemma 5.13 and (4.17) to yield
∣∣∣∣P
[
λ−1

2 ∆d > z
]
−
∫ ∞

0
e−y

(
1 + yβ(λ)e2zc(λ)

)−1
dy

∣∣∣∣

=
∣∣∣E exp

{
−β(λ)(λ− σ)e2zc(λ)Wk,σW

′
k,σ

}
− E exp

{
−β(λ)e2zc(λ)WW ′

}∣∣∣

≤ β(λ)2e4zc(λ)kσ {25 + 24kσ} ≤ λ2e4zkσ {25 + 24kσ} .

With (3.26), we have, for (5.34), that
∣∣∣∣
∫ ∞

0
e−y

(
1 + yβ(λ)e2zc(λ)

)−1
dy − P[T > zc(λ)]

∣∣∣∣

≤ e2zc(λ) |β(λ) − 1|
max{1, β(λ)e2zc(λ), e2zc(λ)}

≤ e2zc(λ)

max{1, e2zc(λ)} |β(λ) − 1|

≤ Γ(σ, k).

Similarly, for (5.35), it follows that

|P[T > zc(λ)] − P[T > z]|

=

∣∣∣∣
∫ ∞

0
e−y

(
1 + ye2zc(λ)

)−1
dy −

∫ ∞

0
e−y

(
1 + ye2z

)−1
dy

∣∣∣∣

≤ e2z
|e−2z(1−c(λ)) − 1|

max{1, e2zc(λ), e2z} .
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Now, for z > 0, because 0 ≤ 1 − c(λ) ≤ λ−1
2 ≤ kσ and from Taylor’s expansion, this gives

|P[T > zc(λ)] − P[T > z]| ≤ 2z(1 − c(λ)) ≤ 2kσz;

if z ≤ 0, we have

|P[T > zc(λ)] − P[T > z]| ≤ 2|z|(1 − c(λ))e2zc(λ) ≤ 2kσ|z|e2z(1−kσ).

Hence we conclude that, uniformly in kσ ≤ 1/2,

P
[
λ−1

2 ∆d > z
]
− P[T > z]

≤ kσe4zλ2 {25 + 24kσ} + Γ(σ, k) + 2kσ|z|min{1, e2z(1−kσ)}
≤ C1

{
kσ(e4z + 1) +

√
kσ
}
, (5.36)

for some constant C1.

For the large values of z, where the bound given in (5.36) becomes useless, we can estimate the
upper tails of the random variables separately. First, for x ∈ Z, we have

P [∆d > x] = E exp
{
−β(λ)λx(λ− σ)Wk,σW

′
k,σ

}
,

so that, by Lemma 5.8, it follows that

P
[
λ−1

2 ∆d > z
]

= E exp
{
−β(λ)e2zc(λ)(λ− σ)Wk,σW

′
k,σ

}

≤ λ−2(λ− λ2)φ
−2
d e−2zc(λ) log

(
1 + λ2(λ− λ2)

−1φ2
de

2zc(λ)
)

≤ 2λe−2zc(λ) log
(
1 + λe2zc(λ)

)

≤ 2λe−2z(1−kσ) log
(
1 +

(
1 + σ +

√
σ(2k − 1)

)
e2z
)
, z ∈ λ−1

2 Z.

For the upper tail of T , from (3.29), we have

P[T > z] ≤ e−2z log(1 + e2z) ≤ (1 + 2z)e−2z ,

so that, combining these two tail estimates,

∣∣P
[
λ−1

2 ∆d > z
]
− P[T > z]

∣∣ ≤ C2(1 + z)e−2z(1−σk), (5.37)

in z > 0, uniformly in kσ ≤ 1/2, for some constant C2 > 0. Applying the bound (5.36) when
z ≤ (6 − 2kσ)−1 log(1/kσ) and (5.37) for all larger z, and remembering that T has bounded
density, so that the discrete nature of D∗

d requires only a small enough correction, a bound of
the required order follows. 2
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6 Appendix: proof of Lemma 5.3

In this section, we make frequent use of the inequality (4.10). From (4.15) and (4.14) we obtain

EM̂ (1)(n) = λn
σ − λ2

(λ− λ2)
+ λn2

λ− σ

(λ− λ2)
;

EM̂ (2)(n) = λn
1

(λ− λ2)
− λn2

1

(λ− λ2)
,

giving (5.6); for (5.10), use σ+ 1−λ = λ2 and σ+ 1−λ2 = λ, from (4.7). Then, using the same
equations, we have

E{M̂ (1)(n) + 2kM̂ (2)(n)} =
1

(λ− λ2)
{(λ− 1 + 2k)λn + (1 − λ2 − 2k)λn2}

=
1

(λ− λ2)
{(λn+1 − λn+1

2 ) + (2k − 1)(λn − λn2 )},

and (5.7) follows because an+1 + bn+1 ≤ an(a+ b) whenever 0 ≤ b ≤ a, and because λ ≥ 1.

Now define

X(n) := M̂ (1)(n) − σ{M̂ (1)(n− 1) + 2kM̂ (2)(n− 1)}, n ≥ 1, (6.1)

noting that it has a centred binomial distribution conditional on F(n− 1); representing quanti-
ties in terms of these martingale differences greatly simplifies the subsequent calculations. For
instance,

W (i)(n+ 1) −W (i)(n)

= λ−n−1
i f

(i)
1 {M̂ (1)(n+ 1) + (λi − σ)M̂ (2)(n+ 1)

− λiM̂
(1)(n) − λi(λi − σ)M̂ (2)(n)}

= λ−n−1
i f

(i)
1 {M̂ (1)(n+ 1) − σM̂ (1)(n) − 2kσM̂ (2)(n)}

= λ−n−1
i f

(i)
1 X(n + 1), (6.2)

where we have used (λi − 1)(λi − σ) = 2kσ, from (4.4), and the branching recursion.

Since

E{X2(n + 1) | F(n)} =
σ

Λ

(
1 − σ

Λ

)
{M̂ (1)(n) + 2kM̂ (2)(n)}Λ

≤ σ{M̂ (1)(n) + 2kM̂ (2)(n)},

and because, if X ∼ Bi (n, p), then E{(X − np)3} = np(1 − p)((1 − p)2 − p2), it follows that

E{X3(n+ 1) | F(n)} ≤ σ

Λ

(
1 − σ

Λ

)3
{M̂ (1)(n) + 2kM̂ (2)(n)}Λ

≤ σ{M̂ (1)(n) + 2kM̂ (2)(n)}

also, we have
EX2(n+ 1) ≤ 2kσλn and EX3(n+ 1) ≤ 2kσλn,
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from (5.7). Thus, immediately,

E{(W (i)(n+ 1) −W (i)(n))2} ≤ 2kσ(f
(i)
1 )2λ−2n−2

i λn. (6.3)

Hence, for i = 1, 2 and for any 0 ≤ j < n,

Var (W (i)(j) −W (i)(n))

=

n−1∑

k=j

E{W (i)(k) −W (i)(k + 1)}2

≤ 2kσ(f
(i)
1 )2

n−1∑

k=j

λkλ
−2(k+1)
i

≤ 2kσ(f
(i)
1 )2λ−2

i

(
λ

λ2
i

)j
min

{
λ2
i

|λ− λ2
i |
, (n− j)

}
max

(
1,

(
λ

λ2
i

)n−j)
,

and the formulae (5.8) and (5.9) follow.

Moreover, from (4.7) and (4.15), and then from (6.2) and (4.13), we have

(λ− λ2)M̂
+(n) =

(
λn+1

f
(1)
1

W (1)(n) − λn+1
2

f
(2)
1

W (2)(n)

)

= (λn+1 − λn+1
2 ) +

n∑

j=1

cjnX(j), (6.4)

where
0 ≤ cjn := λn+1−j − λn+1−j

2 ≤ 2λn+1−j . (6.5)

Hence

(λ− λ2)
2Var M̂+(n) =

n∑

j=1

c2jnVarX(j) ≤ 8kσ
n∑

j=1

λ2n−(j−1)

≤ 8kσλ2n+1/(λ− 1) = 4ω2λ2n+2,

and

(λ− λ2)
3E{(M̂+(n) − EM̂+(n))3} =

n∑

j=1

c3jnEX
3(j)

≤ 16kσ
n∑

j=1

λ3n−2(j−1) ≤ 16kσλ3n+2/(λ2 − 1) = 8ω2λ3n+2.

(5.11) is now immediate, using (5.10); furthermore,

E{(M̂+(n))3}
= E{(M̂+(n) − EM̂+(n))3} + 3EM̂+(n)Var M̂+(n) + {EM̂+(n)}3

≤ 8ω2λ3n−1 + 24ω2λ3n + 8λ3n ≤ 40λ3n,
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and the bounds in (5.12) and (5.13) follow because log x ≤ n log λ+ λ−nx in x ≥ 0. 2
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