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Université Paris VI
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Abstract

We investigate small deviation properties of Gaussian random fields in the space Lq(R
N , µ)

where µ is an arbitrary finite compactly supported Borel measure. Of special interest are
hereby “thin” measures µ, i.e., those which are singular with respect to the N–dimensional
Lebesgue measure; the so–called self–similar measures providing a class of typical examples.
For a large class of random fields (including, among others, fractional Brownian motions),
we describe the behavior of small deviation probabilities via numerical characteristics of µ,
called mixed entropy, characterizing size and regularity of µ.
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For the particularly interesting case of self–similar measures µ, the asymptotic behavior of
the mixed entropy is evaluated explicitly. As a consequence, we get the asymptotic of the
small deviation for N–parameter fractional Brownian motions with respect to Lq(R

N , µ)–
norms.
While the upper estimates for the small deviation probabilities are proved by purely proba-
bilistic methods, the lower bounds are established by analytic tools concerning Kolmogorov
and entropy numbers of Hölder operators
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1 Introduction

The aim of the present paper is the investigation of the small deviation behavior of Gaussian
random fields in the Lq–norm taken with respect to a rather arbitrary measure on R

N . Namely,
for a Gaussian random field (X(t), t ∈ R

N ), for a measure µ on R
N , and for any q ∈ [1,∞) we

are interested in the behavior of the small deviation function

ϕq,µ(ε) := − log P

(∫

RN

|X(t)|q dµ(t) < εq
)
, (1.1)

as ε→ 0 in terms of certain quantitative properties of the underlying measure µ. Let us illustrate
this with an example. As a consequence of our estimates, we get the following corollary for the
N–parameter fractional Brownian motion WH = (WH(t), t ∈ R

N ) of Hurst index H ∈ (0, 1).
For the exact meaning of the theorem, see Section 5.

Theorem 1.1. Let T ⊂ R
N be a compact self–similar set of Hausdorff dimension D > 0 and

let µ be the D-dimensional Hausdorff measure on T . Then for all 1 ≤ q <∞ and 0 < H < 1 it
follows that

− log P

(∫

T
|WH(t)|q dµ(t) < εq

)
≈ ε−D/H .

General small deviation problems attracted much attention during the last years due to their
deep relations to various mathematical topics such as operator theory, quantization, strong limit
laws in statistics, etc, see the surveys (12; 14). A more specific motivation for this work comes
from (17), where the one–parameter case N = 1 was considered for fractional Brownian motions
and Riemann–Liouville processes.

Before stating our main multi–parameter results, let us recall a basic theorem from (17), thus
giving a clear idea of the entropy approach to small deviations in more general Lq–norms.

Recall that the (one–parameter) fractional Brownian motion (fBm) WH with Hurst index H ∈
(0, 1) is a centered Gaussian process on R with a.s. continuous paths and covariance

EWH(t)WH(s) =
1

2

{
t2H + s2H − |t− s|2H

}
, t, s ∈ R.

We write f ∼ g if limε→0
f(ε)
g(ε) = 1 while f � g (or g � f) means that lim supε→0

f(ε)
g(ε) < ∞.

Finally, f ≈ g says that f � g as well as g � f .

If µ = λ1, the restriction of the Lebesgue measure to [0, 1], then for WH the behavior of ϕq,µ(ε)
is well–known, namely, ϕq,µ(ε) ∼ cq,H ε−1/H , as ε→ 0. The exact value of the finite and positive
constant cq,H is known only in few cases; sometimes a variational representation for cq,H is
available. See more details in (12) and (18).

If µ is absolutely continuous with respect to λ1, the behavior of ϕq,µ(ε) was investigated in (10),
(15) and (16). Under mild assumptions, the order ε−1/H remains unchanged, only an extra
factor depending on the density of µ (with respect to λ1) appears. The situation is completely
different for measures µ being singular to λ1. This question was recently investigated in (20)
for q = ∞ (here only the size of the support of µ is of importance) and in (24) for self–similar
measures and q = 2. When passing from q = ∞ to a finite q, the problem becomes more involved
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because in the latter case the distribution of the mass of µ becomes important. Consequently,
one has to introduce some kind of entropy of µ taking into account the size of its support as
well as the distribution of the mass on [0, 1]. This is done in the following way.

Let µ be a continuous measure on [0, 1], let H > 0 and q ∈ [1,∞). We define a number r > 0 by

1/r := H + 1/q . (1.2)

Given an interval ∆ ⊆ [0, 1], we denote

J (H,q)
µ (∆) := |∆|H · µ(∆)1/q (1.3)

and set

σ(H,q)
µ (n) := inf








n∑

j=1

Jµ(∆j)
r




1/r

: [0, 1] ⊆
n⋃

j=1

∆j





, (1.4)

where the ∆j’s are supposed to be intervals on the real line. The sequence σ
(H,q)
µ (n) may be

viewed as some kind of outer mixed entropy of µ. Here “mixed”means that we take into account
the measure as well as the length of an interval.

The main result of (17) shows a very tight relation between the behavior of σ
(H,q)
µ (n), as n→ ∞,

and of the small deviation function (1.1). More precisely, the following is true.

Theorem 1.2. Let µ be a finite continuous measure on [0, 1] and let WH be a fBm of Hurst

index H ∈ (0, 1). For q ∈ [1,∞), define σ
(H,q)
µ (n) as in (1.4).

(a) If
σ(H,q)

µ (n) � n−ν (log n)β

for certain ν ≥ 0 and β ∈ R, then

− log P{‖WH‖Lq([0,1],µ) < ε} � ε−1/(H+ν) · log(1/ε)β/(H+ν) .

(b) On the other hand, if
σ(H,q)

µ (n) � n−ν (log n)β

then
− log P{‖WH‖Lq([0,1],µ) < ε} � ε−1/(H+ν) · log(1/ε)β/(H+ν) . (1.5)

Remarkably, there is another quantity, a kind of inner mixed entropy, equivalent to σ
(H,q)
µ (n) in

the one–parameter case. This one is defined as follows. Given µ as before, for each n ∈ N we set

δ(H,q)
µ (n) := sup

{
δ > 0 : ∃∆1, . . . ,∆n ⊂ [0, 1], J (H,q)

µ (∆i) ≥ δ
}

(1.6)

where the ∆i are supposed to possess disjoint interiors.

It is shown in (17) that σ
(H,q)
µ (n) and n1/rδ

(H,q)
µ (n) are, in a sense, equivalent as n→ ∞, namely,

it is proved that for each integer n ≥ 1, we have

σ(H,q)
µ (2n + 1) ≤ (2n + 1)1/r δ(H,q)

µ (n) and n1/r δ(H,q)
µ (2n) ≤ σ(H,q)

µ (n) . (1.7)
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Therefore, Theorem 1.2 can be immediately restated in terms of δ
(H,q)
µ (n). For example,

δ
(H,q)
µ (n) ≈ n−(1/q+1/a)(log n)β with a ≤ 1/H is equivalent to σ

(H,q)
µ (n) ≈ n−(1/a−H)(log n)β

and thus to
− log P{‖WH‖Lq([0,1],µ) < ε} ≈ ε−a · (log(1/ε))aβ .

Notice that in the case of measures on [0, 1] the restriction a ≤ 1/H is natural; it is attained for
the Lebesgue measure.

To our great deception, we did not find in the literature the notions of outer and inner mixed
entropy as defined above, although some similar objects do exist: cf. the notion of weighted
Hausdorff measures investigated in (22), pp. 117–120, or C-structures associated with metrics
and measures in Pesin (27), p. 49, or multifractal generalizations of Hausdorff measures and
packing measures in Olsen (26). Yet the quantitative properties of Hausdorff dimension and
entropy of a set seem to have almost nothing in common (think of any countable set — its
Hausdorff dimension is zero while the entropy properties can be quite non–trivial).

2 Main results in the multi–parameter case

Although in this article we are mostly interested in the behavior of the N–parameter fractional
Brownian motion, an essential part of our estimates is valid for much more general processes.
For example, to prove lower estimates for ϕq,µ(ε) we only need a certain non-degeneracy of
interpolation errors (often called “non-determinism”) while for upper estimates of ϕq,µ(ε) some
Hölder type inequality suffices. Therefore, we start from the general setting. Let X := (X(t), t ∈
T ) be a centered measurable Gaussian process on a metric space (T, ρ). Here we endow T with
the σ–algebra of Borel sets. For t ∈ T , any A ⊂ T and τ > 0 we set

v(t, τ) := (Var [X(t) − E (X(t) |X(s), ρ(s, t) ≥ τ)])1/2 (2.1)

and
v(A, τ) := inf

t∈A
v(t, τ) . (2.2)

Note that v(t, τ) as well as v(A, τ) are obviously non–decreasing functions of τ > 0.

We suppose that µ is a finite Borel measure on T and that A1, . . . , An are disjoint measurable
subsets of T . Let

v1 := inf
t∈A1

(VarX(t))1/2 · µ(A1)
1/q,

and
vi := v

(
Ai, τi

)
· µ(Ai)

1/q, 2 ≤ i ≤ n , (2.3)

where τi := dist(Ai,
⋃i−1

k=1Ak). We set

Vµ := Vµ(A1, . . . , An) := min
1≤i≤n

vi. (2.4)

Finally, given n ∈ N we define some kind of weighted inner entropy by

δµ(n) := sup {δ > 0 : ∃ disjoint A1, . . . , An ⊂ T, Vµ(A1, . . . , An) ≥ δ} . (2.5)

In this quite general setting we shall prove the following.
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Theorem 2.1. Let µ be a finite measure on T and let X be a measurable centered Gaussian
random field on T . Let q ∈ [1,∞) and define δµ(n) as in (2.5). If

δµ(n) � n−1/q−1/a (log n)β

for certain a > 0 and β ∈ R, then

− log P{‖X‖Lq(T,µ) < ε} � ε−a · log(1/ε)aβ .

For the case T ⊂ R
N (N ≥ 1) with the metric ρ generated by the Euclidean distance, i.e.,

ρ(t, s) = |t− s|, t, s ∈ R
N , we give a slightly weaker upper bound for the small deviation

probabilities. This bound, however, has the advantage of using simpler geometric characteristics.
In particular, we do not need to care about the distances between the sets. If A ⊂ T is
measurable, we set

v(A) := v (A, τA)

where τA := diam(A)/(2
√
N), i.e.,

v(A) = inf
t∈A

(
Var

[
X(t) − E

(
X(t) |X(s), s ∈ T, 2

√
N |t− s| ≥ diam(A)

)])1/2
.

Given cubes Q1, . . . , Qn in T with disjoint interiors, similarly as in (2.4), we define the quantity

V µ = V µ(Q1, . . . , Qn) := inf
1≤i≤n

v(Qi) · µ(Qi)
1/q

and as in (2.5) we set

δµ(n) := sup
{
δ > 0 : ∃Q1, . . . , Qn ⊂ T, V µ(Q1, . . . , Qn) ≥ δ

}
(2.6)

where the cubes Qi are supposed to possess disjoint interiors.

We shall prove the following.

Theorem 2.2. Let µ be a finite measure on T ⊂ R
N and let X be a centered Gaussian random

field on T . For q ∈ [1,∞) and δµ(n) defined as in (2.6), if

δµ(n) � n−1/q−1/a (log n)β

for certain a > 0 and β ∈ R, then

− log P{‖X‖Lq(T,µ) < ε} � ε−a · log(1/ε)aβ .

Finally we apply our results to the N–parameter fractional Brownian motion, i.e., to the real–
valued centered Gaussian random field WH := (WH(t), t ∈ R

N) with covariance

E [WH(s)WH(t)] =
1

2

(
|s|2H + |t|2H − |t− s|2H

)
, (s, t) ∈ R

N × R
N ,

where H ∈ (0, 1) is the Hurst index.
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It is known that WH satisfies (see (29) and (33) for further information about processes satisfying
similar conditions)

Var [WH(t) − E (WH(t) |WH(s), |s− t| ≥ τ)] ≥ c τ2H , t ∈ R
N , (2.7)

for all 0 ≤ τ ≤ |t|. Thus, in view of (2.7) it is rather natural to adjust the definition of δµ as
follows. Namely, as in (1.3) for N = 1, we set

J (H,q)
µ (A) := (diam(A))H µ(A)1/q (2.8)

for any measurable subset A ⊂ R
N . Then the multi–parameter extension of (1.6) is

δ(H,q)
µ (n) := sup

{
δ > 0 : ∃Q1, . . . , Qn ⊂ T, J (H,q)

µ (Qi) ≥ δ
}

where the cubes Qi are supposed to possess disjoint interiors.

Here we shall prove the following result.

Theorem 2.3. Let µ be a measure on a bounded set T ⊂ R
N and let WH be an N–parameter

fractional Brownian motion with Hurst parameter H. Let q ∈ [1,∞). If

δ(H,q)
µ (n) � n−1/q−1/a (log n)β

for certain a > 0 and β ∈ R, then

− log P{‖WH‖Lq(T,µ) < ε} � ε−a · log(1/ε)aβ .

Note that this result does not follow from Theorem 2.2 directly, since inequality (2.7) only holds
for 0 ≤ τ ≤ |t|. But we will show that the proof, based on Theorem 2.2, is almost immediate.

We now turn to lower estimates of ϕq,µ(ε). Let µ be a finite compactly supported Borel measure

on R
N . For a bounded measurable set A ⊂ R

N the quantity J
(H,q)
µ (A) was introduced in (2.8).

Furthermore, for H ∈ (0, 1] and q ∈ [1,∞) the number r is now (compare with (1.2)) defined by

1

r
:=

H

N
+

1

q
.

Finally, for n ∈ N, as in (1.4) we set

σ(H,q)
µ (n) := inf








n∑

j=1

J (H,q)
µ (Aj)

r




1/r

: T ⊆
n⋃

j=1

Aj





(2.9)

where the Aj ’s are compact subsets of R
N and T denotes the support of µ. With this notation

we shall prove the following multi–parameter extension of (1.5).
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Theorem 2.4. Let X := (X(t), t ∈ T ) be a centered Gaussian random field indexed by a
compact set T ⊂ R

N and satisfying

E |X(t) −X(s)|2 ≤ c |t− s|2H , t, s ∈ T ,

for some 0 < H ≤ 1. If µ is a finite measure with support in T such that for certain q ∈ [1,∞),
ν ≥ 0 and β ∈ R

σ(H,q)
µ (n) � n−ν (log n)β ,

then
− log P{‖X‖Lq(T,µ) ≤ ε} � ε−a log(1/ε)aβ

where 1/a = ν +H/N .

Problem: Of course, Theorem 2.4 applies in particular to WH . Recall that we have
E(|WH(t) −WH(s)|2) = |t− s|2H , t, s ∈ R

N . Yet for general measures µ and N > 1 we do

not know how the quantities σ
(H,q)
µ and δ

(H,q)
µ are related (recall (1.7) for N = 1). Later on

we shall prove a relation similar to (1.7) for a special class of measures on R
N , the so–called

self–similar measures. But in the general situation the following question remains open. Let
N > 1. Does as in Theorem 1.2 for N = 1

σ(H,q)
µ (n) � n−ν (log n)β

for certain ν ≥ 0 and β ∈ R always imply

− log P{‖WH‖Lq(T,µ) < ε} � ε−a · log(1/ε)aβ

with a as in Theorem 2.4?

The rest of the paper is organized as follows. Section 3 is devoted to the study of upper estimates
for small deviation probabilities, where Theorems 2.1, 2.2 and 2.3 are proved. In Section 4, we are
interested in lower estimates for small deviation probabilities, and prove Theorem 2.4. Section
5 focuses on the case of self–similar measures. Finally, in Section 6 we discuss the L∞–norm.

3 Upper estimates for small deviation probabilities

This section is divided into four distinct parts. The first three parts are devoted to the proof of
Theorems 2.1, 2.2 and 2.3, respectively. The last part contains some concluding remarks.

3.1 Proof of Theorem 2.1

To prove Theorem 2.1, we shall verify the following quite general upper estimate for small
deviation probabilities. As in the formulation of Theorem 2.1, let X = (X(t), t ∈ T ) be a
measurable centered Gaussian process on a metric space (T, ρ), let µ be a finite Borel measure
on T and for disjoint measurable subsets A1, . . . , An in T the quantity Vµ = Vµ(A1, . . . , An) is
as in (2.4).
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Proposition 3.1. There exist a constant c1 ∈ (0,∞) depending only on q and a numerical
constant c2 ∈ (0,∞) such that

P

(
‖X‖q

Lq(T,µ) ≤ c1 nV
q
µ

)
≤ e−c2 n.

Proof: For the sake of clarity, the proof is divided into three distinct steps.

Step 1. Reduction to independent processes. We define the predictions X̂1(t) := 0, t ∈ A1, and
X̂i(t) := E{X(t) |X(s), s ∈ ∪i−1

k=1Ak}, t ∈ Ai (for 2 ≤ i ≤ n). The prediction errors are

Xi(t) := X(t) − X̂i(t), t ∈ Ai, 1 ≤ i ≤ n.

It is easy to see that (Xi(t), t ∈ Ai)1≤i≤n are n independent processes: for any 1 ≤ i ≤ n, the
random variable Xi(t) is orthogonal to the span of (X(s), s ∈ ∪i−1

k=1Ak) for any t ∈ Ai, whereas
all the random variables Xj(u), u ∈ Aj , j < i, belong to this span.

The main ingredient in Step 1 is the following inequality.

Lemma 3.2. For any ε > 0,

P

(
n∑

i=1

∫

Ai

|X(t)|q dµ(t) ≤ ε

)
≤ P

(
n∑

i=1

∫

Ai

|Xi(t)|q dµ(t) ≤ ε

)
.

Proof of Lemma 3.2: There is nothing to prove if n = 1. Assume n > 1. Let

Fn−1 := σ

(
X(s), s ∈

n−1⋃

i=1

Ai

)
,

Sn−1 :=

n−1∑

i=1

∫

Ai

|X(t)|q dµ(t),

Un :=

∫

An

|X(t)|q dµ(t).

It follows that

P

(
n∑

i=1

∫

Ai

|X(t)|q dµ(t) ≤ ε

)
= P (Sn−1 + Un ≤ ε)

= E

{
P

(
Sn−1 + Un ≤ ε

∣∣∣Fn−1

)}
. (3.1)

By definition, Un =
∫
An

|Xn(t) + X̂n(t)|q dµ(t) = ‖X̂n +Xn‖q
Lq(An,µ). Observe that (X̂n(t), t ∈

An) and Sn−1 are Fn−1-measurable, whereas (Xn(t), t ∈ An) is independent of Fn−1. Therefore,
by Anderson’s inequality (see (1) or (13)),

P

(
Sn−1 + Un ≤ ε

∣∣∣Fn−1

)
≤ P

(
‖Xn‖q

Lq(An,µ) ≤ (ε− Sn−1)+

∣∣∣Fn−1

)

= P

(
‖Xn‖q

Lq(An,µ) + Sn−1 ≤ ε
∣∣∣Fn−1

)
.

1212



Plugging this into (3.1) yields that

P

(
n∑

i=1

∫

Ai

|X(t)|q dµ(t) ≤ ε

)
≤ P

(
‖Xn‖q

Lq(An,µ) + Sn−1 ≤ ε
)
.

Since the process (Xn(t), t ∈ An) and the random variable Sn−1 are independent, Lemma 3.2
follows by induction. 2

Step 2. Evaluation of independent processes. In this step, we even do not use the specific
definition of the processes Xi(·).

Lemma 3.3. Let (Xi(t), t ∈ Ai)1≤i≤n be independent centered Gaussian processes defined on
disjoint subsets (Ai)1≤i≤n of T . Then

P

(
n∑

i=1

∫

Ai

|Xi(t)|q dµ(t) ≤ c1 nṼ
q
µ

)
≤ e−c2 n,

where c1 depends only on q, c2 is a numerical constant, and

Ṽµ := min
1≤i≤n

inf
t∈Ai

{Var(Xi(t))}1/2 µ(Ai)
1/q. (3.2)

Proof of Lemma 3.3: Write

Yi :=

∫

Ai

|Xi(t)|q dµ(t), 1 ≤ i ≤ n,

which are independent random variables. We reduce
∑n

i=1 Yi to a sum of Bernoulli random

variables. Let Si := Y
1/q
i and mi := median(Si), 1 ≤ i ≤ n. Consider random variables

Bi := 1{Yi≥mq
i }
, 1 ≤ i ≤ n.

Since mq
i is a median for Yi, we have P(Bi = 0) = P(Bi = 1) = 1/2. In other words, (Bi, 1 ≤

i ≤ n) is a collection of i.i.d. Bernoulli random variables.

Since Yi ≥ mq
iBi, we have, for any x > 0,

P

(
n∑

i=1

Yi ≤ x

)
≤ P

(
n∑

i=1

mq
iBi ≤ x

)
≤ P

(
n∑

i=1

Bi ≤
x

min1≤i≤nm
q
i

)
.

In order to evaluate min1≤i≤nm
q
i , we use the following general result.

Fact 3.1. Let (X(t), t ∈ T ) be a Gaussian random process. Assume that
S := supt∈T |X(t)| <∞ a.s. Let m be a median of the distribution of S. Then

m ≤ E(S) ≤ cm,

where c := 1 +
√

2π .
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The first inequality in Fact 3.1 is in Lifshits (13), p. 143, the second in Ledoux and Talagrand (9),
p. 58.

Let us complete the proof of Lemma 3.3. By Fact 3.1, we have mi ≥ c−1
E(Si) =

c−1
E(‖Xi‖Lq(Ai,µ)). Recall (Ledoux and Talagrand (9), p. 60) that there exists a constant

cq ∈ (0,∞), depending only on q, such that E(‖Xi‖Lq(Ai,µ)) ≥ cq{E(‖Xi‖q
Lq(Ai,µ))}1/q and that

E(|Xi(t)|q) ≥ cqq {Var(Xi(t))}q/2, t ∈ Ai. Accordingly,

mq
i ≥ c−qcqq E

(
‖Xi‖q

Lq(Ai,µ)

)

= c−qcqq

∫

Ai

E(|Xi(t)|q) dµ(t)

≥ c−qc2q
q µ(Ai) inf

t∈Ai

{Var(Xi(t))}q/2 .

Thus min1≤i≤nm
q
i ≥ c−qc2q

q Ṽ q
µ . It follows that

P

(
n∑

i=1

Yi ≤ x

)
≤ P

(
n∑

i=1

Bi ≤
x

c−qc2q
q Ṽ q

µ

)
.

Taking x :=
c−qc2q

q

3 Ṽ q
µn, we obtain, by Chernoff’s inequality,

P

(
n∑

i=1

Yi ≤
c−qc2q

q

3
Ṽ q

µ n

)
≤ P

(
n∑

i=1

Bi ≤
n

3

)
≤ e−c2 n.

Lemma 3.3 is proved, and Step 2 completed. 2

Step 3. Final calculations. We apply the result of Step 2 to the processes (Xi(t), t ∈ Ai)
constructed in Step 1. For any 2 ≤ i ≤ n and any t ∈ Ai, we have

Var (Xi(t)) = Var
(
X(t) − X̂i(t)

)

= Var

[
X(t) − E

(
X(t)

∣∣∣X(s), s ∈
i−1⋃

k=1

Ak

)]

≥ Var

[
X(t) − E

(
X(t)

∣∣∣X(s), ρ(s, t) ≥ dist(t,
i−1⋃

k=1

Ak)

)]

≥ Var

[
X(t) − E

(
X(t)

∣∣∣X(s), ρ(s, t) ≥ dist(Ai,

i−1⋃

k=1

Ak)

)]

= v (t, τi)
2 ,

where v(t, ·) is as in (2.1) and τi as in (2.3). Therefore, letting vi be as in (2.3), we get

vi ≤ inf
t∈Ai

{Var(Xi(t))}1/2 µ(Ai)
1/q, 2 ≤ i ≤ n.
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Moreover, from X(t) = X1(t), t ∈ A1, it follows that

v1 = inf
t∈A1

{Var(X1(t))}1/2 µ(A1)
1/q

as well. Hence, by (3.2) we get Vµ = Vµ(A1, . . . , An) ≤ Ṽµ. It follows from Lemmas 3.2 and 3.3
that

P

(
‖X‖q

Lq(T,µ) ≤ c1 nV
q
µ

)
≤ P

(
n∑

i=1

∫

Ai

|X(t)|q dµ(t) ≤ c1 nV
q
µ

)

≤ P

(
n∑

i=1

∫

Ai

|Xi(t)|q dµ(t) ≤ c1 nV
q
µ

)

≤ P

(
n∑

i=1

∫

Ai

|Xi(t)|q dµ(t) ≤ c1 nṼ
q
µ

)
≤ e−c2 n.

This completes Step 3, and thus the proof of Proposition 3.1. 2

Proof of Theorem 2.1: By assumption there is a constant c > 0 such that

δn := c n−1/q−1/a (log n)β < δµ(n) , n ∈ N .

Consequently, in view of the definition of δµ(n) there exist disjoint measurable subsets A1, . . . , An

in T with Vµ = Vµ(A1, . . . , An) ≥ δn. From Proposition 3.1, we derive

P{‖X‖Lq(T,µ) ≤ c
1/q
1 n1/q δn} ≤ P{‖X‖Lq(T,µ) ≤ c

1/q
1 n1/q Vµ} ≤ e−c2n . (3.3)

Letting ε = c
1/q
1 n1/q δn = c

1/q
1 c n−1/a (log n)β, it follows that c2 n � ε−a log(1/ε)aβ , hence (3.3)

completes the proof of Theorem 2.1. 2

3.2 Proof of Theorem 2.2

Proof of Theorem 2.2: This follows from Theorem 2.1 and the next proposition.

Proposition 3.4. Let T ⊂ R
N and let µ be a finite measure on T . Then for n ∈ N,

δµ(n) ≤ 2N/q δµ
(
[2−N n]

)

where, as usual, [x] denotes the integer part of a real number x.

Proof: Let Q1, . . . , Qn be arbitrary cubes in T possessing disjoint interiors. Without loss of
generality, we may assume that the diameters of the Qi are non–increasing. Set G := {−1, 1}N .
We cut every cube Qi into a union of 2N smaller cubes (by splitting each side into two equal
pieces):

Qi =
⋃

g∈G

Qg
i .
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For any i ≤ n, let g(i) ∈ G be such that

µ(Q
g(i)
i ) ≥ µ(Qi)

2N

(if the choice is not unique, we choose any one possible value). Let g ∈ G be such that

# {i ∈ [1, n] ∩ N : g(i) = g} ≥ n

2N
. (3.4)

We write Ig := {i ∈ [1, n] ∩ N : g(i) = g}, and consider the family of sets Ai := Qg
i , i ∈ Ig. The

following simple geometric lemma provides a lower bound for dist(Ai, Aj), i 6= j.

Lemma 3.5. Let Q± := [−1, 1]N and Q+ := [0, 1]N . Let x1, x2 ∈ R
N and r1, r2 ∈ R+ be such

that the cubes Qi := xi + riQ
±, i = 1 and 2, are disjoint. Then

dist(x1 + r1Q
+, x2 + r2Q

+) ≥ min{r1, r2}.

Proof of Lemma 3.5: For any x ∈ R
N , we write x = (x(1), . . . , x(N)). Since the cubes x1 + r1Q

±

and x2 + r2Q
± are disjoint, there exists ℓ ∈ [1,N ]∩N such that the intervals [x

(ℓ)
1 − r1, x(ℓ)

1 + r1]

and [x
(ℓ)
2 − r2, x

(ℓ)
2 + r2] are disjoint (otherwise, there would be a point belonging to both cubes

Q1 and Q2). Without loss of generality, we assume that x
(ℓ)
1 + r1 < x

(ℓ)
2 − r2. Then, for any

y1 ∈ x1 + r1Q
+ and y2 ∈ x2 + r2Q

+, we have

|y2 − y1| ≥ |y(ℓ)
2 − y

(ℓ)
1 | ≥ y

(ℓ)
2 − y

(ℓ)
1 ≥ x

(ℓ)
2 − (x

(ℓ)
1 + r1) ≥ r2 ≥ min{r1, r2},

proving the lemma. 2

We continue with the proof of Proposition 3.4. It follows from Lemma 3.5 that for any i > k
with i ∈ Ig and k ∈ Ig,

dist(Ai, Ak) ≥ N−1/2 min {diam(Ai), diam(Ak)} = N−1/2diam(Ai),

(by recalling that the diameters of Qi are non–increasing). Let i0 be the minimal element of Ig.
Then, for i ∈ Ig, i > i0,

v


Ai,dist(Ai,

⋃

k∈Ig,k<i

Ak)


 µ(Ai)

1/q ≥ v

(
Ai,

diam(Ai)√
N

)
µ(Ai)

1/q

≥ v

(
Qi,

diam(Qi)

2
√
N

)
µ(Qi)

1/q 2−N/q

= 2−N/q v(Qi)µ(Qi)
1/q

≥ 2−N/q V µ(Q1, . . . , Qn) .
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Similarly, using the inequality VarX ≥ Var[X − E (X | F)] (for any random variable X and any
σ-field F), we obtain

inf
t∈Ai0

(VarX(t))1/2 · µ(Ai0)
1/q ≥ v

(
Ai0 ,

diam(Ai0)√
N

)
µ(Ai0)

1/q

≥ v

(
Qi0 ,

diam(Qi0)

2
√
N

)
µ(Qi0)

1/q 2−N/q

= 2−N/q v(Qi0)µ(Qi0)
1/q ≥ 2−N/q V µ(Q1, . . . , Qn) .

Note that the cardinality of Ig which takes the place of the parameter n in δµ is, according to
(3.4), not smaller than 2−Nn. Hence, since the cubes Q1, . . . , Qn were chosen arbitrarily in T ,
the proof of Proposition 3.4 follows by the definition of δµ and δµ in (2.5) and (2.6), respectively.
2

3.3 Proof of Theorem 2.3

Proof of Theorem 2.3: Let T ⊂ R
N be a bounded set and let µ be a finite measure on T . We

first suppose that T is “far away from zero”, i.e., we assume

diam(T ) ≤ dist({0}, T ) . (3.5)

By (2.7), for any t ∈ T ,

v(t, τ)2 = Var [WH(t) − E (WH(t) |WH(s), s ∈ T, |s− t| ≥ τ)] ≥ c τ2H

for all τ ≤ dist({0}, T ). Consequently, for any cubes Q1, . . . , Qn in T with disjoint interiors, we
obtain

V µ(Q1, . . . , Qn) ≥ c′ min
1≤i≤n

J (H,q)
µ (Qi) ,

hence δµ(n) ≥ c′ δ
(H,q)
µ (n). Theorem 2.3 follows now from Theorem 2.2.

Next let T be an arbitrary bounded subset of R
N and µ a finite measure on T . We choose an

element t0 ∈ R
N such that T0 := T + t0 satisfies (3.5). By what we have just proved,

− log P{‖WH‖Lq(T0,µ0)
< ε} � ε−a log(1/ε)aβ ,

where µ0 := µ ∗ δ{t0} (δ{t0} being the Dirac measure at t0). Observe that ‖WH‖Lq(T0,µ0)
=

{
∫
T |WH(t+ t0)|q dµ(t)}1/q. Since W̃H := (WH(t + t0) −WH(t0), t ∈ R

N ) is an N–parameter
fBm as well, we finally arrive at:

− log P

{∫

T

∣∣∣W̃H(t) +WH(t0)
∣∣∣
q

dµ(t) < εq
}

� ε−a log(1/ε)aβ .

Theorem 2.3 follows from the weak correlation inequality, see (12), proof of Theorem 3.7. 2
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3.4 Concluding remarks:

Suppose that v(t, τ) ≥ c τH and µ = λN , the N–dimensional Lebesgue measure. Assuming that
the interior of T is non–empty, we easily get δµ(n) � n−(1/q+H/N), hence by Theorem 2.1,

− log P{‖X‖Lq(T,µ) < ε} � ε−N/H .

Our estimates are suited rather well for stationary fields. For the non–stationary ones a logarith-
mic gap may appear. For example, let X be an N–parameter Brownian sheet with covariance

EX(s)X(t) =
N∏

k=1

min{sk, tk}.

Then we get v(t, τ) ≥ c τN/2 for all τ < min1≤i≤N ti. By Theorem 2.2, for the Lebesgue measure
and, say, the N–dimensional unit cube T ,

− log P{‖X‖Lq(T,µ) < ε} � ε−2,

while it is known that in fact

− log P{‖X‖Lq(T,µ) < ε} ≈ ε−2 log(1/ε)2N−2 .

We also note that cubes in (2.6) and in Theorem 2.2 can not be replaced by arbitrary closed
convex sets. Indeed, disjoint “flat” sets are not helpful in this context, as the following example
shows. Define a probability measure µ0 on [0, 1] by

µ0 = (1 − 2−h)

∞∑

k=0

2k∑

i=1

2−k(1+h)δ{i/2k},

where h > 0 and δ{x} stands for the Dirac mass at point x. Define a measure on the unit square

T by µ = µ0 ⊗ λ1. For a fixed k, by taking Qi = {i/2k} × [0, 1], 1 ≤ i ≤ 2k, we get n = 2k

disjoint sets with V µ(Q1, . . . , Qn) ≈ 2−k(1+h)/q, whatever the bound for the interpolation error
is. If Theorem 2.2 were valid in this setting, we would get δµ(n) � n−(1+h)/q, and

− log P{‖X‖Lq(T,µ) < ε} � ε−q/h,

while it is known, for example, for the 2–parameter Brownian motion, that in fact

− log P{‖X‖Lq(T,µ) < ε} � ε−4 .

This would lead to a contradiction whenever q/h > 4.

4 Lower estimates for small deviation probabilities

This section is devoted to the study of lower estimates for small deviation probabilities, and is
divided into three distinct parts. In the first part, we present some basic functional analytic
tools, while in the second part, we establish a result for Kolmogorov numbers of operators with
values in Lq(T, µ). In the third and last part, we prove Theorem 2.4.
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4.1 Functional analytic tools

Let [E, ‖ · ‖E ] and [F, ‖ · ‖F ] be Banach spaces and let u : E → F be a compact operator.
There exist several quantities to measure the degree of compactness of u. We shall need two
of them, namely, the sequences dn(u) and en(u) of Kolmogorov and (dyadic) entropy numbers,
respectively. They are defined by

dn(u) := inf{‖QF0
u‖ : F0 ⊆ F, dimF0 < n}

where for a subspace F0 ⊆ F the operator QF0
: F → F/F0 denotes the canonical quotient map

from F onto F/F0 . The entropy numbers are given by

en(u) := inf{ε > 0 : ∃ y1, . . . , y2n−1 ∈ F with u(BE) ⊆
2n−1⋃

j=1

(yj + εBF )}

where BE and BF are the closed unit balls of E and F , respectively. We refer to (3) and (28)
for more information about these numbers.

Kolmogorov and entropy numbers are tightly related by the following result in (2).

Proposition 4.1. Let (bn)n≥1 be an increasing sequence tending to infinity and satisfying

sup
n≥1

b2n

bn
:= κ <∞ .

Then there is a constant c = c(κ) > 0 such that for all compact operators u, we have

sup
n≥1

bn en(u) ≤ c · sup
n≥1

bn dn(u) .

Let (T, ρ) be a compact metric space. Let C(T ) denote as usual the Banach space of continuous
functions on T endowed with the norm

‖f‖∞ := sup
t∈T

|f(t)| , f ∈ C(T ) .

If u is an operator from a Banach space E into C(T ), it is said to be H–Hölder for some
0 < H ≤ 1 provided there is a finite constant c > 0 such that

|(ux)(t1) − (ux)(t2)| ≤ c · ρ(t1, t2)H · ‖x‖E (4.1)

for all t1, t2 ∈ T and x ∈ E. The smallest possible constant c appearing in (4.1) is denoted
by |u|ρ,H and we write |u|H whenever the metric ρ is clearly understood. Basic properties of
H–Hölder operators may be found in (3).

Before stating the basic result about Kolmogorov numbers of Hölder operators we need some
quantity to measure the size of the compact metric space (T, ρ). Given n ∈ N, the n–th entropy
number of T (with respect to the metric ρ) is defined by

εn(T ) := inf {ε > 0 : ∃ n ρ–balls of radius ε covering T} .

Now we may formulate Theorem 5.10.1 in (3) which will be crucial later on. We state it in the

form as we shall use it.
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Theorem 4.2. Let H be a Hilbert space and let (T, ρ) be a compact metric space such that

εn(T ) ≤ κ · n−ν , n ∈ N , (4.2)

for a certain κ > 0 and ν > 0. Then, if u : H → C(T ) is H–Hölder for some H ∈ (0, 1], then

dn(u) ≤ c · max {‖u‖ , |u|H} · n−1/2−H ν , n ∈ N , (4.3)

where c > 0 depends on H, ν and κ. Here, ‖u‖ denotes the usual operator norm of u.

For our purposes it is important to know how the constant c in (4.3) depends on the number κ
appearing in (4.2).

Corollary 4.3. Under the assumptions of Theorem 4.2, it follows that

dn(u) ≤ c · max
{
‖u‖ , κH |u|H

}
· n−1/2−H ν , n ∈ N ,

with c > 0 independent of κ.

Proof: We set
ρ̃(t1, t2) := κ−1 · ρ(t1, t2) , t1, t2 ∈ T .

If ε̃n(T ) are the entropy numbers of T with respect to ρ̃, then ε̃n(T ) = κ−1 · εn(T ), hence, by
(4.2) we have ε̃n(T ) ≤ n−ν , for n ∈ N. Consequently, an application of Theorem 4.2 yields

dn(u) ≤ c · max
{
‖u‖ , |u|

eρ,H

}
· n−1/2−H ν , n ∈ N , (4.4)

where now c > 0 is independent of κ. Observe that a change of the metric does not change
the operator norm of u. The proof of the corollary is completed by (4.4) and the observation
|u|

eρ,H = κH · |u|ρ,H . 2

4.2 Kolmogorov numbers of operators with values in Lq(T, µ)

We now state and prove the main result of this section. Recall that σ
(H,q)
µ (n) was defined in

(2.9).

Theorem 4.4. Let µ be as before a Borel measure on R
N with compact support T and let u be

an H–Hölder operator from a Hilbert space H into C(T ). Then for all n,m ∈ N and q ∈ [1,∞)
we have

dn+m

(
u : H → Lq(T, µ)

)
≤ c · |u|H · σ(H,q)

µ (m) · n−H/N−1/2 . (4.5)

Here c > 0 only depends on H, q and N . The Hölder norm of u is taken with respect to the
Euclidean distance in R

N .

Proof: Choose arbitrary compact sets A1, . . . , Am covering T , the support of µ. In each Aj we
take a fixed element tj, 1 ≤ j ≤ m, and define operators uj : H → C(Aj) via

(ujh)(t) := (uh)(t) − (uh)(tj) , t ∈ Aj , h ∈ H .
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Thus

‖ujh‖∞ = sup
t∈Aj

|(ujh)(t)| = sup
t∈Aj

|(uh)(t) − (uh)(tj)|

≤ |u|H · sup
t∈Aj

|t− tj|H · ‖h‖ ≤ diam(Aj)
H · |u|H · ‖h‖ ,

i.e., the operator norm of uj can be estimated by

‖uj‖ ≤ diam(Aj)
H · |u|H . (4.6)

Of course,
|uj |H ≤ |u|H , (4.7)

and, moreover, since Aj ⊆ R
N ,

εn(Aj) ≤ c · diam(Aj) · n−1/N (4.8)

with some constant c > 0. We do not discuss here whether this constant depends on N or
whether it can be chosen independent of the dimension because other parameters of our later
estimates depend on N , anyway.

Let
wj := µ(Aj)

1/q · uj , 1 ≤ j ≤ m . (4.9)

An application of Corollary 4.3 with ν = 1/N , together with (4.6), (4.7), (4.8) and (4.9), yields

dn(wj : H → C(Aj)) ≤ c · |u|H · diam(Aj)
H · µ(Aj)

1/q · n−H/N−1/2 , n ∈ N . (4.10)

Let Eq be the ℓq–sum of the Banach spaces C(A1), . . . , C(Am), i.e.,

Eq :=
{
(fj)

m
j=1 : fj ∈ C(Aj)

}

and

‖(fj)
m
j=1‖Eq :=




m∑

j=1

‖fj‖q
∞




1/q

.

Define wq : H → Eq by
wqh := (w1h, . . . , wmh) , h ∈ H .

Proposition 4.2 in (17) applies, and (4.10) leads to

dn(wq) ≤ c · |u|H ·




m∑

j=1

diam(Aj)
Hr · µ(Aj)

r/q




1/r

· n−H/N−1/2 (4.11)

where
1/r = (H/N + 1/2) − 1/2 + 1/q = H/N + 1/q .

To complete the proof, set B1 = A1 and Bj = Aj \
⋃j−1

i=1 Ai, 2 ≤ j ≤ m. If the operator Φ from
Eq into Lq(T, µ) is defined by

Φ
(
(fj)

m
j=1

)
(t) :=

m∑

j=1

fj(t) ·
1Bj

(t)

µ(Aj)1/q
,

1221



then ‖Φ‖ ≤ 1 and
Φ ◦ wq = u− u0 (4.12)

where

(u0h)(t) =
m∑

j=1

(uh)(tj)1Bj
(t) , t ∈ T .

The operator u0 from H into Lq(T, µ) has rank less or equal than m. Hence dm+1(u0) = 0 and
therefore, from algebraic properties of the Kolmogorov numbers and (4.12) and (4.11), it follows
that

dn+m(u : H → Lq(T, µ)) ≤ dn(Φ ◦ wq) + dm+1(u0) ≤ dn(wq) · ‖Φ‖

≤ c · |u|H ·




m∑

j=1

diam(Aj)
Hr · µ(Aj)

r/q




1/r

· n−H/N−1/2 .

Taking the infimum over all coverings A1, . . . , Am of T yields (4.5). 2

Corollary 4.5. Let µ be a finite measure on R
N with compact support T and suppose that the

operator u from the Hilbert space H into C(T ) is H–Hölder for some H ∈ (0, 1]. If

σ(H,q)
µ (n) ≤ c · n−ν · (log n)β

for certain c > 0, ν ≥ 0 and β ∈ R, then for n ∈ N we have

en(u : H → Lq(T, µ)) ≤ c′ · |u|H · n−ν−H/N−1/2 · (log n)β

with some constant c′ = c′(H, q,N, c, ν, β) > 0.

Proof: Apply Theorem 4.4 with m = n. The assertion follows from Proposition 4.1. 2

4.3 Proof of Theorem 2.4

We start with some quite general remarks about Gaussian processes (cf. (21)). Let X :=
(X(t), t ∈ T ) be a centered Gaussian process and let us suppose that (T, ρ) is a compact metric
space. Under quite mild conditions, e.g., if ρ(tn, t) → 0 in T implies E |X(tn) −X(t)|2 → 0,
there are a (separable) Hilbert space H and an operator u : H → C(T ) such that

EX(t)X(s) = 〈u∗δt, u∗δs〉H (4.13)

where u∗ : C∗(T ) → H denotes the dual operator of u and δt ∈ C∗(T ) is the usual Dirac measure
concentrated in t ∈ T . In particular, it follows that

E |X(t) −X(s)|2 = ‖u∗δt − u∗δs‖2
H = sup

‖h‖≤1
|(uh)(t) − (uh)(s)|2 , t, s ∈ T .

Consequently, whenever u and X are related via (4.13), the operator u is H–Hölder if and only
if (

E |X(t) −X(s)|2
)1/2

≤ c · ρ(t, s)H (4.14)
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for all t, s ∈ T . Moreover, |u|H coincides with the smallest c > 0 for which (4.14) holds.

Proof of Theorem 2.4: We start the proof by recalling a consequence of Theorem 5.1 in (11).
Suppose that u and X are related via (4.13). Then for any finite Borel measure µ on T , any
q ∈ [1,∞], a > 0 and β ∈ R the following are equivalent:

(i) There is a c > 0 such that for all n ≥ 1

en(u : H → Lq(T, µ)) ≤ c · n−1/a−1/2 (log n)β .

(ii) For some c > 0 it is true that

− log P

(
‖X‖Lq(T,µ) < ε

)
≤ c · εa · log(1/ε)aβ

for all ε > 0.

Taking this into account, Theorem 2.4 is a direct consequence of Corollary 4.5 and the above
stated equivalence of (4.14) with the H–Hölder continuity of the corresponding operator u. 2

5 Self–similar measures and sets

It is a challenging open problem to obtain suitable estimates for σ
(H,q)
µ and/or δ

(H,q)
µ in the case

of arbitrary compactly supported Borel measures µ on R
N . As already mentioned, we even do

not know how these quantities are related in the case N > 1. Yet if µ is self–similar, then
suitable estimates for both of these quantities are available.

Let us briefly recall some basic facts about self–similar measures which may be found in (4) or
(5). An affine mapping S : R

N → R
N is said to be a contractive similarity provided that

|S(t1) − S(t2)| = λ · |t1 − t2| , t1, t2 ∈ R
N ,

with some λ ∈ (0, 1). The number λ is called the contraction factor of S. Given (contractive)
similarities S1, . . . , Sm we denote by λ1, . . . , λm their contraction factors. There exists a unique
compact set T ⊆ R

N (the self–similar set generated by the Sj’s) such that

T =
m⋃

j=1

Sj(T ) .

Let furthermore ρ1, . . . , ρm > 0 be weights, i.e.,
∑m

j=1 ρj = 1. Then there is a unique Borel

probability measure µ on R
N (µ is called the self–similar measure generated by the similarities

Sj and the weights ρj) satisfying

µ =
m∑

j=1

ρj · (µ ◦ S−1
j ) .

Note that T and µ are related via supp(µ) = T .
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We shall suppose that the similarities satisfy the strong open set condition, i.e., we assume that
there exists an open bounded set Ω ⊆ R

N with T ∩ Ω 6= ∅ such that

m⋃

j=1

Sj(Ω) ⊆ Ω and Si(Ω) ∩ Sj(Ω) = ∅, i 6= j . (5.1)

It is known that then T ⊆ Ω; and since T ∩ Ω 6= ∅, we have µ(Ω) > 0, hence by the results in
(7), we even have µ(Ω) = 1 and µ(∂Ω) = 0. Let us note that under these assumptions, we have

m∑

j=1

λN
j ≤ 1 . (5.2)

Proposition 5.1. Let µ be a self–similar measure generated by similarities Sj with contraction
factors λj and weights ρj, 1 ≤ j ≤ m. For H ∈ (0, 1] and q ∈ [1,∞), let γ > 0 be the unique
solution of the equation

m∑

j=1

λHγ
j ρ

γ/q
j = 1 . (5.3)

Then, under the strong open set condition, we have

σ(H,q)
µ (n) ≤ c · diam(Ω)H · n−1/γ+1/r

where as before 1/r = H/N + 1/q.

Proof: By Hölder’s inequality and (5.2), we necessarily have γ ≤ r.

We say that α is a word of length p (p ∈ N) over {1, . . . ,m}, if α = (i1, . . . , ip) for certain
1 ≤ ij ≤ m. For each such word, we define (Ω being the set appearing in the open set condition)

Sα := Si1 ◦ · · · ◦ Sip ,

Ω(α) := Sα(Ω) ,

Λ(α) := (λi1 · · · λip)
H · (ρi1 · · · ρip)

1/q .

We need the following estimate.

Lemma 5.2. For each real number s > 0, there exist ℓ = ℓ(s) words α1, . . . , αℓ(s) over {1, . . . ,m}
(not necessarily of the same length) such that the following holds:

T ⊆
ℓ(s)⋃

i=1

Ω(αi) , (5.4)

max
1≤i≤ℓ(s)

Λ(αi) ≤ e−s , (5.5)

ℓ(s) ≤ c1 · eγs , (5.6)

where γ was defined by (5.3).
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We postpone the proof of Lemma 5.2 for a moment, and proceed in the proof of Proposition
5.1. Recall that the strong open set condition implies µ(∂Ω) = 0; hence for any word α, we have
µ(Ω(α)) = µ(Ω(α)). Accordingly,

J (H,q)
µ (Ω(α)) = Λ(α) · J (H,q)

µ (Ω) = Λ(α) · diam(Ω)H . (5.7)

Let s > 0 be given, and let α1, . . . , αℓ(s) be words over {1, . . . ,m} satisfying (5.4), (5.5) and
(5.6). By (5.7),

σ(H,q)
µ (ℓ(s)) ≤ ℓ(s)1/r · e−s · diam(Ω)H .

Given n ∈ N, we define s > 0 via the equation c1e
γs = n, where c1 is the constant in (5.6). Then

ℓ(s) ≤ n. Note that n 7→ σ
(H,q)
µ (n) is non–increasing (since in the definition of σ

(H,q)
µ (n), one or

several of the Aj can be empty). Therefore,

σ(H,q)
µ (n) ≤ σ(H,q)

µ (ℓ(s)) ≤ c · n1/r · n−1/γ · diam(Ω)H = c · diam(Ω)H · n−1/γ+1/r

as asserted. 2

Proof of Lemma 5.2: Let Z
m
+ be the set of vectors x = (x1, . . . , xm) with xj ∈ Z and xj ≥ 0.

A path in Z
m
+ of length p is a sequence [x0, . . . , xp] with xk ∈ Z

m
+ . It is said to be admissible

provided that x0 = 0 and for every k ≤ p, there exists jk ≤ m such that xk
jk

= xk−1
jk

+ 1 while

xk
j = xk−1

j for all j ∈ {1, . . . ,m}\{jk}. Let P be the set of all admissible paths of any finite
length in Z

m
+ .

We define a linear function L : Z
m
+ → R by

L(x) :=

m∑

j=1

dj xj , x = (x1, . . . , xm) ∈ Z
m
+ ,

with dj := − log(λH
j · ρ1/q

j ), 1 ≤ j ≤ m. Note that L takes values in [0,∞), and increases along

an admissible path. For s > 0, let Ps be the set of those paths [x0, . . . , xp] in P for which
L(xp−1) < s ≤ L(xp). It was shown in (23) that

#(Ps) ≤ c1 · eγs

for a certain constant c1 > 0 and with γ satisfying

1 = e−d1γ + · · · + e−dmγ . (5.8)

In view of the definition of dj , the number γ in (5.8) coincides with the one defined in (5.3).
To each path [x0, . . . , xp] in Z

m
+ , we assign a word α = (j1, . . . , jp) as follows: jk is such that

xk
jk

= xk−1
jk

+ 1. In this way, we obtain a one–to–one correspondence between P and the set of
finite words over {1, . . . ,m}. Moreover, a path belongs to Ps if and only if for the corresponding
word α we have Λ(α) ≤ e−s < Λ(ᾱ) with ᾱ = (j1, . . . , jp−1). We hereby set Λ(ᾱ) = 1 provided ᾱ
is the empty word. If we enumerate all words α corresponding to paths in Ps, we get α1, . . . , αℓ(s)

with ℓ(s) ≤ c1 · eγs and Λ(αi) ≤ e−s, 1 ≤ i ≤ ℓ(s). Moreover, since T ⊆ Ω, it follows that

T =

ℓ(s)⋃

i=1

Sαi
(T ) ⊆

ℓ(s)⋃

i=1

Sαi
(Ω) =

ℓ(s)⋃

i=1

Ω(αi)
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which completes the proof. 2

As a consequence of Proposition 5.1 and Theorem 4.4, we get the following.

Theorem 5.3. Let µ be as in Proposition 5.1 with support T ⊂ R
N . If u is an H–Hölder

operator from a Hilbert space H into C(T ), then

dn(u : H → Lq(T, µ)) ≤ c · diam(Ω)H · n−1/γ+1/q−1/2 ,

where γ is defined by equation (5.3). The entropy numbers of u can be estimated in the same
way.

Corollary 5.4. Let µ be a self–similar measure with support T ⊆ R
N and let X := (X(t), t ∈ T )

be a centered Gaussian process satisfying

E |X(t) −X(s)|2 ≤ c · |t− s|2H , t, s ∈ T ,

for some H ∈ (0, 1]. Then

− log P

(
‖X‖Lq(T,µ) < ε

)
� ε−γq/(q−γ)

with γ defined by (5.3).

Our next aim is to find suitable lower estimates for δ
(H,q)
µ (n) in the case of self–similar measures

µ on R
N . To this end, let Ω be the open bounded set satisfying (5.1), and consider

δ(H,q)
µ (n) := sup

{
δ > 0 : ∃Q1, . . . , Qn ⊂ Ω, J (H,q)

µ (Qi) ≥ δ
}

where the cubes Qi are supposed to possess disjoint interiors.

Proposition 5.5. Let γ > 0 be as in (5.3). Then

δ(H,q)
µ (n) � n−1/γ .

Proof: For an open subset G ⊆ R
N and δ > 0, let Mµ = Mµ(δ,G) be the maximal number of

cubes Q1, . . . , QMµ in G with disjoint interiors and with J
(H,q)
µ (Qj) ≥ δ, 1 ≤ j ≤ Mµ. For Ω as

above, define open sets Ωi and measures µi on Ωi by

Ωi := Si(Ω) and µi := ρi · (µ ◦ S−1
i ) , 1 ≤ i ≤ m .

From (5.1), we derive

Mµ(δ,Ω) ≥
m∑

i=1

Mµi
(δ,Ωi) . (5.9)

If Q ⊆ Ωi is a cube, then by self–similarity, we have J
(H,q)
µi (Q) = λH

i ρ
1/q
i J

(H,q)
µ (Q), hence

Mµi
(δ,Ωi) = Mµ(βi δ,Ω) with βi := λ−H

i ρ
−1/q
i . By (5.9), Mµ(δ,Ω) ≥ ∑m

i=1Mµ(βi δ,Ω) for all
δ > 0. Applying Lemma 5.1 (first part) in (17) with F (x) = Mµ(x−1/γ) yields, for any δ0 > 0,

inf
δ≤δ0

δγ Mµ(δ,Ω) ≥ c δγ
0 Mµ(δ0,Ω) (5.10)
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where γ is defined as the unique solution of
∑m

i=1 β
−γ
i = 1 (thus as in (5.3)) and the constant

c > 0 only depends on β1, . . . , βm.

Since Ω is open and µ(Ω) = 1, there exists a non–empty cube Q0 ⊆ Ω such that δ0 :=

J
(H,q)
µ (Q0) > 0. Thus Mµ(δ,Ω) ≥ 1 for δ ≤ δ0. In view of (5.10), we have

Mµ(δ,Ω) ≥ c0 δ
−γ

whenever 0 < δ ≤ δ0. Take δ := c
−1/γ
0 n−1/γ . We have proved that when n is sufficiently large,

there exist n cubes Q1, . . . , Qn in Ω possessing disjoint interiors such that J
(H,q)
µ (Qi) ≥ δ. This

completes the proof. 2

Remark: Propositions 5.1 and 5.5 imply that

n1/rδ(H,q)
µ (n) � σ(H,q)

µ (n)

for self–similar measures µ.

As a consequence of Theorem 2.3 and Proposition 5.5 we get the following.

Corollary 5.6. If µ is self–similar as before (in particular, the strong open set condition is
assumed), then

− log P

(
‖WH‖Lq(RN ,µ) < ε

)
� ε−γq/(q−γ)

with γ defined by (5.3).

Combining Corollaries 5.4 and 5.6 finally gives us the following.

Theorem 5.7. If µ is a self–similar measure on R
N as before, then

− log P

(
‖WH‖Lq(RN ,µ) < ε

)
≈ ε−γq/(q−γ) .

Example: Suppose that the weights and the contraction factors in the construction of µ are
related via

λi = ρs
i , 1 ≤ i ≤ m,

for some s > 0. Then it follows that γ = (sH + 1/q)−1, hence

− log P

(
‖WH‖Lq(RN ,µ) < ε

)
≈ ε−1/(sH) (5.11)

for these special weights.

Of special interest is the case s = 1/D where D denotes the similarity dimension of the self–
similar set T , i.e.,

m∑

i=1

λD
i = 1 . (5.12)

Then (cf. (5)) µ is the (normalized) Hausdorff measure on T and D its Hausdorff dimension.
Thus (5.11) becomes

− log P

(
‖WH‖Lq(RN ,µ) < ε

)
≈ ε−D/H (5.13)

for Hausdorff measures µ, as claimed in Theorem 1.1.

Remark: For the Lebesgue measure on [0, 1]N and q = 2, a more precise asymptotic for (5.13)
was recently evaluated in (25) by means of Hilbert space methods.

1227



6 L∞-norm

In the case q = ∞, the natural setting of our problem is as follows: given a metric space (T, ρ)
and a centered Gaussian process X := (X(t), t ∈ T ), evaluate

P

(
sup
t∈T

|X(t)| ≤ ε

)
, ε→ 0. (6.1)

There is no reasonable place for a measure µ in this problem.

The main tool for working with (6.1) is provided by packing and entropy cardinalities defined
as follows:

M(ε, T ) := max {n : ∃ t1, . . . , tn in T such that ρ(ti, tj) > ε, i 6= j} ,

N(ε, T ) := min
{
n : ∃ t1, . . . , tn in T such that T ⊂ ∪n

j=1B(tj, ε)
}
,

where B(t, ε) denotes the ball with center t and radius ε. Recall that the asymptotic behavior
of M(·, T ) and N(·, T ) at zero is essentially the same, since

N(ε, T ) ≤M(ε, T ) ≤ N(
ε

2
, T ).

In order to establish an upper bound for the small deviation probability in (6.1), let us use v(t, τ)
and v(A, τ) as defined in (2.1) and (2.2), respectively. Let ψ1(τ) = v(T, τ). Denote ψ−1

1 (·) the
inverse function of ψ1. Then a trivial argument based on the non-determinism property (see
Proposition 3 in (13), pp. 20–21) yields

P

(
sup
t∈T

|X(t)| ≤ ε

)
≤ exp

(
−c1M

(
ψ−1

1 (ε), T
))
,

with some numerical constant c1 > 0.

In order to establish a lower bound for the small deviation probability, we assume that a Hölder–
type condition holds:

E
(
|X(t) −X(s)|2

)
≤ ψ2(ρ(s, t))

2 , t, s ∈ T.

Then, under minimal regularity assumptions on ψ2(·) and N(·, T ), such as

c2N
(
ψ−1

2 (ε), T
)
≤ N

(
ψ−1

2 (ε/2), T
)
≤ c3 N

(
ψ−1

2 (ε), T
)
, (6.2)

with some c2 and c3 > 1, Talagrand’s lower bound (see the original result in (31) and a better
exposition in (8)) applies and we have

P

(
sup
s,t∈T

|X(t) −X(s)| ≤ ε

)
≥ exp

(
−c4N

(
ψ−1

2 (ε), T
))
, (6.3)

with a numerical constant c4 > 0. Notice that, if necessary, the function N(ψ2(·), T ) can be
replaced by any majorant in the regularity condition.
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If we assume that there exists a non–decreasing function ψ regularly varying at zero such that

ψ1 ≈ ψ2 ≈ ψ, (6.4)

then, by combining the upper and lower estimates, we get

− log P

(
sup
t∈T

|X(t)| ≤ ε

)
≈ N

(
ψ−1(ε), T

)
. (6.5)

For the one–parameter version of this result related to Riemann–Liouville processes and frac-
tional Brownian motions, we refer to (20).

For self–similar sets T ⊆ R
N , (6.5) bears a particularly simple form, stated as follows.

Proposition 6.1. Let T ⊆ R
N be a compact self–similar set such that the open set condition

holds. If a Gaussian process X on R
N satisfies (6.4), then

− log P

(
sup
t∈T

|X(t)| ≤ ε

)
≈ (ψ−1(ε))−D (6.6)

where the constant D > 0 is defined by equation (5.12) and coincides with the Hausdorff dimen-
sion of T .

Proof: By Theorem 1 in (6), we have

N(ε, T ) ≈ ε−D ,

and since ψ is regularly varying at zero, so is ψ−1, and (6.2) is satisfied. Thus (6.6) follows from
(6.5). 2

Arguing as in the proof of Theorem 2.4, by (2.7) the preceding proposition applies to WH and
ψ(τ) = τH . Consequently, Proposition 6.1 leads to the following.

Corollary 6.2. Let T ⊂ R
N be self–similar such that the open set condition holds. Then it

follows that

− log P

(
sup
t∈T

|WH(t)| ≤ ε

)
≈ ε−D/H

where as before D > 0 denotes the Hausdorff dimension of T .

Remark: In the case T = [0, 1]N Corollary 6.2 recovers Theorem 1.2 of Shao and Wang (30)
asserting

exp
(
− c1

εN/H

)
≤ P

(
sup

t∈[0,1]N
|WH(t)| ≤ ε

)
≤ exp

(
− c2

εN/H

)
.

We also mention interesting small deviation bounds in the sup–norm for stationary random fields
in (19) and (32).

One question still has to be answered when comparing Theorem 2.4 with (6.3), namely, whether
or not (6.3) may be viewed (if ψ2(λ) = c λH) as an extension of Theorem 2.4 to the limit case
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q = ∞. The answer is affirmative. If T ⊆ R
N , H > 0, then a natural generalization of (2.9) to

q = ∞ is as follows:

σ(n) = σ(H,∞)(n, T ) := inf








n∑

j=1

diam(Aj)
N




H/N

: T ⊆
n⋃

j=1

Aj





.

At a first glance, it is not clear how this quantity is related to N(ε, T ) or M(ε, T ). We will find
a connection in terms of the inverse of M( · , T ), i.e., in terms of the inner entropy numbers δn
of T defined by

δn = δn(T ) := sup {δ > 0 : ∃ t1, . . . , tn ∈ T , |ti − tj| > δ , 1 ≤ i < j ≤ n}
= inf {δ > 0 : M(δ, T ) ≤ n} .

The following proposition relates the sequences (σ(n)) and (δn).

Proposition 6.3. There are positive constants c1, c2 and an integer κ depending only on H and
N such that for T ⊆ R

N ,

c1 · nH/N · δH
κn ≤ σ(n) ≤ c2 · nH/N · δH

n . (6.7)

Proof: Let κ be any fixed integer with κ > 2N and choose t1, . . . , tκn ∈ T such that |ti− tj| ≥ δκn

for i 6= j. Then the open balls B(ti, δκn/2) are disjoint. If A1, . . . , An is any covering of T by
compact sets, then for each i ≤ κn there is a j ≤ n such that

B(ti, δκn/2) ⊆ Aj +B(0, δκn/2) .

Let VN be the volume of the N–dimensional Euclidean unit ball. Then

κn · VN · (δκn/2)
N =

κn∑

i=1

volN (B(ti, δκn/2))

= volN

(
κn⋃

i=1

B(ti, δκn/2)

)

≤ volN




n⋃

j=1

(Aj +B(0, δκn/2))




≤ VN ·
n∑

j=1

(diam(Aj) + δκn/2)
N .

By means of the elementary inequality (a+ b)N ≤ 2N (aN + bN ) (for a ≥ 0 and b ≥ 0), this yields

κn · VN · (δκn/2)
N ≤ 2N · VN ·

n∑

j=1

[
diam(Aj)

N + (δκn/2)
N
]

= 2N · VN ·
n∑

j=1

diam(Aj)
N + VN · n · δN

κn .
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Consequently,

n ·
( κ

2N
− 1
)
· 2−N · δN

κn ≤
n∑

j=1

diam(Aj)
N .

This being true for all compact coverings A1, . . . , An of T , the first inequality in (6.7) follows.

To prove the second inequality in (6.7), we take any δ > δn and a maximal number m such that
there exist t1, . . . , tm ∈ T with |ti − tj | > δ, 1 ≤ i 6= j ≤ m. From δ > δn necessarily follows

m ≤ n. Moreover, by the maximality of m we have T ⊆ ⋃m
j=1B(δ, tj). Note that σ is decreasing,

thus this implies
σ(n) ≤ σ(m) ≤ mN/H · (2 δ)H ≤ nN/H · (2 δ)H .

Since δ > δn was chosen arbitrarily, this completes the proof of (6.7). 2
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