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For real numbers C, T1, T2, ... we find all solutions µ to the stochastic

fixed point equation W
d
=
∑

j≥1
TjWj + C, where W,W1,W2, ... are

independent real-valued random variables with distribution µ and
d
=

means equality in distribution. All solutions are infinitely divisible. The

set of solutions depends on the closed multiplicative subgroup of R∗ =

R\{0} generated by the Tj . If this group is continuous, i.e. R∗ itself or

the positive halfline R+, then all nontrivial fixed points are stable laws.

In the remaining (discrete) cases further periodic solutions arise. A key

observation is that the Lévy measure of any fixed point is harmonic with

respect to Λ =
∑

j≥1
δTj , i.e. Γ = Γ ? Λ, where ? means multiplicative

convolution. This will enable us to apply the powerful Choquet-Deny

theorem.
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1. Introduction

Given a sequence C, T1, T2, ... of real-valued random variables with known joint distribu-

tion, consider the stochastic fixed point equation

W
d
=

∑

j≥1

TjWj + C, (1.1)

for i.i.d. real-valued random variables W,W1,W2, ... which are independent of (C, T ), T
def
=

(Tj)j≥1. The general goal is to determine all possible distributions of W such that (1.1) holds

true. Every such solution is called a (distributional) fixed point.

Fixed points of (1.1) turn up in a natural way as limits of recursive equations of the form

W (n+1) d
=

∑

j≥1

T
(n)
j W

(n)
j + C(n), n ≥ 0. (1.2)

Here (T (n), C(n)), W
(n)
1 ,W

(n)
2 , ... are independent random variables for each n ≥ 0. The joint

distribution of C(n) and T (n) = (T
(n)
1 , T

(n)
2 , ...) is given and converges to that of (C, T ). The

W
(n)
j ’s are copies of W (n). The first study of a recursive system of type (1.2) appears in [26]

for the sorting algorithm Quicksort which might still be the most prominent example. The

method provided in [26] which applies to general divide and conquer algorithms is based on the

contraction of the map K associated with (1.2) defined on the set of Lp probability measures

(p ≥ 1) endowed with the Mallows metric (see Section 2); [24],[27] and [30] may be consulted

for good descriptions of the method, generalizations, more examples and accounts of relevant

literature. [27] contains a systematic study of (1.1) as a contraction limit of (1.2). The results

focus on conditions for the convergence of X (n) in the Mallows metric, the existence of solutions

of (1.1), their moments and also their tail behavior. They all require at least second moments.

A very special case of equation (1.1), namely

W
d
= T1W1 + C,

has been studied in insurance mathematics under the keyword ”perpetuity”, see [10], [12],

and for related results in higher dimensions [19] (stochastic matrices) and [4] (random affine

mappings in Hilbert space). (1.1) and (1.2) are intimately connected with weighted branching

processes. For the simplest case, the Galton-Watson branching process (Zn)n≥0 with offspring

distribution (pj)j≥0 and offspring mean m, (1.2) holds true upon setting W (n) = Zn, C
(n) = 0

and T (n) = (1, ..., 1, 0, ...) with P(
∑

j≥1 T
(n)
j = k) = pk for all k, n ∈ N0. Replacing the 1’s

in T (n) with i.i.d. nonnegative random variables, we get a branching random walk which has

been studied by many authors, see e.g. [2] and [3]. In a general weighted branching process

the weight of an individual is given as the weight of the mother times an independent random

factor, see e.g. [28] for a further discussion including general C (n).

Let us also mention a number of special examples, all having C = 0. Mandelbrot [23]

introduced fractals and a class of models he called ”canonique” which lead to equations of type
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(1.1). In this context, random measures and Hausdorff dimension attracted some attention,

see [15] and [1] for results using contraction arguments. From a different perspective, Kahane

and Peyriére [18] and Guivarc’h [16] considered positive solutions of (1.1) under the restriction

of a fixed number of i.i.d. nonzero components Tj of T . Motivated by questions related to

infinite particle systems and again only for finitely many nonzero Tj , Durrett and Liggett [11]

provided a description of all nontrivial nonnegative fixed points of (1.1). Their approach relies

on monotonicity properties of the Laplace transforms which cannot be used in case of general

real-valued factors Tj . Partial extensions of their results appear in [21] and [22] under the

condition that the number of factors is random but still a.s. finite.

The purpose of this article is to study (1.1) for the case where (C, T ) is a vector of real-

valued deterministic components C, T1, T2, ..., that is when C, T1, T2, ... are just constants. We

will determine all fixed points. The major part will focus on the homogeneous case C = 0

and builds on an unpublished report by the second author [29]. The case where C 6= 0 can

then be treated rather shortly by drawing to a large extent on the findings in the homogeneous

situation. In terms of the characteristic function ϕ of W equation (1.1) with C = 0 may be

rewritten in the equivalent form

ϕ(t) =
∏

j≥1

ϕ(Tjt), t ∈ R. (1.3)

It will be shown that, trivial cases excluded, any fixed point is infinitely divisible (Prop. 4.1).

Hence we may take logarithms to obtain

logϕ(t) =
∑

j≥1

logϕ(Tjt) =

∫

logϕ(xt) Λ(dx) (1.4)

with Λ
def
=
∑

j≥1 1{Tj 6=0}δTj and δx denoting the Dirac measure at x. In a series of papers,

Davies, Shimizu, Ramachandran, Rao, and others considered (1.4) for quite general Λ under

various assumptions, see [25] for an account. They combine the integrated Cauchy functional

equation with additional arguments. Our approach is similar, but uses a stronger form of the

Choquet-Deny theorem involving characters and disintegration of measures (see the Appendix

to this paper). This simplifies the structural arguments as well as the assumptions.

Here are some explicit examples. The normal distributions with mean 0 and variance

σ2 > 0 are the unique nonzero solutions to the equation

W
d
=

W1√
2
+
W2√
2
, (1.5)

see [9], [31] and [25]. The distribution of a random variable W is called α-stable for α ∈ (0, 2]

if, for all a, b > 0, there exists d ∈ R such that

cW + d
d
= aW1 + bW2 (1.6)
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where W1,W2 are independent copies of W and c > 0 is determined through aα + bα = cα. A

symmetric α-stable distribution satisfies (1.6) for d = 0. Notice that (1.6) with d = 0 is of the

form (1.1) with T1 = a/c and T2 = b/c. Symmetric α-stable distributions have characteristic

function

ϕ(t) = exp(−c|t|α)

for some c > 0. They solve equation (1.6) as well as (1.1) with constant T1, T2, ... whenever
∑

j≥1 |Tj |α = 1. There is also a partial converse. If (1.6) holds for some a, b, c with |a/c|α +

|b/c|α = 1 and d = 0, and if the smallest closed multiplicative group generated by a, b equals

R+
def
= (0,∞) or R∗

def
= R\{0}, the solution is a stable distribution [9], [31], [25].

The condition on the generated group is necessary. Lévy (see [13, p.567]) gave an example

of a symmetric non-stable distribution solving (1.6) in the special case

W
d
=

W1

2
+
W2

2
, (1.7)

i.e. a = b = 1
2 . In this case the smallest closed multiplicative group generated by a, b is obviously

discrete. Corollary 7.5 will provide all symmetric solutions to (1.1) (and thus (1.6) with d = 0).

In our notation used there Lévy’s example corresponds to the case α = 1, β = γ = 0, c = 1,

r = 2, s = 1, and GΛ = rZ ∪ −rZ def
= {−rz, rz : z ∈ Z} where GΛ denotes the closed

multiplicative group generated by Λ =
∑

j≥1 1{Tj 6=0}δTj .

We proceed with an outline of the main necessary steps that will furnish our main results

to be presented in Section 7 (C = 0) and Section 9 (C 6= 0). Let C = 0 unless stated otherwise

and let F denote the set of all distributional fixed points of (1.1). Section 2 provides some

basic information on the map K associated with (1.1). K is defined on the set of probability

measures on R (see (2.1)), and the elements of F are the fixed points of K. Trivial cases where

all Tj have modulus 0 or 1 are discussed in Section 3 and thus excluded from the subsequent

analysis. Lemma 3.2 collects the then necessary conditions on T for the existence of nontrivial

fixed points which are thus standing assumptions throughout the rest of the article. That all

elements of F are infinitely divisible was already proved in [31] but will be reproved here for

completeness by using the weighted branching representation of a fixed point (Section 4).

The next step is to show that F contains nontrivial elements iff there exists an α ∈ (0, 2],

in fact uniquely determined, such that

∑

j≥1

|Tj |α = 1, (1.8)

see Proposition 5.1. We call α the characteristic exponent of T . One may directly check that

all symmetric α-stable distributions then belong to F as mentioned above already. However,

there may be more fixed points. To determine F completely requires to account for the closed

multiplicative subgroup of R∗ generated by Λ, that is GΛ. A key fact, first obtained for

symmetric fixed points in the proof of Proposition 5.1 and then in Lemma 8.1 for any element
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of F, is that the Lévy measure Γ of such a fixed point satisfies

Γ = Γ ? Λ (1.9)

where ? means multiplicative convolution. So Γ is Λ-harmonic which brings the powerful

Choquet-Deny theorem [6] into play. This result tells us that any Λ-harmonic ν is a mixture

over R∗/GΛ of extremal measures of the form e(s−1x)λλsGΛ(dx), where λλsGΛ denotes the Haar

measure on the coset sGΛ
def
= {sx : x ∈ GΛ}, s ∈ R∗/GΛ, and e is a character of GΛ satisfying

∫

e(x) Λ(dx) = 1. (1.10)

Though a rather abstract result in the general setting of locally compact Abelian groups (an

Appendix collects some necessary general facts) it leads to a very explicit conclusion about Γ

in the given situation because the set of characters satisfying (1.10) contains only one element,

namely e(x) = |x|−α with α the characteristic exponent of T . We arrive at the conclusion that

all nontrivial elements of F are stable laws or mixtures of certain periodic variants described in

Section 6. Given this information the fixed point equation (1.1), more precisely its characteristic

function version (1.4), boils down to an equation for the parameters of these distributions.

Our main results, which provide a complete description of F, are presented in Section 7.

They must distinguish between five different cases because there are essentially five different

closed multiplicative subgroups of R∗ that T can generate (listed in Section 5). If GΛ equals

R∗ or R+, which is the most pleasant situation, all nontrivial elements of F are α-stable laws,

thus normal distributions if α = 2. However, further fixed points of periodic type may occur

if GΛ is discrete. Proofs are presented in Section 8. The case C 6= 0 is treated in Section

9. This can be done by a straightforward reduction to the homogeneous case (Theorem 9.2)

whenever
∑

j≥1 Tj ∈ R\{1}. If ∑j≥1 Tj equals 1 or does not exist in R there may be no fixed

points at all (Theorem 9.3). The final Section 10 contains a brief discussion of the associated

multiplicative random walk associated with T . The latter was used in [11] for the determination

of all solutions to (1.1) for the case where C = 0 and T consists of a finite fixed number of

positive random variables.

2. The fixed point equation and some properties

Let Tj , j ≥ 1, be given real numbers and define the map K on the set of probability

measures on R by

K(µ)
def
= L

(

∑

j≥1

TjWj

)

(2.1)

where the random variables W1,W2, ... are independent with distribution µ and where L(X)

means the distribution of a random variable X. The infinite sum need not exist but if it does

it is understood in the sense of convergence in distribution of the finite sums
∑n

j=1 TjXj as

n→∞. Since these are sums of independent random variables the convergence actually holds
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true a.s., see e.g. [7, p. 292]. Denote by D(K) the domain of K, i.e. the set of all probability

distributions µ for which K(µ) is well defined.

As usual, denote by ∗ the convolution of measures on the additive group R. The domain

D(K) is closed under ∗ because one can easily see that

K(µ ∗ ν) = K(µ) ∗K(ν) (2.2)

for all µ, ν ∈ D(K). K further commutes with the reflection operator R defined as R(µ) =

L(−X) where X has distribution µ. So we have

KR = RK, (2.3)

and the domain D(K) is closed under the operator R.

Our purpose is to completely describe the set of fixed points of K, that is of

F
def
= {µ ∈ D(K) : µ = K(µ)}

or, equivalently, the set F̂ of associated characteristic functions. The point measure at 0 is a

trivial fixed point.

Lemma 2.1. The set F is closed under convolution and reflection.

Proof. Given two fixed points µ, ν, we infer with the help of (2.2) and (2.3) that

K(µ ∗ ν) = K(µ) ∗K(ν) = µ ∗ ν and KR(µ) = RK(µ) = µ, respectively. ♦

As an immediate consequence we note:

Corollary 2.2. If µ is a fixed point then the same holds true for its symmetrization

µs
def
= µ ∗R(µ).

In the following we will write the fixed point equation K(µ) = µ in terms of random

variables, that is in the form (1.1) with C = 0:

W
d
=

∑

j≥1

TjWj , (2.4)

where W,W1,W2, ... have distribution µ. If

ϕ(t) = ϕW (t)
def
= E(eitW ) =

∫

eitx µ(dx)

denotes the characteristic function of W (or µ) then (2.4) is equivalent to

ϕ(t) =
∏

j≥1

ϕ(Tjt), t ∈ R. (2.5)
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The right hand side is necessarily well defined as the limit of
∏n

j=1 ϕ(Tjt) by Lévy’s continuity

theorem. We note that the order of summation or multiplication in (2.4), respectively (2.5)

is fixed and can in fact be crucial in cases where
∑n

j=1 Tj converges to a finite limit while
∑

j |Tj | =∞.

3. Trivial cases

We already noted after the definition of F that µ = δ0 is always a fixed point of K. How-

ever, there may be more such trivial solutions under special assumptions on T = (T1, T2, ...).

We call µ ∈ F trivial if µ = δc for some c in which case the characteristic function equals

ϕ(t) = eict. For example, µ is trivial if the smallest closed additive group generated by

{t ∈ R : |ϕ(t)| = 1} is R itself [20, Cor. 2 to Thm. 2.1.4]. We will next briefly show that the

trivially cases are those where the Tj take values only in {−1, 0, 1}.

Proposition 3.1. Suppose that all Tj are in {−1, 0, 1}.
(a) If |{j : Tj 6= 0}| 6= 1 then there exist only trivial solutions.

(b) If |{j : |Tj | = 1}| = |{j : Tj = 1}| = 1 then every distribution is a fixed point.

(c) If |{j : |Tj | = 1}| = |{j : Tj = −1}| = 1 then F consists of all symmetric distributions.

Proof. If all Tj are 0 there is nothing to prove (F = {δ0}). Given the assumption of

(a), the estimate

|ϕ(t)| ≤
∏

j≥1

|ϕ(Tjt)| =
∏

j:|Tj |=1

|ϕ(Tjt)| ≤ |ϕ(t)|2, t ∈ R

implies that |ϕ(t)| is either 0 or 1 for every t, hence |ϕ| ≡ 1 because ϕ is continuous. This

shows µ = δc for some c. The proofs of (b) and (c) are easy and thus omitted. ♦

Assuming that not all Tj are in {−1, 0, 1}, we finally prove that the existence of a non-

trivial fixed point not only implies that there must be nonzero Tj with modulus 6= 1 but that

in fact all nonzero Tj must have modulus less than 1 and that there are at least two of them.

Lemma 3.2. Suppose that not all Tj are in {−1, 0, 1}. If there exists a nontrivial fixed

point then supj≥1 |Tj | < 1, limj→∞ Tj = 0 and
∑

j≥1 1{Tj 6=0} ≥ 2.

Proof. Let ϕ be the characteristic function of a nontrivial fixed point µ. We first prove

that supj≥1 |Tj | ≤ 1. Indeed, if |Tj | > 1 for some j, then, by (2.5), |ϕ(t)| ≤ |ϕ(Tjt)| for all t

which inductively implies |ϕ(t)| ≥ |ϕ(t/T nj )| → ϕ(0) = 1 as n→∞. Hence |ϕ| ≡ 1 and µ must

be trivial.

Now suppose that supj≥1 |Tj | = 1. If |Tj | = 1 for some j ∈ N, w.l.o.g. j = 1, then (2.5)

implies |ψ(t)| = 1 for all t ∈ {ϕ 6= 0}, where ψ(t) def= ∏

j≥2 ϕ(Tjt). Since {ϕ 6= 0} ⊃ [−ε, ε]
for some ε > 0 we infer |ψ| ≡ 1 on [−ε, ε] and then everywhere because ψ is a ch.f. (use Cor.
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2 on p. 298 in [7]). This yields the contradiction |ϕ| ≡ 1. If all nonzero Tj have modulus

less than 1 choose an infinite subsequence (Tj(k))k≥1 with |Tj(k)| → 1. Then, by continuity,

limk→∞ |ϕ(Tj(k)t)| = |ϕ(t)| which in turn implies |ϕ(Tj(k)t)| ≤ |ϕ(t)|+ε < 1 for infinitely many

k and some suitable ε > 0, whenever |ϕ(t)| < 1. By another appeal to (2.5) we thus conclude

|ϕ(t)| ≤
∏

k≥1

|ϕ(Tj(k)t)| = 0 (3.1)

for all t with |ϕ(t)| < 1, i.e. |ϕ| is 0-1-valued. But this leads once again to the contradiction

|ϕ| ≡ 1 because ϕ is continuous. So we have proved supj≥1 |Tj | < 1.

If c
def
= lim supj→∞ |Tj | > 0 let (Tj(k))k≥1 be a subsequence with |Tj(k)| → c and infer

limk→∞ |ϕ(Tj(k)t)| = |ϕ(ct)| for all t. Again (3.1) follows, now for all t with |ϕ(ct)| < 1, and

leads once more to the contradicting conclusion |ϕ| ≡ 1. So limj→∞ Tj = 0.

Finally, it is immediately seen that
∑

j≥1 1{Tj 6=0} = 1 in combination with supj≥1 |Tj | < 1

implies F = {δ0} and thus that there can be no nontrivial solution. ♦

4. The weighted branching representation and infinite divisibility

In this section we will show, under the assumption supj≥1 |Tj | < 1, that any fixed point

of K is infinitely divisible. For this and later purposes we next give a brief description of the

weighted branching process associated with equation (2.1).

Let V be the infinite tree with vertex set ∪n≥0Nn where N0 def
= {∅}. Each vertex v =

(v1, ..., vn), which we also write as v1v2...vn, is uniquely connected to the root ∅ by the path

∅ → v1 → v1v2 → ...→ v of length |v| = n. Put L(∅) def= 1 and define

L(v) = Tv1Tv2 · ... · Tvn .

for any v = v1...vn ∈ V of length n ≥ 1. Then L(v) gives the total weight of the unique path

from the root to v under multiplication. Now let X(v), v ∈ V, be i.i.d. random variables with

common distribution µ and define

Wn =
∑

|v|=n

L(v)X(v) (4.1)

for n ≥ 0. The notation
∑

|v|=n suggests that the order of summation does not matter.

However, this may not be true because our assumptions will not guarantee that the L(v)X(v)

are absolutely summable. In such cases we stipulate that the summation is to be understood

in lexicographic order:
∑

|v|=n =
∑

v1≥1
...
∑

vn≥1
. Indeed, this is the right summation when

iterating equation (2.1), see (4.3) below.

(Wn)n≥0 forms a stochastic sequence called weighted branching process. It satisfies the

backward equation

Wn+1 =
∑

j≥1

TjWn,j (4.2)
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where the Wn,j =
∑

|v|=n
L(jv)
Tj

X(jv), j ≥ 1, are i.i.d. copies of Wn. This shows that K
n(µ) =

L(Wn) for each n ≥ 0. In particular, all Wn have distribution µ if µ is a fixed point of K.

Under this assumption it is now easily seen that an n-fold iteration of equation (2.1) takes the

form

W
d
=

∑

|v|=n

L(v)W (v) (4.3)

for every n ∈ N where the W (v), |v| = n, are i.i.d. copies of W . This representation will be

used in the proof of Proposition 4.1 below.

A probability measure µ as well as its characteristic function ϕ (or a random variable

X with L(X) = µ) is called infinitely divisible if for each n ∈ N there exists a characteristic

function ϕn such that ϕ = ϕnn. Equivalently, µ can be decomposed as the n-fold convolution

of a probability measure µn having characteristic function ϕn for each n.

A triangular scheme is an array of random variables Yj,k, j ∈ N and 1 ≤ k ≤ kj for some

kj ∈ N. It is called independent if the rows consist of independent random variables, and it is

called infinitesimal or asymptotically negligible if

lim
j→∞

sup
1≤k≤kj

P(|Yj,k| ≥ ε) = 0

for any ε > 0. The connection with infinite divisibility is the following: The distributional limit

of the row sums of any independent infinitesimal triangular scheme is necessarily inifinitely

divisible (if the limit exists), see e.g. [14]. This is the crucial fact to be used in the proof of the

following result concerning the fixed points of K given by (2.1).

Proposition 4.1. Suppose supj≥1 |Tj | < 1. Then every solution to the fixed point

equation (2.4) is infinitely divisible.

Proof. Since trivial solutions are cleary infinitely divisible assume there is a nontrivial

solution µ and suppose W
d
= µ. Then W satisfies (4.3) which implies that for each n ≥ 1 we

find a finite set Vn ⊂ {v ∈ V : |v| = n} such that

∑

v∈Vn

L(v)W (v)
d→ µ (n→∞)

where
d→ means convergence in distribution. Observe that the L(v)W (v), v ∈ Vn and n ∈ N,

form an independent infinitesimal triangular scheme with row sums
∑

v∈Vn
L(v)W (v). It is

asymptotically negligible because |L(v)| ≤ (supj≥1 |Tj |)n if |v| = n. Hence we conclude the

asserted infinite divisibility of µ from the result stated above. ♦

The Lévy representation for an infinitely divisible distribution µ states that the logarithm

of its characteristic function ϕ has a unique integral representation of the form

logϕ(t) = iγt− σ2t2

2
+

∫

(

eitu − 1− itχ(u)
)

Γ(du). (4.4)
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Here γ ∈ R, σ2 ≥ 0, χ(u)
def
= u1[−1,1](u) + 1(1,∞)(u) − 1(−∞,−1)(u) is the truncated (at ±1)

identity function and Γ a not necessarily finite measure on R∗, called Lévy measure associated

with µ (or ϕ). Γ satisfies
∫

(u2 ∧ 1) Γ(du) < ∞. (4.5)

See [14] for different representations and [17] for an approach via Choquet representation theory.

In the situation of Proposition 4.1 where µ is a fixed point we further have for all u > 0

Γ([−u, u]c) = lim
n→∞

∑

|v|=n

P(|W | > u/|L(v)|), W
d
= µ, (4.6)

see [5, Lemma 6]. Note that, if µ is symmetric, then γ = 0 and Γ is also symmetric whence

(4.4) simplifies to

logϕ(t) = −σ
2t2

2
−
∫

(1− cos(tu)) Γ(du). (4.7)

5. The characteristic exponent of T = (T1, T2, ...)

Throughout the remainder of this article we always assume that T = (T1, T2, ...) satisfies

0 < sup
j≥1

|Tj | < 1, lim
j→∞

Tj = 0 and
∑

j≥1

1{Tj 6=0} ≥ 2. (A)

This is justified because, by Lemma 3.2, nontrivial fixed points of K exist only under this

condition when excluding the trivial cases discussed in Proposition 3.1.

Define the function m : [0,∞)→ (0,∞] by

m(β)
def
=
∑

j≥1

|Tj |β1{Tj 6=0} (5.1)

and note that m(0) =
∑

j≥1 1{Tj 6=0} ≥ 2. It follows from assumption (A) that m is strictly

decreasing on {β ≥ 0 : m(β) <∞}. Consequently, there exists at most one α with m(α) = 1.

It is positive because m(0) ≥ 2. We call this α the characteristic exponent of T hereafter and

will next show that it always exists in (0, 2] whenever K has nontrivial fixed points.

Proposition 5.1. Suppose (A) and that F contains a nontrivial element. Then the

characteristic exponent α of T exists and is an element of (0, 2].

Remark. If (A) holds but F = {δc : c ∈ R} then the characteristic exponent α of T may

be > 2 or not even exist. As an example for the first situation take T1 = −T2 = 2
3 , T3 = T4 =

1
2

and Ti = 0, otherwise. Then
∑

j≥1 Tj = 1 ensures δc ∈ F for c ∈ R, while m(3) < 1 < m(2)

implies 2 < α < 3. An example where α does not exist is given by Tj = (−1)j+1 1k for

2k−1 ≤ j < 2k and k ≥ 1. Indeed,
∑

j≥1 Tj = 1 again holds true, but

m(β) =
∑

k≥1

2k−1k−β = ∞
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for every β > 0.

Before we can proceed with the proof some important facts must be collected. Recall

that Λ =
∑

j≥1 1{Tj 6=0}δTj and GΛ denotes the closed multiplicative subgroup of R∗ generated

by Λ. There are five possible cases:

(C1) GΛ = R∗.

(C2) GΛ = R+.

(D1) GΛ = rZ ∪ −rZ for some r > 1, where rZ def
= {rz : z ∈ Z}.

(D2) GΛ = rZ for some r > 1.

(D3) GΛ = (−r)Z for some r > 1.

Notice that condition (A) excludes the trivial subgroups {−1, 1} and {1}. The Haar measure

(unique up to multiplicative constants), denoted as λλGΛ hereafter, equals |u|−1du in the con-

tinuous cases (C1) and (C2), and counting measure in the discrete ones. Let E(GΛ) be the set

of characters of GΛ, that is the set of all continuous positive functions e : GΛ → R+ satisfying

e(xy) = e(x)e(y)

for all x, y ∈ GΛ. Of particular interest for our purposes is the subset

E1(Λ)
def
=

{

e ∈ E(GΛ) :

∫

e(x−1) Λ(dx) = 1

}

.

It is not difficult to check that in all five cases the characters are given by the functions

el(x)
def
= |x|−l, l ∈ R, so E(GΛ) = E is independent of Λ. Moreover, we infer upon noting

∫

el(x
−1) Λ(dx) =

∑

j≥1 |Tj |l = m(l) that, under (A), E1(Λ) is either void or consists of the

single element eα, α the characteristic exponent of T .

Now consider a Radon measure µ on R∗ and suppose that µ is Λ-harmonic, defined by

µ = µ ? Λ. Here ? means multiplicative convolution, that is

∫

f(x) µ ? Λ(dx)
def
=

∫ ∫

f(xy) µ(dx) Λ(dy)

for any measurable f : GΛ → [0,∞). The set of all Λ-harmonic measures is a convex cone. By

the Choquet-Deny theorem which we state in an Appendix at the end of the paper we infer

that any nonzero Λ-harmonic µ has a unique integral representation

µ =

∫

µe(y
−1·) µ(de, dy)

where µe(dx)
def
= e(x)λλGΛ(dx) for e ∈ E and µ is a finite measure on E1(Λ)×R∗/GΛ endowed

with the Baire σ-field. If E1(Λ) = ∅ there is no Λ-harmonic measure. Otherwise, E1(Λ) = {eα}
so that µ must equal c(δeα ⊗ µ̃) for some probability measure µ̃ on the factor group R∗/GΛ
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and a c > 0. This means that

µ(dx) =

∫

c

∣

∣

∣

∣

x

y

∣

∣

∣

∣

−α

λλyGΛ(dx) µ̃(dy). (5.2)

Of course, if GΛ = R∗ then R∗/GΛ = {1}, µ̃ = δ1 and thus

µ(dx) = c|x|−αλλR∗(dx) = c|x|−α−1dx (5.3)

for some c > 0. If GΛ = R+ then R∗/GΛ = {−1, 1}, µ̃ = bδ−1 + (1 − b)δ1 for some b ∈ [0, 1]

and thus

µ(dx) = (c11(−∞,0)(x) + c21(0,∞)(x))|x|−α−1dx (5.4)

for some c1, c2 ≥ 0 with c1 + c2 > 0.

Proof of Proposition 5.1. Let µ be a nontrivial fixed point with characteristic

function ϕ. Since µ ∈ F implies µs = µ ∗ R(µ) ∈ F (Corollary 2.2) it is no loss of generality

to assume that µ is symmetric with nonnegative ϕ. Using (2.5) and the Lévy representation

(4.7) we infer the equation

σ2t2

2
+

∫

(1− cos(tu)) Γ(du) = − logϕ(t) = −
∑

j≥1

logϕ(Tjt)

=
σ2t2

∑

j≥1 T
2
j

2
+

∫

∑

j≥1

(1− cos(Tjtu)) Γ(du)

(5.5)

for all t ∈ R with unique σ2 ≥ 0 and Lévy measure Γ. Note that the last expression exists as

the limit of the nondecreasing sequence 1
2σ

2t2
∑n

j=1 T
2
j +

∫
∑n

j=1(1− cos(Tjtu)) Γ(du), n ∈ N.

We conclude that either σ2 > 0 in which case m(2) =
∑

j≥1 T
2
j = 1 (thus α = 2), or σ2 = 0

and (5.5) reduces to

∫

(1− cos(tu)) Γ(du) =

∫

∑

j≥1

(1− cos(Tjtu)) Γ(du) =

∫

(1− cos(tu)) Γ ? Λ(du) (5.6)

for all t ∈ R, in particular
∫

[−ε,ε]

u2 Γ ? Λ(du) ≤ 4

∫

(1− cos(u)) Γ ? Λ(du) < ∞ (5.7)

for sufficiently small ε > 0. With the help of (4.6), we also have

Γ ? Λ([−ε, ε]c) =
∑

j≥1

Γ

([ −ε
|Tj |

,
ε

|Tj |

])

= lim
n→∞

∑

j≥1

∑

|v|=n

P
(

|W | > ε

|TjL(v)|

)

, W
d
= µ,

= lim
n→∞

∑

|v|=n+1

P
(

|W | > ε

|L(v)|

)
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= Γ([−ε, ε]c) < ∞.

By combining this with (5.7) we see that Γ ? Λ is also a Lévy measure, and the uniqueness of

Γ entails

Γ = Γ ? Λ (5.8)

and therefore, by (5.2), that

Γ(du) =

∫

c

∣

∣

∣

∣

y

u

∣

∣

∣

∣

α

λλyGΛ(du) Γ̃(dy) (5.9)

for some c > 0 and a probability measure Γ̃ on R∗/GΛ. The number α > 0 is the unique

characteristic exponent of T , and it satisfies α < 2 because

∞ >

∫

[−1,1]

u2 Γ(du) = c

∫

R∗/GΛ

∫

[−1,1]

|u|2−α λλyGΛ(du) |y|αΓ̃(dy)

in any of the five cases for GΛ mentioned above. ♦

6. Stable and sG-stable distributions

An infinitely divisible distribution µ is called stable if the set

{µ(a−1·) ∗ δb : a > 0, b ∈ R} (6.1)

is closed with respect to additive convolution ∗. This is just an equivalent formulation of

property (1.6) stated in the Introduction. The characteristic function ϕ of a stable distribution

has the representation

logϕ(t) = iγt− c|t|α(1 + iβ sgn(t)ω(t, α)), (6.2)

where α ∈ (0, 2] is the so-called index of µ, β ∈ [−1, 1], γ ∈ R, c ≥ 0 are further parameters,

sgn(t) denotes the sign of t (sgn(0)
def
= 0), and

ω(t, α)
def
=







tan(απ/2), if α 6= 1,

2

π
log |t|, if α = 1.

The Lévy measure Γ of µ is the null measure in case α = 2 and equals

Γ(dx) =
(

c11(−∞,0)(x) + c21(0,∞)(x)
)

α|x|−α−1dx (6.3)

otherwise. Here c1, c2 are nonnegative number satisfying c1+ c2 > 0 and β = c1−c2
c1+c2

. Moreover,

c =



























−(c1 + c2) cos(απ/2)
∫∞

0
(e−x − 1)x−α−1 dx, if α ∈ (0, 1),

(c1 + c2)π/2, if α = 1,

−(c1 + c2) cos(απ/2)
∫∞

0
(e−x − 1 + x)x−α−1 dx, if α ∈ (1, 2),

σ2/2, if α = 2.
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The representation (6.2) is unique unless α = 2 or c = 0 in which case β is arbitrary.

For the continuous cases (C1) and (C2) where the subgroup GΛ generated by Λ is uncount-

able we will see in the next section that all nontrivial fixed points of K are stable distributions.

However, fixed points of a more general type occur when GΛ is discrete (cases (D1-3)). The

following notion of a sG-stable distribution provides an appropriate class for these additional

solutions. Here G is an infinite closed multiplicative subgroup of R∗, s an element of the factor

group R∗/G and sG the usual coset {sx : x ∈ G}. Recall that λλsG equals |u|−11sG(u)du if G

is continuous and counting measure on sG if G is discrete.

Definition 6.1. Given G and s as just stated, an infinitely divisible distribution µ

with characteristic function ϕ is called sG-stable with index α ∈ (0, 2) if

logϕ(t) = iγt+ c

∫

(

eistu − 1− itχ(su)
)

|u|−αλλG(du) (6.4)

for some γ ∈ R and c > 0.

One can immediately check that if G equals R∗ itself and thus s = 1 then the G-stable

distributions are just the ordinary symmetric stable distributions with index α ∈ (0, 2). If

G = R+ then s ∈ {−1, 1} and the sG-stable distributions are the one-sided stable distributions

concentrated either on R+ or R−. However, if G is one of the discrete subgroups listed in (D1-

3) the sG-stable distributions are no longer stable. On the other hand, the set defined in (6.1),

but with a ∈ rN, is again closed under additive convolution for any sG-stable distribution µ.

Furthermore, if X
d
= µ then rX is rsG-stable with rs computed modulo G. Note finally that

an sG-stable distribution is symmetric iff γ = 0 and G = −G, thus G = R∗ or G = rZ ∪ −rZ

for some r > 1. In this case (6.4) simplifies to

logϕ(t) = c

∫

(cos(su)− 1)|u|−αλλG(du) (6.5)

for some c > 0.

In the discrete cases (D1-3) mixtures of sGΛ-stable distributions will arise as additional

solutions of the fixed point equation K(µ) = µ.

7. Main Results

We are now in the position to present our main results. The following theorems provide a

full description of all nontrivial solutions to K(µ) = µ in the possible cases (C1-2) and (D1-3).

They are given in terms of their charactersistic function which amounts to a description of F̂.

Condition (A) will be in force throughout and α always denotes the characteristic exponent of

T . Let us stipulate hereafter that
∑

j≥1 Tj 6= 1 can mean limn→∞

∑n
j=1 Tj 6= 1 or that this

limit does not exist at all.
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Theorem 7.1. (GΛ = R∗). Let R∗ be the smallest closed multiplicative subgroup gen-

erated by the Tj.

(a) If α ∈ (0, 1], or if α ∈ (1, 2] and
∑

j≥1 Tj 6= 1, then

F̂ = {exp(−c|t|α) : c ≥ 0},

i.e. the nontrivial fixed points of K are exactly the symmetric stable laws of index α.

(b) If α ∈ (1, 2] and
∑

j≥1 Tj = 1 then

F̂ = {exp(iγt− c|t|α) : c ≥ 0, γ ∈ R},

i.e. the nontrivial fixed points of K are exactly the symmetric stable laws of index α plus

a shift γ.

Theorem 7.2. (GΛ = R+). Let R+ be the smallest closed multiplicative subgroup gen-

erated by the Tj.

(a) If α = 1 then

F̂ = {exp(iγt− c|t|) : c ≥ 0, γ ∈ R},

i.e. the nontrivial fixed points are the symmetric stable laws with index 1 plus a shift.

(b) If α ∈ (0, 1) ∪ (1, 2) then

F̂ = {exp(−c|t|α(1 + iβ sgn(t)ω(t, α))) : c ≥ 0, β ∈ [−1, 1]},

i.e. the nontrivial fixed points of K are exactly the stable laws of index α with γ = 0.

(c) If α = 2 then

F̂ = {exp(−σ2t2/2) : σ2 ≥ 0},

i.e. the nontrivial fixed points of K are exactly the normal distributions with mean 0.

The next theorem provides a complete description of the fixed points of K (in terms

of their characteristic functions) for discrete GΛ, but without a distinction of the three cases

(D1-3). A specialization to these follows in a subsequent corollary. Let us note that we have

• R∗/(rZ ∪ −rZ) ' [1, r) if r > 1 in Case (D1).

• R∗/rZ ' (−r,−1] ∪ [1, r) for all r > 1 in Case (D2).

• R∗/(−r)Z ' (−r,−1] ∪ [1, r) for all r > 1 in Case (D3).

Here ' means isomorphic equality.

Theorem 7.3. (GΛ discrete). Let the smallest closed multiplicative subgroup generated

by the Tj be one of the discrete subgroups listed in (D1-3).

(a) If α ∈ (0, 2) then F̂ consists of all ϕ of the form

ϕ(t) = exp
(

itγ + c
∫∫

(eitsu − 1− itχ(su)) |u|−α λλGΛ(du) ν(ds)
)

, t ∈ R, (7.1)
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where the probability measure ν on R∗/GΛ and the constants c ≥ 0, γ ∈ R are subject to

the following contraint: If

Fs,c(x)
def
= c

∫

(xχ(su)− χ(xsu)) |u|−α λλGΛ(du) (7.2)

for x ∈ [−1, 1], then

γ = lim
n→∞

n
∑

j=1

(

γTj +
∫

Fs,c(Tj) ν(ds)
)

. (7.3)

(b) If α = 2, then

F̂ = {exp(itγ − σ2t2/2) : σ2 ≥ 0, γ ∈ R},
in case

∑

j≥1 Tj = 1, and

F̂ = {exp(σ2t2/2) : σ2 ≥ 0},

in case
∑

j≥1 Tj 6= 1. So the nontrivial fixed points of K are the normal distributions if
∑

j≥1 Tj = 1, and the centered normal distributions otherwise.

Let F be the set of all triples (γ, c, ν) for which (7.3) holds true. Then, for the discrete

case, Theorem 7.3 provides us in principle with a complete description of F (or F̂) in terms of

F (which is one to one unless c = 0 in which case the triple (γ, 0, ν) pertains to ϕ(t) = eiγt

regardless of ν). On the other hand, the appearing condition (7.3) naturally demands for

further examination. Doing so while considering the cases (D1-3) separately, one is led to a

more explicit description of F stated as Theorem 7.4 below.

Let MΛ be the set of probability measures ν on R∗/GΛ (when identified with the subsets

of R∗ given before Theorem 7.3) and Ms
Λ the subset of symmetric ν. Note that Ms

Λ is empty in

Case (D1) because then R∗/GΛ ⊂ R+. For the Cases (D2) and (D3) we further need the class

M0
Λ consisting of all centered ν ∈ MΛ, if α = 1, and otherwise of those ν ∈ MΛ satisfying,

respectively,
∫

sgn(s)|s|αB(s) ν(ds) = 0 and
∫

sgn(s)|s|α∆(s) ν(ds) = 0, where the bounded

and even functions B and ∆ are defined in (8.5) and (8.8) of the next section. Notice that

Ms
Λ ⊂M0

Λ holds in any case.

Theorem 7.4. Let α ∈ (0, 2) and the smallest closed multiplicative subgroup generated

by the Tj be one of the discrete subgroups listed in (D1-3).

(a) Suppose (D1) holds. If

(i) α > 1 and
∑

j Tj = 1, then F = R× [0,∞)×MΛ, that is, F consists of all mixtures

of sGΛ-stable distributions.

(ii) α ≤ 1 or
∑

j Tj 6= 1, then F = {0}× [0,∞)×MΛ, that is, F consists of all mixtures

of symmetric sGΛ-stable distributions (including trivial solutions where c = 0).

(b) Suppose (D2) holds in which case all Tj are nonnegative. If

(i) α = 1, thus
∑

j Tj = 1, then F = R× [0,∞)×M0
Λ.
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(ii) α 6= 1, then for each pair (c, ν) ∈ [0,∞) ×MΛ there exists exactly one γ such that

(γ, c, ν) ∈ F.

(c) Suppose (D3) holds. If

(i) α = 1, or α 6= 1 and
∑

j Tj =
∑

j sgn(Tj)|Tj |α, then F = {0} × [0,∞)×MΛ.

(ii) α 6= 1 and
∑

j Tj = 1, then F = R× [0,∞)×M0
Λ.

(iii) α 6= 1 and
∑

j Tj exists in R∪{±∞} but does not equal
∑

j sgn(Tj)|Tj |α or 1, then

for each pair (c, ν) ∈ (0,∞)×MΛ there exists exactly one γ such that (γ, c, ν) ∈ F.

(iv) α > 1 and
∑

j Tj does not exist, then F = {0} × [0,∞)×M0
Λ.

Remark. It should be clear that the fixed points provided in Theorem 7.1 for the case

GΛ = R∗ (under respective conditions on α and T ) remain to be fixed points for any discrete

subgroup GΛ. They are obtained when choosing ν as the uniform distribution on R∗/GΛ. If

GΛ is also a subgroup of R+ (Case (D2)) the same holds true for the fixed points given in

Theorem 7.2. These are obtained by choosing ν as a mixture of uniform distributions on the

two congruent connected components of R∗/GΛ.

A description of the set Fs of symmetric fixed points of K or, equivalently, the associated

set F̂s of characteristic functions is easily derived from the previous results and thus summarized

without proof in the subsequent corollary. As for the discrete cases, we only note that ϕ of the

form (7.1) belongs to F̂s iff γ = 0 and at least one of λλGΛ and ν is symmetric. Plainly, λλGΛ is

symmetric in the case (D2) where GΛ = rZ ∪ −rZ for some r > 1.

Corollary 7.5. (Symmetric fixed points).

(a) If α = 2 then, regardless of GΛ, F̂s = {exp(σ2t2/2) : σ2 ≥ 0}, i.e. the nontrivial symmet-

ric fixed points are the centered normal distributions.

(b) If α ∈ (0, 2) and GΛ equals R∗ or R+, then F̂s = {exp(−c|t|α) : c ≥ 0}, i.e. the nontrivial

symmetric fixed points are the symmetric stable laws of index α.

(c) If α ∈ (0, 2) and GΛ = rZ ∪ −rZ for some r > 1, then

F̂s = {exp(−c
∫∫

(1− cos(stu))|u|−αλλGΛ(du) ν(ds)) : c ≥ 0, ν ∈MΛ},

i.e. the nontrivial symmetric fixed points are the mixtures of symmetric sGΛ-stable dis-

tributions.

(d) If α ∈ (0, 2) and GΛ equals rZ or (−r)Z for some r > 1, then

F̂s = {exp(−c
∫∫

(1− cos(stu))|u|−αλλGΛ(du) ν(ds)) : c ≥ 0, ν ∈Ms
Λ}

i.e. the nontrivial symmetric fixed points are the symmetric mixtures of sGΛ-stable dis-

tributions.

Remark. Let us point out that in cases where
∑

j Tj exists in R while
∑

j |Tj | = ∞,

the set F may depend on the order of summation of the Tj . It is indeed a well known fact
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in such a situation that for each x ∈ R we can find a rearrangement Tπ(1), Tπ(2), ... satisfying
∑

j Tπ(j) = x. But our results show that the set of fixed points belonging to a rearrangement

π with
∑

j Tπ(j) = 1 generally differs from the corresponding set when
∑

j Tπ(j) = x 6= 1.

8. Proofs

In the proof of Proposition 5.1 we were led to the conclusion that the Lévy measure Γ

of any nontrivial symmetric fixed point µ satisfies Γ = Γ ? Λ where ? denotes multiplicative

convolution, see (5.8). Lemma 8.1(c) shows this be true for any nontrivial fixed point and

provides us with the key to determine Γ by an application of the powerful Choquet-Deny

theorem (see (5.9) for symmetric µ).

Lemma 8.1. Let ϕ be the characteristic function of any infinitely divisible distribution

µ with Lévy-Khinchine representation (4.4). Put Λn
def
=
∑n

j=1 1{Tj 6=0}δTj for n ≥ 1. Then µ

is a fixed point of K iff the following conditions hold true:

(a) As n→∞,

γn
def
= γ

∫

xΛn(dx) +

∫∫

(xχ(u)− χ(xu)) Γ(du) Λn(dx) → γ. (8.1)

(b) Either σ2 = 0, or σ2 > 0 and m(2) =
∑

j≥1 T
2
j = 1 (thus α = 2).

(c) The Lévy measure is Λ-harmonic, i.e. Γ = Γ ? Λ.

Proof. The ”only if-part” is easily obtained by checking that any ϕ that meets the

conditions in (a-c) satisfies the fixed point equation (1.4). So we can immediately proceed with

the proof of the ”if-part”.

Obviously, trivial fixed points must satisfy the asserted conditions so that we may focus

on nontrivial ones. Given the characteristic function ϕ of any nontrivial fixed point with

Lévy-Khinchine representation (4.4), let Γs be the Lévy measure of its symmetrization µs.

We have Γs(du) = Γ(du) + Γ(−du) and Γs = Γs ? Λ, the latter being true by (5.8) because µs

is symmetric. It follows that

∫

(u2 ∧ 1) Γ ? Λn(du) ≤
∫

(u2 ∧ 1) Γ ? Λ(du) ≤
∫

(u2 ∧ 1) Γs ? Λ(du) < ∞. (8.2)

for all n ≥ 1. By combining (2.5) with the Lévy-Khinchine representation of ϕ we get

logϕ(t) = itγ − σ2t2

2
+

∫

(eitu − 1 + itχ(u)) Γ(du)

= lim
n→∞

n
∑

j=1

logϕ(Tjt) = lim
n→∞

∫

logϕ(xt) Λn(dx)

= lim
n→∞

(

itγ

∫

xΛn(dx)−
σ2t2

2

∫

x2 Λn(dx)
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+

∫∫

(eitxu − 1 + itxχ(u)) Γ(du) Λn(dx)

)

= lim
n→∞

(

it

(

γ

∫

xΛn(dx) +

∫∫

(xχ(u)− χ(ux)) Γ(du) Λn(dx)
)

− σ2t2

2

∫

x2 Λn(dx) +

∫∫

(eitxu − 1 + itχ(xu)) Γ(du) Λn(dx)

)

= lim
n→∞

(

itγn −
σ2t2

2

∫

x2 Λn(dx) +

∫

(eitu − 1 + itχ(u)) Γ ? Λn(du)

)

(8.3)

for all t ∈ R. Since Γ ? Λn converges weakly to Γ ? Λ, |eitu − 1 + itχ(u)| ≤ Ctt(u
2 ∧ 1) for all

u, t ∈ R and suitable constants Ct > 0, and by (8.2) we infer

lim
n→∞

∫

(eitu − 1 + itχ(u)) Γ ? Λn(du) =

∫

(eitu − 1 + itχ(u)) Γ ? Λ(du)

Moreover, m(2) =
∑

j≥1 T
2
j ≤ 1 ensures

lim
n→∞

σ2t2

2

∫

x2 Λn(dx) =
σ2t2

2
m(2).

Consequently, γn also converges to some γ′ ∈ R as n→∞. Returning to (8.3) this yields

itγ − σ2t2

2
+

∫

(eitu − 1 + itχ(u)) Γ(du)

= itγ′ − σ2t2

2
m(2) +

∫

(eitu − 1 + itχ(u)) Γ ? Λ(du).

for all t ∈ R. The uniqueness of the Lévy-Khinchine representation finally implies that γ = γ ′,

σ2 = 0 or m(2) = 1, and Γ = Γ ? Λ. ♦

Proof of Theorem 7.1. It is easily checked that all elements of F̂ as asserted pertain

to fixed points of K for the respective cases. So we must conversely show that there are no

other ones. To that end let µ be any fixed point of K with characteristic function ϕ having

Lévy-Khinchine representation (4.4). Since GΛ = R∗ and Γ is Λ-harmonic, we have by (5.3)

that Γ(du) = c|u|−α−1du for some c ≥ 0.

Suppose first α = 2. Then ∞ >
∫ 1

−1
u2 Γ(du) = c

∫ 1

−1
|u|−1 du entails c = 0, thus Γ ≡ 0.

Since µ is nontrivial we must further have σ2 > 0. With this at hand, condition (8.1) in Lemma

8.1 simplifies to

0 = lim
n→∞

γ

(
∫

xΛn(dx)− 1

)

= lim
n→∞

γ

( n
∑

j=1

Tj − 1

)

.

So either γ = 0 and thus ϕ(t) = exp(−σ2t2/2), or γ 6= 0,
∑

j≥1 Tj = 1 and thus ϕ(t) =

exp(iγt− σ2t2/2) must hold.
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If α < 2 then σ2 = 0 by Lemma 8.1(b) and Γ(du) = c|u|−α−1du for some positive c

because µ is nontrivial. We infer that µ is a stable distribution with index α and characteristic

function

ϕ(t) = exp(itγ − c|t|α),
see (6.2). Again, using (2.5) and the Lévy-Khinchine representation we have

itγ − c|t|α = itγ
∑

j Tj − c|t|α
∑

j |Tj |α

and therefore

tγ = tγ
∑

j Tj

for all t ∈ R. The uniqueness of the representation implies that

γ(
∑

j Tj − 1) = 0

and thus γ = 0 unless
∑

j≥1 Tj = 1. Note that
∑

j≥1 Tj <
∑

j≥1 |Tj | ≤ 1 for α ≤ 1. Now one

can easily check that µ is of the asserted type. ♦

Proof of Theorem 7.2. The proof in case GΛ = R+ is very similar to the previous

one and we therefore restrict ourselves to a few comments. Again we must only verify that a

nontrivial solution µ is of the type asserted in the theorem for the respective cases. By (5.4),

its Lévy measure Γ this time has the form Γ(du) = (c11(−∞,0)(u)+c21(0,∞)(u))|u|−α−1du with

c1, c2 ≥ 0. If α = 2, we conclude Γ ≡ 0 by the same argument as above, while c1+ c2 > 0 must

hold if α ∈ (0, 2). The nonnegativity of the Tj together with the uniqueness of α as a solution

to
∑

j≥1 T
α
j = 1 implies

∑

j≥1 Tj 6= 1 whenever α 6= 1. For the case α = 2 this entails that

only the centered normal distributions can be fixed points (γ = 0). In all other cases a fixed

point must be a stable law, and the uniqueness of the Lévy-Khinchine representation may once

again be employed to arrive at the asserted constraints of the parameters. Further details are

omitted. ♦

Proof of Theorem 7.3. We only consider the case α ∈ (0, 2) because for α = 2 the

Lévy measure of any nontrivial fixed point equals again 0. After this observation the remaining

arguments are the same as in the previous two theorems.

If α ∈ (0, 2) then, by (5.9), the Lévy measure Γ of any nontrivial fixed point equals

Γ(du) =

∫

c

∣

∣

∣

∣

s

u

∣

∣

∣

∣

α

λλsGΛ(du) ν(ds)

for some probability measure ν on R∗/GΛ and some c > 0. We have σ2 = 0 by Lemma 8.1(b).

Hence

logϕ(t) = itγ + c

∫∫

(eitu − 1 + itχ(u))

∣

∣

∣

∣

s

u

∣

∣

∣

∣

α

λλsGΛ(du) ν(ds)

= itγ + c

∫∫

(eitsu − 1 + itχ(su))|u|−α λλGΛ(du) ν(ds).
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This shows that a nontrivial fixed point is necessarily a mixture of sGΛ-stable distributions for

which we must still check the contraints resulting from the fixed point equation or, equivalently,

from condition (8.1) in Lemma 8.1 which here takes the form

γ = lim
n→∞

(

γ

n
∑

j=1

Tj +

n
∑

j=1

∫

(

Tjχ(u)− χ(Tju)
)

Γ(du)

)

= lim
n→∞

n
∑

j=1

(

γTj + c

∫∫

(Tjχ(su)− χ(suTj)) |u|−α λλGΛ(du) ν(ds)

)

= lim
n→∞

n
∑

j=1

(

γTj +

∫

Fs,c(Tj) ν(ds)

)

which is the asserted condition (7.3). ♦

In order for a proof of Theorem 7.4 based upon a discussion of condition (7.3) the following

lemma will provide us with a tractable expression for
∑n

j=1 Fs,c(Tj), Fs,c as defined in (7.2).

Lemma 8.2. Define A(x, u)
def
= xχ(u)− χ(xu) for x, u ∈ R. Then

∑

n∈Z

r−αnA(x, srn) =

{

B(s) sgn(xs) |s|α (|x| − |x|α), if α 6= 1

sx logr |x|, if α = 1
(8.4)

for all x ∈ (−1, 1), s 6= 0 and r > 1, where

B(s) = B(α, r, s)
def
=

r−αη

1− r−α −
r(1−α)η

1− r1−α . (8.5)

for α 6= 1 and η denotes the fractional part of logr |s|. The function B(s) is bounded and

further positive if α < 1 and negative if α > 1.

Proof. The function A(x, u) is odd in each argument and satisfies for x ∈ (0, 1)

A(x, u) =















0, if 0 ≤ u ≤ 1,

x(1− u), if 1 < u ≤ 1/x,

x− 1, if u > 1/x.

It thus suffices to consider the case where x ∈ (0, 1) and s > 0. Suppose s = rζ , x = r−m, and

note that ζ = l + η for some integer l ∈ Z. If α 6= 1 then

0 >
∑

n∈Z

r−αnA(x, srn)

=
∑

−ζ≤n<m−ζ

r−αnr−m(1− rζ+n) + (r−m − 1)
∑

n≥m−ζ

r−αn

= r−m
m−l−1
∑

n=−l

r−αn − rζ−m
m−l−1
∑

n=−l

r(1−α)n + (r−m − 1)
∑

n≥m−l

r−αn
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=
r−m+αl − r−m−α(m−l)

1− r−α − rζ−(1−α)l(r−m − r−αm)

1− r1−α +
(r−m − 1)r−α(m−l)

1− r−α

= rαl

(

r−m − r−αm
1− r−α − rη(r−m − r−αm)

1− r1−α

)

= rα(ζ−η)(r−m − r−αm)

(

1

1− r−α −
rη

1− r1−α

)

= sα(x− xα)
(

r−αη

1− r−α −
r(1−α)η

1− r1−α

)

which proves the assertion including B(s) > 0, if α < 1, and B(s) < 0 if α > 1. If α = 1 it

suffices to note that the middle term of the third line in the above computation simplifies to

−rζ−m
m−l−1
∑

n=−l

r(1−α)n = −rζ−mm = sx logr x,

while the first and last one cancel each other. ♦

Given one of the cases (D2) or (D3), the previous lemma does now easily lead to an

expression for
∑n

j=1 Fs,c(Tj) that will enable us to prove Theorem 7.4. We obtain:

Case (D2). If GΛ = rZ for some r > 1, then all Tj are nonnegative and

n
∑

j=1

Fs,c(Tj) = c

n
∑

j=1

∑

k∈Z

r−αkA(Tj , sr
k)

=







cB(s) sgn(s)|s|α∑n
j=1(Tj − Tαj ), if α 6= 1,

cs
∑n

j=1 Tj logr Tj , if α = 1

(8.6)

for each s ∈ R∗/rZ

Case (D3). Suppose GΛ = (−r)Z for some r > 1. It is easily checked with the help

of (8.4) (though not directly seen upon inspection) that Fs,c ≡ 0 in case α = 1. If α 6= 1,

let s ∈ R∗/(−r)Z and note that η
def
= logr2 |s| ∈ [0, 12 ). Since Fs,c is odd in s the following

computation is only done for the case s > 0. We infer with (8.4)

n
∑

j=1

Fs,c(Tj) = c

n
∑

j=1

∑

k∈Z

(

r−2kαA(Tj , sr
2k)− r−(2k+1)αA(Tj , (rs)r2k)

)

= c
(

B(α, r2, s)sα − r−αB(α, r2, rs)(rs)α
)

n
∑

j=1

(Tj − sgn(Tj)|Tj |α)

= c∆(s) sα
n
∑

j=1

(Tj − sgn(Tj)|Tj |α)

(8.7)
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for each positive s ∈ R∗/(−r)Z, where ∆(s) = ∆(α, r, s)
def
= B(α, r2, s) − B(α, r2, rs) and

∆(−s) def= ∆(s). Since logr2(sr) = η + 1
2 , a straightforward calculation using (8.5) gives

∆(s) =
r−2αη

1 + r−α
− r2η(1−α)

1 + r1−α
. (8.8)

We note that ∆(α, r, s) can be zero or nonzero and that in the case α = 2η = 1
2 we have

∆(α, r, s) = 0 for all r > 1.

Proof of Theorem 7.4. Suppose α ∈ (0, 2).

Case (D1) If GΛ = rZ∪−rZ for some r > 1, then Fs,c ≡ 0 for all s, c and (7.3) simplifies

to

lim
n→∞

γ

(

n
∑

j=1

Tj − 1

)

= 0, (8.9)

i.e. either
∑

j Tj = 1 and γ ∈ R, or
∑

j Tj 6= 1 and γ = 0. This yields part (a) of the theorem.

Case (D2). Suppose GΛ = rZ for some r > 1. Using (8.6) and
∑

j T
α
j = 1, condition

(7.3) becomes

γ = (γ +
∫

sgn(s)|s|αB(s) ν(ds))
∑

j≥1 Tj − c
∫

sgn(s)|s|αB(s) ν(ds)

= γ
∑

j≥1 Tj + c
∫

sgn(s)|s|αB(s) ν(ds)
(
∑

j≥1 Tj − 1
)

(8.10)

if α 6= 1, and

0 = c
∫

s ν(ds)
∑

j≥1 Tj log Tj , (8.11)

if α = 1. The assertions (i)-(iii) are now easily concluded when recalling in the case α 6= 1 that

B(s) is either positive or negative on R∗/GΛ.

Case (D3). Suppose GΛ = (−r)Z for some r > 1. If α = 1 then Fs,c ≡ 0 implies that

(7.3) again simplifies to (8.9). Since here
∑

j Tj <
∑

j |Tj | = 1 (not all Tj are nonnegative) we

infer γ = 0 and thus assertion (i). If α 6= 1, use (8.7) to rewrite (7.3) in the form

γ = (γ + c
∫

sgn(s)|s|α∆(s) ν(ds))
∑

j≥1 Tj − c
∫

sgn(s)|s|α∆(s) ν(ds)
∑

j≥1 sgn(Tj)|Tj |α

= γ
∑

j≥1 Tj + c
∫

sgn(s)|s|α∆(s) ν(ds)
(
∑

j≥1 Tj −
∑

j≥1 sgn(Tj)|Tj |α
)

(8.12)

Note that
∑

j sgn(Tj)|Tj |α is always finite and < 1. Note also that

lim
n→∞

∑

j≤n Tj −
∑

j≤n sgn(Tj)|Tj |α
∑

j≤n Tj − 1
= 1,

if |∑j Tj | =∞. Assertions (ii)-(iv) are now easily concluded. ♦

49



9. The inhomogeneous case

In this section we will briefly discuss the fixed point equation (1.1) with a nonzero constant

C (inhomogeneous case). So the map K is now defined as

K(µ)
def
= L

(

∑

j≥1

TjXj + C

)

(9.1)

with independent X1, X2, ... having common distribution µ. The weighted branching represen-

tation of any fixed point W
d
= µ of K becomes

W
d
=

∑

|v|=n

L(v)W (v) + C
∑

|v|<n

L(v) (9.2)

for all n ≥ 1 and is obtained by successive iteration of (1.1). TheW (v), v ∈ V, are independent

copies of W . Summation may again be a subtle point. Recall from Section 4 that
∑

|v|=n =
∑

v1≥1
...
∑

vn≥1
. If we iterate (1.1) once we get

W
d
= lim

n→∞

n
∑

i=1

Ti

(

∑

j≥1

TjW (ij) + C

)

+ C

= lim
n→∞

(

n
∑

i=1

∑

j≥1

L(ij)W (ij) + C
n
∑

i=1

Tj

)

+ C (9.3)

and thus see that the summands going with C by rearrangement may be separated from those

going with the W (ij). On the other hand, we cannot conclude at this point that the limit in

(9.3) exists when taken for both terms
∑n

i=1

∑

j≥1 L(ij)W (ij) and C
∑n

i=1 Tj separately. In

particular, it is not clear at this point whether or not
∑

j Tj exists in R when there is a fixed

point (see Theorem 9.3 for an answer). These remarks apply, of course, to all higher order

iterations of (1.1) as well.

Refraining from a discussion of trivial cases we assume from the beginning that T satisfies

condition (A) hereafter. By (9.2) and a similar argument as in the proof of Proposition 4.1,

we see that each nontrivial fixed point µ of K can be obtained as the limit of an indepen-

dent infinitesimal triangular scheme and is thus infinitely divisible. So the logarithm of its

characteristic function ϕ exists everywhere and satisfies (compare (1.4))

logϕ(t) = iCt+
∑

j≥1

logϕ(Tjt). (9.4)

Embarking on this observation the following lemma is just the straightforward extension of

Lemma 8.1 to general C ∈ R.

Lemma 9.1. Let ϕ be the characteristic function of any infinitely divisible distribution

µ with Lévy-Khinchine representation (4.4). Then µ is a fixed point of K iff the conditions
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(a-c) in Lemma 8.1 hold true, where (8.1) is modified to

C + γn = C + γ

∫

xΛn(dx) +

∫∫

(xχ(u)− χ(xu)) Γ(du) Λn(dx) → γ, (9.5)

as n→∞.

Let FC be the set of fixed points of K for general C, hence F = F0. If
∑

j Tj exists in R

and does not equal 1, then we can provide a simple description of FC in terms of F0 for which

we may resort to the results in Section 7. Put

C(T )
def
=

C

1−∑j≥1 Tj
.

Theorem 9.2. If T satisfies (A) and if
∑

j Tj ∈ R\{1}, then

FC = F ∗ δC(T ) def
= {µ ∗ δC(T ) : µ ∈ F}

for all C ∈ R.

Proof. It suffices to note that W solves equation (1.1) with C 6= 0 iff (under the given

assumptions)

W − C(T ) d
=

∑

j≥1

Tj(Wj − C(T )) + C(T )
∑

j≥1

Tj − C(T ) + C =
∑

j≥1

Tj(Wj − C(T )),

which means that W + C(T ) is a fixed point for the homogeneous equation (C = 0). ♦

Left with the cases that
∑

j Tj equals 1 or does not exist in R, the following two results

provide complete answers. Theorem 9.3 shows in particular that the existence of
∑

j Tj in R

constitutes a necessary condition for FC 6= ∅ (for any C 6= 0).

Theorem 9.3. The set FC is empty for each C 6= 0 whenever
∑

j Tj does not exist in

R, or when
∑

j Tj = 1 in one of the cases (C1), (D1), or α = 2 holds true.

Proof. Suppose C 6= 0 and that
∑

j Tj equals 1 or does not exist in R. The Lévy

measure Γ of any fixed point must satisfy Γ = Γ ? Λ (Lemma 9.1). In each of the three cases

(C1), (D1), and α = 2 we have seen in Section 8 that this in turn implies the symmetry of Γ, in

particular
∫

(xχ(u)− χ(xu)) Γ(du) = 0. Hence we infer FC = ∅ because condition (9.5), which

simplifies to C+γ
∑n

j=1 Tj → γ, is clearly impossible to satisfy. It is a matter of checking (9.4)

or (9.5) to arrive at the same conclusion whenever
∑

j Tj does not exist in R (and no further

condition on α or GΛ). We omit the details. ♦

It remains to look at the cases (C2), (D2) and (D3) for any T additionally satisfying
∑

j Tj = 1.
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Theorem 9.4. Suppose α ∈ (0, 2),
∑

j Tj = 1 and C 6= 0.

(a) If GΛ = R+ (Case (C2)), then α = 1 and

F̂C = {exp(iγt− c|t|(1 + β sgn(t)ω(t, α))) : γ ∈ R, (β, c) ∈ ΘΛ,C},

where

ΘΛ,C
def
= {(β, c) ∈ [−1, 1]× R+ : 2βcπ

∑

j Tj log Tj = C}.

(b) If GΛ = rZ for some r > 1 (Case (D2)), then α = 1 and F̂C consists of all ϕ of the form

(7.1) with γ ∈ R and (c, ν) ∈ R+ ×MΛ\M0
Λ satisfying

C + c
∫

s ν(ds)
∑

j Tj log Tj = 0.

In particular, F̂C = ∅ whenever
∑

j Tj | log Tj | =∞.

(c) If GΛ = (−r)Z for some r > 1 (Case (D3)), then α 6= 1 and F̂C consists of all ϕ of the

form (7.1) with γ ∈ R and (c, ν) ∈ R+ ×MΛ\M0
Λ satisfying

C + c
∫

sgn(s)|s|α∆(s) ν(ds)
(

1−∑j sgn(Tj)|Tj |α
)

= 0

where ∆(s) was defined in (8.8).

Proof. (a) By the same arguments as in the proofs of Theorem 7.1 and 7.2 we infer here

that a fixed point µ must be stable of index α with characteristic function ϕ(t) = exp(itγ −
c|t|α(1 + iβ sgn(t)ω(t, α))) for suitable γ ∈ R, β ∈ [−1, 1] and c ≥ 0. In case α = 1 equation

(9.4) enforces that γ, β, c must satisfy

γ = γ
∑

j Tj + C − 2βc
π

∑

j Tj log Tj ,

so γ ∈ R and (β, c) ∈ BΛ.
The assertions of (b) and (c) are immediately obtained when observing that equation

(9.5) is equivalent to γ = C +
∑

j

(

γTj +
∫

Fs,c(Tj) ν(ds)
)

(compare (7.3)) which in turn leads

to (8.11), respectively (8.12) with C added on the right hand side. Further details can be

omitted. ♦

10 The associated random walk

For a given vector T which satisfies (A) and has characteristic exponent α ∈ (0, 2] we

next define the probability measure Λα on R∗ by

Λα
def
=
∑

j≥1

|Tj |α1{Tj 6=0}δTj (10.1)

and note that Λα generates the same closed multiplicative subgroup of R∗ as the measure Λ.

Let (Mn)n≥0 be a multiplicative random walk with M0 = 1 and M1
d
= Λα. If all nonzero Tj

52



are positive one may as well consider the additive counterpart of (Mn)n≥0 obtained by taking

logarithms. The latter was used in [11] in the given context, see Section 2 there. Recalling

from Section 4 the weighted branching model associated with T , we further introduce the point

measures

Λα,1:n
def
=

∑

|v|=n

|L(v)|α1{L(v)6=0}
n
⊗

j=1

δL(v|j) (10.2)

and

Λα,n
def
=

∑

|v|=n

|L(v)|α1{L(v)6=0}δL(v|j) (10.3)

for each n ∈ N, where v|j def= (v1, ..., vj) if v = (v1, ..., vn).

Lemma 10.1. Under the given assumptions,

(M1, ...,Mn)
d
= Λα,1:n and Mn

d
= Λα,n (10.4)

for each n ∈ N. Moreover,

Ef(Mn) =
∑

|v|=n

|L(v)|αf(L(v)) (10.5)

for any real-valued f for which the expectation exists.

Proof. The assertions are easily verified when using the independence structure in the

weighted branching model described in Section 4. The result appears also in [3, Lemma 4.1] for

the case where T consists of a random number of i.i.d. nonzero random variables (branching

random walk case). We therefore omit the details. ♦

Returning to the fixed point equation (2.1), i.e. (1.1) with C = 0, we now have the

following result.

Lemma 10.2. Suppose that T satisfies (A) and has characteristic exponent α ∈ (0, 2].

If µ is any solution to (2.1) with characteristic function ϕ satisfying

E
( | logϕ(M1)|

|M1|α
)

<∞, (10.6)

then ψ(t)
def
= |t|−α logϕ(t) is harmonic for (Mn)n≥0, that is

Eψ(tM1) = ψ(t) (10.7)

for all t ∈ R∗.
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Proof. One can check by using the Lévy representation of ϕ that (10.6) implies the

(Lebesgue) integrability of ψ(tM1) for every t ∈ R∗. It then follows from (10.5) and (1.4) that

Eψ(tM1) =
∑

j≥1

|Tj |α
(

logϕ(Tjt)

|Tjt|α
)

=
1

|t|α
∑

j≥1

logϕ(Tjt) =
logϕ(t)

|t|α = ψ(t)

for all t ∈ R∗. ♦

Lemma 10.2 might suggest to the probabilistic reader that the fixed points of (2.1) can

also be found via a more appealing itinerary than the one chosen here when studying the

harmonic functions of the multiplicative random walk (Mn)n≥0, for instance by drawing on

multiplicative renewal theory in combination with the fact that (ψ(tMn))n≥0 is a martingale for

any harmonic ψ. Although this approach does indeed lead to solutions to (2.1), it generally fails

to provide a complete description of F. For instance, we saw that in some situations where
∑

j Tj = 1 and
∑

j |Tj | = ∞ the constants γ are solutions. Their characteristic functions

ϕ(t) = eiγt, however, do not satisfy the integrability condition (10.6) in the above lemma as is

immediately checked. A second problem to be noted is that even in those cases where F turns

out to be a subset of the set of harmonic functions of (Mn)n≥0 one must still provide criteria

which ensure that a found harmonic ψ corresponds to a solution to (2.1). And finally, there

seems to be no alternative to the Choquet-Deny approach in order for finding the quite explicit

form of the Lévy measure of a solution. In fact, this is the crucial step to identify a solution

as a stable law or a mixture of sG-stable laws.

Appendix

Because of their special importance in this article we finally collect very briefly the basic

general facts on the Choquet-Deny equation

µ = µ ? ν (A.1)

where µ, ν are two regular (= Radon) measures on a (multiplicative) Abelian separable locally

compact group G. Any regular µ solving (A.1) for a given ν is called ν-harmonic. Let Hν

denote the set of all such measures. Hν is a convex cone.

A character of G is a positive continuous function e : G → R+ preserving the multiplica-

tive group structure, thus e(xy) = e(x)e(y) for all x, y ∈ G. We denote by E = E(G) the set

of all characters endowed with the topology of uniform convergence on compact sets. Let Gν

be the smallest closed subgroup of G generated by the support of ν. If Gν = G we say that ν

generates the group G. Let λλGν
be the Haar measure on Gν , unique up to positive scalars, and

put µe(dx)
def
= e(x)λλGν

(dx) (thus suppressing the dependence of µe on Gν in the notation).

That ν generates G is the basic assumption in the following theorem by Deny [6]:
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Theorem A.1. (Deny) Given a regular ν generating G, any solution to (A.1) by a regular

measure µ 6= 0 has a unique integral representation

µ =

∫

µe µ(de) (A.2)

where µ is a finite regular measure on {e ∈ E :
∫

e(x−1) ν(dx) = 1}.

Turning to general measures ν, let G/Gν be the factor group and note that G can be

identified (as a measurable space) with Gν ⊗ (G/Gν) endowed with the naturally induced

topology and Borel-σ-field.

Theorem A.2. (Choquet-Deny) Given a regular measure ν on G, any solution to (A.1)

by a regular measure µ 6= 0 has an integral representation

µ(·) =

∫

µe(s
−1·) µ(de× ds), (A.3)

where µ is a regular measure on {e ∈ E(Gν) :
∫

e(x−1) ν(dx) = 1}× (G/Gν) endowed with the

Baire σ-field.

Compared to Deny’s theorem the more general Choquet-Deny result provides a disinte-

gration of measures whenever the factor group G/Gν is nondegenerate.
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[4] BURTON, R. and RÖSLER, U. (1995). An L2 convergence theorem for random affine
mappings. J. Appl. Probab. 32, 183-192.

[5] CALIEBE, A. (2003). Symmetric fixed points of a smoothing transformation. Adv. Appl.

Probab. 35, 377-394.

[6] CHOQUET, G. and DENY, J. (1960). Sur l’equation de convolution µ = µ∗σ. C. R. Acad.

Sci. Paris 250, 799-801.

[7] CHOW, Y.S. and TEICHER, H. (1997). Probability Theory: Independence, Interchange-

ability, Martingales (3rd Edition). Springer, New York.

[8] DAVIES, L. (1981). A theorem of Deny with applications to characterization problems.

Analytical Methods in Probability Theory (Oberwolfach, 1980), 35-41, Lecture Notes in
Math. 861, Springer, Berlin.

[9] DAVIES, L. and SHIMIZU, R. (1976). On identically distributed linear statistics. Ann.

Inst. Statist. Math. 28, 469-489.

[10] DUFRESNE, D. (1990). The distribution of a perpetuity, with applications to risk theory
and risk funding. Scand. Actuarial J., 39-79.

55



[11] DURRETT, R. and LIGGETT, T.M. (1983). Fixed points of the smoothing transformation.

Z. Wahrsch. verw. Gebiete 64, 275-301.

[12] EMBRECHTS, P. and GOLDIE, C. (1994). Perpetuities and random equations. Asymptotic

Statistics (Prague 1993), 75-86, Contributions to Statistics, Physica, Heidelberg.

[13] FELLER, W. (1971). An Introduction to Probability Theory and Its Applications, Vol. 2

(2nd Edition). Wiley, New York.

[14] GNEDENKO, B.W. and KOLMOGOROV, A.N. (1959). Grenzverteilungen von Summen
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