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1 Introduction

In the recent paper [3] the first two authors studied large deviations for the spatial L?
norms of Brownian local time L. In particular they showed that there are explicit
constants C1(p), C2(p) such that for any p > 1 and A\, h > 0

1 :
(1.1) Jim 7 log E (6)‘||Ltllp) = A2/ (p)
and !
(12 Jim 7 log P{IZill, > bt} = =K/ -DCy(p).

Similar results were obtained for products of independent local times and for local times of
random walks with finite second moment. The methods of that paper depended heavily on
the continuity of the Brownian path and the fact that the generator of Brownian motion,
the Laplacian, is a local operator. The goal of this paper is to generalize these results to
local times of symmetric stable processes and stable random walks, i.e. random walks in
the domain of attraction of a symmetric stable process.

To describe our results let {X;; ¢ > 0} denote the symmetric stable process of order
B> 1in R', and let L* denote its local time. We normalize X, so that E(e*Xt) = ¢~tA”,
(Note that when 5 = 2 this gives a multiple of the standard Brownian motion). Let

(13) Ealf, £) = [ APIF)P dx
where f(A) = [ f(z)e 2™ dz denotes the Fourier transform of f, and
(1.4) Fo=A{f € L2(R)|||fll2 =1 and &(f, f) < oo}

Theorem 1 Let Ly be the local time for the symmetric stable process of index 3 > 1 in
RY. Foranyp>1and X\ >0

1 . P
where
(16) My, = sup {913, ~ Ealg.9) | < oo.
96.7:6

Equivalently, for any h > 0

1
(L.7) Jim ~log P{I1Lill, > bt =~k A,
where
1\ (pB—(p—1) e
p— — — P
1.8 Az, =
19 = () ()
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We will see that the constant Mgz, can be expressed in terms of the best possible
constant in a Gagliardo-Nirenberg type inequality, see (2.8) and (2.9).

By the scaling property of X, for each s > 0 and a > 0, we have L%, £ ¢!=1/fa "/ =
so that ||L;||, < ¢'~®=1/p8||L;]||,. Using this, our Theorem is equivalent to the fact that

for any h > 0
(1.9) lim ¢+ log P{||Ly|[57/"D > ht} = —hAg,,.

Thus

(1.10)

)\”L»lllgﬁ/(P*I) < o lf )\ < A
E(e ) =00 ifA>Aj f

We also note that when p is an integer, ||L; ||} can be expressed as an intersection local
time. To see this, let f € S(RY) be a positive, symmetric function with [ fdz = 1 and
set f.(x) = f(x/e)/e?. Then it is well known that for 3 > 1

L =l [[ X

where the limit exists a.s. locally uniformly and in all L? spaces. Thus it is clear, at least

formally, that
p
T p _ .
/R(L dx—lli%/[oﬂp/m z)dz [] ds;

j=1
which measures the ‘amount’ of time spent by the path in p—fold intersections. This can
be justified.

There has also been interest in the literature in studying LP norms for products of
independent local times. Let {X,;; ¢t > 0}j = 1,...,m denote m independent copies of
{X;;t > 0}. We use L, to denote the local time at x of {Xj;; ¢ > 0} respectively. We
will develop the large deviation principle for the mixed intersection local time

L%,
(1.11) /Rl H Ydz, t>0

where m > 1 is an integer and real number p > 0 satisfying mp > 1. When p is an
integer, the above quantity measures the ‘amount’ of time that m independent trajectories
intersect together, while each of them intersects itself p times.

By the scaling property of X, for each ¢ > 0 and a > 0, we have L, = alfl/ﬁL‘t’_l/ﬁx
so that

(1.12) / H }Eat YPdx 4 amp(1—1/5)+1/ﬂ/1 H(L}vt)pdx_
R1 - )
Jj=1
Theorem 2 For each integer m > 1 and real number p > 0 with mp > 1, and any A > 0

) 1 x p 1/mp
(1.13) tli)rgloglogEeXp{ (/ H dx) }

PP/ (mp(B (6 p,m )M,B,mp-
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with

(1.14) (B, p,m) = m~(mp=D/(mp(B=1+1),
Equivalently, for any h > 0
1/mp
(1.15) Jim — logP{</ H LY pdw) > ht} = —pmeB/mp= Ay
with

mpB—(mp—1)

(1.16) Ay = (mp— 1) ( mpB — (mp — 1) ) o

mpf3 mpBe(B,p, m) Mg mp

We also have the following law of the iterated logarithm, which is new even in th case
of m=1.

Theorem 3 For each integer m > 1 and real number p > 0 with mp > 1,

(1.17) limsup ¢~ MPU-VA+YB) (1og1og t)~mP- 1/ﬁ/1 H L5,)Pdx
t—00 R
= Ag%iil)/ﬁ a.s.

Let now {S,;n = 1,2,...} be a symmetric random walk in Z' in the domain of
attraction of the symmetric stable process X; of index g > 1, i.e.

(1.18)

in law with b(x) a function of regular variaton of index 1/3. For simplicity we assume
further that our random walk is strongly aperiodic.
We will use

(1.19) Iy = Z Lis,=a}
=1
for the local time of {S,,; n=1,2,...} at z € Z%.
Let {v,} represents a positive sequence satisfying
(1.20) v, — oo and v,/n— 0.

We use || - ||zt for the norm in P(ZY), ie. ||fllozt = (Sues |f(@)[))P. We have the
following moderate deviation result for the local times of stable random walks.

Theorem 4 For any positive sequence {v,} satisfying (1.20), any p > 1 and X > 0,

1 b(n v, =P P
(121) nh_)r{.lo ]/_ lOg Eexp {)\W Hlan,Zl} = \pB—(p-1) M,@,p'

Equivalently, for any h > 0

1 . n
(1.22) Jim, -~ log P{||ln||p,21 = hw}
pB=(p=1)

— _ppB/(-1) (p - 1) (pﬁ —(p— 1)) o1
B pBMp,

580




An important application of the large and moderate deviations we establish is to obtain
the law of the iterated logarithm. Indeed, we have

Theorem 5

lim supn ?b(n/loglogn)?~" > (IX)F = Ag’(fgl)/ﬁ a.s.
oo zeZ!
The analogue of Theorem 2 for independent random walks is left to the reader.

Our paper is organized as follows. In Section 2 we develop the Sobolev inequalities
and Feynman-Kac formulae which are used throughout this paper. In Section 3 we study
large deviations for stable local times on the circle, which is then used in section 4 to
prove Theorem 1 on large deviations for stable local times in R'. In Section 5 we prove
Theorem 2 involving independent local times and Theorem 3, the law of the iterated
logarithm. Section 6 contains technical material on exponential moments for local times
which is needed in the paper. Section 7 explains how to get Theorems 4 and 5 for random
walks.

2 Sobolev inequalities and Feynman-Kac formulae

Lemma 1 Ifp>1 and > (p—1)/p then Fs C L*’(R"), and for any § > 0

(2.1) 1715, < Csll 113 + 6€s(f, f)
for some Cys < 0o. In particular for any X > 0
22) MysN) = sup (AIfIB, = Ea(f. 1)) < o
f€.7:g
Proof of Lemma 1: By the Hausdorff-Young inequality
(2.3) [ fll2p < [ f1l2p/@p-1)
where f denotes the Fourier transform of f. We also have that for any r > 0
2/(2p-1)  _ (r+ AP /(2p—1)
(2.4) TG = o (g e P 0

<[+ MBI 1y sy -
[(r + [A[2)P/ =) F N2/ P 01

Now

(2.5) 1(r + [AJ2)P/@e=0] F ) 2/ =D S0~ = r[| £113 + E5(f, f)

and .
B\—p/(2p—1) || (2p—1)/(p—1) _

(2.6) e =t ||+ ) T /R 5 e P

which is finite if 5 > (p — 1)/p, in which case we also have that lim, .., ¢, = 0. Summa-
rizing,

(2.7) 1F113, < 2707 (V|13 + Es(f, 1)) -

This gives (2.1) on taking r sufficiently large. This completes the proof of our Lemma.
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Lemma 2 Ifp>1and 3> (p—1)/p then
(28) ipg = f{C | Ifll2p < CIIF I~ P77 1E52 (1, P77} < o0

and

CpB—(p—1) ((p— 12\
(2.9) My (1) = ( B ) |

Proof of Lemma 2: To see that (2.8) is finite, note that if we set f(z) = s'/2g(sx), then
1£llz = Nlgllz, 11£13, = s~ 7llgll3, and Es(f, f) = s"E5(g, g) so that from (2.1) we obtain

(2.10) lgll3, < C (lgll3 + 5"€s(g. 9)) s~ D/

and the fact that (2.8) is finite follows on taking s’ = ||g||3/E5(g, ). Finally, (2.9) follows
as in the proof of Lemma 8.2 of [2]. This completes the proof of our Lemma.

Let Hg be the self-adjoint operator associated to the Dirichlet form £3. Thus the form
domain Q(Hg) = Fp and for g € Q(Hz) we have (g, Hzg): = Es(g,g). Let Vy denote
the operator of multiplication by f. Note that if f € LP/®~D(R"), by using Hélder’s
inequality and then (2.1) we have that for any g € Q(Hp)

(2.11) (9:V19)2 < 1913 Fllorio—1) < I llps— (Csllgl3 + 5€5(g. )

In the terminology of [15], V; is infinitesimally form bounded with respect to Hjs, written
Vi << Hp. It follows from [15], Theorem X.17 that Hz—V} can be defined as a self-adjoint
operator with Q(Hg — Vi) = Q(Hp) = Fp.

As usual, we write E9(-) = [g(x)E*(-) dx. Aside from technical integrability issues,
the lemmas below are generalizations of the Feynman-Kac formula. We include the proofs
for lack of a suitable reference.

Lemma 3 Ifp>1and 3> (p—1)/p then for any f € LP/®"D(R') and g,h € L*(R")
(2.12) (g, e HsVD ), — B9 <ef5 f(XS)dSh(Xt)> .

Proof of Lemma 3: If f € S(R') then using the right-continuity of paths, (2.12) follows
as in the proof of Theorem 6.1 in [16], see also Theorem 1.1 there. Let now f, € S(R')
with f, — f in LP/®=D(RY). We therefore have for each n

(2.13) (g, e~ Ha=Va ), — B9 (efJ f"(XS)dSh(Xt)> .

Using (2.11), it follows from [10], Theorems IX, 2.16 and VIII, 3.6, that

(2.14) lim (g, e " Hs=Vimp)y = (g, e M Hs=Vp),.

n—oo
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On the other hand the integrand on the right-hand side of (2.13) converges a.s. to the
corresponding integrand in (2.12). Thus to finish the proof we need only show uniform
integrabilty. We have

(2.15) B <e<4/3> Iy f”(XS)dsh4/3(Xt)>
< / <Ex <e4f0tfn(Xs)ds>)1/3 (5* (hQ(Xt))>2/3g(l') 0
< sup (Exo <€4fgfn<xs)ds>)l/3/ (5* (hQ(Xt)))2/3g(£L') 0

We then use E* (h*(X};)) = p; * h?(x) so that

- 2/3

(2.16) (B (12x0)) ™ glw) da < llgllollpe = 1233
and

(2.17) lpe * 72 |lagz < [Ipellagslln®|ls

which is finite. In fact, for any r > 1
(218) Il < i1,

This follows from the fact that p; is a probability density function so that [|p||, <
Ipe| &0/ and [|pelleo = sup, | fe?7e™ dA| < e~ dA < C/t'/8. (Alternatively, one
can use scaling: p,(z) = t=Y/8p, (xt=1/5)).

We now bound

zo

— Z 4’f/
o

k

/Rk H fn(xj>ptj—tj_1(xj - xj_1> dx] dtj
7=1

0<t;1 <...<t, <t}

By Holder’s inequality

k
(2:20) | e (= ) da
J=1
. k
< ol T Py —tys (5 = 25-) y
J=1

k
< ||fn||/;/(p_1) H ||ptj_tj—1||p'
j=1

Using (2.18) we have

k k
(2.21) 1T Pt o llp = & T (25 — ti_y) PP
j=1

=1



Since by assumption (p — 1)/pf3 < 1 we have that

(222) H(tﬂ - tj_l)—(p—l)/pﬂ dt] -

0<ti <. <t<t) 3 L(k(L = (p—1)/pB))

Thus we have shown that for fixed ¢

/ k cFk(1=(p—1)/pB)
{

00 k k
: Foo (ot Jy fa(X) ds lfallpre-1
(2.23) sup (e ) < kz:% e vy

which is bounded uniformly in n. This completes the proof of Lemma 3.

Fix M > 0 and let Ty = R'/MZ' denote the circle of circumference M. We use the
notation || f||,z,, to denote the LP(Tys) norm with the usual Lebesgue measure on T}y.
Set

(2'24) gﬁ7TM(h7 h) = Z ’)‘|ﬁ VAI()\)

Ae(2Z) 21

2L

where h denotes the usual Fourier transform for functions on T Let

(2'25> ]:ﬁ,TM = {f S L2<TM) |”f||2,TM =1 and gﬁ,TM(f7 f) < OO}

We introduce T, to deal with two technical problems in the proof of the upper bound
in Theorem 1. First, the stable infinitesimal generator is not a local operator when 3 < 2.
As a consequence, we will not have the upper bound for the Feymann-Kac large deviation
estimate which corresponds to the lower bound given in (4.2) below. Second, as pointed
out in [3] (p. 225-226), the family {¢"*L,} is not exponentially tight as a stochastic process
taking values in the Banach space LP(R'). To fix these two problems we map the process
X, into the compact space Ty;. It is crucial that the image process is Markovian.

An almost identical proof gives the following analogue of Lemma 1.

Lemma 4 Ifp>1 and 8> (p—1)/p then Fsr,, C L*(Ty), and for any § > 0

(2.26) 112z < Collf Il + 0857 (f, f)

for some Cs < oo. In particular for any X > 0

(227) My = sup (1B, = Eame(f.1) < o0

fEfg,T]W

Let Y; be the image of X; under the quotient map x € R! +— 7 € T),. It is easily
seen that Y; is a Markov process with independent increments. Y; is called the symmetric
stable process of order  on T)y.

As before, let Hg 1,, be the self-adjoint operator associated to the Dirichlet form £g.7,,.
Thus Q(Hﬁ7T1\4) = fﬂ:TM and for g€ Q(H,&T]\/I) we have (ga HB»TMg)Z = gﬂ,TM (97 g)' Let Vf
denote the operator of multiplication by f. Using Lemma 4, we see that Vy << Hgr,, so
that, as before we can define Hgr,, — V as a self-adjoint operator with Q(Hgr,, — V) =
Q(Hpr,) = Far,  An almost identical proof gives the following analogue of Lemma 3.
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Lemma 5 Ifp>1 and 3 > (p — 1)/p then for any f € LP/®P=Y(Ty,) and g,h € L*(Ty)
(2.28) (9.7 V0R)y = B (eh 109 0n (1)) )

We next present an important large deviation result. It is possible to derive this result
from the methods of Donsker and Varadhan, see in particular [7], but we prefer to give a
simple self-contained proof.

Lemma 6 Ifp > 1 and 3 > (p—1)/p then for any non-negative function f € LP/®=1(Ty,)

1 vy as
(2'29) tlir& ; log E (efo J)d ) = S8up ((97 fg)27TAI - gﬁ,TM (97 g))

9€Fp, T

Note that using Holder’s inequality and Lemma 4, the sup on the right-hand side is
finite.
Proof of Lemma 6: Let p; denote the density of Y;. Fix ¢y > 0, and recall from (2.18),
(more precisely the analogue for Tyy), that p;, € L?(Ty). Then using the non-negativity
of f, the Markov property and (2.28) we have

(2.30) E(e.fJ f<Ys>ds> > B (ef(ft“fm)ds)

— (ﬁto , e*(t*to)(Hﬁ,TM —V) 1)27T1M .

By (2.24) we can see that o(Hgr,,), the spectrum of Hg r,,, is purely discrete. In fact

o(Hgr,) ={ <%)ﬂ |j=0,1,...}

with a complete set of corresponding eigenvectors

o 2mi)ja/M

1 .
(g li=12

Hence, using the fact that V; << Hgr,, and [15], Theorem XIII.64, (iv), (v), see also
Theorem XIII.68, we find that Hgr,, — a'V} also has purely discrete spectrum for any a'.
(We note for later that these Theorem’s show that Hsr,, — a’'Vy has compact resolvent).
From Lemma 5 it follows that e *#57:=9Vs) is positivity preserving and ergodic. It
follows from [15], Theorem XIII.43 that inf o(Hgr,, —a'Vy) is a simple eigenvalue and the
associated eigenvector is strictly positive. Since py, is also strictly positive, we find from
(2.30) that

1 t
(2.31) lim inf - log £ <efo / <Ys>d3> > —info(Har, — Vi)

The lower bound for (2.29) follows by the Rayleigh-Ritz principle, see [15].
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For the upper bound use the Markov property to see that for any a,a’ with 1/a+1/a’ =
L,

(2.32) E (efJ f(Ys)ds>
(e )

< {E (e“foto f(Ys)d8> }l/a {E ((EYto (efot_to f(Ys)ds)>al>}
< {E (eaf(fo f(Ys)dS> }l/a {E (EYtO ( a [0 F(Ye)d >) }l/a'
= {E (ea o0 F(va) ds )}Ua {Epto (ea' Jo f(Ys)ds> }1/‘“ |

By (2.23), (more precisely the analogue for T);), we have that the first factor on the
right hand side is bounded for any fixed ¢y and a. On the other hand, by (2.28)

1/d’

_ , ft—t ,
(2.33) FPto <6a s Of(Ys)ds> — (pyy, e O Ty V) 1,
Hence . - »
t —
(2.34) limsup - log £ elo T ds ) < _info(Hsm, —a f)‘
t—oo U a

Using once more the fact that V; << Hgr,, we find that Hgr,, — 2V} is an analytic
family of type (B). We have noted in the last paragraph that Hgr,, — a'V; has compact
resolvent. It follows from [10], VII, Remark 4.22, that

(2.35) lim info(Hpr,, — a'Vy) =info(Hgr1,, — V).

a’—1

The upper bound for (2.29) follows by taking a’ — 1 and then applying the Rayleigh-Ritz
principle.

3 Large deviations for stable local times on the circle
We use the notation of the previous section. M > 0 is fixed throughout.

Theorem 6 Let L* be the local time for the symmetric stable process of index 3 > 1 in
Ty Foranyp>1and A >0

1 7.
(3.1 Jim Slog B (MElme) = sup Mgl — Earn (9.9}

t—o0 gefﬂ,TM

Proof of Theorem 6: We first establish the lower bound for (3.1). We claim that for
any A >0

(3.2) hmlnf logE( /\||Li“p’TA4) > sup {)\”g”%p,Tjw - 5ﬁ,TM(9a9)}-

=00 9€F8,1)s
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Indeed, if we take any f € LP=U/P(Ty) with || f||(p—1)/p10 = 1 then

— _ t
(3.3) | Ll = [ Lif(ayde = [ f(Y)ds.
Tas 0
Consequently, taking f non-negative, by Lemma 6
—y NIl
(3.4) lim inf 7 log £ (e VTM)

> sup {A(g,fg)z,TM—EB,TM(Q,Q)}'

QEJ:B,TM

Taking supremum on the right hand side over such f we obtain (3.2).
To establish the upper bound and complete the proof of (3.1) we shall prove that for
any A >0

) 1 i
(3.5) lim sup ; log B (eAHLt””’TM) < sup {)‘”gngp,TM — &8y (979)}-

t—o0 gej:B,TM

By (3.3) and Lemma 6, for any non-negative f € L®~D/P(Ty,)

(3.6) lim ¢! log E exp {/\/ Eff(:p)dx}
t—00 T
= sup {)\(97 f9)omy — Esy (979)}
gef@’T]\/[

Let € > 0 and v > 0 be fixed and let K C LP(T)) be the compact set given in Lemma
11. By the fact that the set of bounded measurable functions on T}, is dense in the unit
ball of L%(T)), and by the Hahn-Banach Theorem, for each h € K, there is a bounded
function f such that || f||p-1)/pr,, = 1 and

/TM f(@)h(z)A(dz) > (AM |h(f)|p/\(dj)>l/p e

Consequently, there are finitely many bounded functions fi,---, fy in the unit sphere of
L9(T)y) such that

(/TM \h(a‘:)]”A(d:ﬁ))l/p < max /TM [i(@)W(Z)\(dx) + € Vh e K.

1<i<N

Therefore,
(3.7) E(exp { A Zillpm, i ¢7'L; € 9K)

N
< e?> Fexp { / fi(z)L* d:v}.
i=1 Y

587



In view of (3.6),

(3.8) limsupt ! logE<exp {/\||E;5||p7TM}; tL;, € vK)
t—o0
< ) —
< e+ 12,2%)](\[ gES]»%PTM {A(% fig)2my — E.1 (9, 9)}
< et s Dllglyn, — (s
gE]'—g’T]w

where the second step follows from the Holder’s inequality and the fact || fil|(p—1)/p,r0 = 1
for 1 <¢ < N. Letting ¢ — 0 gives

(3.9) limsupt™* logE<eXp {/\||E£||p,TA4}§ t1L;, € 7K)

t—o0

< s (Mgl — Esrlo.9)}-
QEfB,TA4

By the Cauchy-Schwarz inequality, on the other hand,
(310 E(exp {ALillpy, s 'L & 1K)
- 1/2 - 1/2

< (Bew{2Lilr, ) (P EigK))
Note that Lemma 8 and scaling (1.12) imply that
(3.11) sup E exp {2)\|]L't|]p7TM} < 00

t<1

so that using the additivity of local time and the Markov property

limsupt ' log E exp {2>\|]L't|]p7TM} = () < .
t—o00
By (6.37)
limsupt ! log P{tilii ¢ ny} < —=N(7)

t—o0

with lim, .., N(y) = oo. Combining above observations we have

1 _ _
(3.12) lim sup — logE(eXp {)‘HLin,TM}; t 'L, ¢ 7K)

t—o00 t

< (Cr=N())/2.

Note that v > 0 and hence N(v) can be arbitrarily large. Combining (3.9) and (3.12) we
obtain (3.5) completing the proof of our theorem.
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4 Large deviations for stable local times in R!

Proof of Theorem 1: We first establish the lower bound for (1.5). We claim that for

any A > 0
1

(4.1) lim inf + log E (M1*17) > sup {A||g||§p - Sﬁ(g,g)}-

gE.’Fg

This will follow exactly as in the proof of Theorem 6 once we establish that for any
non-negative f € LP~V/P(RY)

(42) timint log 5 (e 709)) > sup {9, £9)2 — 4(0.0)}.

96.7:5

But as in the proof of (2.30) we have, for any bounded g1, go

(4.3) E(efJf<Xs>d8) > [P (ef(f_tof(Xs)d5>

t—tg s
> g (eh 0K, ) /g lellgo e

—(t—to)(Hp—Vy

= (glptme )92)2/Hgl”oo||92||oo-

Since py, (z) > 0 for all z, by varying ¢;, go we obtain

1 t
(4.4) lim — log 1 <efo f <X~S>d5) > —info(Hg — Vy)

t—o0
which gives (4.2) by the Rayleigh-Ritz principle.
We next establish the upper bound for (1.5). We claim that for any A > 0

: 1 A
(4.5) lim sup p log E (e’\HLt”p> < sup {AHgng - Sg(g,g)}.

t—oo g€F3

Fix M > 0 and recall from the last section the symmetric stable process Y; of index
in Th; and its local time L7. It can be easily verified that

Ly=> Ly t>0, zeR'
kez?!

Consequently, for any p > 1

wyd = X [ @y de
R 0

kez!

(4.6) < [ M( > Lf“fM)pdx = [ @iy

kez!

Hence (4.5), and thus our theorem, will follow from Theorem 6 once we verify the following
lemma.
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Lemma 7 For anyp > 1,r >0

(1.7) timsup sup {rlgl8,r,, — S (5.9} < sup {rllglB, — Ealo.9)}
M—oo GEFa 1y, 9€Fs

Proof of Lemma 7: Without loss of generality we will prove this lemma with r = 1.
Recall the definition

(43) Ef. )= [ IPIF) .
Using

1 — cos(Ay)

B _—
|/\| _Cﬁ/l |y|1+ﬁ dy

where cgl = [m 1|yT?‘S*5 dy and Parseval’s formula we find that

1f(y) — f(=@)?
(4.9) /R1 /Rl |y—x|1+ﬁ dy .
Similarly, for any M-periodic function h

B} (z +y) — h(z)]?

@10) &= X RO =e [ /R1 e

Ae(22)Z1

where the last equality follows as in the proof of (4.9).

Let g be an M-periodic function in Fgp,,. We need to construct a function f € Fjp
which is equal to g on [M'/2, M — M'/?] and is negligible in some suitable sense on the
rest of the real line as M gets large. Let E = [0, M'/?] U [M — M'/2, M]. By Lemma 3.4
in Donsker-Varadhan (1975), there is a real number a such that [, §(x —a)dz < 2M /2,
We may assume a = 0, i.e,

(4.11) / F(x)de < 2M 2
B
for otherwise we can replace g(-) by g(- + a). Define
M2 0<ax<M/?
1 M2 <z < M- M2
p(z) = MY2 _ g M-Y2 M- MYV2<g< M
0 otherwise.

It is straightforward to verify that
0<p@) <1, [¢@)] < M2 [(¢3@)] <2M72, o0 < < ox,

Define
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Set a = [*_ g%(x)p?*(x)dz. Note that

(4.12) 9()e(y) — g(x)e ()]
= (3(y) — 9(x))e(y) + g(2)(2(y) — p(2))|”
‘2

= |g9(y) — 9(=)PL*(y) + 7° (=) lp(y) — e(z)|?
+2[g(y) — g(z)|e(y)g()p(y) — p(2)]
Now
(4.13) cﬁ/Rl /Rl |y—x|1|+ﬁ 20) 4 4o
M |g )2
<l | 9‘y_x|w dy do
=&5(7,9).
Using
(4.14) 7*(@)|e(y) — o(z)?
< g (@)]e(y) — e(@)]*(Ljo,an(2) + 10,011 (1))
< 2M'2g%(2) (Lpan (@) + Loan(®))(ly — 2| Ay — z[?)
we have
(4.15) /R1 - g |y - l|1+§($)‘2 dy dz
< oM/ / /Rl |g(x |\Z:Z||1A+ﬂ|3y_ deda:
N2, /R /M g(x ||?Z:f;||1/lgy—xl )dydx

where for the first integral we used the change of variables y — y + z and for the second
we used the change of variables x — y + x and the periodicity of g(z). Finally we use

(4.16) 2l9(y) — g(@)le(y)g (@) (y) — ()]
< AM Y g(y) — g(@)lg(@)(ly — 212 A ly — 2[) L. (y)-
the Cauchy-Schwarz inequality and (4.13)7 (4.15) to see that

(4.17) 5 /R /R 19(y) — 9(x)|e(y)g(x )\s@(y)—sﬁ(w)!dydx

Iy - x|1+5

Lon (¥) 1/2
< 8MV4c (//'g =) Loy dy dz
R JRL ‘y_x‘1+ﬁ yax

— 22 Ay — 1 1/2
([ [ E@y=eE Al aDlon@® ,, )
R JR1 |y _ x’l-ﬁ-ﬂ

< MV (5,9)
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Putting this all together we find that

(4.18) a&s(f, f)

glx)e(x)?
= dyd
/Rl /Rl |y—x|1+5 v
< &5(5.9) + cMAES(G.g) + e

On the other hand,

</OM§2p(x)dx>l/p < <@p/_o:o| f(z )|2pdx+/ 3(z |2pdx)l/p

00 /p
(4.19) < a</ f(e |2pdx) </|g |2pda:)
and from (4.11)
1/p /p
(1.20) (L) < s gaps( [ gepe)
E 0<z<M
< @M sup |g(a)
0<e<M
Observe that since 5 > 1
_ ~ 1
(1.21) sl < X il
Ae(ZZ) 21
Z 1+ k|8 2
J g _
ey 1+ k] M
PN ) 1 1/2
< 1 k") g(k)|"—
—( (Z;) 1+]k\ﬁM> ( = A+ EDlg(0) M)
M I\/

IA

\E
Therefore,
422 / i
(4.22) ([

Let J = supyer, Mlgll3, — Sg(g,g)}. By combining (4.18), (4.19), (4.22), we see

B 1/2
1+8(5.9) -
g

1/p _ 1/q
a:)|2pdx> §(2M_1/2)1/pc<1+€5(g,g)> .

(4.23 ([Marww)” — 0 -agia.9
(err(8a.0) "+ a1+ £5.9) )
< et -2 v of ([T 1pwrar)” - 0 - 0gs(r. )
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< M Y2 4 sup {(/_O:O |f(x)|2pdg;>l/p — (1 —¢)&s(f, f)}

foﬂ

_ cM_l/Q—{— (_)ﬁ{]

—€
where the second inequality follows from the fact that a < 1 and the final step from the
substitution 1 (14D 1 Bot11)
p/2(p(B—1)+1 p/(p(B—1)+1
f@) = (=) (=) I
Since ¢ > 1, there is a sufficiently large M = M (€) > 0 such that M~'/2 < ¢ and that

eM VA2 4 (2M—1/2)1/pc(1 + x)l/q <e(z+1)

for all z > 0. Note that the choice of M is independent of the function g!. For such M,

M /p _ g N
-2 - PA-DTT
(124 ([ @) " ~&a.9) < e+ (7)™ 7

— €

This completes the proof of Lemma 7.

5 Large deviations for independent stable local times

and the law of the iterated logarithm
Proof of Theorem 2: The upper bound for (1.13) follows exactly as in [3]. Given
Lemma 11 and our proof of the lower bound in Theorem 1 the lower bound for (1.13) will

follow exactly as in [3].
Proof of Theorem 3: Using (1.15) and the scaling (1.12) we see that for any > 0

3 1 ot x mp— mp—
(5.1) tli)rgoglog P{ /R1 1_[1(Lj71)pd$ > ht(me 1)/ﬂ} = —pPlm DAy
j:

Replacing t by loglogt we get

(5.2) lim

. log P / L¥ Pdx > h(loglogt (mp—l)/ﬁ} — _pB/mp=1) 4 .
t—oo loglogt o8 { lel;[l( J,l) x > h(loglogt) Bmp

Let t, = 6% for § > 1. Using (5.2) and the scaling (1.12) we see that

(5.3) Z P (/Rl H(Lf,tk)pdx > Ctgcmp(l_l/ﬁ)ﬂ/ﬁ)(log log tk)(mp—l)/ﬂ) < 00
k=1 j=1

—(mp—1)

Bm.p /. Borel-Cantelli and interpolation then give the upper bound in

for any ¢ > A
Theorem 3.

To prove the lower bound, write s, = k?*, k£ > 1 and notice that

(5.4) Lo, —Lf, = L0

JsSk41 JsSk JskySk+1—58k
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where L7, , is the local time of Xj .,

ijkzt = X],Sk+t - X

J»Sk

Hence, using |a!/™ — bl/m\ < 2Um|q — p[t/m

m
1 1
(55) ]75k+1 - L;vsk p/}’gi H H Lj k »Sk+1— Sk p,/;;l
T—Xj s 1 1
- Ljvkvsli%ffsk p7/]’,;i H H 73,k,8k+1— Sk Hp/];ni
m
1 s
S 2 /mH H jks;:+f sp H L]m',k,sk+1fska,Rl'
j=1
Then using [Tj2, a; —[1j~, b; = ™ (TEZT ai)(ay — b )(ITj=; 11 br) followed by Holder’s
inequality we see that
x l/m 1/m "
(5’6> J5k+1 B LJ sk pRl “ H 9ok, Ska1— Ska R!

< 21/m Z (H H 4k, Sk+1— skap,Rl) HLJ ksxjjf sk L;kvskH*skap’Rl'

7]

By the already proven upper bound in Theorem 3, taking m = 1, replacing p by mp
and using the abbreviation ¢(s) = s™P(1=1/8+1/8(Joglog s)"™ /% we have

(57> || 1,k,8p11— skap,Rl :O(¢<Sk+1))1/mp a.s.

for each 1 <17 <m.
It follows from Lemma 10, after rescaling, that for any o > 0
hm+ limsup (loglogt)™
t—o0
log P{ sup LY — L || pp.rr > '™ P log logtl/ﬂ} = —00.
|z—y|<8(t/ loglog t) /5

Hence by the Borel-Cantelli lemma

(5.8) lim hmsups,ﬁ(L1 /)loglogsl€+

-0 koo

/8

| y+- T+

Sup JkSkp1—sK j,k,skﬂ—SkaPle

|o—y|<6(sk41/ loglog s 41)!/3
=0 a.s.

However, it is easy to see that ngy, — np > nipk? as k — oo so that by the scaling
property of the stable process

)18 1:2/8
Wt Z1W) ) < p(iy) >
loglog(ng+1 — ng) log k

P X, | > ) < Ok
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for any € > 0, since X; has — e moments. By the Borel-Cantelli lemma, with probability
1 the events

(nk 1— nk)l/ﬂ
{l(Xl,nm-'me,nk” < - k:1:27"‘
log log(ng41 — )
eventually hold. Therefore, by (5.8)
7,8 . 1
(5.9) HLJk52+1 o —L;fkyskaSkanm = o(syy (1-1/6) loglogsk/ﬁ) a.s.

= 0(¢(3k+1))1/mp a.s.

Combining (5.6), (5.7) and (5.9), we reach the conclusion that

S~ A T T p 1 mp 1/mp
(5.10) ‘( [ 1, -1, dx) < / jk75k+1_sk)l’dx>
ol

= o(¢(spe))V™  a.s. (k— o).

On the other hand, by (1.15) in Theorem 2, for any v < Ag S;?;z 1)/8

P {/OO H(L]m',k,skJrl—sk)pd'r 2 7¢(5k+1)}
—o0 i

ZP {/ (H L]Sk+1 sk) dx Z 7¢(3k+1)} = 0.
A —

j=1

Then by the Borel-Cantelli lemma and the independence of the sequence

T 1 (T R
!

we have

(5.11) hmsup¢ ) / H Thse—s ) dr > Ag U (mp=1)/8 o

In view of (5.10),

(5.12) lim sup

k—oo §Z5 3k+1) frm.p

/ [T 155, — Lis ) de > Ay (mp=1)/B g s.
=1

Note that .
/ H (L;Skﬂ pdx = / H Jsk+1 - Lfsk]pdl’, vk > L.
—00 55

Hence,

/ LI pdx>A (mp VB 4.

lim sup
t—oo P(Sky1)

which finishes the proof of Theorem 3.
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6 Exponential moments for local times

Let L¥ denote the local time for X in R, and L¥ denote the local time for X, in Ty;. We
use || - [lp.grt, || - lp7y, to denote the norms in LP(R!, dz) and LP(Ty, dx) respectively.

Lemma 8 Let p > 1. For the symmetric stable process in R' of index 3 > 1 and any
v < 00

(6.1) E (exp (Y| Lallp,r1)) < o0
and for some ( > 0
Ly — Ly ||
(6.2) sup £ [ exp 7“ ! i lpr < 00.
zy ly — x|
Furthermore
|Z4" — LT ||y e
(6.3) limsup F | exp [~ b =1.
v—0 z,y ’y — .T|<

Similar results hold for the symmetric stable process in Ty of index 3 > 1 with
ILillprs 1LY = Li™ | mr replaced by | Lyllpry, |1L47 — L8 [lpmy, -

Proof of Lemma 8: We note that the tail estimate in [9] implies a slightly stronger
result than (6.1). The direct proof of (6.1) given here serves as a warmup for (6.2) and
(6.3). We will first assume that p is an integer greater than or equal to 2. Recall the
notation

t
(6.4) L = /0 (X, —
For any integer m we have

m

p . o~
(6.5) E (H(Lfi ) = (/Rmp /[0 o H H elkj,k(l‘j_th,k)f(e)\j7k) dt; d)\jﬁ)

j=1 i=1k=1

m P
_/Rmp/[01mpHe 9D Aj k)T | (HH =ik X g )HH 6)\]]€ dt]kd)\]k

j=1k=1 j=1k=1

Using the Fourier inversion formula in the form

m . m p—l
(66) / ZZ] 1(Zk 1 Aj, k)337 / ezzj':l Aj’pij()\jJ)) H d>‘j7p dxj — F(_ Z >\j,k)
" " j=1 k=1
we have that
(6.7) E(Ly ) = | EVTI@" | 1T de;
Rm
j=1 j=1
p N x m p m p—1
N / / E\TT I e o | TT L f(ediw) dtin IT 1T d
Rr@e=D Joame\ G2 5y j=1 k=1 j=1 k=1
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where in the last line \;, = — Y7 p—1 1 Aje- To evaluate the expectation, for each bijection
7 of {1 <n <mp} onto {(j,k); 1<]<m 1 <k <p} welet

(6.8) D, = {tj’k; tﬂ(l) < tﬂ(g) < e K tw(mp) < 1}
and

mp
(69) Ur.pn = Z A71'(l)

l=n

We use C to denote the set of such bijections 7. Then

(6.10) E (ﬁ ﬁ el')\j,kth’k)

=Y e Doy | (b () —tr(n—1))

We will bound this by dropping the last factor in which A;, appears for each j.
To be more precise, let v, ; be the unique n such that ur, — urni1 = A, and set
Vi =A{vx;, 1 <j<m}. Combining the above we have uniformly in € > 0

(6.11) E (|| 1775

< = % eve lmal (txy —ten-1) TT dt T dA
Z m(p—l) i € T H ﬂ-(n) ]_Hl kgl J )

meC n=1
> ! 1
s / dtr(n)
TeC o™ nEVC tﬂ(nfl) ’1/’8 ne1
= Cmp(mp)!/F(m(p - 1)(1 —1/B) +m) < ™ ((mp)!)P=1/P8.

Since this is true for any integer m we can use uniform integrability to obtain

(6.12) E (|| ) < ™ ((mp)!) #0777,
Then for any integer n

(6.13) (”L HpR1> _{ (HL HpRl)}l/p < " (nl) VI8,

This immediately gives (6.1). To obtain (6.2) and (6 3) we begin with p an even integer
and note that if we replace L; . in (6.7) by LY — Ly, then in the last line of (6.7) we

will have an extra factor of [}, I (e“‘f’ky — e W) Using the bound
(6.14) |eihiky — eihinT| < 2Nkl ly — x|
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which is valid for any 0 < ¢ < 1 and proceeding in a manner similar to (6.11) leads to
(6.2) and (6.3).

If ¢ > 1is not an integer, then for some integer p > 1 we have that ¢ = ap+(1—a)(p+1)
for some 0 < a < 1. By Hoélder’s inequality, for any g we have

o 1 o)(p+1
(6.15) lgll? o = / 2)| P gy < | g)|oh |lg )| U
so that
« 11—« 1
(6.16) lgllore < Nglelgl o < lgllprr + N9lprr e

The general case of ¢ > 2 then follows from case of integral ¢ > 2. Finally, if 1 < ¢ < 2,
since ||Lj||1,z1 = 1 we obtain (6.1) using (6.16). For (6.2) and (6.3), if ¢ = a +2(1 — «)
for some 0 < a < 1, we have by (6.15) and the fact that ||L{T — L{T'||; g1 < 2 that

(6:-17) I24E = L3l < 2D = 237 I

and (6.2)-(6.3) for 1 < ¢ < 2 now follows from the case of ¢ = 2.
We now turn to the analogue of (6.1) for the symmetric stable process in Tj,. We
have as above for integer m, p

m

(6.18) E(H(Efj)p> —E|M ¥ /

) ﬁﬁ TG d
j=1 0,1 521 k=1

X €(ZZ z1ymp [ J=1

m m P ) m P
— MNP Z H ei(Zi:ﬁfwk)%‘E (H H G_Mj’kthv"') H H dtj,k

/\E(%Zl)mp j=1 j=1k=1 j=1k=1

—_

so that as before

619  E(ILIE,) = (/ HLfﬂpdx])

M]l

_ -1 Z / E (ﬁ ﬁ ei/\j,kth‘k) ﬁ ﬁ dt
[0,1]mP j=1k=1 j=1k=1

€2 z1ymp—1)

where in the last line \;, = — S7_1 A ». Again as above this leads to
mp
< Z/ Z eiznevﬂq |u‘rr,7l|ﬁ(t7r(n)7t7r(n—l)) H dtﬂ-(n)
el . E(%Zl)m(pfl) n=1
> : Il
< P / { } dtﬂ(n)
/o \neve U ety =tV ) 551

and as before this leads to the analogue of (6.1) for the symmetric stable process in T}y.
The analogues of (6.2)-(6.3) follows similarly. This completes the roof of Lemma 8.
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Consider the Young’s function ¢(z) = exp(z)—1, and let ||- ||, denotes the Orlicz space
norm with respect to E. By (5.1.9) of [8] we have that for any finite set of non-negative
random variables Y7, ....,Y,,

(6.21) | sup Yi [ly < o™ (n) sup || Y [l
k<n k<n

Let D denote the set of dyadic numbers in [0, 1]. Thus D = U,,D,, where D,, is the
set of numbers in [0, 1] of the form /2™ for some integer i. The next Lemma follows from
a standard chaining argument, see e.g. [12], Chapter 11, which also contains historical
references.

Lemma 9 Let {Z;, t € D C [0,1]} be a Banach space valued stochastic process such that
for some finite constants ¢, > 0

(6.22) 112 — Za||lp < |t — 5|5, Vs, t € D.

Then for any (' < C that

(6:23) I'sup 20— Zil/Js =¥ [l <2 3 027 < oo,
s,teD

s#t

m=0

Lemma 10 Let p > 1. For the symmetric stable process in R' of index 3 > 1, for some
(>0
1L = L™ |l

(6.24) sup . < 0.
z#y |z —yl¢ Hw
Furthermore, for any a > 0
: 1 y+- T+
(6.25) limsup —log P | sup | L{" — L{"||pr > at | = —o0.
0-04>1 1 le—y|<5 ’

Similar results hold for the symmetric stable process in T of index > 1 with | LY —
Li* |l rr replaced by |LY™ — L |1,

Proof of Lemma 10: Using (6.3) we see that for some ¢ < co and all z,y
(6.26) HIZY = L5 [l Nl < cla =yl

Using Lemma 9 we see that

LYY — L%,
(6.27) H sup IL; Ll < 00.

ey ’g; — y’(l Hw
z,yeD

But since, using Fatou’s Lemma and the continuity of local time

625, O 17 7 TR 17y -
oy |z =yl oty |z —y|¢
z,y€[0,1] z,yeD
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we get
1LY — L5 [l e

6.29 up y < Q.
( ) H Ay |ZL’ - y|C ¥
z,y€(0,1]
Note that for any z
(6.30) L7 = LT e = 1L = LY |y m
hence - . - N
L™ — L™ Lyt — 7+
61 oy I I = I
oclz—yl<t T =yl vty |z —yl¢
z,y€[0,1]
Using (6.1) for | —y| > 1, (6.24) then follows.
By the scaling (1.12), for any ¢ > 0
M = il 0 g st (T = e
ity =yl ey Tyl
Hence by (6.24)
Ly+~ — [Ft
6.32 sup || sup 1L ! ,“p’Rl < K < oo,
(
1<i<e ! azy |-yl ¢
so that e -
L7 — L™ 1
6.33 sup E{exp( su ! t TR < 2.
(6.33) (152 { p<m¢5 Klr —y|¢ ) B

Using the additivity of local times and the Markov property we then have that for any
t>1

1LY = L [lp,me } '
6.34 E {exp ( sup - < 2.
( ) { ( zFy Klz —y|¢ )

Hence by Chebycheff

(6.35) sup P ( sup || LY — LEt .m0 > at)

21 \|a—y|<o

IL = Lt || ot P
<supP| su ,P’ > ) <e atK=1§ ot
e (|xypsa Klz —yl¢ K¢

Our lemma then follows.
For the next lemma let R,L; denote the restriction of L} to z € [—a,al.

Lemma 11 Let p > 1. For the symmetric stable process in R' of index 3 > 1, for any
0 < a < oo we can find a compact K C LP([—a,al) such that

1
(6.36) lim lim sup i log P (IS_IRGL;t = VK) = —00.

T7X t—oo

For the symmetric stable process in Tys of index § > 1, we can find a compact K C
LP(Ty) such that

1
(6.37) lim limsup n log P (t_lL't ¢ 7K) = —00.

T t-0
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Proof of Lemma 11: By (6.25), for any k£ > 1, there is a §;, > 0 such that

1 1
sup — log P{ sup ||[L;"" — L;||, m > —t} < —k
1t |h|<a, k

Similarly we can take N > 0 such that
1
sup —log P{||L,||,rt > Nt} < —1.
>1 t

If
Ay = (1l < NY QLD sup [5G+ 1) F@)lpe < 7}

h=1 |h| <8y k

we take to be the closure of R,Ay,, in LP([—a,a]). By Lemma 15, K is a compact subset
of LP([—a,a]) and we have for any v > 1

(6.38) P{t ' RuL; & 7K}
~ < . . 1
< P{|Lillprr > Nty + 30 P{sup [IL;™ = Lil lpsr > 27t}
k=1 |k <0k

< {1 +(1- e’”)’l}e’”.

Lemma 11 follows immediately.

7 Random walks

We begin by studying exponential integrabilty for local times of random walks. We will
use the notation B
(7.1) I© =b(n)"Yrp 12,

Lemma 12 Letp > 1. For any v < o0

(7.2) sup 7 (exp (VT llpzt) ) < o0
and )
(7.3) %{% s%pE (exp (fyHlan,Zl)) =1.
For some ¢ > 0 o
11 = B llp.mr

7.4 sup E/ (exp (fyM < 00
i ny ly/b(n)[¢
and o

. IE —zy+-||pR1>>
7.5 limsup F | ex 4 n B =1.
i 0 ( ’ (” y/bm)e
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Proof of Lemma 12: Assume first that p > 1 is an integer. We have, using Fourier
inversion as before,

- b(n)P? n PSP A (Sn—2) T
(76) Hlnug’zl = np 27T)p Z Z _ l:/[ﬂ—’ﬂp [ Z]:1 ( J ) jl;[ld)\]:|

i3 S, p_ld)\
Z /[—Tr 7r](10—1) € ’ 1_[1 J
= s j=

where from now on A\, = — ?;% A; and we work modulo 7. Then by scaling we have
(7.7) 12115, 2+

1 3 YA, ) T
= — ? i1 PN n .
nP(2m)p—1 2 _ |:»/b(n)[7r,7r](p_1) “ ’ 1 d%]'

Jj=1

Let ¢(u) = E(e®1). We recall from ( 5.14) of [14] that for any ¢ > 0 we can find a
¢ > 0 such that
(7.8) [o(u/bn))| < e 1< Juf < wb(n).

Hence for any s <n

(7.9) | lotu/b(m)Iul” du

§(7+1Ap€fﬂMmﬂuPdu

—(1+a)/(6=¢) —(1+a)/(6-¢)
S =)

n

<ceof
n
The proof of (7.2) is then completed by following the proof of Lemma 8 and (7.3)
follows similarly.
For (7.4) we see as in the derivation of (7.7) that when p > 1 is an integer.

To_ 7ty o -
(710 I =z = iy, 2
iy P AjSn;/b(n) u iXjy/b(n) =
e Lei=17"n [[(1—e ) I dXl-
b(n)[—m,m|(P=1) j=1 j=1

Using |1 — e /%) < |\, - y/b(n)|¢ and (7.9) the proof of Lemma 12 is then completed
by following the proof of Lemma 8.

Set
(7.11) 7 = b(n)n =t el

Lemma 13 Letp > 1. For any v < o0

(7.12) S%pl?(exp(vHZJbJp)) < 00
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and

(7.13) lim sup £ (exp (][, ) ) = 1
Forany0<(<1/p
™ _ ’\er.
(7.14) sup E (exp (7%)) < 00
ny ly|
and L
. I, — B+ R>>
7.15 lim sup F | ex o PR ) =1,
(7.15) liny sup < p (v S
Furthermore, for some ¢ > 0
Z\y+' — Z\x-i_‘ 1
(7.16) sup || sup | L UP’R < 00.
no gy z—ylt ¢
Proof of Lemma 13: We have
1/p
(7.17) 1l = { 3 / zw pdaz}
jez1l T

1/p
- { S >pda:} = ol
jezr /A b(n)al=

so that (7.12) is simply (7.2). (7.13) follows similarly. (7.14) and (7.15) are more subtle.
Without loss of generality we can assume that y > 0.

1/p

. I -t R = [z T

7.18 L, — 1%, — [P d
jezr Mz b(n)a] J}

and

7.19 / I — )P dy
(7.19) {w:[b(n)a] J}< )

= b(n)n =t (18 — (LM@Y P gy
{r:[b(n)r]=j}( (" ))

Let u = b(n)x — [b(n)z], v = b(n)y — [b(n)y]. Then 0 < u,v < 1 and [b(n)(z + y)] =
[b(n)x] + [b(n)y] if u < 1 — v while [b(n)(z +y)] = [b(n)z] + [b(n)y] + 1 if w > 1 —wv. Thus

7.20 / by~ (I — [HOE)) P gy
(7.20) LN )

= (b(n)n =" (1, = 51 = ) /b(n)
+(b(n)n ™" (1, = B o /b(n)
= (17 — PHEOIN VP — ) 4 (1] — [HEOIILY ypyy.
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Thus by (7.18)-(7.20) for any ¢ < 1/p

~

(7.21) 11, = 157 |,
< (1- )1/1)“[ Tb(n yl+ || o+ Ul/le n)y J+1+ ||
< (1= )C|L, — 1| o0+, — )yHH [p,z1-

Note that if [b(n)y] = 0 then the first term on the right is 0 and v = b(n)y so that we
have the bound

FE o L, = 15|,z
22 -t < (b S — 1 el =l .
(7.22) I = B M < G = 22 = 9* =

If [b(n)y] > 1 we obtain

(7.23) I8, = B
_ (= 0yl I, — B 0
S (bl
oS ([bn)y] + 1)° T, = B

b(n)e (([b(n)y] +1)/b(n))e

Since
(1 = v)[b(n)y] +v([b(n)y] + 1) = b(n)y

we see from (7.23) that

[ Y
ys
1 = By g JIE, = B

([b(n)yl/b(m))e (((b(n)y] +1)/b(n))¢

Using (7.4) then completes the proof of (7.14). (7.15) follows similarly.
(7.16) follows from the proof of Lemma 10, using the fact that ¥ is right continuous
in .

(7.24)

Lemma 14 Letp > 1. Then
(7.25) I, -5 L

as LP(R') valued random variables. In particular,
5 d :
(7.26) G llpzr — ([ L lp.5r-

Proof of Lemma 14: Let us first show that the measures induced by the sequence lA;l
on LP(R') are tight. To do this, let K be the closure of the precompact set

A= ({1 =0 ouside (ol 17l < M and sup 17+ 1) = SOl < 1}
k=1 <Ok
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with a, 01,09, ... to be chosen. Then for any € > 0, using (1.18) with a < oo sufficiently
large and Lemma 13 as in the proof of Lemma 11 with §; — 0 sufficiently rapidly

(7.27) P{l, ¢ K} < P{||L,|l, = M} + P{max|S(k)| = ab(n)}

> ~ ~ 1
+> P{sup |l =1l > -} <e

which establishes tightness. Hence by Prohorov’s criterion every subsequence lAﬁj has a
subsequence which converges in distribution. It only remains to identify the limit with
the measure induced by L; on LP(R'). To this end it suffices to show that

(7.28) /_ O:O Flo)Ede — /_ Z flz)LPdz

for each f € S(R'). But for such f

(7.29) [ O:O Flo)Ede = % [ O:o f(%)lf]dx
1 n TN\ 1 & S(k)
. n(O(b(n)) + ; f(b(n))ln) = o) + kzzjlf(b(n))

L [ pe)Lyd

by Skorohod’s generalization of Donsker’s invariance principle to random walks in the
domain of attraction of a stable process, [17]. Finally, (7.26) follows from (7.17) and
(7.25). This completes the proof of our lemma.

Proof of Theorem 4: Fix t large and let ¢, = [tn/v,] and v, = [n/t,]. Using the
additivity of local times and the Markov property as before,

vpb(n /vy =1P 1/p
(7.30) Eexp {\ nbl /n") (>ar) / }

R

n

tn b(n/v,)\1-1/p, ~ Yntl
= (B (A7) () I )

n/vy

Using (7.26), (7.2), and the regular variation of b(n),

1-1/
(7.31) lim sup — log E exp {AV"bWZn) : () l/p}

n—oo UVp z

1 Bp—(p=1)
< SlogBexp{t™ 7 |Lill,}

Letting ¢ — oo gives the upper bound.
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For the lower bound, as in [3] it suffices to show that for any bounded continuous
function f on R' and positive sequence {v,} satisfying (1.20),

(7.32) li,{ri)iol.}f v 'log E exp {% kzn: f(Sk/b(n/l/n))} > gseujg} {(97 fg)2 — 56(979)}-

This follows along the lines of the proof of Theorem 4.1 in [3], noting that from [11], p.

661,
b(n) Pa(z) — p1 <b(x—n)>

(7.33) lim sup
0 pezt

where P,(x) is the probability function for S, and, as before, p;(x) is the density for

X;. This completes the proof of Theorem 4. Theorem 5 then follows as in the continuous

case.

=0

8 Appendix

Let R.f(x) denote the restriction of a function f(z) to z € [—a,al.
Lemma 15 Let p > 1. For any N < oo, and 0, — 0 let

(8.1) Angony = 1 € PE) || lpwe < N}
N {f € PR sup @+ 1)~ f@)llpr < 1)
k=1 || <k

Then for any a < 0o, RoAn (5.} s precompact in LP([—a,al).

Proof of Lemma 15: This follows easily from Theorem IV.8.21 of [6], but we provide a
short self-contained proof. Let h € C°(R') be positive, symmetric, supported in [—1,1]
with [h(z)dz = 1. Set ho(x) = e 'h(z/e). Let fi, fa,... be a sequence in A. We must
show that some subsequence converges in L”([—a,a]). For each k let

(8:2) fi@) = hs, + f3(@) = [ By)fi(@ = o) dy.
From the definition of A it follows that

1
(8.3) 1 fiwllppr <N and | fi = fillprr < 7

On the other hand, it is easy to see that for each fixed k, the sequence fi, fog,... 1s
uniformly bounded and equicontinuous. Hence by Ascoli’s Lemma we can find a sub-
sequence f; ,x;n = 1,2,... which converges uniformly on [~a,a]. Hence they con-
verge in LP([—a,a]). In particular we can assume that j,p > k and that ||fj ,x —
Fimwillpaa < 1 for all m,n. By (8.3), || fi. — finkllpi—aaq < 2 for all m,n. We can
also assume that j,;+1; 7 =1,2,...1s a subsequence of j, ; n =1,2,.... Thus we have
| finn = FimmIpj—aa) < 2 for all n > m so that f;, ,; n=1,2,... converges in L?([—a, a]).
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