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Abstract

We show, by a simple counterexample, that the main result in a recent paper by H. Van Zanten [Electronic
Communications in Probability 7 (2002), 215-222] is false. We eventually point out the origin of the error.

Throughout the following we use concepts and notation from standard semimartingale theory. The
reader is referred e.g. to [3] for any unexplained notion. Every cadlag stochastic process is defined on
a given probability space (2, F,P), and it is interpreted as a random element with values in D ([0, 00)),
the Skorohod space of cadlag functions on [0, 00). The symbol “=" indicates weak convergence (see [2]).
Given a filtration F; and a real-valued cadlag F;-local martingale started from zero, say M = {M; : t > 0},
we will denote by [M] = {[M], : t > 0} the optional quadratic variation of M. We recall that, when M is
continuous, [M] = (M), where (M) is the conditional quadratic variation of M as defined in [3, Chapter
III]. Moreover, by the Dambis-Dubins-Schwarz (DDS) Theorem (see [4, Ch. V]), every continuous F-local
martingale M, such that My =0 and (M) __ = lim;_, ;o (M), = +00 a.s.-P, can be represented as

[ee]

M
M, =W, >0, (1)

where Wt(M) is a standard Brownian motion with respect to the filtration
Gt = Fo), t>0, where o(t) =inf{s: (M) 6 >1t}.

According e.g. to [7], we say that a continuous F;-martingale My, such that My = 0 and (M)_ = +o0,
is a (continuous) Ocone martingale if the Brownian motion W (M) appearing in its DDS representation
(1) is independent of (M).

The following statement, concerning rescaled cadlag martingales, appears as Theorem 4.1 in [6].

Claim 1 Let M be a martingale with bounded jumps, and let a,, b, be sequences of positive numbers
both increasing to infinity. For each n, define
My 4
M = —=. 2
t \/@ ( )

Then, the following statements hold

(i) If M™ = N in D ([0,00)), then necessarily N is a continuous Ocone martingale.

(ii) Let N be a continuous Ocone martingale. Then, M™ = N in D ([0,00)) if, and only if, [M™] = [N]
in D ([0,00)).
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Both parts (i) and (ii) of Claim 1 are false, as shown by the following counterexample. Take a standard
Brownian motion started from zero W = {W, : t > 0}, and define

M, = W2—t

1 2
- nt — (niéwnt) —t.

n
M;
n

Then, M is a continuous square-integrable martingale that is not Ocone (since it is non-Gaussian and
pure, see [5, Proposition 2.5] and [7, p. 423]). Moreover, M}* = (an)fl/2 My, +, for a,, = n? and b, = n,

and M™ "2 M for each n, due to the scaling properties of Brownian motion. It follows that M"™ = M,
thus contradicting point (i) of Claim 1.
As for point (ii), consider the continuous Ocone martingale (see [7, p. 427])

t —
N; = 2/ WsdWs
0

where W is a standard Brownian motion independent of W. It is evident that

t
[N, 4/ W2ds
0
4 nt t 2
M", = —/ Wfds:4/ n W) du
[ }t n2 0 : 0 ( )

and therefore that [M"] law [N] for each n, although M™ converges weakly to the martingale M, which
is not Ocone. This contradicts point (ii) of Claim 1.

The error comes from a misuse of the Skorohod almost sure representation theorem (see e.g. [1, p. 281])
in [6, Section 4]. Starting from p. 219, line 10 of [6], the author considers a sequence

() =1),

where W is a standard Brownian motion and 77 is an appropriate time-change, such that
(wr") = (B,IN)),

where B is a standard Brownian motion, and [N] is a positive, continuous and increasing process. Then,
the Skorohod theorem allows one to conclude that, on an auxiliary space, there exist random elements

(WHI,F"') and (E, m) such that
()t (W”',?”’) and  (B,[N) 2 (B,[N]),

where the Brownian motion W' depends (in general) on n’, and (Wn ,?”/> %% (B,[N]). On the other
hand, the (fallacious) conclusion of Theorem 4.1 in [6] is obtained by supposing that, on the auxiliary

space, there exists a Brownian motion W such that W" =W for each n/ , which is clearly not the case,
due to the counterexamples constructed above.
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