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Abstract

In this paper we revisit Talagrand’s proof of concentration inequality for empirical processes.
We give a different proof of the main technical lemma that garantees the existence of a cer-
tain kernel. Moreover, we generalize the result of Talagrand to a family of kernels which in
one particular case allows us to produce the Poissonian bound without using the truncation
argument. In section 2 we give some examples of application of the abstract concentration
inequality to empirical processes that demonstrate some interesting properties of Talagrand’s
kernel method.

1 Introduction and the proof of main lemma

This paper was motivated by the Section 4 of the “New concentration inequalities in product
spaces” by Michel Talagrand. For the most part we will keep the same notations with possible
minor changes. We slightly weaken the definition of the distance m(A, x) introduced in [8],
but, essentially, this is what is used in the proof of the concentration inequality for empirical
processes. Moreover, we introduce a parametrized family of distances mα(A, x) for α > 0,
which will allow us to produce one example of interest in Section 2. The case of α = 1
essentially corresponds to the distance m(A, x) in [8], and will also be used in several examples
of Section 2. The Theorem 1 below is almost identical to Theorem 4.2 in [8] and we assume
that the reader is familiar with the proof. The main technical step, Proposition 4.2 in [8], is
proved differently and constitutes the statement of Lemma 1 below.
Let Ωn be a measurable product space with a product measure µn. Consider a probability
measure ν on Ωn and x ∈ Ωn. If Ci = {y ∈ Ωn : yi 6= xi}, we consider the image of the
restriction of ν to Ci by the map y → yi, and its Radon-Nikodym derivative di with respect to
µ. As in [8] we assume that Ω is finite and each point is measurable with a positive measure.
Let m be a number of atoms in Ω and p1, . . . , pm be their probabilities. By the definition of
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di we have ∫
Ci

g(yi)dν(y) =
∫

Ω

g(yi)di(yi)dµ(yi).

For α > 0 we define a function ψα(x) by

ψα(x) =
{
x2/(4α), when x ≤ 2α,
x− α, when x ≥ 2α.

We set

mα(ν, x) =
∑
i≤n

∫
ψα(di)dµ and mα(A, x) = inf{mα(ν, x) : ν(A) = 1}.

For each α > 0 let Lα be any positive number satisfying the following inequality:

2Lα(e1/Lα − 1)
1 + 2Lα

≤ α. (1.1)

The following theorem holds.

Theorem 1 Let α > 0 and Lα satisfy (1.1). Then for any n and A ⊆ Ωn we have∫
exp

1
Lα

mα(A, x)dµn(x) ≤ 1
µn(A)

. (1.2)

Proof. As we mentioned above the proof is identical to the proof of Theorem 4.2 in [8] where
Proposition 4.2 is substituted by the Lemma 1 below, and the case of n = 1 must be adjusted
to the new definition of ψα. Namely, one has to prove that

p+ (1 − p) exp{ 1
Lα

pψα(
1
p
)} ≤ 1

p

for all p ∈ [0, 1]. This can be rewritten as

exp{ 1
Lα

pψα(
1
p
)} ≤ 1 + p

p
or

pψα( 1
p )

log(1 + 1
p )

≤ Lα.

By the definition of ψα one has to consider two separate cases:

1. If p−1 ≥ 2α then (1 − αp)/ log(1 + 1
p ) ≤ Lα,

2. If p−1 ≤ 2α then 1/4αp log(1 + 1
p ) ≤ Lα.

Taking into account (1.1) we must show that for all L > 0

1 − p
2L(e1/L − 1)

1 + 2L
≤ L log(1 +

1
p
), if

1
p
≥ 4L(e1/L − 1)

1 + 2L
,

1
p log(1 + 1

p )
≤ 8L2(e1/L − 1)

1 + 2L
, if

1
p
≤ 4L(e1/L − 1)

1 + 2L
.

The proof of both of these inequalities constitutes a tedious exersize in calculus and is boring
enough not to include it in this paper. �
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Lemma 1 Let g1 ≥ g2 ≥ . . . ≥ gm > 0. For α > 0 and Lα satistying (1.1) there exist
{ki

j : 1 ≤ j < i ≤ m} such that

ki
j ≥ 0, and

∑
j<i

ki
jpj ≤ 1 for all i ≤ m, (1.3)

and ∑
i≤m

pi

gi
exp

{∑
j<i

(
ki

j log
gi

gj
+

1
Lα

ψα(ki
j)

)
pj

}
≤ 1
p1g1 + . . .+ pmgm

. (1.4)

Proof: The proof is by induction on the number of atoms m. The statement of lemma is
trivial for m = 1. Note that in order to show the existence of {ki

j} in the statement of lemma
one should try to minimize the left side of (1.4) with respect to {ki

j} under the constraints
(1.3). Note also that each term on the left side of (1.4) has its own set of ki

j , j < i and,
therefore, minimization can be performed for each term individually. From now on we assume
that ki

j are chosen in an optimal way minimizing the left side of (1.4) and it will be convenient
to take among all such optimal choices the one maximizing

∑
j<i k

i
jpj for all i ≤ m. To make

the induction step we will start by proving the following statement, where we assume that ki
j

correspond to the specific optimal choice indicated above.
Claim 1.For each i ≤ m we have

∑
j<i

ki
jpj < 1 ⇐⇒ log

g1
gi
<

1
Lα

and
∑
j<i

2Lααpj log
gj

gi
< 1. (1.5)

In this case ki
j = 2Lαα log gj

gi
for 1 ≤ j < i.

Proof: Let us fix i throughout the proof of the statement. We first assume that the left side
of (1.5) holds. Suppose that log g1

gi
≥ 1

Lα
. In this case, since sup{ψ′

α(x) : x ∈ R} = 1, one
would decrease

ki
1 log

gi

g1
+

1
Lα

ψα(ki
1)

by increasing ki
1 until

∑
j<i k

i
jpj = 1, thus, decreasing the left side of (1.4) which contradicts

the choice of ki
j . On the other hand, log g1

gi
< 1

Lα
implies that ki

j ≤ 2α for j < i, since for
k ≥ 2α, ψα(k) = k − α and the choice of ki

j ≥ 2α would only increase the left side of (1.4).
For k ≤ 2α, ψα(k) = k2/(4α) and

argmink

(
k log

gi

gj
+

k2

4Lαα

)
= 2Lαα log

gj

gi
.

Hence, if
∑

j<i 2Lααpj log gj

gi
≥ 1 then since

∑
j<i k

i
jpj < 1 the set

J := {j : ki
j ≤ 2Lαα log

gj

gi
} 6= ∅

is not empty. But again this would imply that
∑

j<i k
i
jpj = 1; otherwise, increasing ki

j for
j ∈ J would decrease the left side of (1.4). This completes the proof of the statement. �
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The equivalence statement of Claim 1 implies that if for some i ≤ m,
∑

j<i k
i
jpj < 1 then∑

j<l k
l
jpj < 1 for all l ≤ i. We first assume that the equality

∑
j<m−1

km−1
j pj = 1 (1.6)

holds. It implies that
∑

j<m km
j pj = 1. Moreover, in this case we are able to prove an even

stronger statement, namely: (1.6) implies that

km
j = km−1

j for j < m− 1, and km
m−1 = 0.

(Notice, that this step is meaningless for m = 2 and should simply be skipped). Indeed,

inf∑
j<m kjpj=1

∑
j<m

(
kj log

gm

gj
+

1
Lα

ψα(kj)
)
pj = log

gm

gm−1

+ inf∑
j<m kjpj=1

( ∑
j<m−1

(
kj log

gm−1

gj
+

1
Lα

ψα(kj)
)
pj +

1
Lα

ψα(km−1)pm−1

)
. (1.7)

The assumption (1.6) means that the optimal choice of the vector {km−1
j ; j < m− 1} is such

that
∑

j<m−1 k
m−1
j pj = 1, and, therefore, in (1.7) it is advantageous to set km

m−1 = 0 and
km

j = km−1
j , j < m− 1. It implies that

∑
j<m

(
km

j log
gm

gj
+

1
Lα

ψα(km
j )

)
pj = log

gm

gm−1
+

∑
j<m−1

(
km−1

j log
gm−1

gj
+

1
Lα

ψα(km−1
j )

)
pj

and, hence,

pm

gm
exp

{∑
j<m

(
km

j log
gm

gj
+

1
Lα

ψα(km
j )

)
pj

}
=

pm

gm−1
exp

{ ∑
j<m−1

(
km−1

j log
gm−1

gj
+

1
Lα

ψα(km−1
j )

)
pj

}
.

This allows us to combine the last two terms on the left side of (1.4) and apply the induction
assumption to the sets (g1, . . . , gm−1) and (p1, . . . , pm−1 + pm). Since pm−1gm−1 + pmgm ≤
(pm−1 + pm)gm−1, it proves (1.4) for (g1, . . . , gm) and (p1, . . . , pm).
Now let us assume that

∑
j<m−1 k

m−1
j pj < 1 or, equivalently,

log
g1

gm−1
<

1
Lα

and
∑

j<m−1

2Lααpj log
gj

gm−1
< 1.

By continuity, it should be obvious that there exist g0 < gm−1 such that

log
g1
gm

<
1
Lα

and
∑
j<m

2Lααpj log
gj

gm
< 1 for gm ∈ (g0, gm−1]. (1.8)

holds and, therefore,
∑

j<m km
j pj < 1. We assume that g0 is the smallest number such that

(1.8) holds. Let us show that for a fixed g1, . . . , gm−1 in order to prove lemma for gm < g0 it
is enough to prove it for gm = g0. Indeed, let us take gm < g0. Then by the definition of g0
and Claim 1 we have

∑
j<m km

j pj = 1. Then (1.7) still holds and implies in this case that km
j

do not depend on gm for gm < g0. Moreover,

pm

gm
exp

{∑
j<m

(
log

gm

gj
km

j +
1
Lα

ψα(km
j )

)
pj

}
=

pm

gm−1
exp

{∑
j<m

(
log

gm−1

gj
km

j +
1
Lα

ψα(km
j )

)
pj

}
,



Talagrand’s Concentration Inequality 59

which means that for gm < g0 the left side of the inequality (1.4) does not depend on gm.
Since (p1g1 + . . .+ pmgm)−1 decreases with respect to gm it is enough to prove the inequality
for gm = g0.

Hence, we can finally assume that

log
g1
gm

≤ 1
Lα

,
∑
j<m

2Lαα log
gj

gm
pj ≤ 1 and ki

j = 2Lαα log
gj

gi
.

and rewrite (1.4) as

∑
i≤m

pi

gi
exp

{
−Lαα

∑
j<i

(
log

gj

gi

)2

pj

}
≤ 1
p1g1 + . . .+ pmgm

. (1.9)

By the induction hypothesis (1.9) holds for gm = gm−1. To prove it for gm < gm−1 we will
compare the derivatives of both sides of (1.9) with respect to gm. It is enough to have

pm

gm
exp

{
−Lαα

∑
j<m

(
log

gm

gj

)2

pj

}(
− 1
gm

− 2Lαα
1
gm

∑
j<m

log
gm

gj
pj

)
≥ − pm

(p1g1 + . . .+ pmgm)2

or, equivalently,

exp
{
−Lαα

∑
j<m

(
log

gm

gj

)2

pj

}(
1 − 2Lαα

∑
j<m

log
gj

gm
pj

)
≤

( gm

p1g1 + . . .+ pmgm

)2

.

Since 1 − x ≤ e−x for x ≥ 0 it is enough to show

exp
{
−Lαα

∑
j<m

pj

((
log

gj

gm

)2

+ 2 log
gj

gm

)}
≤

( gm

p1g1 + . . .+ pmgm

)2

.

One can check that (log x)2 + 2 log x is concave for x ≥ 1. If we express gj = λjg1 + (1 −
λj)gm, j = 1, . . . ,m− 1, then

∑
j<m

pj

((
log

gj

gm

)2

+ 2 log
gj

gm

)
≥ (

∑
j<m

pjλj)
((

log
g1
gm

)2

+ 2 log
g1
gm

)

p1g1 + . . .+ pmgm = (
∑
j<m

pjλj)g1 + (pm +
∑
j<m

(1 − λj)pj)gm.

If we denote p =
∑

j<m pjλj and t = log g1
gm

we have to prove

exp
{
−Lααp(t2 + 2t)

}
≤

( 1
pet + 1 − p

)2

, 0 ≤ p ≤ 1, 0 ≤ t ≤ 1
Lα

. (1.10)

Equivalently,

ϕ(p, t) = (pet + 1 − p) exp
{
−1

2
Lααp(t2 + 2t)

}
≤ 1, 0 ≤ p ≤ 1, 0 ≤ t ≤ 1

Lα
.

We have

ϕ′
t(p, t) = ϕ(p, t)

( pet

pet + 1 − p
− Lααp(t+ 1)

)
.
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Since for all p ≥ 0 ϕ(p, 0) = 1 we need ϕ′
t(p, 0) = p(1−Lαα) ≤ 0, which always holds provided

(1.1). Indeed,

1 − Lαα ≤ 1 − 2L2
α(e1/Lα − 1)
1 + 2Lα

< 0,

since the last inequality is equivalent to

1 +
1
Lα

+
1

2L2
α

< e1/Lα .

It is easy to see that ϕ′
t(p, t) = 0 in at most one point t. In combination with ϕ′

t(p, 0) ≤ 0 it
implies that for a fixed p maximum of ϕ(p, t) is attained at t = 0 or t = 1/Lα. Therefore, we
have to show ϕ(p, 1/Lα) ≤ 1, 0 ≤ p ≤ 1. We have,

ϕ′
p(p,

1
Lα

) = ϕ(p,
1
Lα

)
( e

1
Lα − 1

pe
1

Lα + 1 − p
− Lαα

2

( 1
L2

α

+ 2
1
Lα

))
.

Since ϕ(0, 1
Lα

) = 1 we should have ϕ′
p(0,

1
Lα

) ≤ 0 which would also imply ϕ′
p(p,

1
Lα

) ≤ 0, p > 0.
One can check that

ϕ′
p(0,

1
Lα

) = e
1

Lα − 1 − α

2

( 1
Lα

+ 2
)
≤ 0

by (1.1). This finishes the proof of the Lemma. �

Remark. If one defines Lα optimally by making (1.1) into an equality, then it is easy to show
(by using L’Hôpital’s rule) that

lim
α→0

Lαα = 1, and lim
α→∞Lα logα = 1. (1.11)

In one special case of α = 1, which as we mentioned above essentially corresponds to the kernel
introduced in [8], (1.1) gives us Lα ∼ 1.12. In this particular case we solved the optimization
problem in the Lemma 1 numerically for m = 2 to show that the optimal value of the constant
L is approximately equal to 1.07, thus indicating that our proof produces a rather tight value
Lα at least for α = 1.

2 Some applications: empirical processes

In this section we prove several results related to one specific example of application of em-
pirical processes, which although is not the most general formulation possible, nevertheless,
demonstrates the power and flexibility of Talagrand’s kernel method most clearly. We consider
a family of functions F = {f : Ω → [0, 1]}. Given a vector

x = (x1, . . . , xn) ∈ Ωn

one picks a function fx ∈ F according to an arbitrary algorithm, which means that the choice
of function fx can depend on x. As an example, one can consider an empirical risk minimization
problem:

fx = argminF
∑
i≤n

f(xi). (2.1)
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In any case, the goal of the results below is to construct a good bound on the true mean µfx =∫
fxdµ (that holds with high probability) given that the sample mean f̄x = n−1

∑
i≤n fx(xi)

of fx is small. Denote by

Z(x) = sup
F

∑
i≤n

(µf − f(xi)), x ∈ Ωn.

The bound for µfx is related to the process Z(x) via the following inequality

nµfx =
∑
i≤n

fx(xi) +
∑
i≤n

(µfx − fx(xi)) ≤
∑
i≤n

fx(xi) + Z(x).

The distinct feature of Theorem 2, the first result we prove using Talagrand’s kernel method
in comparison, for instance, with the typical results of differential inequalities methods is that
instead of using the uniform variance term in the bound one can use - in our version - the
second moment of the (random) function fx and, moreover, substitute it with a sample mean
f̄x if one so desires.
In our first result we will be using the distance m1(A, x), for which Theorem 1 holds with
L = L1 = 1.12

Theorem 2 Let L = 1.12 and M be a median of Z. Then, for any u > 0,

P

(∑
i≤n

(µfx − fx(xi)) ≥M + inf
δ>1

(1
δ
n(1 − f̄x)µf2

x + δLu
))

≤ 2e−u (2.2)

and

P

(∑
i≤n

(µfx − fx(xi)) ≥ inf
δ>1

(
1 − 1

δ

)−1(
M +

1
δ
n(1 − f̄x)f̄x + δLu

))
≤ 2e−u. (2.3)

Proof. Without loss of generality we assume that F is finite. Let us consider the set

A = {Z(x) ≤M}.

Clearly, µ(A) ≥ 1/2. Let us fix a point x ∈ Ωn and then choose f ∈ F . For any point y ∈ A
we have ∑

i≤n

(µf − f(yi)) ≤M.

Therefore, for the probability measure ν such that ν(A) = 1 we will have

∑
i≤n

(µf − f(xi)) −M ≤
∫ (∑

i≤n

(µf − f(xi)) −
∑
i≤n

(µf − f(yi))
)
dν(y)

=
∑
i≤n

∫
(f(yi) − f(xi))di(yi)dµ(yi).

It is easy to observe that for v ≥ 0, and −1 ≤ u ≤ 1,

uv ≤ u2I(u > 0) + ψ1(v). (2.4)
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Therefore, for any δ > 1

∑
i≤n

(µf − f(xi)) −M ≤ δ
∑
i≤n

∫
f(yi) − f(xi)

δ
di(yi)dµ(yi)

≤ 1
δ

∑
i≤n

∫
(f(yi) − f(xi))2I(f(yi) > f(xi))dµ(yi) + δ

∑
i≤n

∫
ψ1(di)dµ

Taking the infimum over ν we obtain that for any δ > 1

∑
i≤n

(µf − f(xi)) ≤M +
1
δ

∑
i≤n

∫
(f(yi) − f(xi))2I(f(yi) > f(xi))dµ(yi) + δm1(A, x).

Let us denote the random variable ξ = f(y1), Fξ(t) - the distribution function of ξ, and
ci = f(xi). For c ∈ [0, 1] define the function h(c) as

h(c) =
∫

(f(y1) − c)2I(f(y1) > c)dµ(y1) =
∫ 1

c

(t− c)2dFξ(t).

One can check that h(c) is decreasing, convex, h(0) = µf2 and h(1) = 0. Therefore,

1
n

∑
i≤n

h(ci) ≤
( 1
n

∑
i≤n

ci

)
h(1) +

(
1 − 1

n

∑
i≤n

ci

)
h(0) = (1 − f̄)µf2.

Hence, we showed that

∑
i≤n

(µf − f(xi) ≤M +
1
δ
n(1 − f̄)µf2 + δm1(A, x).

Theorem 1 then implies via the application of Chebyshev’s inequality that with probability at
least 1 − 2e−u, m1(A, x) ≤ Lu and, hence (we now spell out the dependence of f on x),

∑
i≤n

(µfx − fx(xi) ≤M + inf
δ>1

(1
δ
n(1 − f̄x)µf2

x + δLu
)
,

thus proving the first statement of the theorem. To prove the second statement one has to
bound µf2

x by µfx and then move the term nµfx to the left side of the inequality. �

Remark. In the case when F is a family of indicators of sets, the term (1 − f̄x)f̄x in (2.3) is
actually equal to a sample variance.
The fact that the bound in (2.2) traces the “variance” term for each function f ∈ F individually
will allow us, for instance, to write a uniform bound for a subset of functions satisfying some
specific condition. As an example of application of this theorem we consider the zero-error case
for the risk minimization problem. For a given x = (x1, . . . , xn) let Fx be a subset of functions
in F defined by (2.1). By zero-error case we understand the fact that for each f ∈ Fx

f̄ =
1
n

∑
i≤n

f(xi) = 0.

In this case Theorem 2 implies the following bound.
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Corollary 1 For any u ≥ 0,

P(∃f ∈ F f̄ = 0, µf ≥M + u) ≤ 2 exp
{
− u2

4L(M + u)

}
.

Proof. For any t > 0 (2.3) implies that with probability at least 1− 2e−t, for any f ∈ F such
that

∑
f(xi) = 0 we have

nµf ≤ inf
δ>1

(
1 − 1

δ

)−1

(M + δLt).

Setting the right side of this inequality to M + u and solving for t we get that

t =
u2

4L(M + u)
,

which completes the proof of the corollary.
�

We will now prove the uniform bound for Z(x), where the role of the “variance” term will be
played by σ2 = n supµf2. The proof of Theorem 3 below will utilize the family of distances
mα(A, x) rather than m1(A, x), and as a result will automatically provide the Poissonian tail
behavior for large values of u/σ2, thus avoiding the necessity of using the truncation argument
of Talagrand (see [2], [3], [8]).

Theorem 3 Let σ2 = n supF µf
2. For any u ≥ 0,

P(Z ≥M + u) ≤ 2 exp
{
− sup

s>0

(
su− 2s(es − 1)

s+ 2
σ2

)}
(2.5)

and
P(Z ≤M − u) ≤ 2 exp

{
− sup

s>0

(
su− 2s(es − 1)

s+ 2
σ2

)}
. (2.6)

Proof. For a fixed real number a consider a set

A = {Z(x) ≤ a}.
The choice of a will be made below. Again, as in Theorem 2, for the probability measure ν
such that ν(A) = 1 we will have

∑
i≤n

(µf − f(xi)) − a ≤
∫ (∑

i≤n

(µf − f(xi)) −
∑
i≤n

(µf − f(yi))
)
dν(y)

=
∑
i≤n

∫
(f(yi) − f(xi))di(yi)dµ(yi) ≤

∑
i≤n

∫
f(yi)di(yi)dµ(yi).

Instead of (2.4), we now use the following: for v ≥ 0, 0 ≤ u ≤ 1, and α > 0 we have

uv ≤ αu2 + ψα(v), (2.7)

which implies that

Z(x) = sup
F

∑
i≤n

(µf − f(xi)) ≤ a+ αn sup
F
µf2 +mα(A, x) = a+ ασ2 +mα(A, x).
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For a given t > 0 let α0 be the one minimizing

α0 = argmin(ασ2 + Lαt),

where Lα is defined by (1.1). Theorem 1 applied to mα0(A, x) implies that

P{Z ≤ a+ α0σ
2 + Lα0t} ≥ 1 − e−t

P (Z ≤ a)
.

Applied to a = M and a = M − α0σ
2 − Lα0t, this inequality implies that

P{Z ≥M + α0σ
2 + Lα0t} ≤ 2e−t

and
P{Z ≤M − α0σ

2 − Lα0t} ≤ 2e−t

(strictly speaking, one needs an approximation argument to be able to write weak inequalities).
Setting

u = α0σ
2 + Lα0t = inf

α>0
(ασ2 + Lαt)

and solving for t we get

t = sup
α>0

1
Lα

(u− ασ2).

Using the relationship between α and Lα

α =
2Lα(e1/Lα − 1)

1 + 2Lα

and rewriting the supremum in terms of s = 1/Lα we get the result.
�

It is very easy to show that for large values of u/σ2 the bounds (2.5) and (2.6) have Poissonian
behavior ∼ u log u

Kσ2 , for instance, for K = 2e. In order to give a simple expression as an
estimate of (2.5) and (2.6) and at the same time not to lose much accuracy we had to use the
combination of some calculus and numerical computations. Basically, we found the condition
for the supremum in (2.5), analyzed it outside of some bounded interval, and transformed an
estimation problem to a robust numerical problem on this bounded interval, where we used
numerical computations to preserve the accuracy. As a result we have the following corollary
(we don’t give the proof of it here).

Corollary 2 Let σ2 = n supF µf
2. For any u ≥ 0,

P(Z ≥M + u) ≤ 2 exp
{
−0.98 u log

(
1 +

u

4σ2

)}
(2.8)

and
P(Z ≤M − u) ≤ 2 exp

{
−0.98 u log

(
1 +

u

4σ2

)}
. (2.9)

Remark. This result should be compared to the Theorem 5.1 of E.Rio [6] for the classes of
sets. Ignoring the fact that concentration inequalities in [6] are around the mean rather than
the median and comparing the tail behavior, one can show that Rio’s inequalities are superior
to (2.8) and (2.9); although, the right tail inequality in [6] is given for u ≤ σ2 only.
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