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Abstract
We prove the law of large numbers for U-statistics whose underlying sequence of random
variables satisfies an absolute regularity condition (B—mizing condition) under suboptimal con-
ditions.

1 Introduction.

We consider the law of large numbers for U-statistics whose underlying sequence of random
variables satisfies a S—mixing condition. Let {X,,}22; be a sequence of random variables with
values in a measurable space (S,S). Given a kernel h, i.e. given a function h from S™ into
IR, symmetric in its arguments, the U—statistic with kernel h is defined by

 (n—m)!
(1.1) Un(h) i= = S (X, X
1<ii < <im<n
We refer to Serfling (1980), Lee (1990), and Koroljuk and Borovskich (1994) for more in U-
statistics. For i.i.d.r.v.’s, assuming that E[|h(X1,...,Xn)|] < oo, Hoeffding (1961; see also

Berk, 1966) proved the law of large numbers for U—statistics:

—m)!
(1.2) % > (WX, Xi,) — E[A(XGy, ., X)) 0 as,
1<i1 < <im<n
Several authors have studied limit theorems for U—statistics under different dependence con-
ditions. Sen (1972), Yoshihara (1976) and Denker and Keller (1983) proved a central limit
theorem and a law of the iterated logarithm for U—statistics under different types of depen-
dence conditions. Qiying (1995) and Aaronson, Burton, Dehling, Gilat, Hill, and Weiss (1996)
studied the law of large numbers for U-statistics for stationary sequences of dependent r.v.’s.
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Aaronson, Burton, Dehling, Gilat, Hill, and Weiss (1996) gave several sufficient conditions
for the law of large numbers over a ergodic stationary sequence of r.v.’s. It is shown in this
paper (Example 4.1) that even the weak law of large numbers for U-statistics is not true
just assuming finite first moment and ergodicity, that is the ergodic theorem is not true for
U-statistics. Thus further conditions must be imposed.

Qiying (1995) considered the law of large numbers under ¢*—mixing. But, there is a gap in
his proofs. In Equation (11), he claims that

o0
Z 272% sup E|h(X1, Xim) |2 I(h(x1, x,0) <220y < A sup E|h(X1, Xpm)|,
k=1 m>2 m>2

where A is an arbitrary constant. Qiying is using that there exist a universal constant A such
that for any sequence of r.v.’s {&,},

(o]
Z 272k sup E{ZQI(KMSQ%) < Asup E|&,].
k=1 m>2 m>2

This claim is not true. Let us take &,, such that Pr(§,, = 22™) = 272™ and Pr(§, = 0) =
1 —272m, Then,

sup El¢m| =1
m>2
and
o) o)
ZQ_Qk sup Eg%@I(EmSQ%) > ZQ_QICE{']%I(&SQ%) = 00.
k=1 m22 k=1

A similar comment applies to Equation (11) in Qiying (1995).

Instead of using ¢*—mixing, we use f—mixing. ¢*—mixing is one of the stronger mixing con-
ditions. The ¢*—mixing coefficient is bigger than the S—mixing. The dependence condition
we will consider is known as absolute regularity. Given a strictly stationary sequence {X;}32,
with values in a measurable space (S, S), let o} = o(X1, ..., X;) and let 0f° = o(X}, Xi41, .. .),
the f—mixing sequence is defined by

I J
(1.3)  Br:=2"1 sup{zz | Pr(A; N B;j) — Pr(A;) Pr(B;)| : {Ai}le is a partition in Ull

i=1j=1

and {Bj}jzl is a partition in o35, > 1}.

We refer to Ibragimov and Linnik (1971) and Doukhan (1994) for more information in this
type of dependence condition.
We present the following theorem:

Theorem 1. Let {X;}3°; be a strictly stationary sequence of random variables with values
in a measurable space (S,S). Let h: S™ — IR be a symmetric function. Suppose that at least
one of the following conditions is satisfied:

(i) For some § > 2, sup;<;, ..ci. coo B[N Xs,, ..., Xi,)|°] < 00 and B, — 0.

(ii) For some 0 < § <1 and some r > 2671, supy <, c...ci. oo B[|R( Xy, ..., X, )1 0] < 00
and By, = O((logn)~") -
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(iii) For some 0 < 6 <1 and some r > 0,
SUP1<4y <<y <oo EHh(Xiu . . '7Xim)|(10g+ |h(Xi17 .. '7Xim)|)1+6] < oo and Bn = O(n_r)'
Then,

n~™ > (WX, X)) = E[R(X,, ., X)) = 0 as,

1<ig <+ <im<n

Observe that the conditions in the previous theorem are very close to being optimal.

2 Proofs.

c will denote an arbitrary constant that may change from line to line. Given ar.v. Y, we define
1Y, = (E[|[Y]])}/?, for and 1 < p < 0o; and we define ||Y ||oc = inf{t > 0:|Y| <t as.}.
We need to recall some notation on U-statistics. We define

(2.1) Thmb(T1, .. 2r) = (0, — P) -+ (8z — P)YP™ *h,
where Q-+ Qmh = [+ [h(z1,...,2m) dQ1(x1) - - dQm (). We say that a kernel h is

P—canonical if it is symmetric and
(2.2) E[h(z1,...,Tm—1,Xm)] =0 as.
It is known that
" (m
(2.3) Ualh) =3 ( K ) U ().
k=0

Previous inequality is known as the Hoeffding decomposition (Hoeffding, 1948, Section 5).
Observe that the Hoeffding decomposition is a decomposition in U-statistics of canonical
kernels (mx mh is a canonical kernel).

The f-mixing condition allows to compare probabilities of the initial sequence with respect to
a sequence of r.v.’s with independent blocks. Explicitly, we have the following lemma:

Lemma 2. Let {X; }321 be a stationary sequence of r.v.’s with values in a measurable space

(S,S). Let f be a measurable function on S™. Let (m(i,7)) 1<i<x be integers such that
1<5<r;

m(1,1) <---<m(l,r)) <m(2,1) < - <m(2,rq) <---<mlk,1) < - <m(k,ry).

Letr = Zle ri. Let {€;}%_; be a sequence of identically distributed r.v.’s with the distribution
of X1 such that

L(Ema,1)s - Em@r)s Em@1) -3 Em(2ira)s 5 Emk,1)s -+ Emik,re))

= L(Xm@,1)s o Xm(1,r1)) ® - @ L(Xin(k,1)s -+ X))

Then,
(1)

k—1
B (Xim(1,1)s - Xt ] = B 1)y - )| < 2 Bm(i+1, 1) =m(i, 7)) || oo
i=1
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(i) If 1 < p < o0,

IE[f(Xm,1)s > X)) = ELf Emi,1)s - - s Eme,r)]l

k—1
< 4(2 B(m(i+1,1) —m(i,r;))) P~ D/P

=1

X max(|| f(Xm(1,1)s - - - » Xonoyr)Mps 1 FEm(a,1)s - -+ Emier)) lp)-

Part (i) in previous lemma follows directly from the definition of 8 mixing (see the character-
ization of S—mixing on page 193 in Volkonskii and Rozanov, 1961) and induction (see Lemma
2 in Eberlein, 1984). Part (ii) follows directly from part (i) (see for example Lemma 2 in
Arcones, 1995).

The following lemma gives a bound on the second moment of a U-statistic over a degenerated
kernel.

Lemma 3. There is a universal constant c, depending only on m, such that for each
canonical kernel h and each p > 2,

2
n—1
E S Xy, X)) | | Senm Py gmar Yy
1<i1 < <im<n j=1
where
M = sup (E[|h(Xil,...,Xim)|p]1/p.
1<) <<y <00
PrOOF. We have that
2

E S (X, Xi,)

1<ig <+ <im<n

< Y > IER(Xi, s s Ko (XK s+ -5 Ky
cel'(2m) 1<i1 < <igm<n
where I'(2m) is the collection of all permutations of 2m elements. Let j; = iz — i1, let
o= min(igl_l — 19]_92,12] — igl_l) for 2 <1 < m—1, and let j,, = dom — tom—1. If
j1 = max(ji,...,Jm), we compare the initial sequence {Xj,...,X,} with the one having

the independent blocks {i1}, {i2,...,%2m } and the same block distribution. We claim that by
Lemma 2, we get that

> IE(Xi, s s X o (XK s+ -5 Ky

1<ig < Sigp <n
J1252;5Jm

n—1
< can2(1 + Z km_lﬁ,(f—Q)/p).
k=1
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Observe that if 5 = i1 +k, 1 can take at most n different values. Assume that iz —is < 14 —13,
then i3 —io < k, so i3 can take at most k values and i4 can take at most n values. If
ig — 13 < i3 — i, then i3 can take at most n values and iy can take at most k values.
Proceeding in this way we obtain that the possible values for the variables i1 < -+ < dg,,
(under the assumptions 1 < i3 < -+ < 4o, < n and k = j1 > Ja2,...,Jm) is bounded by
nmEm1

If j; = max(ji,. .., jm), for some 2 <1< m — 1, we compare the initial sequence with the one
with the independent blocks {i1,...,42—2}, {i2i—1} and {ia,...,i2m}. A similar argument
applies to this case.

If j,, = max(j1,-..,Jm), we compare the initial sequence with the one with the independent
blocks {i1,...,42m—1} and {izm}. O

Now, we are ready to prove Theorem 1.

PROOF OF THEOREM 1. First, we consider the case (iii). We may assume that 0 < r <m. A
standard argument gives that it suffices to show that for each o > 1,

(2.4) ng™ > WXy, Xi,) = Elh(Xiy, ..., Xi,)] as.,

1<ip < <im<mg

where ny = [o*]. Now, by the Hoeffding decomposition, it suffices to prove (2.4) for canonical
kernels. We are going to prove (2.4) by induction on m. The case m = 1 is the ergodic theorem
(see for example Theorem 6.21 in Breiman, 1992).

It is easy to see that it suffices to show that

ng Tm—1

"y S Xy, X)) =0 as,

im=nk—1+1 1< < <ipm_1

Take p > 2 and 7 > 0 such that

(2.5) 2r(p—1) <r(p—2).
Next we prove that
ng Tm—1
(2.6) "y S Xy Xi ) n(x, X )lzny = 0 as.

im=nk—1+1 1< < <ipm_1

We have that
nk Tm—1

(2.7) ED m™ Y > X Xi ) Dx, X, ) 207)
k=1

i =ng—1+11<i1 < <im_1

(o)
< cz:(logn;)_‘s_1 < oo0.
k=1

Therefore, (2.6) follows.
Thus, we must prove that

Nk Tm—1

(2.8) n;m Z Z (h(Xil, ceey Xim)Ilh(Xil7~~~7Xim)|<n£

i =ng—1+11<i1 < <im_1
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—E[h(Xiy, s Xi ) n(xi, X0, )1 <n7] = 0 aus.

Using that
Op, =+ 0g,, — P™

= (62, — P)P" ' 4+ P(0p, — P)P" ? + -+ P (8, — P)
+(5ac1 _P)(‘Swz _P)Pm_2+"'+(5w1 _P)"'(‘Swm _P)7
we get that (2.8) decomposes in sums of terms of the form

Nk Tm—1

29 mm Y S PO, — PYPP (8, — P)PRRI(H] < nj),

im=nk—1+11<i; < <ipm_1

where 1< a1 < <ay<m,1<1<m,0<7,...,50and |+ jo+ -+ 75 =m.
For 1 <1< m —1, using that h is canonical,

Pjo((sxial - P)le o '(d’ual - P)lehl(|h| < n;)

= P(b,,, — P)P*--. (Oz,,, — P)PI'RI(|h| > n}).
Thus, (2.9) is bounded in absolute value by
ng™ > PI(b,,, + P)P - (b, + P)PU[R|I(|h| > n).
1<iy < <im<ng

Again, decomposing terms, we get that we have to deal with

n];m Z Pjo(sxial le o '5961'&1 P]l|h’|I(|h| 2 n;)

1<ty < <im <N
< eng! > PG, Pieb,, PPRI(R| > np),
1<ip<--<i;<nyp

which goes to zero a.s. by the induction hypothesis.
To get the case | = m,

Nk Tm—1
(2.10) n, " Z Z Tm,m (RI(|h| < np)( X4y, ..., X5,) = 0 as.
im=ng—1+1 1< < <ip_1
By Lemma 3,
Nk Im—1
(2.11) E[(ny™ > S Amm(hI(h] < np)(Xiy, ., X))

G =ng—1+11<i1<-<dm—1

Seny (14D BTN sup  BlR(Xys -, X3, )IPI(R] < )]

= i< iy

_ _ —1 _ —1
SanT(p 2)p~ 7 (p—1)2p

which by (2.5) implies (2.10).



LLN for U—statistics 19

The proof in the case (ii) follows similarly, instead of truncating at nj, we truncate at k(+e)/s
where 27107 — 1 > € > 0. We take p > 2 such that r > 2(p —1 —3)(1 +€)d 1 (p — 2)~L. Tt is
easy to see that (2.7) and (2.11) hold.

In the case (iii), we truncate at ny and we take p = §. It is easy to see that (2.11) is bounded
by

cn;m(l + ij—lﬁ](P—Q)/P),

j=1

which goes to zero. O
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