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Abstract

A transient stochastic process is considered strongly transient if conditioned on
returning to the starting location, the expected time it takes to return the the starting
location is finite. We characterize strong transience for a one-dimensional random walk
in a random environment. We show that under the quenched measure transience is
equivalent to strong transience, while under the averaged measure strong transience
is equivalent to ballisticity (transience with non-zero limiting speed).
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1 Introduction and statement of main results

The notions of transience and recurrence of stochastic processes are well known,
but somewhat less well known is the notion of strong transience. Let {Zn}n≥0 be a
stochastic process on some countable state space, and let R = inf{n ≥ 1 : Zn = Z0} be
the first time that the process returns to its initial location. The process Zn is said to
be stongly transient if it is transient and E[R|R <∞] <∞. (This is a “strong” notion of
transience since it implies that any returns to the starting point must happen relatively
quickly.) If Zn is transient but E[R|R < ∞] = ∞, then we will say that the process is
weakly transient. In this paper we will consider one-dimensional random walks in a
random environment (RWRE) and will give a simple characterization of strong transience
when the distribution of the environment is an i.i.d. product measure. Our main results
show that the characterization of strong transience is different under the quenched and
averaged measures. Under the quenched measure, we will show that strong transience
is equivalent to transience, while under the averaged measure strong transience is
equivalent to transience with non-zero limiting speed.

The question of strong transience for RWRE was posed by Kosygina and Zerner as
Problem 1.6 in [8] where they also studied strong transience of one-dimensional excited
random walks. While the models of RWRE and excited random walks are very different
models of self-interacting random motions, there is a remarkable similarity in many of
the results in the two models. In particular, (under the averaged measures) the limiting
distributions for transient RWRE [4] are very similar to those for transient excited
random walks [1, 7, 6]. In both models, the limiting distributions show three distinct
types of behavior that can occur depending on the particular parameters of the model:
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Strong transience for RWRE

1) transience with sublinear speed and non-Gaussian limiting distributions, 2) transience
with non-zero speed and non-Gaussian limiting distributions, and 3) transience with
non-zero speed and Gaussian limiting distributions. In [8] it was shown for excited
random walks that within the second regime (non-zero limiting speed and non-Gaussian
limiting distributions) there is a transition from weak to strong transience. Our results,
however, show that for RWRE (under the averaged measure) the transition from weak to
strong transience coincides with the transition from sublinear speed to non-zero limiting
speed.

1.1 One-dimensional RWRE

An environment for a one-dimensional RWRE is a sequence ω = {ωx}x∈Z ∈ [0, 1]Z.
Given an environment ω and a fixed z ∈ Z, the random walk {Xn}n≥0 started at z in the
environment ω is the Markov chain with law P zω given by P zω(X0 = z) = 1 and

P zω(Xn+1 = y|Xn = x) =


ωx y = x+ 1

1− ωx y = x− 1

0 otherwise.

For random walks in random environments, we also let the environment ω be chosen
randomly. In this paper we will make the following assumption on the randomness of the
environment.

Assumption 1.1. The distribution P on environments is such that ω = {ωx}x∈Z is an
i.i.d. sequence.

The distribution P zω of the random walk for a fixed environment ω is called the
quenched law of the random walk. By averaging the quenched law with respect to the
distribution P on environments we obtain what is called the averaged (or annealed ) law

Pz(·) = EP [P zω(·)].

Here EP denotes the expectation with respect to the measure P on environments.
Expectations with respect to the quenched and averaged measures on the random walk
will be denoted by Ezω and Ez, respectively. It will often be the case that we will be
interested in the RWRE started at X0 = 0, and thus we will use the notation Pω and P to
denote P 0

ω and P0, respectively (corresponding expectations will be denoted Eω and E.)

The study of RWRE was initiated in Solomon’s seminar paper [10]. In this paper,
Solomon gave a characterization of recurrence/transience of one-dimensional RWRE and
also calculated the limiting speed. Before stating Solomon’s results, we first introduce
some notation. Let

ρx =
1− ωx
ωx

, for x ∈ Z. (1.1)

With this notation, Solomon’s results can be stated as follows.

Theorem 1.2 (Solomon [10]). Assume that the distribution on environments P satisfies
Assumption 1.1, and assume that EP [log ρ0] exists.

(i) The recurrence or transience of the RWRE is determined by the value of EP [log ρ0].

• If EP [log ρ0] < 0 then P(limn→∞Xn = +∞) = 1.
• If EP [log ρ0] > 0 then P(limn→∞Xn = −∞) = 1.
• If EP [log ρ0] = 0 then P(lim infn→∞Xn = −∞ and lim supn→∞Xn = +∞) = 1.
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(ii) The limiting speed of the RWRE is determined by the values of EP [ρ0] and EP [ρ−1
0 ].

In particular,

lim
n→∞

Xn

n
=


1−EP [ρ0]
1+EP [ρ0] if EP [ρ0] < 1

− 1−EP [ρ−1
0 ]

1+EP [ρ−1
0 ]

if EP [ρ−1
0 ] < 1

0 if EP [ρ−1
0 ], EP [ρ0] ≥ 1,

P-a.s. (1.2)

Remark 1.3. Note that Jensen’s inequality implies that 1/EP [ρ−1
0 ] ≤ EP [ρ0], so the

formula for the speed in (1.2) covers the three possible cases.

We are now ready to state the main result of the paper. For simplicity, we will state
our results for RWRE that are transient to the right.

Theorem 1.4. Assume that the distribution on environments P satisfies Assumption 1.1
and that EP [log ρ0] ∈ (−∞, 0). Then

(i) Eω[R|R <∞] <∞ for P -a.e. environment ω.

(ii) E[R|R <∞] <∞ ⇐⇒ EP [ρ0] < 1.

Clearly strong transience under the averaged measure requires both E[R|X1 =

−1, R <∞] <∞ and E[R|X1 = 1, R <∞] <∞. If the random walk is transient to the
right, then it is the second of these conditional expectations that is more interesting. In
the proof of Theorem 1.4 we will show that E[R|X1 = −1, R <∞] <∞ ⇐⇒ EP [ρ0] < 1,
but for the other conditional expectation we only need that EP [ρ0] < 1 implies that
E[R|X1 = 1, R <∞] <∞. The next theorem gives the converse of this last statement
under a slightly stronger assumption on the environment.

Theorem 1.5. Assume that the distribution on environments P satisfies Assumption 1.1
and that EP [log ρ0] ∈ (−∞, 0).

(i) If EP [ρ0] < 1 then E[R|X1 = 1, R <∞] <∞.

(ii) If either EP [ρ0] > 1 or EP [ρ0] = 1 and EP [ρ0 log ρ0] < ∞ then E[R|X1 = 1, R <

∞] =∞.

The assumptions in part (ii) of Theorem 1.5 are only slightly stronger than EP [ρ0] ≥ 1.
We conjecture, however, that the result is true under this weaker assumption as well.

Conjecture 1.6. If P satisfies Assumption 1.1 and EP [log ρ0] ∈ (−∞, 0), then

E[R|X1 = 1, R <∞] <∞ ⇐⇒ EP [ρ0] < 1.

2 General random walk results

In this section we record some general results on one-dimensional random walks
that will be useful for analyzing the environment ω. Assume that ξ1, ξ2, . . . is an i.i.d.
sequence of random variables and let Sn =

∑n
i=1 ξi for any n ≥ 1. To avoid confusion

with the probability measures associated to the RWRE, we will use P for the law of the
sequence (ξ1, ξ2, . . .) and E for corresponding expectations. We will always assume that
E[ξ1] ∈ (−∞, 0) so that the random walk Sn has negative drift. The following result gives
asymptotics for the probability that the random walk Sn goes above level t ≥ 0 at some
point.

Proposition 2.1. Assume that E[ξ1] < 0 and that E[eγξ1 ] = 1 and E[ξ1e
γξ1 ] <∞ for some

γ > 0.

(i) If the distribution of ξ1 is non-lattice then there exists a constant C > 0 such that

lim
t→∞

eγtP

(
sup
n≥1

Sn ≥ t
)

= C.
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(ii) If P(ξ1 ∈ aZ) for some a > 0, then there exists a constant C > 0 such that

lim
k→∞

eγkaP

(
sup
n≥1

Sn ≥ ka
)

= C.

Remark 2.2. Part (i) of Proposition 2.1 is the content of [3, Lemma 1]. The proof of the
lattice case in part (ii) is essentially the same as the proof of the non-lattice case in [3],
but we will include the proof here for completeness since the proof is short.

Proof of part (ii) of Proposition 2.1. The key to the proof of the proposition is the fol-
lowing change of measure. Let Q be a measure on sequences (ξ1, ξ2, . . .) with Radon-
Nykodym derivative given by

dQ

dP
(ξ1, . . . , ξn) = eγSn .

Expectations with respect to the measure will be denoted by EQ. Note that Q is a
probability measure since E[eγSn ] = E[eγξ1 ]n = 1. Also, since eγSn =

∏n
i=1 e

γξi it
follows that a sequence (ξ1, ξ2, . . .) with distribution Q is i.i.d. with mean EQ[ξ1] =

E[ξ1e
γξ1 ]. Since x 7→ x log x is convex, it follows from Jensen’s inequality that E[ξ1e

γξ1 ] >

E[eγξ1 ] logE[eγξ1 ] = 0 (note that the inequality is strict since the assumptions of the
proposition imply that the distribution of ξ1 is non-degenerate). Therefore, EQ[ξ1] ∈
(0,∞).

For any t ≥ 0 let τ(t) = inf{n ≥ 1 : Sn ≥ t} be the stopping time for the first time the
random walk Sn goes above level t. Note that the event {supn≥1 Sn ≥ t} = {τ(t) <∞},
and since τ(t) is a stopping time this event only depends on ξ1, ξ2, . . . ξτ(t). Therefore,
applying the change of measure defined above we obtain that

P

(
sup
n≥1

Sn ≥ t
)

= E
[
1{τ(t)<∞}

]
= EQ

[
e−γSτ(t)1{τ(t)<∞}

]
= EQ

[
e−γSτ(t)

]
,

where in the last equality we can drop the indicator of the event {τ(t) <∞} since the
fact that EQ[ξ1] > 0 implies that Q(τ(t) <∞) = 1.

Since we are only considering the lattice case P(ξ1 ∈ aZ) = 1 for some a > 0, we
need only to show that the limit

lim
k→∞

EQ

[
e−γ(Sτ(ak)−ak)

]
(2.1)

exists. This will follow from results in renewal theory since Sτ(ak) − ak is the “age” of a
renewal process at time ak where the renewal increments have distribution Sτ(a). Note
that Wald’s identity implies that EQ[Sτ(a)] = EQ[ξ1]EQ[τ(a)] = E[ξ1e

γξ1 ]EQ[τ(a)] and thus
if we show EQ[τ(a)] <∞ then it will follow from standard results in renewal theory that
Sτ(ak) − ak converges in distribution as k →∞ (see [9, Section 6.3]). To this end, note
that

Q(τ(a) > n) ≤ Q(Sn < a) ≤ eγa/2EQ[e−(γ/2)Sn ] = eγa/2E[e(γ/2)Sn ] = eγa/2E[e(γ/2)ξ1 ]n.

Since u 7→ E[euξ1 ] is convex as a function of u and E[euξ1 ] = 1 at u = 0 and u = γ, it
follows that E[e(γ/2)ξ1 ] < 1, and thus τ(a) has exponential tails under the measure Q. In
particular, this implies that EQ[τ(a)] < ∞ and so Sτ(ak) − ak converges in distribution
and the limit (2.1) exists.

The second result in this section concerns the behavior of the random walk prior to
dropping below a certain level. Let

ν(t) = inf{n ≥ 1 : Sn ≤ −t}, t ≥ 0,

be the first time the random walk Sn drops below −t.
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Proposition 2.3. Let E[ξ1] ∈ (−∞, 0), and assume that E[euξ1 ] < ∞ for some u > 0.
Then, there exists a constant C <∞ such that

E

ν(t)−1∑
n=0

e−Sn

 ≤ Cet, ∀t > 0.

Proof. For convenience of notation, let φ(t) = E[
∑ν(t)−1
n=0 e−Sn ]. We first show that

φ(t) < ∞ for all t < ∞. Since e−Sn < et for all n < ν(t), it follows that φ(t) ≤ etE[ν(t)].
To show that E[ν(t)] <∞, note that for any δ > 0

P(ν(t) > n) ≤ P(Sn > −t) ≤ eδtE[eδSn ] = eδtE[eδξ1 ]n.

Since u 7→ E[euξ1 ] is a convex function of u with right derivative at u = 0 equal to
E[ξ1] < 0, there exists a δ > 0 such that E[eδξ1 ] < 1. Thus, we can conclude that ν(t) has
exponential tails and therefore E[ν(t)] <∞. (Note that the above argument is enough to
conclude that φ(t) ≤ Ce(1+δ)t for some C <∞ depending on δ > 0.)

Since φ(t) is non-decreasing as a function of t, it is enough to prove that φ(k) ≤ Cek
for all integers k ≥ 1. By conditioning on Sν(k−1),

φ(k) = E

ν(k−1)−1∑
n=0

e−Sn

+ E

 ν(k)−1∑
n=ν(k−1)

e−Sn1{−k<Sν(k−1)≤−k+1}


≤ φ(k − 1) + ekE

 ν(k)−1∑
n=ν(k−1)

e−(Sn−Sν(k−1))1{−k<Sν(k−1)≤−k+1}


= φ(k − 1) + ekE

[
φ(k + Sν(k−1))1{−k<Sν(k−1)≤−k+1}

]
≤ φ(k − 1) + ekφ(1), (2.2)

where the equality in the second to last line follows from the strong Markov property,
and the last inequality follows from the fact that φ(t) is non-decreasing. It follows from

(2.2) and induction that φ(k) ≤ ek+1−1
e−1 φ(1) for all k ≥ 1.

3 Exact RWRE calculations

Much of what is known about one-dimensional RWRE is due to the fact that certain
probabilities and expectations of interest can be calculated explicitly. In preparation for
the proofs of Theorems 1.4 and 1.5 we will first review some of these formulas. We begin
by introducing some notation that will help make these formulas more compact. Recall
the definition of ρx in (1.1), and for integers i ≤ j let

Πi,j =

j∏
x=i

ρx, Ri,j =

j∑
k=i

Πi,k, and Ri =

∞∑
k=i

Πi,k.

With this notation we have the following formulas (the proofs of these formulas are easy
Markov chain calculations and can be found in [11]).
Hitting probabilities. Let the hitting times of the random walk be denoted by

Tx = inf{n ≥ 0 : Xn = x}, x ∈ Z.

Then, for any a ≤ x ≤ b it is known that

P xω (Ta < Tb) =
Πa,x−1Rx,b−1

Ra,b−1
and P xω (Ta > Tb) =

Ra,x−1

Ra,b−1
. (3.1)
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Quenched expectations of hitting times. For any environment ω and any x ∈ Z,

Exω [Tx+1] = 1 + 2
∑
i≤x

Πi,x. (3.2)

Of course, the sum in the above formula may possibly be infinite. However, if the RWRE
is transient to the right then EP [log ρi] < 0 and thus the law of large numbers implies
that Πi,x = exp{

∑x
j=i log ρj} decreases exponentially as i→ −∞ so that the sum in (3.2)

converges almost surely. Similar reasoning shows that Exω[Tx+1] =∞ when EP [log ρ0] ≥ 0

(i.e., when the walk is recurrent or transient to the left). In this paper we will also need
formulas for the expected values of hitting times to the left. From (3.2) and an obvious
symmetry argument, one obtains

Exω [Tx−1] = 1 + 2
∑
i≥x

Π−1
x,i . (3.3)

Before concluding this section, we note that the formulas for the limiting speed of the
RWRE in (1.2) are derived from (3.2) and (3.3). In particular, if the RWRE is transient to
the right then it can be shown that limn→∞Xn/n = limn→∞ n/Tn = 1/E[T1]. The formula
for the speed in this case is then given by the fact that

E[T1] = EP [Eω[T1]] = 1 + 2
∑
i≤0

EP [Πi,0]

= 1 + 2

∞∑
k=0

EP [ρ0]k =

{
1+EP [ρ0]
1−EP [ρ0] if EP [ρ0] < 1

∞ if EP [ρ0] ≥ 1,

where the second equality follows from (3.2) and the third equality follows from the fact
that the environment was i.i.d. under the measure P . The formula for the speed when
the walk is transient to the left follows similarly from (3.3).

4 Quenched strong transience

In this section we will prove part (i) of Theorem 1.4. The assumption that EP [log ρ0] ∈
(−∞, 0) implies that Pω(R <∞) ≥ 1− ω0 > 0 for P -a.e. environment ω. Therefore, we
need only to show that Eω[R1{R<∞}] <∞. By conditioning of the first step of the walk,

Eω[R1{R<∞}] = 1 + (1− ω0)E−1
ω [T01{T0<∞}] + ω0E

1
ω[T01{T0<∞}]

= 1 + (1− ω0)E−1
ω [T0] +

ω0R1

1 +R1
E1
ω[T0|T0 <∞], (4.1)

where in the last equality we dropped the indicator from the first expectation since the
walk is transient to the right, and we used that P 1

ω(T0 <∞) = R1

1+R1
from the quenched

hitting time formulas in (3.1). It follows from the discussion following (3.2) that E−1
ω [T0]

is almost surely finite. Therefore, we need only to show that E1
ω[T0|T0 < ∞] < ∞ for

P -a.e. environment ω. To this end, note that conditioned on the event {T0 <∞} the law
of the random walk until the stopping time T0 is equal to that of a random walk in the
environment ω̃ = {ω̃x}x∈Z given by ω̃x = ωx for x ≤ 0 and

ω̃x =
ωxP

x+1
ω (T0 <∞)

P xw(T0 <∞)
=
ωx

Π0,xRx+1

R0

Π0,x−1Rx
R0

=
ωxRx+1

1 +Rx+1
, for x ≥ 1.

(See [2, page 78] for more details.) Note that if we define ρ̃x = 1−ω̃x
ω̃x

and Π̃i,j =
∏j
x=i ρ̃x,

then we have that

ρ̃x =
1 + (1− ωx)Rx+1

ωxRx+1
=

1 +Rx
Rx+1

=
1 +Rx

ρx+1(1 +Rx+2)
, ∀x ≥ 1,
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and thus

Π̃i,j =
(1 +Ri)(1 +Ri+1)

Πi+1,j+1(1 +Rj+1)(1 +Rj+2)
=

(1 +Ri)Ri
Πi,j(1 +Rj+1)Rj+1

, ∀1 ≤ i ≤ j.

Using the explicit formula for quenched expectations of hitting times in (3.3), we obtain
that

E1
ω[T0 |T0 <∞] = E1

ω̃[T0] = 1 + 2

∞∑
n=1

(Π̃1,n)−1

= 1 + 2

∞∑
n=1

Π1,n
(1 +Rn+1)Rn+1

(1 +R1)R1
. (4.2)

To prove that the sum in (4.2) is finite, let c0 := −EP [log ρ0] ∈ (0,∞) and fix an ε ∈
(0, c0/5). Then, the strong law of large numbers implies that for P -a.e. environment ω
there exists a finite integer n1(ω, ε) such that

e−(c0+ε)n ≤ Π1,n ≤ e−(c0−ε)n, ∀n ≥ n1(ω, ε). (4.3)

Note that this implies that Πn+1,n+k =
Π1,n+k

Π1,n
≤ e−(c0−ε)(n+k)

e−(c0+ε)n = e2εne−(c0−ε)k for n ≥
n1(ω, ε) and k ≥ 1, and thus

Rn+1(1 +Rn+1) ≤

(
1 +

∞∑
k=1

Πn+1,n+k

)2

≤ e4εn

1− e−c0+ε
, ∀n ≥ n1(ω, ε). (4.4)

Therefore, (4.3) and (4.4) imply that Π1,nRn+1(1 + Rn+1) ≤ e−(c0−5ε)n

1−e−c0+ε for all n ≥
n1(ω, ε). Since we chose ε < c0/5 this shows that the sum in (4.2) is almost surely finite.

5 Averaged strong transience

We now turn to the results on strong transience under the averaged measure: Theo-
rem 1.4(ii) and Theorem 1.5.

Proof of Theorem 1.4(ii). Since P(R <∞) ≥ EP [1−ω0] > 0, strong transience is equiva-
lent toE[R1{R<∞}] <∞. Averaging (4.1) with respect to the measure P on environments
we obtain that

E[R1{R<∞}] = 1 + EP
[
(1− ω0)E−1

ω [T0]
]

+ EP

[
ω0R1

1 +R1
E1
ω[T0|T0 <∞]

]
= 1 + EP [1− ω0]EP

[
E−1
ω [T0]

]
+ EP [ω0]EP

[
R1

1 +R1
E1
ω[T0|T0 <∞]

]
= 1 + EP [1− ω0]E[T1] + EP [ω0]EP

[
R1

1 +R1
E1
ω[T0|T0 <∞]

]
, (5.1)

where in the second equality we used that the environment {ωx}x∈Z is an i.i.d. sequence
under the measure P (note that E−1

ω [T0] depends only on ωx with x ≤ −1 and E1
ω[T0|T0 <

∞] depends only on ωx with x ≥ 1), and in the last equality we used the shift invariance
of the enviroment under the distribution P . As noted in Section 3 above, E[T1] <∞ if
and only if EP [ρ0] < 1. On the other hand, the formula for E1

ω[T0|T0 <∞] in (4.2) implies
that

EP

[
R1

1 +R1
E1
ω[T0|T0 <∞]

]
<∞ ⇐⇒ EP

[ ∞∑
n=1

Π1,n
(1 +Rn+1)Rn+1

(1 +R1)2

]
<∞. (5.2)
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Thus, to finish the proof of Theorem 1.4(ii) it remains only to show that that the right side
of (5.2) holds when EP [ρ0] < 1. To accomplish this it is helpful to use the shift-invariance
of the environment to re-write the sum in the following way.

EP

[ ∞∑
n=1

Π1,n
(1 +Rn+1)Rn+1

(1 +R1)2

]
=

∞∑
n=0

EP

[
Π−n,0

(1 +R1)R1

(1 +R−n)2

]

= EP

[
R1(1 +R1)

∞∑
n=0

Π−n,0
(1 +R−n)2

]
.

For any A > 0 let

π(A) = inf

{
n ≥ 0 : Π−n,0 ≤

1

A

}
= inf

{
n ≥ 0 :

n∑
i=0

log ρ−i ≤ − log(A)

}
.

Note that 1 +R−n = 1 +R−n,0 + Π−n,0R1. Then,

∞∑
n=0

Π−n,0
(1 +R−n)2

≤
π(R1)−1∑
n=0

Π−n,0
(1 +R−n)2

+

∞∑
n=π(R1)

Π−n,0

≤
π(R1)−1∑
n=0

Π−n,0
(Π−n,0R1)2

+ Π−π(R1),0

1 +

∞∑
n=π(R1)+1

Π−n,−π(R1)−1


≤ 1

R1


π(R1)−1∑
n=0

1

Π−n,0R1
+

1 +

∞∑
n=π(R1)+1

Π−n,−π(R1)−1


Multiplying by R1(1 +R1) and taking expectations we get that

EP

[
R1(1 +R1)

∞∑
n=0

Π−n,0
(1 +R−n)2

]

≤ EP

1 +R1

R1

π(R1)−1∑
n=0

1

Π−n,0

+ EP

(1 +R1)

1 +

∞∑
n=π(R1)+1

Π−n,−π(R1)−1


= EP

1 +R1

R1

π(R1)−1∑
n=0

1

Π−n,0

+ EP [1 +R1]EP

[
1 +

∞∑
n=1

Π−n,−1

]

= EP

1 +R1

R1

π(R1)−1∑
n=0

1

Π−n,0

+ (EP [1 +R1])
2
, (5.3)

where in the second to last equality we used that the environment to the left of the
origin {ωx}x≤0 is independent of R1 and that π(A) is a stopping time for the sequence
(ω0, ω−1, ω−2, . . .) for any A > 0. To control the first expectation in (5.3), note that it
follows from Proposition 2.3 that there exists a C <∞ such that

EP

π(A)−1∑
n=0

1

Π−n,0

 = EP

π(A)−1∑
n=0

e−
∑n
i=0 log ρ−i

 ≤ CA, ∀A <∞.

Again, since the environment to the left of the origin is independent of R1, by conditioning
on R1 we obtain that

EP

1 +R1

R1

π(R1)−1∑
n=0

1

Π−n,0

 = EP

1 +R1

R1
EP

π(R1)−1∑
n=0

1

Π−n,0

∣∣∣∣R1

 ≤ CEP [1 +R1]
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Combining the above results, we have shown that

EP

[ ∞∑
n=1

Π1,n
(1 +Rn+1)Rn+1

(1 +R1)2

]
≤ CEP [1 +R1] + (EP [1 +R1])

2
. (5.4)

Since EP [1+R1] = (1−EP [ρ0])−1 <∞ when EP [ρ0] < 1, we have shown that expectation
on the right side of (5.2) is finite if EP [ρ0] < 1.

Proof of Theorem 1.5. Part (i) of Theorem 1.5 follows from Theorem 1.4(ii), and thus we
only need to prove part (ii) of Theorem 1.5. Therefore, for the remainder of the proof
we will assume that either EP [ρ0] > 1 or EP [ρ0] = 1 and EP [ρ0 log ρ0] <∞. A calculation
similar to (5.1) shows that

E[R|X1 = 1,R <∞] =
EP
[
ω0P

1
ω(T0 <∞)(1 + E1

ω[T0|T0 <∞])
]

EP [ω0P 1
ω(T0 <∞)]

= 1 +
EP

[
R1

1+R1
E1
ω[T0|T0 <∞]

]
P1(T0 <∞)

.

Since P1(T0 <∞) > 0, we need only to prove that EP [ R1

1+R1
E1
ω[T0|T0 <∞]] =∞, which

by (5.2) is equivalent to showing that

∞∑
n=1

EP

[
Π1,n

R2
n+1

(1 +R1)2

]
=∞. (5.5)

To prove this we will need the following lemma which follows from the general random
walk result in Proposition 2.1.

Lemma 5.1. Assume that EP [log ρ0] < 0 and that either

(i) EP [ρ0] > 1

(ii) or EP [ρ0] = 1 and EP [ρ0 log ρ0] <∞.

Then, there exists a constant C > 0 such that P (R1 ≥ t) ≥ C
t for all t ≥ 1.

Remark 5.2. It was shown by Kesten [5] that if the distribution of log ρ0 is non-lattice
and EP [ρκ0 ] = 1 and EP [ρκ0 log ρ0] <∞ for some κ > 0, then P (R1 > t) ∼ Ct−κ as t→∞.
If EP [log ρ0] < 0 and EP [ρκ0 ] = 1 for some κ ∈ (0, 1], then EP [ρ0] ≥ 1. Therefore, Lemma
5.1 gives rougher asymptotics than were obtained by Kesten, but under slightly less
restrictive assumptions.

Proof of Lemma 5.1. First suppose that EP [ρ0] < ∞. Since the function u 7→ EP [ρu0 ] is
convex with right derivative equal to EP [log ρ0] < 0 at u = 0, then there exists a κ > 0

such that EP [ρκ0 ] = 1. Moreover, EP [ρκ0 log ρ0] <∞ either due to the assumption of the
lemma when κ = 1 or because EP [ρ0] <∞ in the case when κ < 1. Then, it follows from
Proposition 2.1 by letting ξi = log ρi and γ = κ that

lim inf
t→∞

tκP (R1 > t) ≥ lim inf
t→∞

tκP

(
sup
n≥1

Π1,n > t

)
= lim inf

t→∞
tκP

(
sup
n≥1

n∑
i=1

log ρi > log t

)
> 0.

This completes the proof of the lemma in all cases except when EP [ρ0] =∞. If EP [ρ0] =

∞ then for M <∞ large enough EP [ρ0 ∧M ] ∈ (1,∞), and since

R1 =

∞∑
j=1

j∏
i=1

ρi ≥
∞∑
j=1

j∏
i=1

(ρi ∧M) =: R
(M)
1 ,

it follows from the first part of the proof that P (R1 > t) ≥ P (R
(M)
1 > t) ≥ C/t for

t ≥ 1.
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Returning now to the proof of Theorem 1.5, let Fn = σ(ωx : x ≤ n) be the σ-field
generated by the environment to the left of x = n. Using the fact that 1 + R1 =

1 +R1,n + Π1,nRn+1,

EP

[
Π1,nR

2
n+1

(1 +R1)2

]
≥ 1

4
EP
[
Π−1

1,n1{Π1,nRn+1≥1+R1,n}
]

=
1

4
EP

[
Π−1

1,nP

(
Rn+1 ≥

1 +R1,n

Π1,n

∣∣∣∣Fn)] .
Since the assumptions of Lemma 5.1 are satisfied and Rn+1 is independent of Fn, the
conditional probability in the last line above is bounded below by CΠ1,n/(1 +R1,n) for
some C > 0 (note that we used (1 +R1,n)/Π1,n ≥ (1 + Π1,n)/Π1,n > 1 here). Therefore,
we can conclude that

EP

[
Π1,nR

2
n+1

(1 +R1)2

]
≥ C

4
EP

[
1

1 +R1,n

]
≥ C

4
EP

[
1

1 +R1

]
> 0.

Clearly this implies that (5.5) holds, and thus this finishes the proof of the second part of
Theorem 1.5.
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