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Abstract

We provide tight lower bounds on the smallest eigenvalue of a sample covariance
matrix of a centred isotropic random vector under weak or no assumptions on its
components.
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1 Introduction

Lower bounds on the smallest eigenvalue of a sample covariance matrix (or a Gram
matrix) play a crucial role in the least squares problems in high-dimensional statistics
(see, for example, [5]). These problems motivate the present work.

For a random vector X, in R?, consider a random p x n matrix X,,,, with independent
columns {X,}}_, distributed as X, and the Gram matrix

Xpn Xy, = Z X Xy
k=1

If X, is centred, then nilXan;n is the sample covariance matrix corresponding to the
random sample {X,;}}_,. For simplicity, we will further assume that X, is isotropic,
i.e. ]EXPXI;r = I, for a p x p identity matrix I,,, and consider only those p which are not
greater than n (otherwise Xan;n would be degenerate).

In this paper we derive sharp lower bounds for A,(n"'X,,X,, ), where \,(A) is the
smallest eigenvalue of a p x p matrix A. We try to impose as few restrictions on the
components of X, as possible. In proofs we use the same strategy as in [6].

2 Main results

Put ¢,(a) = inf Emin{(X,,v)?,a}, Cp(a) = sup E(X,, v)? min{(X,,v)?,a},

Ly(a) = sup E[(X,,v)[*** and K, = inf B|(X,,v)|
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Lower bounds on the smallest eigenvalue

for given a, @ > 0, where all suprema and infima are taken over v € R? with |jv|| = 1, and
[v]| = (32F_, v?)1/2 is the Euclidean norm of v = (vy, ..., v,). Denote also by M,(a) the

=1 "1
infimum over all M > 0 such that

M

P((Xp0)] > ) < i

forallt > 0and v € R”, |v| = 1.

Our main lower bounds are as follows.

Theorem 2.1. If X, is an isotropic random vector in R? and p/n < y for some y € (0,1),
then, for all a > 0,

_ Cya C,(2a)Z
M0 X X) > cpfa) = D gy 4 VRO

for a centred random variable Z = Z(p,n,a) with P(Z < —t) < e /2, 1> 0.

Theorem 2.2. Let X, be an isotropic random vector in R?, p/n < y for some y € (0,1).

If L,(2) < oo, then
cz

Ap(n1 X X0 ) =1 — 40y + T
for C = \/L,(2) and some Z = Z(p,n) with EZ = 0 and P(Z < —t) < e /2, ¢ > 0.
Moreover, there are universal constants Cy, C1,Cy > 0 such that
C1Z

Jn

Ap (1 X X)) = CoK2 +

whenever y < C’QKZ% and Z = Z(p,n) as above.

Useful bounds for ¢,(a) and Cp,(a) in terms of L,(«) and M,(«) are given in the
following proposition.

Proposition 2.3. Let X, be an isotropic random vector in R?. Then, for all a,a > 0,

Ly(a)

207 M, ()
aa/2 :

a/2

and cp(a) >1—
In addition, for all o € (0,2] and each a > 0, Cj,(a) is bounded from above by

2My(a)a' =2 /(1 - a/2), a€(0,2),

a'"?L,(«) and (1+2/a)M,(a)a'™/? +
o) ( [e)My(e) 2M,(2)logmax{a,1} +1, a=2.

3 Applications

We now describe different corollaries of Theorem 2.1 and Theorem 2.2. The next
corollary extends Theorem 1.3 in [4] and Theorem 3.1 in [5] (for 4; = XpiX;).

Corollary 3.1. Let X,, be an isotropic random vector in R?, p/n < y for some y € (0,1)
and L,(a) < oo for some « € (0,2]. Then, with probability at least 1 — e~ ?,

)‘p(n_lxpnx;:rn) z1- Caya/(2+a)7
where
_ 9(Lp(a))2/(2+a)a o€ (07 2)a
@+ VVLQR), a=2.
Remark 3.2. One may further weaken assumptions in Corollary 3.1. Namely, one may
assume that M,(a) < oo for some a € (0,2). The conclusion of Corollary 3.1 will still

hold with some C, > 0 that depends only on « and M,(«). In the case a = 2, one would
have a lower bound of the form 1 — C2+/ylog(e/y) with Cy > 0 depending only on M, (2).
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Theorems 2.1 and 2.2 improve Theorem 2.1 in [6] as the next corollary shows.

Corollary 3.3. Let X, be an isotropic random vector in RP. If L,(a) < oo for some
a € (0,2) and p/n < e/ /(10(4L,(a))*/*), then
EX\,(n X, X)) > 1—e.

pn

The same conclusion holds if L,(2) < oo and n > 16L,(2)e~2p.
Let us formulate the final corollary that improves Theorem 3.1 in [4] for small K,.

Corollary 3.4. Let X, be an isotropic random vector in RP. Then there are universal
constants Cj;, C, C5 > 0 such that, with probability at least 1 — exp{—C; K n},

Ap(n ' XpnX,),) = CK

when p/n < C5K2.

The range of applicability of Corollary 3.4 is very wide. Namely, there exist some
universal constant K > 0 such that K, > K for a very large class of isotropic random
vectors X,,. By Corollary 3.4, this means that /\p(n*XmX;n) is separated from zero by
an universal constant.

The existence of K follows from results related to Kashin’s decomposition theorem.
The infinite dimensional version of this theorem is given in Kashin [2] (for a proof, see
[3]). It states the following.

There is an universal constant X > 0 such that L,(0,1) = H; ® H, for some
linear subspaces of H; C Ly(0,1), i = 1,2, such that ||z|; > K||z|2 for all
x € Hy U Hy, where ||z||4 is the standard norm in L4(0,1), d = 1, 2.

Let (2, F,P) be an underlying probability space. Assume that Q = (0, 1), F is the Borel
o-algebra and P is the Lebesgue measure. If all components of X, = (z1,...,z,) are in
H;, or all components of X, are in H,, then K, > K.

If we consider only discrete random vectors X,,, we may say more. Namely, Kashin
[1] proved that, for any § > 0 and all N € N, RY contains a linear subspace H with
dim H > (1 — )N such that |e|; > K|e|; for some K = K(J) > 0 not depending on N and
alle = (e1,...,en) € H,! where

N
1 N\1/d
\e|d:<NZ|ei\) , d=1,2.

=1

In particular, if {¢(®)}?_, is any orthonormal system in H and {z(¥}¥ , are columns

of the p x N matrix with rows {(e(®)T}?_ , then, for all v = (vy,...,v,) € R? with

Joll = /> - 03 =1,
R /2 ~ W ~ W LS
_ D) N2 _ > _ ;
K = K(N ;:1 [(z',v)] ) = K‘kg_lvke ‘2 < ‘kg_lvke ’1 =~ ;:1 [(z'Y v)].

If X, is such that P(X, = () = 1/N, 1 <i < N, then K, > K = K(9).

4 Proofs.

In proofs of Theorem 2.1 and Theorem 2.2, we follow the strategy of Srivastava and
Vershynin [6]. The key step is the following lemma.

1In fact, the Haar measure of such orthogonal matrices C that H = C'H; satisfies this property is greater
than 1 — 27% for some K = K(§) > 0, where H; = {(e1,...,ex) €ERN :e; =0, i > (1 —§)N + 1} (see [1]).
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Lemma 4.1. Let A be a p X p symmetric matrix with A = 0, v € RP,1 >0, p > 0,

v (A—1I,)72

Q,v)=v"(A—1I,) " and q(l,v)= (AL,

(4.1)

hereinafter A = 0 means that A is positive definite. If A — I, > 0, tr(A — 11,)~" < ¢ and
_ q(l,v)
1+ 3pq(l,0) + QL v)’

then A — (I + A)I, = 0 and tr(A+vv" — (I+ A)L,)7L < o.

The proof of Lemma 4.1 is given in Appendix.
The strategy itself consists in the following. Let Ay be a p x p zero matrix and

N

AkuX i Xy, 1<k<n

Consider some ¢ > 0 and take /|, = —p/¢ that satisfies tr(Ag — lpl,) "' = ¢.
Put iy =1 + Ag for 1 < k < n, where

ar(le—1, Xpk)

A A — B
B T 30ak (1, Xpr) + Qr(ln—1, Xp)

Qr(lk—1, Xpr) and g (lx—1, Xpx) are defined as Q(I,v) and ¢({,v) in (4.1) with A = A,
and v = X,;. Applying Lemma 4.1 iteratively, we infer that tr(A; — lklp)_1 < ¢ and
A — U1, = 0 for all 1 < k < n. Therefore,

Ap(KpnXp) = Ap(An) Sl =lo+ A1+ ...+ A,

Let By = E(- |Xp1,...,Xpk), 1 <k <n, and E; = E. We have

1< Y
M KX ) 2~ SN B A+ = 4.2)

ng i Vn
where Y = n~ V2370 (Ag — Ep_1Ag).
To apply estimate (4.2), we need to choose ¢ and obtain good lower bounds for

E;_1Ay as well as upper bounds for P(Y < —t), t < 0. The next lemmata which proofs
are given in Appendix provide such bounds.

Lemma 4.2. Let U and V be non-negative random variables. Then, for all a > 0,

U < |E min{U, a}|?
1+V = Emin{U,a} + EV min{U,a}’

In addition, if EU = 1, then EU/(1+ V) > 1/(1 + EUV'). Moreover,

U__ |EVUP
4V - 1I+EV

Lemma 4.3. Let X, be an isotropic random vector in R?, A, B - 0 be a p x p symmetric
matrices with tr(A) = 1 and tr(B) < 1 that are simultaneously diagonalisable. If
X, AX,
C 140 Y(X) AX, + X BX,/3)
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for some b > 0, then, for any a > 0,

5Cp(a)
3b

In addition, if L,(2) < oo, then EA > 1 —4L,(2)b=1/3 and EA? < L,(2). Moreover,

EA > cp(a) — and TA? < C,(b).

K2
> p
~ 144(3b)1

Lemma 4.4. Let (Dy)}}_, be a sequence of non-negative random variables adapted to a
filtration (Fy)?_, such that E(D?|Fy_1) <1 a.s. fork =1,...,n, where Fy is the trivial
c-algebra. If

1 n
=— Dy, — E(Dg|Fr-1)),
Tn z_:( k= E(Dg[Fi-1))
then P(Z < —t) < exp{—t2/2} forall t > 0.
Proof of Theorem 2.1. Take in Lemma 4.3 X, = X,

(Ak—l —lk_lfp)_Q 1 da 1

= B=(Ag_1 —lp_11,)" " =—, b=—=—. (43
by DT W Tl e s b S g 49

Clearly A and B commute hence they are simultaneously diagonalizable. Additionally,
we have tr(4) = 1 and tr(B) = tr(Ax—1 — lk—11,) " /¢ < 1. Using Lemma 4.3, we arrive
at the lower bounds
Cp(a)
Er 1Ak = ¢p(a) — ——, 1<k <n,
a
hereinafter all inequalities with conditional mathematical expectations hold almost surely.

By (4.2), the latter implies that

~ Cpla)  Bap n Cp(2a)Z
a n N

where

— Ex_1A%).
W z 1)
Note that (Ax — Ez_1Ag);_, is a martingale difference sequence with respect to the nat-
ural filtration of (X,)?_,. Obviously, EZ = 0. By Lemma 4.3, E;_1A% < C,(b) < Cp(2a).
Therefore, Lemma 4.4 with D, = A;/\/Cp(2a) yields that P(Z < —t) < exp{—t?/2},
t > 0. Thus we have proven Theorem 2.1. O

Proof of Theorem 2.2. The proof follows the same line as the proof of Theorem 2.1.
Assume first that C? = L,(2) < oo and p/n < y for some y > 0. Define X, AX,, and
X, BX,, in the same way as in (4.3). Then, by Lemma 4.3 (with ¢ = 1/(3b)),

Ep1Ar>1—-4C%p, 1<k<n.

Taking ¢ = /y/(2C) in (4.2), we get p/(ny) < y/¢ = 2C,/y and
Z
)\P(n_lxpnx;—n) 2 1- 40\/§+ 3*7
n

where
n

1
evn S

Z = (Ak — Ek—lAk)~
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As in the proof of Theorem 2.1, it follows from Lemma 4.3 that IEk_lAi < L,(2) = C?,
1 < k < n. Therefore, by Lemma 4.4, P(Z < —t) < exp{—t?/2}, ¢ > 0.

Finally, consider the case with K, > 0 ( the case with K, = 0 is trivial). By Lemma
4.3 with b= (3p)~! and ¢ = 1/4,

_ Kz \/C,(4/3)Z
(R X X) = Tp + pT

for some Z with P(Z < —t) < exp{—t?/2}, t > 0 (see the end of the proof of Theorem
2.1). Since C,(4/3) < 4/3, the variable

Cp(4/3
V(A CTE)
4/3
satisfies P(Zy < —t) < exp{—t?/2}, t > 0. Replacing Z by Z,, we get the result. O

Proof of Proposition 2.3. If U is non-negative random variable with EU = 1, then

EU1+a/2
Emin{U,a} = EU —E(U —a)l(U >a) 21 -EUL(U >a) > 1— —7r
a®
. e *© M 2M
Emln{U,a}—]EUf/a ]P(U>t)dt>1*/a mdt}l*m,

EU min{U, a} < EU/2¢1=a/2

EU min{U, a} <aBE(U — a)I(U > a) + *P(U > a) + Emin{U?, a*}
2

:a/ ]P(U>t)dt+aIP(U>a)+/ P(U? > t)dt
a 0

2
o0 M o a
éa/a Wdt—l—Mal /2+/0 f(t,Oé)dt

2Ma'=*/2/(1 —a/2), a€(0,2),

<(1+2/a)Ma'~/? 4
2M logmax{a,1} +1, a=2,

where M = sup{t'**/?P(U > t) : t > 0}, f(t,a) = Mt—'/>=*/* for a € (0,2) and

Mt=', t>1,
f(t,2) =
1, te[0,1].

Putting U = (X,,v)? for given v € R with ||v[| = 1 and taking the infimum or the
supremum over such v in the above inequalities, we finish the proof. O

Proof of Corollary 3.1. Consider the case a € (0,2). Set L = L,(a) and y = p/n. By
Proposition 2.3,

2L —« -«
cpla) = =£=>1- -5 and Cy(2a) < L(2a)'7%/% < 2La' /2,
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By Theorem 2.1,

P(\p(n ' X, X)) < 1—4La™*"? — 5ay) <P(1/Cp(2a)Z/v/n < —2La=*/?)
<P(V2Lal=/2Z/\/n < —2La~%/?)
<exp{—La='7%/?p}.

Taking y = La—'~%/2, we get the desired inequality.

Consider the case o = 2. By Theorem 2.2 with y = p/n and C = /L,(2),

P\, (n 71X, X ) < 1-(4+V2)C\ /) < P(CZ//n < —V2C/y) < exp{—yn} = exp{—p}.

pn

O
Proof of Corollary 3.3. Set L = L,(«) for given « € (0,2). By Proposition 2.3,

Cp(a) 2L
a =1~ aa/2'

cp(a) —
Therefore, taking in Theorem 2.1

El+2/oz

— 2/a —
a = (4L/¢) and p/n<y= 0@L)Z="

we derive the first bound

2L

—1 T
E/\p(n Xpnxpn) 2 1-— W — 5ay 2 1—e.

Similarly, taking y = £2/(16C?) for C = /L,(2) in Theorem 2.2, we get that
EX(n ' X, X)) 21 —4Cy > 1—c.
O

Proof of Corollary 3.4. Let Cy, C'{, Cy > 0 be such that the second bound in Theorem 2.2
holds. Then, for p/n < C2K2,

PN\ (0™ X, X)) < oK /2) S P(C1Z/vn < —CoK} /2) < exp{—Cj K,yn/(8CT)}.

Putting Cg = Cy/2, CF = C3/(8C%) and C; = C,, we finish the proof. O

5 Appendix

Proof of Lemma 4.1. By Lemma 2.2 in Srivastava and Vershynin [6], if A — ({ + A)I, =0
and ¢(I + A, v)/[1+ QI+ A,v)] > A, then

tr(A4+vo’ — (I +A)L) ™ <tr(A—11,)7 L

In addition, by Lemma 2.4 in Srivastava and Vershynin [6], if A — I, > 0, A < 1/p and
tr(A —11,)"' < p, then A — (I + A)I, > 0 and

a+A0) ()1 gAY
1+QU+Av) 7 1+Q(Lv)(1— @A)t

Therefore, we only need to show that

a1 —pA)? a(l,v)
1+ QU v)(1 —A)~t ~ 1+ 3¢q(l,v) + Q(l,v)’
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since A < 1/(3y) by construction.
By Bernoulli’s inequality, (1 — )® > 1 — 3z whenever z € [0, 1]. Hence,

q(la U)(l B (,DA)2 — Q(lvv)(l 7 @A)d > q(l,’t})(l B SDA)S > q(la 1})(1 B 390A) - A
1+ Qo)1 - A"t 1-pA+QUv) ~  1+Q(wv) ~  1+Q(v) ’
where the last equality holds by the definition of A. O

Proof of Lemma 4.2. We have

U > Emln{U ,a}
1+V 1+V
for all a > 0. By the Cauchy-Schwartz inequality,

E

min{U, a}

E
1+V

. /min{U, a} - 2 .
E(1+ V)min{U,a} > ‘EW VA+V) mln{U,a}‘ = |Emin{U, a}|?.

This gives the first inequality. Tending « to infinity, we get the second inequality.
The last inequality also follows from the Cauchy-Schwartz inequality. Namely,

]EH_LV]E(lJrV > ‘E\/L m( IEVT|2.
O
Proof of Lemma 4.3. Let {v1,...,v,} be an orthonormal basis of R? such that
p p
A= Zaiviv; and B = Zbiviv;,
i=1 i=1
where aq, .. ap,bl, ...,b, > 0 are eigenvalues of 4 and B. Since tr4d = Y% 1 a; =1,

X, AX, =370, al(X ) and the function f(z) = /(1 + c¢(z + d)) is concave on R for
any ¢,d > 0, we have (for A defined in Lemma 4.3)

A>zp:a-A- for A, = (Xp, v:)*
= L4 (Xp,vi)2 4+ X BX,/3)

Fix j € {1,...,p} and b > 0. By Lemma 4.2,

ea o Emin{(X, 0,) 0P

(X 0))? K2
77 Emin{(X,,v;)%,a} +b-1C

d EA; > > :
an 12 15011+ teB/3) © 1+ 4/(3b)

where C = E((X,,v;)? + X,] BX,/3) min{(X,, vj)Q, a}. By the second inequality,

p 2
KP

z} 1+4/ (3b)  1+4/(3b)°

We have 22/(z + ¢) > x — c for all z, ¢ > 0. This yields that

B min{(Xp, v;)*, a}|?
Emin{(X,,v;)%,a} +b-1C

> Emin{(X,,v;)? a} —b"'C.

We need to bound C' from above. Obviously, E(X,,, v;)? min{(X,,v;)? a} < Cp(a). In
addition, since z min{y, a} < xmin{z,a} + ymin{y, a} for all z,y,a > 0, we have

p
E(X, BX,) min{(X,,v;)% a} = > bE(X,, v;)* min{(X,,v;)%, a} < 2trB- Cy(a) < 2Cp(a).

=1
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Hence, C < 5C,(a)/3. Combining all estimates together yields

EA > ¢p(a) — %ﬁl).

Let us now prove that EA? < C,(b). We have
o OTAX)? AN
S A+bIXJAX)? T 140X AX,

Consider the function f(x) = 22/(1 + b~'z), z > 0. Its derivative

P PR S R Y (.
S l4btz (T+b 22 (14+b7t2)2 (b+ax)? b+ )2
is increasing on R;. This means that f = f (x) is convex and
(XTAX )2 (X,,v )
B X AX, Zaz 1+b— Zaz e min{ (X, 0%, b}

The latter gives the desired inequality EA? < trA - C,(b) = Cp(b).
Now consider the case with L,(2) < co. By Lemma 4.2,

A>1/1+b Y (BX,) AX,)? + E(X, AX,)(X, BX,)/3)].

Since the function f(z) = 2? is convex on R, X, AX,, = 37" | a;(X,,v;)? and trA = 1, we
get that

E(X,) AX,)? Z E(X,,v:)* < L,(2).
Similarly,
XTBX,\2
T 2 2 P P
E(X, BX,)? < (trB) E(W) < Ly(2),
where we have used that trB < 1. Applying the Cauchy-Schwartz inequality yields that

E(X, AX,)(X, BX,) < \/]E(XJAX,,)QIE(X;BXP)Q < Ly(2).
To finish the proof, we only need to note that
1 4L,(2)

1/[1+ b (BE(X, AX,)?> + E(X, AX,)(X, BX,)/3)] > AL >1-—

Proof of Lemma 4.4. Since % < 1 —x + 22/2 for all z > 0, we have

N2 (D2| Fi_1)

]E(ef)\DkLFk_l) <1 — AE(Dg|Fr—1) + 9

2

A
<1 — AE(Dg|Fr—1) + 5

<exp{—AE(Dy|Fr_1) + \?/2}

for any A > 0. Therefore, (e~ A Pr—E(DrlFe-1)| 7 1) < exp{A\?/2} and

n

]P(Z(Dk — E(Dg|Fr-1)) < —t\/ﬁ> Se‘“ﬁEexp{ /\Z Dy — B(Dy| Fi— 1))}

k=1
<exp{nA?/2 — /\t\/ﬁ},

where the last bound could be obtained iteratively by the law of iterated mathematical
expectations. Putting A = t/\/n, we derive that P(Z < —t) < exp{—t?/2}, ¢t > 0. O
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