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Abstract

A representation is given for a large class of n-dimensional multivariate gamma
random variables as defined by Verre-Jones. In particular, the probability density
functions of all 2-dimensional gamma random variables are given explicitly and it is
shown how to obtain the probability density functions of all 3-dimensional gamma
random variables.
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1 Introduction

Vere-Jones [4] defines an n-dimensional multivariate gamma distribution to be the
probability distribution of an Rn valued random variable X = (X1, . . . , Xn) that has
Laplace transform

E
(
e−

∑n
i=1 siXi

)
=

1

|I +RS|α
(1.1)

for some n × n matrix R and diagonal matrix S with entries si, 1 ≤ i ≤ n, and α > 0.
This is not an unreasonable definition. A gamma random variable is one with probability
density function

f(u, v;x) =
vuxu−1e−vx

Γ(u)
for x ≥ 0 and u, v > 0, (1.2)

and equal to 0 for x ≤ 0, where Γ(u) =
∫∞
0
xu−1e−x dx is the gamma function. We use

ξu,v to denote a random variable with probability density function f(u, v;x). The Laplace
transform of ξu,v is ∫ ∞

0

vuxu−1e−(v+s)x

Γ(u)
dx =

1(
1 +

s

v

)u =
vu

(v + s)
u . (1.3)

Therefore if R is a diagonal matrix with entries 1/vi, (1.1) is the Laplace transform of
(ξα,v1 , . . . , ξα,vn), in which all the components are independent.

For a less trivial example we note that when R is symmetric and positive definite and
α = 1/2, X = (η21/2, . . . , η

2
n/2), where (η1, . . . , ηn) is an n-dimensional normal random

variable with mean zero and covariance matrix R. In this case the individual components
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Multivariate gamma distributions

of X are the gamma distributed random variables η2i /2 = ξ1/2,Ri,i
. Here we use the

common notation R = {Ri,j}ni,j=1.
Two fundamental questions are apparent. One is, for which matrices R do there exist

random variables X satisfying (1.1)? Vere-Jones answers this question but with criteria
that are, in general, very difficult to verify. Nevertheless, using his criteria, Eisenbaum
and Kaspi [1] show that it suffices that R is the inverse of an M -matrix; see Remark 2.1.
Given this, the second, and perhaps more interesting question is: What is the distribution
function of an n-dimensional multivariate gamma distribution?

In this paper we describe a large class of n-dimensional multivariate gamma distribu-
tions and give the probability density function of all multivariate gamma distributions in
dimensions 2 and 3.

We assume that |R| > 0. Therefore, A := R−1 exists and we write (1.4) as

E
(
e−

∑n
i=1 siXi

)
=

|A|α

|A+ S|α
. (1.4)

We explain in Remark 2.1 that without loss of generality, in dimension 2, we can take the
matrix A to have the form

A(2) =

(
a −γ
−γ b

)
(1.5)

where a, b, γ > 0 and ab > γ2.

Theorem 1.1. Let X = (X1, X2) be a random variable determined by A(2) as in (1.4).
Then its probability density function is

g̃(α,A(2); (x1, x2)) (1.6)

=
(ab− γ2)α

Γ(α)

γ1−α

(x1x2)(1−α)/2
Iα−1 (2γ

√
x1x2 ) e−(ax1+bx2)

on R2
+, and zero elsewhere, where

Iν(z) =

∞∑
n=0

1

Γ(n+ ν + 1)n!

(z
2

)2n+ν
(1.7)

is the modified Bessel function.

When γ = 0

g̃(α,A; (x1, x2)) = f(α, a;x1)f(α, b;x2). (1.8)

If we take the limit as γ goes to zero in (1.6) we get (1.8) .

When α = 1, we have a 2-dimensional exponential distribution and (1.6) is

g̃(1, A; (x1, x2)) = (ab− γ2)I0 (2γ
√
x1x2 ) e−(ax1+bx2). (1.9)

When α = 1/2, we can write (1.6) as

g̃(1/2, A; (x1, x2)) =
(ab− γ2)1/2

π
√
x1x2

cosh (2γ
√
x1x2 ) e−(ax1+bx2). (1.10)

This allows us to check these results since g̃(1/2, A; (x1, x2)) is the probability density
function of (η21/2, η

2
2/2) where (η1, η2) is a normal random variable with mean zero and

covariance matrix A−1.

We can describe (X1, X2) in Theorem 1.1 as a randomized sum of independent vectors
with components that are independent 1-dimensional gamma random variables.
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Multivariate gamma distributions

Theorem 1.2. LetX = (X1, X2) be a random variable with density function g̃(α,A; (x1, x2)).
Then

X
law
=

∞∑
n=0

In(Z)(ξn+α,a, ξ
′
n+α,b), (1.11)

where all the random variables are independent and

P (Z = n) =
(ab− γ2)α

(ab)α
Γ(n+ α)γ2n

Γ(α)n!(ab)n
. (1.12)

Note that when γ = 0, P (Z = 0) = 1. Also, we see that the probability distribution of
Z depends only on α and γ2/ab.

We show in [2] that in dimension 3 in order for (1.1) to define a random variable
either R must be symmetric and positive definite or it must be the inverse of an M

matrix, or both. Note that
|A|
|A+ S|

=
|DAD−1|
|DAD−1 + S|

. (1.13)

for all diagonal matrices D with strictly positive entries. Consequently (1.4) remains
unchanged for many different matrices A. Using this observation we see that that the
most general 3× 3 non-singular M -matrix A(3) has the form

A(3) =

 a1,1 −b −c
−b a2,2 −d′′
−c −d′ a3,3

 (1.14)

where where ai,i, i = 1, 2, 3 and b, c, d′, d′′ > 0. Let d′d′′ = d2. In this case (1.4) is equal to

|A(3)|α

((a1,1 + s1)(a2,2 + s2)(a3,3 + s3) (1−Q(s1, s2, s3)))
α (1.15)

where

Q(s1, s2, s3) =
b2

(a1,1 + s1)(a2,2 + s2)
+

c2

(a1,1 + s1)(a3,3 + s3)
(1.16)

+
d2

(a2,2 + s2)(a3,3 + s3)
+

bc(d′ + d′′)

(a1,1 + s1)(a2,2 + s2)(a3,3 + s3)
.

Consequently we can write (1.4) as

|A(3)|α

((a1,1 + s1) · · · (a3,3 + s3))
α

∞∑
n=0

Γ(n+ α)

Γ(α)n!
Qn(s1, s2, s3). (1.17)

One can use this to find the probability density function of the random variable deter-
mined by A(3), and, in analogy with Theorem 1.2, to obtain

Theorem 1.3. Let X = (X1, X2, X3) be a random variable determined by A(3). Then

X
law
=

∞∑
n1,n2,n3

In1,n2,n3(Z)(ξn1+α,a1,1 , ξ
′
n23+α,a2,2

, ξ′′n+α,a3,3), (1.18)

where all the random variables are independent and Z = (Z1, Z2, Z3) is an integer valued
random variable. (Here the sum is taken over all sets of distinct integers in Z+

3.)
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Multivariate gamma distributions

Example 1.4. As an explicit example we note that

(1− a2 − b2)α(x1x2x3)α−1e−(x1+x2+x3) (1.19)
∞∑

k≤n,n=0

xn2
Γ(α)n!

(
n

k

)
(a2x1)k(b2x3)n−k

Γ(k + α)Γ(n− k + α)

is the probability density function of the 3-dimensional multivariate gamma distribution
determined by the M -matrix

A(3) =

 1 −a 0

−a 1 −b
0 −b 1

 (1.20)

with a, b > 0 and |A| > 0 and inverse

R(3) =
1

1− a2 − b2

 1− b2 a ab

a 1 b

ab b 1− a2

 . (1.21)

Other examples are given in Section 2.

With additional hypotheses we can describe a large class of multivariate gamma
distributed random variables in higher dimensions. To begin let B̃ be an n× n matrix.
Let DB̃ denote the n×n diagonal matrix with entries consisting of the diagonal elements

of B̃. Let
B̃0 := B̃ −DB̃ . (1.22)

We define the property of a matrix having a strongly negative off diagonal determinant.
Consider the n × n matrix A. Let Mi, i = 1, . . . , 2n − (n + 1), denote the principle sub-
matrices of A of dimensions 2 to n, (i.e. A itself). We say that A has a strongly negative
off diagonal determinant, if |(Mi)0| ≤ 0 for all i = 1, . . . , 2n − (n + 1). (A principal
sub-matrix of A is a matrix obtained from A by deleting the i1 through ip-th rows and
columns of A, where {i1, . . . , ip} ⊂ {1, . . . , n}).

Let A = {ai,j}ni,j=1. It is obvious that if |A| > 0 and A has a strongly negative off
diagonal determinant, A has a diagonally dominant determinant, i.e.

n∏
i=1

ai,i > |A|. (1.23)

Lemma 1.5. Let A be an n× n matrix with |A| > 0, and with off diagonal elements that
are less than or equal to zero, and that has a strongly negative off diagonal determinant.
Then for (s1, . . . , sn) ⊂ [0, s0]n, for some s0 > 0,

|A|α

|A+ S|α
=

|A|α

((a1,1 + s1) · · · (an,n + sn))
α

∞∑
q=0

Γ(q + α)

Γ(α) q!
(1.24)

 ∑
m1,...,mj

cm1,...,mj

(am1,m1
+ sm1

) · · · (amj ,mj
+ smj

)

q

,

in which all coefficients the cm1,...,mj
are greater than or equal to zero. (Here the sum is

taken over all sets of distinct integers in Z+
n.)

Under the hypotheses of Lemma 1.5

|A|α

|A+ S|α
=

∑
k1,...,kn

Ck1,...,kn

n∏
i=1

(
ai,i

ai,i + si

)α+ki
, (1.25)
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Multivariate gamma distributions

where Ck1,...,kn ≥ 0 and
∑
k1,...,kn

Ck1,...,kn = 1.

It follows from (1.25) that an n-dimensional multivariate gamma distribution can be
considered to be a randomized mixture of independent random vectors with components
that are independent 1-dimensional gamma distributed random variables as we can see
from the next theorem.

Theorem 1.6. Set Z = (Z1, . . . , Zn) with P (Z = (k1, . . . , kn)) = Ck1,...,kn and X =

(X1, . . . , Xn) with

X =
∑

k1,...,kn

Ik1,...,kn(Z)
(
ξα+k1,a1,1 , . . . , ξα+kn,an,n

)
,

where Z and all the gamma distributed random variables, ξu,v are independent and
{ai}ni=1 are the diagonal elements of A. Then

E
(
e−

∑k
i=1 siXi

)
=

|A|α

|A+ S|α
. (1.26)

A different representation for multivariate gamma distributions is given in [3]. It is
better suited for studying permanental processes but not as useful for finding probability
density functions in low dimensions.

2 Proofs and Examples

Proof of Lemma 1.5 We have

|A+ S|−1 =

∣∣∣∣∣
n∏
i=1

(ai,i + si)−

(
n∏
i=1

(ai,i + si)− |A+ S|

)∣∣∣∣∣
−1

(2.1)

=

(
n∏
i=1

(ai,i + si)

)−1 ∣∣∣∣1− (1− |A+ S|∏n
i=1(ai,i + si)

)∣∣∣∣−1 (2.2)

We want ∣∣∣∣1− |A+ S|∏n
i=1(ai,i + si)

∣∣∣∣ < 1, (2.3)

or, equivalently,

0 <
|A+ S|∏n

i=1(ai,i + si)
< 1. (2.4)

By (1.23), 0 < |A| <
∏n
i=1 ai,i, therefore (2.4) holds when S = 0. Consequently, it holds

for (s1, . . . , sn) ⊂ [0, s0]n for some s0 > 0.

We write

|A+ S| =
n∏
i=1

(ai,i + si) +
∑

m1,...,mj

cm1,...,mj

n−j∏
i=1

(api,pi + spi). (2.5)

where {m1, . . . ,mj} and {p1, . . . , pn−j} are partitions of {1, . . . , n} and the sum runs over
all disjoint subsets of {1, . . . , n} of cardinality greater than or equal to 2. Consequently

1− |A+ S|∏n
i=1(ai,i + si)

= −
∑

m1,...,mj

cm1,...,mj

(am1,m1
+ sm1

) · · · (amj ,mj
+ smj

)
(2.6)
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Multivariate gamma distributions

and

|A|α

|A+ S|α
=

|A|α

((a1,1 + s1) · · · (an,n + sn))
α (2.7)1−

∑
m1,...,mj

cm1,...,mj

(am1,m1
+ sm1

) · · · (amj ,mj
+ smj

)

−α

Furthermore, by (2.3) and the hypotheses, the absolute value of the sum in (2.7) is less
than one. Thus we get (1.24) in which the series converges.

We now show that all the coefficients cm1,...,mj in (1.24) are greater than or equal to
zero. It should be clear from (2.5) that cm1,...,mj is the coefficient of the term in |A+ S|
containing (ap1,p1 + sp1) · · · (apn−j ,pn−j + smn−j ). Therefore, cm1,...,mj is a member of the
determinant of the n−j×n−j matrix obtained from A by eliminating the rows m1, . . . ,mj

and columns m1, . . . ,mj from A. Let M denote this principle sub-matrix of A. It should
be clear that cm1,...,mj

does not contain any of the diagonal elements of M , since if it did
there would be an additional factor of the form (ami,mi

+ smi
), for some 1 ≤ i ≤ j, when

considering this term as part of the term cm1,...,mj
(ap1,p1 + sp1) · · · (apn−j ,pn−j

+ spn−j
) in

|A + S|. In other words the terms cm1,...,mj
that we want to be positive are terms in

−|M0|. The hypothesis |M0| ≤ 0 is a statement that all the coefficients cm1,...,mj
in (1.24)

are greater than or equal to zero.

Remark 2.1. Let G = {gi,j}1≤i,j≤n be an n× n matrix. We call G a positive matrix and
write G ≥ 0 if gi,j ≥ 0 for all i, j.

A matrix C is said to be a nonsingular M -matrix if

(1) ci,j ≤ 0 for all i 6= j.
(2) C is nonsingular and C−1 ≥ 0.

Note that the diagonal elements of C are all positive. This is because the inner
product of the i-th row of C and C−1 is equal to 1.

In dimension 2, for (1.1) to be a Laplace transform of a positive random variable
the diagonal elements of R must be positive. Therefore, considering (1.4) it suffices to
consider matrices of the form

A(2) =

(
a −γ
−γ b

)
or A′(2) =

(
a −γ
γ b

)
(2.8)

where a, b, γ > 0 and ab > γ2. However, (1.4) with A′(2) is not a Laplace transform.
Suppose it is the Laplace transform of (Y1, Y2). Then (1.4) with

Ã =

 a −γ 0

γ b 0

0 0 1

 (2.9)

would be the Laplace transform of (Y1, Y2, Y3) for some random variable Y3 that is
independent of (Y1, Y2). However, as we point out on page 3, the most general matrix
A that is not symmetric, that determines a Laplace transform by (1.4) has the form of
(1.14).

Proof of Theorem 1.1 Rather than apply Lemma 1.5 to this case it is easier to repeat
the proof of Lemma 1.5 in this simple case. Let A be as given in (1.5) and note that

|A+ S| = (a+ s1)(b+ s2)− γ2 (2.10)

= (a+ s1)(b+ s2)

(
1− γ2

(a+ s1)(b+ s2)

)
.
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Since |A| > 0, the fraction in (2.10) is less than 1. Therefore, we have

|A|α

|A+ S|α
=

|A|α

(a+ s1)α(b+ s2)α
(

1− γ2

(a+s1)(b+s2)

)α (2.11)

=
|A|α

(a+ s1)α(b+ s2)α

∞∑
n=0

Γ(n+ α)

Γ(α)n!

γ2n

(a+ s1)n(b+ s2)n
.

Using (1.3) we see that (2.11) is the Laplace transform of

g̃(α,A; (x1, x2)) (2.12)

= (ab− γ2)α
∞∑
n=0

(
γ
√
x1, x2

)2n
Γ(α)Γ(n+ α)n!

(x1x2)α−1e−(ax1+bx2)

=
(ab− γ2)α

(ab)α

∞∑
n=0

Γ(n+ α)γ2n

Γ(α)n!(ab)n
f(n+ α, a;x1)f(n+ α, b;x2).

The expression in (1.6) follows easily from the first equation in (2.12). The expression
in (1.9) is an obvious application of (1.6). The expression in (1.10) follows from (1.6) but,
perhaps more easily, from the second equation in (2.12), since

Γ(n+ 1/2) =
(2n− 1)(2n− 3) · · · (1/2)Γ(1/2)

2n
(2.13)

and

n!Γ(n+ 1/2) =
(2n)!

22n
)Γ(1/2). (2.14)

Since Γ(1/2) =
√
π, we get that (2.12) is equal to

(ab− γ2)1/2

π

∞∑
n=0

(
2γ
√
x1, x2

)2n
(2n)!

(x1x2)−1/2e−(ax1+bx2) (2.15)

which is (1.10).

Proof of Theorem 1.3 Let d′d′′ = d2. We have

|A(3) + S| = (a1,1 + s1)(a2,2 + s2)(a3,3 + s3)− b2(a3,3 + s3) (2.16)

−c2(a2,2 + s2)− d2(a1,1 + s1)− bc(d′ + d′′).

This gives (1.15) and consequently (1.17).

Remark 2.2. We have

|A(3)| = a1,1a2,2a3,3 − b2 − c2 − d2 − bc(d′ + d′′) (2.17)

and

(d′ + d′′) ≥ 2d, (2.18)

with equality if and only d′ = d′′. For an n×nmatrix C we define Csym = {(ci,jcj,i)1/2}ni,j=1.
Since |A(3)| is maximized when d′ = d′′, we have |(A(3))sym| ≥ |A(3)|.

Since only the last term in (1.16) changes when we replace A(3) by (A(3))sym and
|(A(3))sym| ≥ |A(3)|, we see that in replacing A(3) by (A(3))sym we put more weight on
the terms in Q that are unchanged by the symmetrization.
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Example 2.3. We give the probability density function of an explicit three dimensional
multivariate gamma distribution determined by the symmetric M -matrix

A =

 1 −a 0

−a 1 −b
0 −b 1.

 (2.19)

and kernel

R =
1

1− a2 − b2

 1− b2 a ab

a 1 b

ab b 1− a2

 . (2.20)

We have

Q(s1, s2, s3) =
a2

(1 + s1)(1 + s2)
+

b2

(1 + s2)(1 + s3)

and

Qn(s1, s2, s3) =

n∑
k=0

(
n

k

)(
a2

(1 + s1)(1 + s2)

)k (
b2

(1 + s2)(1 + s3)

)n−k
. (2.21)

Consequently

|A|α

|A+ S|α
=

(1− a2 − b2)α

((1 + s1) · · · (1 + s3))
α (2.22)

∞∑
k≤n,n=0

Γ(n+ α)

Γ(α)n!

(
n

k

)
a2kb2(n−k)

(1 + s1)k(1 + s2)n(1 + s3)n−k
.

The probability density functions of the random variables with these Laplace transforms
are

(1− a2 − b2)α(x1x2x3)α−1e−(x1+x2+x3) (2.23)
∞∑

k≤n,n=0

xn2
Γ(α)n!

(
n

k

)
(a2x1)k(b2x3)n−k

Γ(k + α)Γ(n− k + α)
.

Example 2.4. We consider another example in which the M -matrix is not symmetric.
Let

A =

 1 −a 0

0 1 −b
−c 0 1.

 (2.24)

with abc < 1, so that

R =
1

1− abc

 1 a ab

bc 1 b

c ac 1

 . (2.25)

Since

|A+ S| = (1 + s1)(1 + s2)(1 + s3)− abc (2.26)

we can proceeding as in the proof of Theorem 1.1 to get

g̃(α,A; (x1, x2, x3)) = (1− abc)α
∞∑
n=0

Γ(n+ α)(abc)n

Γ(α)n!
(2.27)

f(n+ α, 1;x1)f(n+ α, 1;x2)f(n+ α, 1;x3).
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The dependence of the density function on the off diagonal elements of A is only through
their product. Therefore, without loss of generality we can take a = b = c = δ. If we take
δ3 = γ2 the 2-dimensional joint distributions of (2.27) are equal to those of (2.12).

This simple example easily extends to give the probability density function of an
n-dimensional multivariate gamma distribution. Let Ã be an matrix n× n matrix with
ai = 1, i = 1, . . . , n and all other entries zero except for ai,i+1, i = 1, . . . , n − 1 and an,1
which are strictly negative. It is easy to see that |Ã| = 1− |an,1|

∏n−1
i=1 |ai,i+1|. Whatever

the values {ai} the n-dimensional random variable determined by Ã is (1.4) is the same
as that determined by

Ãn =


1 −δ 0 · · · 0 0

0 1 −δ · · · 0 0

0 0 1 · · · 0 0
...

...
...

. . . 1 −δ
−δ 0 0 · · · 0 1

 (2.28)

where δ = |an,1|
∏n−1
i=1 |ai,i+1|. Since we want |Ãn| > 0, we take δ < 1.

We have

|Ãn + S| = (1 + s1) · · · (1 + sn)

(
1− δ

(1 + s1) · · · (1 + sn)

)
. (2.29)

Following the proof of Theorem 1.1 we see that a random variable X(n) with Laplace

transform given by (1.4) with matrix Ãn has density function

g(α,1;x) = (1− δn)α
∞∑
m=0

Γ(m+ α)δnm

Γ(α)m!

n∏
i=1

f(m+ α, 1;xi), (2.30)

and can be written as

X(n)
law
=

∞∑
m=0

Im(Z)(ξ
(1)
m+α,1, . . . , ξ

(n)
m+α,1), (2.31)

where all the random variables are independent and

P (Z = m) = (1− δn)α
Γ(m+ α)δnm

Γ(α)m!
. (2.32)

The inverse of Ãn is the n-dimensional Toeplitz matrix

R̃n =
1

1− δ



1 δ δ2 · · · δn−2 δn−1

δn−1 1 δ · · · δn−3 δn−2

δn−2 δn−1 1 · · · δn−4 δn−3

...
...

...
. . .

...
...

δ2 δ3 δ4 . . . 1 δ

δ δ2 δ3 · · · δn−1 1


. (2.33)

Example 2.5. The various density functions obtained for multivariate gamma distribu-
tions show that a 1-dimensional gamma distributed random variable can also be written
as an infinite randomized choice of independent gamma distributed random variables.
To see this more directly let X be the 1-dimensional gamma distributed random variable
with Laplace transform is |1 + s/β|−α. We write this as

βα

(β + s)α
=

βα

(1 + s− (1− β))α
(2.34)

=
βα

(1 + s)α

∞∑
n=0

Γ(n+ α)

Γ(α)n!

(
1− β
1 + s

)n
.
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Multivariate gamma distributions

When β < 1 we see that

X
law
=

∞∑
n=0

In(Z)ξn+α,1 (2.35)

where

P (Z = n) =
Γ(n+ α)βα(1− β)n

Γ(α)n!
. (2.36)

Note that for 1 < β < 2 the sum in (2.34) also converges. However, it is difficult to see
that the sum is a Laplace transform without recognizing that it is equal to βα/(β + s)α.

References

1. Eisenbaum, N. and Kaspi, H.: On permanental processes, Stochastic Processes and their
Applications, 119, (2009), 1401–1415. MR-2513113

2. Kogan, H. and Marcus, M. B.: Permanental Vectors, Stochastic Processes and their Applica-
tions, 122, (2012), 1226–1247. MR-2914751

3. Marcus, M. B. and Rosen, J,: Conditions for permanental processes to be unbounded, in
preparation.

4. Vere-Jones, D.: Alpha-permanents, New Zealand J. of Math., (1997), 26, 125–149.
MR-1450811

ECP 19 (2014), paper 86.
Page 10/10

ecp.ejpecp.org

http://www.ams.org/mathscinet-getitem?mr=2513113
http://www.ams.org/mathscinet-getitem?mr=2914751
http://www.ams.org/mathscinet-getitem?mr=1450811
http://dx.doi.org/10.1214/ECP.v19-3794
http://ecp.ejpecp.org/

	Introduction
	Proofs and Examples
	References

