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Abstract

A natural extension of a right-continuous integer-valued random walk is one which
can jump to the right by one or two units. First passage times above a given fixed
level then admit — on each of the two events, which correspond to overshoot zero and
one, separately — a tractable probability generating function. Some applications are
considered.
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1 Introduction

It is well-known that, within the class of integer-valued random walks, those which
can jump to the right by only one unit, are singled out in terms of having a more tractable
fluctuation theory [2, 9, 7] [3, Section 4] [4, Section 7] [5, Section 9.3] [11, passim].
For their defining property, they are called ‘right-continuous’ or also ‘skip-free to the
right’. In particular, first passage times above a given level then admit (semi)explicit
probability generating functions, at every point in terms of a single parameter. This
is also by analogy to the spectrally negative class of Lévy processes [1, Chapter VII]
[5, Section 9] [6, Chapter 8] [10, Section 9.46]. Indeed, if the right-continuous integer-
valued random walk is embedded into continuous time as a compound Poisson process
[13], then together (modulo trivial cases) these two types exhaust the class of Lévy
processes having non-random overshoots [14], a property by and large responsible for
the fluctuation theory then being more explicit.

It seems natural to ask, then, to what extent fluctuation theory remains (and, for
that matter, does not remain) tractable when the demand of non-random overshoots
is relaxed. In this paper only the simplest extension is considered, namely we allow
the random walk to jump to the right by one or two units (making it ‘nearly right-
continuous’, but not quite). Apart from such theoretical considerations, these ‘nearly
right-continuous’ random walks also extend some applied queuing and branching models
related to right-continuous random walks, lending further relevance to their study.

The mandate of this paper is restricted to characterizing the joint law of the times of
first passage above a given fixed level and the overshoots at that level, for the type of
processes just described. It emerges that the probability generating functions of these
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times of first passage are given, on each of the two events corresponding to overshoot 0

and 1, respectively, and at every point, in terms of two parameters, them in turn being
characterized precisely through the deterministic characteristics of the process.

As regards the presentation of the remainder of this paper, the main result of the
paper is stated in Theorem 2.1 of Section 2, which also introduces the setting. Section 3
contains the (not too difficult, still non-trivial) proof. In Section 4 we briefly remark upon
some applications. Section 5 gives a couple of concluding remarks.

2 Setting and statement of result

On a probability space (Ω,F ,P), we consider given an integer-valued random walk
[11], denoted W = (Wk)k∈N0 , with W0 = 0, a.s., allowing P(W1 = 0) to assume a non-
zero value. We assume throughout that (i) W does not a.s. have monotone paths, i.e.
P(W1 > 0) ∧ P(W1 < 0) > 0, and that (ii) E[βW1 ] <∞ for all β ∈ [1,∞); but specify to the
‘nearly right-continuous’ setting later on.

Notation-wise, the first passage times are defined as Tn := inf{k ∈ N0 : Wk ≥
n}, n ∈ Z; L(γ) := E[γW1 ], γ ∈ R\(−1, 1), is the probability generating function of
W1; λ := (W1)?P is the jump measure. It is trivial that L is continuous (dominated
convergence); L|[1,∞) is strictly convex (differentiation under the integral sign & P(W1 <

0) > 0); lim∞ L = ∞ (P(W1 > 0) > 0); E[γWk ] = L(γ)k for all γ ≥ 0, k ∈ N0 (stationary
independent increments of W ). Letting α(1) be the largest zero of L− 1 on [1,∞) (where
it has at most one in addition to 1), L|[α(1),∞) : [α(1),∞) → [1,∞) is an increasing
continuous bijection; we may define α := (L|[α(1),∞))

−1.
Here is now our result.

Theorem 2.1. Suppose W is ‘nearly skip-free to the right’, i.e. supp(λ|2N) ⊂ {1, 2}.
Assume furthermore that 2 ∈ supp(λ) (so we are excluding the skip-free version) and
supp(λ) 6⊂ 2Z (which is again the skip-free version but on double the lattice). Then for
all γ ∈ [1,∞) and n ∈ N0:

E[γ−Tn , Tn <∞,W (Tn)− n = 0] =
1

λ+(γ)− λ−(γ)
(λ+(γ)n+1 − λ−(γ)n+1) and (2.1)

E[γ−Tn , Tn <∞,W (Tn)− n = 1] =
−λ+(γ)λ−(γ)

λ+(γ)− λ−(γ)
(λ+(γ)n − λ−(γ)n), (2.2)

where:

(a) If α(γ) > 1, 1/λ−(γ) is the unique zero of L − γ on (−∞,−1) and 1/λ+(γ) = α(γ) is
the unique zero of L− γ on (1,∞); further, the following inequalities hold: −λ+(γ) <

λ−(γ) < 0 < λ+(γ) < 1.

(b) 1/λ+(1) = α(1) is the largest zero of L − 1 on [1,∞) and 1/λ−(1) is the unique zero
of L − 1 on (−∞,−1). In addition: −λ+(1) < λ−(1) < 1 < λ+(1) ≤ 1.

In particular, for each γ ∈ [1,∞),

E[γ−Tn , Tn <∞] =
1− λ−(γ)

λ+(γ)− λ−(γ)
λ+(γ)n+1 − 1− λ+(γ)

λ+(γ)− λ−(γ)
λ−(γ)n+1.

Remark 2.2.

1. It follows from Theorem 2.1(a)-(b) and the continuity of L, that L|(−∞,1/λ−(1)] −
1 : (−∞, 1/λ−(1)] → [0,∞) is a decreasing bijection, L|(1/λ−(1),−1]∪(1,1/λ+(1)) −
1 is strictly negative, L|[1/λ+(1),∞) − 1 : [1/λ+(1),∞) → [0,∞) is an increasing
bijection, 1/λ− = (L(−∞,1/λ−(1)])

−1 and 1/λ+ = (L[1/λ+(1),∞))
−1. See Figure 1 for

an illustration.
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Figure 1: The function L−1 for the random walk with jump measure λ = 0.05δ2 +0.35δ1 +

0.4δ−1 + 0.05δ−2 + 0.15δ−3. On [1,∞), L is strictly convex. Its behavior on the interval
(−∞,−1] is not trivial (left inset).

2. From Eq. (2.1)-(2.2) we identify the right Wiener-Hopf factor: if τ := T1 is the first
strict ascending ladder time and H := W (τ) is the corresponding ascending ladder
height (on {τ <∞}), then E[γ−τθ−H , τ <∞] = (λ+(γ) + λ−(γ)− λ+(γ)λ−(γ)/θ)/θ

for all {γ, θ} ⊂ [1,∞).

3 Proof of theorem

For notational convenience we first introduce some relevant notation pertaining to
the joint laws of the first passage times and the overshoots (with γ ∈ [1,∞)): µγn(A) :=

E[γ−Tn , Tn < ∞,W (Tn) − n ∈ A] (for n ∈ Z and A ⊂ Z), whilst pin(γ) := µγn({i}) and
pn(γ) := µγn(Z) (for {n, i} ⊂ N0).

Next, the following proposition will give all the necessary ingredients towards the
proof of Theorem 2.1.

Proposition 3.1. Assume the setting as described in Section 2, prior to stating Theo-
rem 2.1.

(i)
∫
α(γ)mµγn(dm) = α(γ)−n (for n ∈ N0, γ ∈ (1,∞), and also for γ = 1 if supp(λ) is

bounded from above).

(ii) µγn(A) = γ−1
∫
µγn−m(A)λ(dm) (for n ∈ N, γ ∈ [1,∞), A ⊂ Z).

Moreover, if X is ‘nearly right-continuous’, i.e. supp(λ|2N) ⊂ {1, 2}, then:
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(iii) For each γ ∈ [1,∞), the sequences (p0n(γ))n∈N0
and (p1n(γ))n∈N0

satisfy the following
system of linear difference equations with constant coefficients (in n ∈ N0):

p0n+1(γ) = p0n(γ)p01(γ) + p1n(γ); (3.1)

p1n+1(γ) = p0n(γ)p11(γ). (3.2)

Proof. Suppose γ ∈ (1,∞), in the first instance. Applying Optional Sampling Theorem to
the bounded stopping time Tn ∧N (N ∈ N0 fixed) and the martingale (α(γ)Wkγ−k)k∈N0

,
it follows that E[α(γ)W (Tn∧N)γ−(N∧Tn)] = 1. Let N →∞. Then by monotone convergence
E[α(γ)W (Tn∧N)γ−(N∧Tn), Tn ≤ N ] ↑ E[α(γ)W (Tn)γ−Tn , Tn < ∞], whilst bounded conver-
gence yields E[α(γ)W (Tn∧N)γ−(N∧Tn), Tn > N ] ≤ E[α(γ)n−1γ−N ] → 0. The case γ = 1

follows by taking limits, γ ↓ 1, using the continuity of α. This concludes the proof of
item (i).

(ii) is the Markov property of W at time 1. For, we have:

E[γ−Tn , Tn <∞,W (Tn)− n ∈ A]=
∑
m∈Z

E

[
γ−(1+

4
T n−m),W1 = m,

4
T n−m <∞,

4
W (
4
T n−m)− (n−m) ∈ A

]
,

where
4
W := (Wk+1 −W1)k∈N0

is the incremental process after time 1, and for l ∈ Z,
4
T l

is its first entrance time into [l,∞). Use the facts that W1 is independent of
4
W , and that

4
W

(d)
= W .
Finally, (iii) is the strong Markov property at the time Tn. Specifically, we have:

E[γ−Tn+1 , Tn+1 <∞,W (Tn+1) = n+ 1] = E[γ−Tn−
4
T 1 , Tn <∞,W (Tn) = n,

4
T 1 <∞,

4
W (
4
T 1) = 1] +

E[γ−Tn , Tn <∞,W (Tn) = n+ 1]

E[γ−Tn+1 , Tn+1 <∞,W (Tn+1) = n+ 2] = E[γ−Tn−
4
T 1 , Tn <∞,W (Tn) = n,

4
T 1 <∞,

4
W (
4
T 1) = 2],

where now
4
W := (WTn+1 −WTn)k∈N0 is the incremental process after Tn on {Tn <∞},

and for l ∈ Z,
4
T l is its first entrance time into [l,∞). Use the facts that the history up

to Tn, σ(WTn), when traced on {Tn <∞}, is independent of
4
W under P(·|Tn <∞), and

that (
4
W )?P(·|Tn <∞) = W?P.

Let us now apply the above to gain understanding of the ‘nearly right-continuous’
random walk. We assume henceforth supp(λ|2N) ⊂ {1, 2}.
Remark 3.2. Suppose furthermore λ({2}) = 0, for the right-continuous case. Then
Proposition 3.1(i) yields at once E[γ−Tn1(Tn <∞)] = α(γ)−n, for all n ∈ N0, γ ∈ [1,∞).

We now assume λ({2}) > 0. If λ is supported by 2Z, this is just the right-continuous
case, but on the lattice 2Z. So without loss of generality take the converse case. In
particular, it follows that p11(γ)p01(γ) > 0 for all γ ∈ [1,∞).

In the first step towards the proof of Theorem 2.1, we solve the recursion system of
Proposition 3.1(iii) (with γ ∈ [1,∞) fixed). Simply plug (3.2) into (3.1) to get:

p0n+2(γ)− p0n+1(γ)p01(γ)− p0n(γ)p11(γ) = 0, n ∈ N0.

The characteristic polynomial of this last recursion is (in the dummy variable ζ) ζ2 −
p01(γ)ζ − p11(γ), with the zeros:

λ±(γ) :=
p01(γ)

2
±

√(
p01(γ)

2

)2

+ p11(γ). (3.3)
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Note that −λ+(γ) < λ−(γ) < 0 < λ+(γ) ≤ 1 (the last inequality follows from p01(γ) +

p11(γ) ≤ 1). From the general theory of linear difference equations with constant coeffi-
cients, it now follows that, for some {A−(γ), A+(γ)} ⊂ R, and then for all n ∈ N0, p0n(γ) =

A+(γ)λn+ +A−(γ)λ−(γ)n. The two initial values are p00(γ) = 1 and p01(γ) = λ+(γ) + λ−(γ).
From this we obtain immediately, for all n ∈ N0:

p0n(γ) =
1

λ+(γ)− λ−(γ)
(λ+(γ)n+1−λ−(γ)n+1), hence (using (3.2) & p10(γ) = 0)(3.4)

p1n(γ) =
−λ+(γ)λ−(γ)

λ+(γ)− λ−(γ)
(λ+(γ)n − λ−(γ)n), hence (by summing) (3.5)

pn(γ) =
−λ+(γ)λ−(γ) + λ+(γ)

λ+(γ)− λ−(γ)
λ+(γ)n − −λ+(γ)λ−(γ) + λ−(γ)

λ+(γ)− λ−(γ)
λ−(γ)n. (3.6)

In the second step, we characterize the values of λ+(γ) and λ−(γ), γ ∈ [1,+∞). First,
Proposition 3.1(i) implies p0n(γ) + p1n(q)α(γ) = α(γ)−n (for all n ∈ N0). In this relation
plug in (3.4) and (3.5), divide by λ+(γ)n and send n→∞. Since |λ−(γ)/λ+(γ)| < 1, the
left-hand side has the limit λ+(γ)(1−λ−(γ)α(γ))/(λ+(γ)−λ−(γ)) ∈ (0,∞), so necessarily
λ+(γ) = α(γ)−1. If so, then the relation appearing in Proposition 3.1(i) is a priori satisfied
and does not yield λ−(γ), which we shall have to identify by other means.

Suppose first α(γ) > 1 and hence λ+(γ) < 1 (i.e. 1/λ+(γ) ∈ (1,∞)). In this instance
we resort to Proposition 3.1(ii) with A = R, which tells us that (for all n ∈ N\{1}):

γpn(γ) =
∑
k∈Z

λ({k})pn−k(γ).

Plugging in (3.6), this implies (since L(1/λ+(γ)) = L(α(γ)) = γ and −λ+(γ)λ−(γ) +

λ−(γ) 6= 0):
L(1/λ−(γ)) = γ, (3.7)

where we know 1/λ−(γ) ∈ (−∞,−1).
Even if α(γ) = 1 (hence γ = 1), however, still (3.7) holds (and, of course, 1/λ−(1) ∈

(−∞,−1)), since one may pass to the limit γ ↓ 1 in it, exploiting the continuity of L, and
of (γ 7→ λ−(γ)) on [1,∞) (which fact follows from (3.3), using bounded convergence in
the definition of the quantities p01(γ) and p11(γ)).

Now, from the Introduction, it is clear that L − γ has a unique zero on (1,∞), namely
α(γ), and that α(1) is the largest root of L − 1 on [1,∞). It remains to argue then that
L − γ has at most one zero on (−∞,−1) for each γ ∈ [1,∞). Fix a γ ∈ [1,∞); let R be
any such zero.

It does not seem immediately clear analytically why R should be unique (cf. Figure 1);
so we use a probabilistic method.1 Indeed, the argument is essentially verbatim that
of the proof of Proposition 3.1(i). First, (RWkγ−k)k∈N0

is a martingale. For, E[|RWk |] =

E[|R|Wk ] = L(|R|)k <∞ and E[RWk ] = L(R)k = γk (k ∈ N0). The assertion then follows
by stationary independent increments of W . Further, for any {n,N} ⊂ N0, Optional
Sampling Theorem yields E[RW (Tn∧N)γ−(Tn∧N)] = 1. Letting N → ∞ we deduce by
dominated convergence (as W (Tn ∧N) ≤ n + 1 and since a.s. on the event {Tn = ∞},
the process W limits to −∞): E[RW (Tn)γ−Tn1(Tn <∞)] = 1, i.e. p0n(γ) + p1n(γ)R = R−n.
Since the left-hand side is a linear combination of (n 7→ λ+(γ)n) and (n 7→ λ−(γ)n), it
follows that:

R ∈ {1/λ−(γ), 1/λ+(γ)} and hence R = 1/λ−(γ).

This establishes that R is indeed unique and completes the proof of Theorem 2.1.

1However, for numerical reasons, note that lim−∞ L =∞ and L(−1) < 1.
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4 Applications in queues and branching processes

Right-continuous random walks are related (at least in the distributional sense) to
certain quantities in the theory of queues, and branching processes, see e.g. [8, Section
5] for a nice exposition. For the ‘nearly right-continuous’ case, we offer the following
two examples in applications.

Consider first a single queue of customers with two equally capable servers, the latter
attending to the former simultaneously, two at a time, per service. There are a total of
k ≥ 2 individuals in the queue at the start, Q0 := k. The time the servers are working
consists of idle and busy periods, where we define an idle period as a period in which at
least one of the servers has no customer to attend to (and then only one server performs
the service, say, while the other one rests). Thus, each busy period consists of one or
more services; one service per two customers. Let Qn denote the number of customers
in the queue at the end of the n-th service. Assume that the number of individuals which
arrive during each service is distributed according to the distribution function F (dF
supported by N0) and that arrivals during each service period are independent (in their
number). Let (Xi)i≥1 be an independency of random variables distributed according to
F and (Sn)n≥0 be their partial sums. Consider the process Pn := k + Sn − 2n (n ≥ 0),
which is to model (Qn)n≥0 up to the idle period. If we let Tk := inf{n ≥ 0 : Pn ≤ 1}, then
(with equality in distribution) Tk is the total number of services during the first busy
period; accordingly it is also the time to the first idle period, and 2Tk is the number of
customers served during the first busy period. Crucially, (Sn − 2n)n≥0 is nothing else
than the negative of a ‘nearly right-continuous’ random walk, and Tk is precisely one of
its first passage times.

As our second application, note that we can also find in the above queue an example
of what is essentially (but not quite) a Galton-Watson branching process for paired
individuals, in the following precise sense. Consider having a totality of k ≥ 2 initial
ancestors in the 0-th generation, which reproduce in pairs, each pair giving young to
a certain number of descendants of the next generation, independently (in offspring
number), and according to the distribution F . All the pairs are assumed disjoint. Note in
each generation there is of course the possibility of having an individual, which cannot
be paired up. How precisely to treat him will soon become clear, once the connection to
the above has been established.

Now, we say the population becomes extinct if there are no longer two individuals
present (in the current generation), which can pair up and reproduce. Then in the above
(with equality in distribution, and as an approximation) 2Tk represents the total progeny
(modulo, possibly one member) until extinction has occurred (interpret customer j a
child of j′j′′, if j has arrived during the service of j′j′′). The approximation is in that if
the total number of individuals in a generation K is odd, then the left-over specimen
j′ in generation K can reproduce with a member j′′ of generation K + 1 (provided, of
course, the left over pairs of generation K have produced any progeny). In that case, if
any progeny occurs between j′ and j′′, it is assumed to be added to the generation K+ 2,
which follows the oldest generation of this pair. Of course then j′′ is no longer available
for reproduction in generation K + 1. This continues until there are still individuals
available to reproduce.

Indeed, if the branching process is defined in this latter sense (so a Galton-Watson
branching for pairs, with suitable boundary conditions dealing with the possibility of
having an odd number of individuals available (left over) for reproduction in the current
generation), then the correspondence is exact and 2Tk represents the total progeny
(modulo, possibly, one member) until extinction has occurred.
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5 Concluding remarks

It would be interesting to see what (if anything definitive) can be said, when the
jumps of W are allowed upwards up to a certain (fixed, but arbitrary) threshold N ∈ N
(we had N = 2, N = 1 being the skip-free case). This remains open to future research.

On the other hand, embedding W into continuous time as a compound Poisson
process, presents, of course, no (essential) further difficulty to the above analysis – see
the arXiv version of this paper [12] for this continuous-time analogue of the ‘nearly
right-continuous’ random walk.
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