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Abstract

We give a short and elementary proof of a symmetry identity for the q-moments of
the q-Hahn distribution arising in the study of the q-Hahn Boson process and the q-
Hahn TASEP. This identity discovered by Corwin in "The q-Hahn Boson Process and
q-Hahn TASEP", Int. Math. Res. Not., 2014, was a key technical step to prove an
intertwining relation between the Markov transition matrices of these two classes of
discrete-time Markov chains. This was used in turn to derive exact formulas for a
large class of observables of both these processes.

Keywords: Markov duality; q-Hahn process.

AMS MSC 2010: 60J10;33D45.

Submitted to ECP on July 16, 2014, final version accepted on July 23, 2014.

Supersedes arXiv:1404.4265.

Introduction

Zero-range and exclusion processes are generic stochastic models for transport phe-
nomena on a lattice. Integrability of these models is an important question. In a short
letter [5], Evans, Majumdar and Zia considered spatially homogeneous discrete time
zero-range processes on periodic domains. They adressed and solved the question of
characterizing the jump distributions for which invariant measures are product mea-
sures. Povolotsky [7] further examined the most general form of jump distributions
allowing solvability by Bethe ansatz, and found a family depending on three real param-
eters q, µ and ν, later called the q-Hahn distribution. In the same article [7], he also
studied the corresponding q-Hahn Boson process and q-Hahn TASEP, and conjectured
exact formulas for the models on the infinite lattice.

Using a Markov duality between the q-Hahn Boson process and the q-Hahn TASEP,
Corwin [4] showed a variant of these formulas and provided a method to compute a
large class of observables. This can be seen as a generalization of a similar work on
q-TASEP and q-Boson process performed in [3, 2]. In his proof, the intertwining rela-
tion between the two Markov transition matrices essentially boils down to a symmetry
identity verified by the q-moments of the q-Hahn distribution [4, Proposition 1.2]. The
proof was adapted from [2, Lemma 3.7] which is the ν = 0 case, and required the use of
Heine’s summation formula for the basic hypergeometric series 2φ1. In the following,
we give a new proof of this identity.
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A symmetry property for the q-moments of the q-Hahn distribution

First, we define the three parameter deformation of the Binomial distribution intro-
duced in [7].

Definition 0.1. For |q| < 1, 0 6 ν 6 µ < 1 and integers 0 6 j 6 m, define the function

ϕq,µ,ν(j|m) = µj
(ν/µ; q)j(µ; q)m−j

(ν; q)m

[
m

j

]
q

,

where [
m

j

]
q

=
(q; q)m

(q; q)j (q; q)m−j

are q-Binomial coefficients with, as usual,

(z; q)n =

n−1∏
i=0

(
1− qiz

)
.

It happens that for each m ∈ N ∪ {∞}, this defines a probability distribution on the
set {0, . . . ,m}. The weights ϕq,µ,ν(j|m) are very closely related to the weights associated
with the q-Hahn orthogonal polynomials (see (7.2.22) in [6]), hence the use of the name
q-Hahn.

Lemma 0.2 (Lemma 1.1, [4]). For any |q| < 1 and 0 6 ν 6 µ < 1 ,

m∑
j=0

ϕq,µ,ν(j|m) = 1.

Proof. As shown in [4], this equation is equivalent to a specialization of some known
summation formula for basic hypergeometric series 2φ1 (Heine’s q-generalizations of
Gauss’ summation formula).

We now state and prove the main identity.

Proposition 0.3 (Proposition 1.2, [4]). Fix |q| < 1 and 0 6 ν 6 µ < 1. Let X (resp. Y )
be a random variable following the q-Hahn distribution on {0, . . . , x} (resp. {0, . . . , y}).
We have

E
[
qxY

]
= E

[
qyX

]
.

Proof. Let Sx,y :=
∑x
j=0 ϕq,µ,ν(j|x)qjy. We have to show that Sx,y = Sy,x for all integers

x, y > 0. Our proof is based on the fact that Sx,y satisfies a recurrence relation which is
invariant when exchanging the roles of x and y. First notice that by Lemma 0.2, Sx,0 = 1

for all x > 0, and by definition S0,y = 1 for all y > 0.
The Pascal identity for q-Binomial coefficients, (see 10.0.3 in [1]),[

x+ 1

j

]
q

=

[
x

j

]
q

qj +

[
x

j − 1

]
q

,

yields

Sx+1,y =

x+1∑
j=0

µj
(ν/µ; q)j(µ; q)x+1−j

(ν; q)x+1

[
x

j

]
q

qjqjy +

x+1∑
j=0

µj
(ν/µ; q)j(µ; q)x+1−j

(ν; q)x+1

[
x

j − 1

]
q

qjy,

=

x∑
j=0

ϕq,µ,ν(j|x)
1− µqx−j

1− νqx
qjqjy +

x∑
j=0

ϕq,µ,ν(j|x)µ
1− ν/µqj

1− νqx
qyqjy.
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The last equation can be rewritten

(1− νqx)Sx+1,y = (Sx,y+1 − µqxSx,y) + (µqy(Sx,y − ν/µSx,y+1)) ,

= (1− νqy)Sx,y+1 + µ(qy − qx)Sx,y.

Thus, the sequence (Sx,y)(x,y)∈N2 is completely determined by{
(1− νqx)Sx+1,y = (1− νqy)Sx,y+1 + µ(qy − qx)Sx,y,
Sx,0 = S0,y = 1.

(0.1)

Setting Tx,y = Sy,x, one notices that the sequence (Tx,y)(x,y)∈N2 enjoys the same recur-
rence, which concludes the proof.

Remark 0.4. To completely avoid the use of basic hypergeometric series, one would
also need a similar proof of the Lemma above. One can prove the result by recurrence
on m (as in the proof of [2, Lemma 1.3]), but the calculations are less elegant when
ν 6= 0.

More precisely, fix some m and suppose that for any 0 6 ν 6 µ < 1, Sm,0(q, µ, ν) :=∑m
j=0 ϕq,µ,ν(j|m) = 1. Pascal’s identity yields

Sm+1,0(q, µ, ν) =
1− µ
1− ν

Sm,0(q, qµ, qν) +

m∑
j=0

ϕq,µ,ν(j|m)µ
1− ν/µqj

1− νqm
,

=
1− µ
1− ν

Sm,0(q, qµ, qν) +
µ

1− νqm
(Sm,0(q, µ, ν)− ν/µSm,1(q, µ, ν)) .

Then, using the recurrence formula (0.1) for Sm,1(q, µ, ν), and applying the recurrence
hypothesis, one obtains Sm+1,0(q, µ, ν) = 1.
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