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Abstract

Let Mn denote the number of sites in the largest cluster in critical site percolation on
the triangular lattice inside a box of side length n. We give lower and upper bounds
on the probability that Mn/EMn > x of the form exp(−Cx2/α1) for x ≥ 1 and large n
with α1 = 5/48 and C > 0. Our results extend to other two dimensional lattices and
strengthen the previously known exponential upper bound derived by Borgs, Chayes,
Kesten and Spencer [3]. Furthermore, under some general assumptions similar to
those in [3], we derive a similar upper bound in dimensions d > 2.
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1 Introduction and statement of the main results

For a general introduction to the percolation model we refer to [10], [7], and [2].
Consider the critical bond percolation model on the lattice Zd for d ≥ 2. For n ∈ N let

Λn := {−n,−n+ 1, . . . , n}d

denote the hypercube (ball) centred at the origin with radius n. For v ∈ V (T) we write
Λn(v) := v + Λn. Further let ∂A denote the (outer) boundary of A ⊆ Zd, that is

∂A :=
{
v ∈ Zd \A : ∃u ∈ A such that u ∼ v

}
.

We say that two sites v, w are connected by an open path and denote it by v ↔ w

if there is a sequence of open edges which starts at v, ends at w, and the consecutive

edges share a vertex. Let v
S←→ w denote the event where there is an open path con-

necting v to w which only uses vertices in S ⊆ Zd. For A,B ⊆ Zd, A S←→ B denotes the

event where there are vertices v ∈ A,w ∈ B such that v
S←→ w. When S is omitted, it is

assumed to be equal to Zd.
The open cluster of the vertex v in Λn is denoted by

Cn(v) :=
{
w ∈ Λn |w

Λn←→ v
}
.

Herein the size of a cluster is measured by its number of vertices. Further, let C(i)
n

denote the ith largest cluster in Λn. If there are clusters with the same size, we order
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Large deviation bounds for the largest critical percolation cluster

them in some arbitrary but deterministic way. For m ≤ n we write π(m,n) for the
probability Ppc (∂Λm ↔ ∂Λn). We set π(n) := π(1, n). We will work under the following
assumptions.

Assumption 1.1 (Quasi-multiplicativity). There exists a constant C1 such that for all
0 ≤ k ≤ l ≤ m we have

π(k, l)π(l,m) ≤ C1π(k,m). (1.1)

Assumption 1.2. There exist constants C2 > 0 and α < d such that for all n ≥ m ≥ 1

π(n)

π(m)
≥ C2

( n
m

)−α
. (1.2)

Assumption 1.1 and 1.2 hold for d = 2, as proved in [7] and [14]. Furthermore, As-
sumption 1.2 holds in high (d ≥ 19) dimensions, however, we do not expect Assumption
1.1 to hold in this case. See Remark ix) below for more details on this case. To our
knowledge, it is an open question whether any of Assumption 1.1 or 1.2 is satisfied in
dimensions 3 ≤ d ≤ 18.

In [3] the following bound was given:

Theorem 1.3 (Proposition 6.3 of [3]). Suppose that Assumption 1.2 holds. Then there
exist positive constants c1, c2 such that for all x, n ≥ 0,

Ppc

(
|C(1)
n | ≥ xndπ(n)

)
≤ c1 exp(−c2x). (1.3)

We strengthen this result when both of Assumption 1.1 and 1.2 are satisfied:

Theorem 1.4. Let d ≥ 2, and suppose that Assumptions 1.1 and 1.2 hold. There ex-
ist positive constants c1, c2 depending only on d and the constants appearing in the
assumptions, such that for all n, u > 1,

Ppc

(
|C(1)
n | ≥ ndπ(n/u)

)
≤ c1 exp(−c2ud). (1.4)

Furthermore, for d = 2 there are constants c3, c4 > 0 such that the lower bound

Ppc

(
|C(1)
n | ≥ ndπ(n/u)

)
≥ c3 exp(−c4ud) (1.5)

holds for all 1 ≤ u ≤ n.

The lower bound in Theorem 1.4 follows from standard RSW methods, nevertheless,
for completeness we include its proof in Section 3.2. The upper bound above relies on
Theorem 1.5 below, which is our main contribution. Let

Vn := {v ∈ Λn | v ↔ ∂Λ2n} (1.6)

denote the set of vertices in Λn which are connected to ∂Λ2n.

Theorem 1.5. Let d ≥ 2, and suppose that Assumptions 1.1 and 1.2 hold. There is a
constant c1 such that for all n, u > 0 and k ∈ N

Epc

(
|Vn|
k

)
≤ (c1n

dπ(n/
d
√
k)/k)k. (1.7)

Consequently, for some positive constants c2, c3, we have

Ppc
(
|Vn| ≥ ndπ (n/u)

)
≤ c2 exp(−c3ud). (1.8)

The constants c1, c2, c3 above only depend on d and the constants appearing in Assump-
tions 1.1 and 1.2.
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Large deviation bounds for the largest critical percolation cluster

A weaker version of Theorem 1.5 is proved in [3] as Lemma 6.1. Theorem 1.4 follows
from Theorem 1.5 by arguments analogous to those in [3] which lead from [3, Lemma
6.1] to Theorem 1.3. Thus we only prove Theorem 1.5 and the lower bound in Theorem
1.4 here.

Remarks. i) We believe that a lower bound matching (1.7) with a constant smaller
than c1 holds. Such lower bound would immediately imply (1.8). Nevertheless, we
chose to prove (1.8) directly, since the construction is rather simple, but it gives an
example when the rare event |C(1)

n | ≥ ndπ(n/u) happens.

ii) Our motivation for studying the size of large critical clusters comes from the forest-
fire processes described as follows. Let λ be some small positive number. At time
0 all the vertices of Zd are empty. As time goes on, empty vertices get occupied
by a tree at rate 1, independently from each other. Vertices with trees get struck
by lightning at rate λ independently from each other. When a tree gets struck by
lightning, its forest (its connected component in Zd of vertices with trees) is ignited,
that is, all of the trees are removed in this forest. Then trees occupy empty vertices
with rate 1, and lightnings strike and so on. We are particularly interested in the
case where λ > 0 is small.

As we can see, a forest burns down at rate proportional to its size, thus a precise
control of the size of critical clusters can be useful for the study of the processes
above.

iii) [3, Proposition 6.3] also treats the case where the percolation parameter p is differ-
ent from pc. Our results extend to this case in an analogous way as in [3]. Further-
more, Assumptions 1.1 and 1.2, our results, as well as those in [3], in the case d = 2

hold for site/bond percolation on other lattices: As long as the lattice is invariant
under a translation, a rotation around the origin with some angle and a reflection
on one of the coordinate axes, the results above follow. Furthermore, these results
remain valid for some inhomogeneous percolation models. See [7] for more details.

iv) The proof of Theorem 1.5 relies on the method presented in [11]. However, the
computation there only considers the case d = 2. As we will see below, the argu-
ments in [11] extend to the case d ≥ 3 in a straightforward way.

v) Recall a ratio limit theorem, Proposition 4.9 of [6] for the one arm events. Combin-
ing it with Theorem 1.4 we get, for site percolation on the triangular lattice,

Ppc

(∣∣∣C(1)
n

∣∣∣ ≥ xn2π(n)
)
≤ c1 exp(−c2x96/5),

≥ c3 exp(−c4x96/5)

with some universal constants ci for all x > 0 and n ≥ n0(x).

vi) The upper bound in Theorem 1.4 trivially extends to |C(l)
n | the volume of the lth

largest cluster. Furthermore, in dimension 2 the same lower bound with different
constants also holds. Its derivation is analogous to that for the largest cluster,
hence we omit it.

vii) Theorem 1.5 gives upper bounds on the moments and on the tail probability of
Vn/n2π(n), where, roughly speaking, Vn counts the points in Λn with one long open
arm. Similar upper bounds can be achieved for the number of points with multiple
disjoint arms.

Let l ∈ N and σ ∈ {0, 1}l. Let πσ(m,n) denote the probability that ∂Λm and ∂Λn are
connected by l disjoint arms, where in a counter-clockwise order of these arms the
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ith arm is open when σi = 1 and dual closed otherwise. Suppose that Assumption
1.1 and 1.2 are satisfied when π is replaced by πσ with some constants C1, C2 and
for some ασ > 0 not necessarily smaller than d. We have two cases: when ασ < d,
Lemma 3.1 applies with π replaced by πσ, and we get results analogous to Theorem
1.5. However, when ασ > d, Lemma 3.1 fails and we see that

∑∞
k=1 k

d−1πσ(k) <∞.
By slightly modifying the computations in the proof of Theorem 1.5 in the case
ασ > 2 we get

Epc

(
|Vσn |
k

)
≤ ck1ndπσ(n)

for some constant c1 where Vσn denotes the multi-arm analogue of Vn.

We believe that a lower bound matching (1.8) holds in two dimensions when σ

switches colours at most four times and ασ < 2. However, in this case the con-
struction in the lower bound is more delicate and rather technical hence we omit
it.

viii) In the case of the critical site percolation triangular lattice, Morrow and Zhang [13]
gave upper and lower bounds for the moments for quantities similar to |Vση |. More
precisely, they considered Ln, the set of vertices in the lowest crossing of Λn, the
pioneering and pivotal vertices of Ln, denoted by Fn and Qn, respectively. From
each site in Ln, Fn, and Qn arms with colour sequence σ(L) = (1, 0, 1), σ(F ) = (1, 0)

and σ(Q) = (1, 0, 1, 0) start and extend till ∂Λn, respectively. For a precise definition
see [13]. It was showed that Epc(|Xn|k) = n(2−αX)k+o(1) for X = L,F,Q. Here
αL, αF , αQ coincide with the multi-chromatic 3, 2 and 4 arm exponents for critical
site percolation on the triangular lattice [17], and the results in [13] are similar to
the muli-arm analogues of Theorem 1.5 noted in the previous remark.

In view of Remark i), v) and vii), we believe that the arguments herein can be
applied to improve the results of [13] to Epc(|Xn|k) = (O(1)n2πσ(X)(n/

√
k))k for

X = L,F,Q.

ix) Let us turn to the case d ≥ 19. Kozma and Nachmias [12, Theorem 1] proved
that π(n) = O(n−2) building on the results in [8]. This combined with [1, Theorem

5] gives that |C(1)
n | is of order n4+o(1). Hence the bounds in Theorem 1.3 and 1.4

are much weaker than those in [1, Theorem 5]. Nevertheless, we get some new
conditional results which are interesting in dimensions below 19.

x) We note some results on the distribution of |C(l)
n | for l ≥ 1. We already mentioned

the results of [3] which are the most relevant for our purposes. The same authors
in [4] describe the connection between the volume and the diameter of the largest
critical and near-critical clusters. Járai [9] showed, among other things, that the
microscopic scale behaviour of the largest critical clusters can be described by that
of the incipient infinite cluster. Finally, van den Berg and Conijn [18] proved that the
probability of |C(1)

n |/n2π(n) ∈ (a, b) is positive for all 0 < a < b for sufficiently large n.

While in [19] they showed, roughly speaking, that the distribution of |C(1)
n |/n2π(n)

has no atoms for large n and that |C(l)
n | − |C(l+1)

n | = O(n2π(n)) for l ≥ 1.

Organization of the paper

In Section 2 we provide some more notation. We sketch the arguments of [11] which
are essential for the proofs of our results in Section 2.1. Building on these results, we
prove Theorem 1.5 in Section 3.1. We conclude in Section 3.2 where we deduce the
lower bound in Theorem 1.4.
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2 Notation and preliminaries

The space of configurations is Ω := {0, 1}E(Zd). For ω ∈ Ω let ω(e) ∈ {0, 1} denote its
value at e ∈ E(Zd). We say that e ∈ E(Zd) is open, if ω(e) = 1, otherwise e is closed. For
p ∈ [0, 1] let Pp denote the product measure on Ω where Pp(ω(e) = 1) = p. Let pc = pc(d)

denote the critical percolation parameter. That is, pc = sup{p |Pp(0↔∞) = 0}.

2.1 The counting argument of [11]

The proof of Theorem 1.5 is based on a counting argument found in [11]. This
argument strengthens the proof of [3, Lemma 6.1] and it counts certain passage points,
which, roughly speaking, are the starting points of six disjoint open and closed arms.
Herein we give a sketch of the argument in the one arm case.

Let k ∈ N and

X = {x1, x2, . . . , xk} ⊆ Λn.

We give a bound on the probability of the event {Vn ⊇ X}, but first some definitions.
Let T0 denote the empty graph on the vertex set X. Let us start blowing a ball at

each point of X at unit speed. That is, at time t ≥ 0, we have the balls Λt(x), x ∈ X.
For small values of t these balls are pairwise disjoint. As t increases, more and more

of these balls intersect each other. Let r1, denote the smallest t when the first pair
of balls touch. We pick one such pair balls in some deterministic way, with centres
u1, v1 ∈ X. We draw an edge e1 between u1 and v1 and label it with l(e1) := r1, and get
the graph T1. Note that ||u1 − v1||∞ = 2r1. Then we continue with the growth process,
and stop at time r2 if we find a pair of vertices u2, v2 ∈ X such that u2, v2 are in different
connected components of T1 and Λr2(u2) and Λr2(v2) touch. Then we draw an edge e2

between one such deterministically chosen pair with the label l(e2) := r2 and get T2.
Note that it can happen that r1 = r2. We continue with this procedure till we arrive to
the tree Tk−1. Let R(X) denote the multiset containing ri for i = 1, 2, . . . , k − 1.

As we saw above, r1 = 1
2 minu,v∈X,u 6=v ||u− v||. Furthermore, it is easy to see that for

i = 1, 2, . . . , k − 1 there are at least k + 1− i vertices of X such that any pair of them is
at least 2ri distance from other. This combined with the pigeon-hole principle provides
the following observation:

Observation 2.1. For all i ∈ [0, d
√
k − 1] ∩ Z we have rk−id < n

i . Equivalently, rj :=

rk−j ≤ n/b d
√
jc for j = 1, . . . , k − 1.

We say that B is a blob, if B is a non-empty connected component of Ti for some i.
In the growth process above blobs merge with other blobs and form bigger ones over
time. Let

b(B) := min{ri : B is a connected component of Ti},
d(B) := max{ri : B is a connected component of Ti}

denote the birth time, and the death time of a blob B. It is easy to see that the sets

G(B) :=

{⋃
x∈B Λd(B)(x) \

⋃
x∈B Λb(B)(x) B 6= X,

Λ2n \
⋃
x∈B Λd(B)(x) B = X

are pairwise disjoint. See Figure 1. Let

ib(B) := ∂

(⋃
x∈B

Λb(B)(x)

)
, ob(B) :=

{
∂
(⋃

x∈B Λd(B)(x)
)

B 6= X,

∂Λ2n B = X
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Figure 1: The areas with different patterns correspond the sets G(B).

denote the boundary of the inner and outer faces of the sets G(B), respectively. Now
we are ready to make a bound on the probability P(Vn ⊇ X). Recall the definition of Vn
from (1.6). For all x ∈ V (B) we have

{Vn ⊇ X} ⊆ {x↔ ∂Λ2n} ⊆ {ib(B)↔ ob(B)}.

The events {ib(B)↔ ob(B)} are independent since they depend only on the state of the
edges in G(B), which are pairwise disjoint subsets of Λ2n. Hence

Ppc (Vn ⊇ X) ≤ Ppc

( ⋂
Bblob

{ib(B)↔ ob(B)}

)
≤
∏
B blob

Ppc (ib(B)↔ ob(B)) .

Then, as in the proof of [11, Proposition 14], an induction on the blobs leads to the
following bound.

Proposition 2.2. Suppose that Assumption (I) and (II) holds. Then there is a constant
C3 = C3(c1, c2, α, d) such that

Ppc (Vn ⊇ X) ≤ C3π(n)
∏

r∈R(X)

C3π(r)

for all X ⊆ Λn

Proposition 2.2 provides an upper bound on Ppc (Vn ⊇ X) as a function of R(X). To
give a bound on Epc

(|Vn|
k

)
, we bound the number of sets X such that R(X) = R for fixed

R. By arguments analogous to the proof of [11, Proposition 15] we get the following.

Proposition 2.3. There is a universal constant C4 such that for all multisets R with
k − 1 elements we have

# {X ⊆ Λn : |X| = k, R(X) = R} ≤ C4O(R)nd
∏
r∈R

dC4r
d−1, (2.1)

where O(R) denotes the number of different ways the elements of R can be ordered.
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3 Proof of Theorem 1.4 and 1.5

We start with the following consequence of Assumption (II).

Lemma 3.1 (Lemma 4.4 of [3]). If Assumption (II) holds, then there is a constant C5 =

C5(C2, α, d) such that for all n ≥ 0 we have

n∑
k=1

kd−1π(k) ≤ C5n
dπ(n). (3.1)

3.1 Proof of Theorem 1.5

Combining Proposition 2.2 and 2.3 with C6 = dC3C4 we get:

E

(
|Vn|
k

)
=
∑
X⊆Λn

Ppc (Vn ⊇ X)

≤ d
∑
R

C3C4O(R)ndπ(n)
∏
r∈R

dC3C4r
d−1π(r) (3.2)

= Ck6n
dπ(n)

∑
R̃

∏
r̃∈R̃

r̃d−1π(r̃) = Ck6n
dπ(n)

(
n∑
r=1

rd−1π(r)

)k−1

(3.3)

where the first summation in (3.2) runs over the k− 1 element mulitsets of {1, 2, . . . , n},
while in (3.3) R̃ runs through the k − 1 long sequences in {1, 2, . . . , n}. Note that by
Observation 2.1, many terms in (3.3) are redundant. We exploit this in the following.

Let r̄i denote the ith largest element of R̃. Observation 2.1 provides an upper bound
on E

(|Vn|
k

)
where in the sum in (3.3) we restrict to the terms such that r̄i ≤ n/2l for all i

with 2dl ≤ i < 2d(l+1). We indicate this restriction by an additional tilde above the sum.
Let j := blog2d(k)c and m = k − 1− 2dj . We arrive to the following bound:

E

(
|Vn|
k

)
≤ Ck6ndπ(n)

∑̃
R̃

∏
r̃∈R̃

r̃d−1π(r̃)

≤ Ck6ndπ(n)

(
k − 1

2d − 1, (2d − 1)2d, . . . , (2d − 1)2d(j−1),m

)
(3.4)

j−1∏
i=1

n/2i∑
r=1

rd−1π(r)

(2d−1)2di n/2j−1∑
r=1

rd−1π(r)

m

.

The multinomial term in (3.4) bounds the number of ways we can order k − 1 (not
necessarily different) numbers when we do not distinguish between the largest 2d − 1,
the next (2d − 1)2d largest,..., and the next (2d − 1)d(j−1) largest of them. The product
terms in (3.4) apply the above bounds on the range of r̄i. Hence by Lemma 3.1, we have
that

E

(
|Vn|
k

)
≤ (C5C6)kndk

(
k − 1

2d − 1, (2d − 1)2d, . . . , (2d − 1)2d(j−1),m

)
2−m(j−1)d

j−1∏
i=1

2−di(2
d−1)2id

· π(n)π(n/2j−1)m
j−1∏
i=1

π(n/2i)(2d−1)2di

. (3.5)

We estimate the multinomial, and the two product terms separately. It is a simple
computation to show that there is a constant C7 = C7(d) such that(

k − 1

2d − 1, (2d − 1)2d, . . . , (2d − 1)2d(j−1),m

)
≤ Ck−1

7 , (3.6)
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and that

2−m(j−1)d

j−1∏
i=1

2−di(2
d−1)2id

≤ Ck7 k−k (3.7)

for all k ≥ 1. We combine (3.5), (3.6), and (3.7) with the trivial bound π(n/ d
√
k)k for the

product of π’s, and get

E

(
|Vn|
k

)
≤ Ck8nkdk−kπ(n/

d
√
k)k (3.8)

with C8 = C5C6C
2
7 . This finishes the proof of the first part of Theorem 1.5.

Let us proceed to the proof of the second part. The statement is trivial for u > n,
hence we assume u ∈ [1, n] in the following. For t ≥ 1 by (3.8) we get

E
(
t|Vn|

)
=

∞∑
k=1

(t− 1)kE

(
|Vn|
k

)

≤
∞∑
k=0

(
(t− 1)C8n

dπ(n/
d
√
k)/k

)k
.

Take t = 1 + ud

C2C8ndπ(n/u)
where u ∈ [1, n]. With Assumption (II) we get

E
(
t|Vn|

)
≤
∞∑
k=0

(
udπ(n/ d

√
k)

C2kπ(n/u)

)k

≤
C−1

2 ud∑
k=0

(
ud

C2k

)k
+

∞∑
k=C−1

2 ud+1

(
ud

k

)(1−α/d)k

≤
∞∑
k=0

udk

Ck2 k!
+ C−1

2 ud
∞∑
l=1

(
l1−α/d

)−C−1
2 udl

≤ exp(C−1
2 ud) + C−1

2 ud
∞∑
l=1

l−(1−α/d)l

≤ C9 exp(C−1
2 ud) (3.9)

for some constant C9 = C9(α, d). Note that the function x → (1 + x)1/x is decreasing,

and that ud

ndπ(n/u)
≤ C−1

2 (u/n)
d−α ≤ C−1

2 since u ∈ [1, n]. Hence there is a constant C10

such that for all K > 0

tKn
dπ(n/u) =

(
1 +

ud

C2C8ndπ(n/u)

)Kndπ(n/u)

≥ exp
(
C10Ku

d
)
. (3.10)

Then the Markov inequality, (3.9) and (3.10) with K = 2/(C2C10) gives that

Ppc

(
|Vn| ≥

2

C2C10
ndπ (n/u)

)
≤ C9 exp

(
−ud/C8

)
, (3.11)

From (3.11) by Assumption 1.2 the second part of Theorem 1.5 follows. This finishes
the proof of Theorem 1.5. �
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3.2 Proof of the lower bound of Theorem 1.4

In this section we consider the case d = 2.

For n,m ≥ 1 let B(n,m) denote the rectangle B(n,m) := [0, n]× [0,m] ∩Z2. Further,
let H(B(n,m)) denote the event that there is an open path connecting {0} × [0,m] to
{n}×[0,m]. The notation extends to translates ofB(n,m) in the usual way. Furthermore,
we define the event V(B(n,m)) that there is a vertical crossing ofB(n,m). The following
well-known statement first appeared in [16], see also [15].

Lemma 3.2 (RSW). There is a positive constant C11 > 0 such that for all n ≥ 1

Ppc(H(B(n, 2n))) ≥ e−C11 .

We say that an event A is increasing, if ω ∈ A then ω′ ∈ A for all ω′ ∈ Ω with ω′ ≥ ω,
where ≥ is understood coordinate-wise. We recall the FKG -inequality [5]:

Lemma 3.3. (FKG) Let A,B be increasing events, then

Ppc(A ∩ B) ≥ Ppc(A)Ppc(B).

We start with the following lemma.

Lemma 3.4. There are positive constants C12, C13 such that for all n ≥ 1

Ppc(|Vn| ≥ C12n
2π(n)) ≥ e−C13 .

Proof of Lemma 3.4. Simple computation gives that

Epc(|Vn|) ≥ n2π(3n) ≥ C23−αn2π(n).

This combined with Theorem 1.5 provides the desired constants C12 and C13.

Now we proceed to the proof of the lower bound in Theorem 1.4.

Proof of the lower bound in Theorem 1.4. For v ∈ Z2, we set B(v;n,m) := B(n,m) + v,
and

Vn(v) := {w ∈ Λn(v) |w ↔ ∂Λ2n(v)}

Note that it is enough to prove (1.5) when u is an integer in [2, n]. We set n′ = bn/uc.
Let Dn(u) denote the event

Dn(u) :=
⋂
v∈Λu

H (B (n′v;n′, 2n′)) ∩ V (B (n′v; 2n′, n′)) .

It is easy to check that on the event Dn(u), all the vertices w ∈ Λn−n′ with w ↔ ∂Λ2n′(w)

belong to the same cluster. In particular, on Dn(u) we have∑
v∈Λu−1

|Vn′ (n′v)| ≤ |C(1)
n |. (3.12)

Lemma 3.2 and 3.3 gives that

Ppc(Dn(u)) ≥ e−C112u2

. (3.13)

ECP 19 (2014), paper 32.
Page 9/11

ecp.ejpecp.org

http://dx.doi.org/10.1214/ECP.v19-3438
http://ecp.ejpecp.org/


Large deviation bounds for the largest critical percolation cluster

Combination of (3.12), (3.13) and Lemma 3.3 gives that for C12 > 0 as in Lemma 3.4 we
have

Ppc

(
|C(1)
n | ≥

C12

2
n2π(n/u)

)

≥ Ppc

Dn(u),
∑

v∈Λu−1

|Vn′ (n′v)| ≥ C12

2
n2π(n/u)


≥ e−2C10u

2

Ppc

 ∑
v∈Λu−1

|Vn′ (n′v)| ≥ C12

2
n2π(n/u)

 (3.14)

≥ e−2C11u
2

Ppc
(
Vn′ ≥ C12n

′2π(n′)
)u2

≥ e−(2C11+C13)u2

. (3.15)

Above we used Lemma 3.4 in (3.14) and in (3.15). Simple application of Assumption 1.2
finishes the proof of the lower bound of Theorem 1.4.
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