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Abstract

In this paper, we consider the circular Cauchy distribution u, on the unit circle S
with index 0 < |z| < 1 and we study the spectral gap and the optimal logarithmic
Sobolev constant for 1, denoted respectively by A1 (ux) and Curs(uz). We prove that

< A1(pe) < 1 while Crs(u.) behaves like log(1 + ) as |z| — 1.
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0.1 Circular Cauchy distribution

Let S be the unit circle in R? with the Riemannian structure induced by R? and
write Vg for the spherical gradient. For any z € R? with |z| < 1, we consider the
probability measure pu, on S which has density

11— |z

—_— es
27 ly — z|? Y

ha,y) =
with respect to the arc length p on the unit circle S. The form of the density » makes i,
known as circular Cauchy distribution or wrapped Cauchy distribution (see [10, 11]).
On the one hand it enjoys the following property: if f is an integrable function on
S, then f =[qf s f(y)du(y) solves the following Cauchy problem:

Au=0, inB(0,1)
uls = f,

where B(0,1) = {y||y| < 1} is the unit ball in R?. For this reason, p, is also called the
harmonic probability associated with = on S. Obviously o = pu.

On the other hand, due to the connection with Brownian motion as first identified
by Kakutani [9], harmonic probabilities play an important role in probability theory.
Indeed, if P” denotes the probability distribution of a standard two-dimensional Brow-
nian motion B; starting from x, and 7 the first time for B; to hit S, u, is nothing but the
distribution of B, under P* (see [7]).

*Support: NSFC 11371283, 11201040, 11101313, 11101040, YETP0264, 985 Projects and the Fundamen-
tal Research Funds for the Central Universities.

tSchool of Math. Sci. & Lab. Math. Com. Sys., Beijing Normal University, China. E-mail: mayt@bnu.edu.cn

fDepartment of Mathematics and Statistics, Wuhan University, China. E-mail: zhlzhang.math@whu.edu.cn


http://dx.doi.org/10.1214/ECP.v19-3071
http://ecp.ejpecp.org/
mailto:mayt@bnu.edu.cn
mailto:zhlzhang.math@whu.edu.cn

The circular Cauchy distribution

Furthermore, consider the following Mdbius Markov process (see [10]):

anl + B

Wn == &
Banl +1

n=12---,

where 3 = (x1,72) € B(0,1) and 3 = (22, 21). Suppose that W} is a constant or a random
variable which takes values in S and (¢,),>1 are independent identically distributed
random variables taking values in S with common distribution y,, for some zy € B(0,1)
fixed. Define

Tol — 14+ 1—|zg 2+4$0 62 .
[l ORI, gy

0, 6] = 0.

Kato [10] proved that u, is the unique invariant probability of the Mobius Markov
process (Wp)n>1.

The aim of this paper is to estimate the spectral gap and logarithmic Sobolev con-
stants of u.

Let A1(u,) be the spectral gap of the circular Cauchy distribution p, associated with
the Dirichlet form

Eu(f, )= / |Vsf|?dus, V f:S— R smooth function,
s

which has a classical variational formula

AM(pz) = inf{M : f non constant }, (0.1)

Vary,, (f)
where Var,, (f) = [q f?dpe — (f§ fdpe)? is the variance of f with respect to y,. The
constant A () is thus the best constant in the following Poincaré inequality

We say u, satisfies a logarithmic Sobolev inequality if there exists a non-negative
constant C such that for any smooth function f: S — R,

Ent,, (1) < 2C / Vs fPdpa.
S

where
Ent,,, (f?) := pa(f*1og f?) — pa () log(pa (7))

is the entropy of f? under ... We will denote by Crs(u,) the optimal logarithmic Sobolev
constant of .

An effective method to prove Poincaré or logarithmic Sobolev inequalities is the
Bakry-Emery curvature-dimension criterion [1]. It gives, in particular, that \;(u) =
Crs(u) = 1. It is classical for the Poincaré inequality and for logarithmic Sobolev in-
equality as in [8]. Nevertheless, this criterion cannot be applied for all x as the gener-
alized curvature is not bounded from below when z tends to the unit circle. Another
natural approach would be to use the Brownian motion interpretation of u, together
with stochastic calculus, as in [12], for which the stopping time 7 was involved. In de-
tail, in [12] with this method, G. Schechtman and M. Schmuckenschlager proved that
harmonic measures p” on S"~! with n > 3 and |z| < 1 had a uniform Gaussian concen-
tration.

In [3], with F. Barthe, we used another method to work on harmonic measures p;
on the unit spheres S”~!. Precisely, we took advantage of the fact that the density of
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The circular Cauchy distribution

the harmonic measures only depends on one coordinate, based on which, we proved
respectively that

min{ A1 (Vjz),n),n — 2} < Ai(uy) < M (Vig)n) (0.2)

and

1
Crs(Vjz|,n) < CLs(uy) < max{CrLs(V|z|n), m} (0.3)

Here v, is the image probability of n} by the map y — d(y,e1) with e; the first
component of the canonical basis in R"”. From this comparison, we proved that for
harmonic measures p2 on S"~! with n > 3, Ay (u?) satisfied 252 < A\;(u) < n—1 and
the optimal logarithmic Sobolev constant Crg(u?) satisfied

log(1 +

) < Cus() < Slog(1 4 )

2(n—1) n(1— |z]) Ha 1—|a]

with C' a positive universal constant.

However when n = 2, for the circular Cauchy distribution p,, n —2 = 0, the inequali-
ties (0.2), (0.3) do not apply. So in this paper, we follow the main idea of [3] while adjust
the estimates.

Our main results are the following:

Theorem 0.1. For any r € R? with 0 < |z| < 1, the following statements hold:

(a) The spectral gap A1 (u.) satisfies

(b) The optimal constant Cy,s(u..) satisfies

1 1 e2r
max{1, 3 log(1+ ——)} < Crs(pa) < 8mlog(l+ 5

- Ayt

Remark 0.2. The estimate for \;(u,) is sharp since when = = 0, the lower and upper
bounds coincide with Ay (p) = 1.

Remark 0.3. Since the diameter of the unit circle S is «, the result in [15] ensures that
for any f : S — R with p,(f?) = 1, one has

W(?(fz.uza Nm) < 4(8 log 2 + W)Ent”m (f2)7

that is to say y, satisfies the so called L2-transportation inequalities W H introduced by
Talagrand [13]. Here W2 (v, p1) is the L?-Wasserstein distance between v and u, which is
defined as

W2 (v, 1) = inf / & (z,y)dn(z,y),
T Jg2

with 7 the coupling of v and . However by Theorem 0.1, when x approaches S, the
1

optimal logarithmic Sobolev constant explodes with speed log(1 + 17) That is, the
— |z

circular Cauchy distribution p, is a natural counter-example to declare the real gap
between logarithmic Sobolev and W5 H inequalities as in [3, 4, 14].
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1 Prelimilaries

Given any z € S, it can be written as z = (cosf,wsinf), where 6 € [0, 7] is the
geodestic distance d(z,e;) between z and the first component of the canonical basis in
R?, and w € {—1,1}. We then consider the path ~, defined as

Yo(t) = (cos(0 + t),wsin(f +t)), t € R,

which is a path on S satisfying v,(0) = = and |7{(0)| = 1, then Vs f(x) = (f o)’ (0).
For § € (0,7), define

S(0) :={z € S;d(z,e1) =0} = {(cosb,wsinb), we {-1,1}}.
The conditional probability ig on S(6) is a Bernoulli distribution with parameter 1/2.

Lemma 1.1. Let M be a probability measure on S with

M(dy) = 5 (d(y, e1))n(dy), v € 5,

where ¢ is non-negative and measurable. Let v be the image probability of M by the
map y — d(y, e1), which is a probability on the interval [0, r].
We have respectively

(1). The corresponding spectral gaps satisfy
min{\; (v), )\DD(V)} < M(M) < M\ (v).

(2). Similarly, the optimal logarithmic Sobolev constants satisfy

1

Crs(v) < Crs(M) < Crs(v) + )\’T(y)’

Here )\ (v) is the spectral gap of v and \PP(v) is the first eigenvalue of v with
Dirichlet boundary conditions at 0 and 7, which has a classical variational formula
as
Ly 2du
APP(y) := inf {fo((l) : f(0)=f(m) =0, f non constant} .
1%
Proof. Let F be any every smooth function F' : [0,7] — R, and apply the Poincaré in-
equality for M to the function f(x) = F(d(z,e1)) = F(arccos z). By definition Vary,(f) =
Var, (F). If © # +e;, f is differentiable M — a.e., moreover,

Vs fP(2) = (f o) (0)]*.
Clearly, f(yo(t)) = f(cos(8 + t),sin(0 + t)w) = F (0 +t) and (f o vy)'(0) = F'(9). So,
Vs f*(z) = (F'(0)* = (F'(d(x, 1)),

which implies [ |Vsf[?dM = [](F')?dv. It holds by the classical variational formula
(0.1) that A\ (M) < A;(v) since the family of non constant functions f : S — R is larger
than that of non constant functions F' : [0, 7] — R.

Replacing the Variaance by Entropy, we get Cps(v) < Crs(M).

For the lower bound of A\; (M), we use the notations presented at the beginning of
this section.

For any f measurable on S, we have

1 1
F(0) := f(cosf,wsinB)dug = §f(cos 0,sin0) + if(cos 0, —sin §)
5(0)
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and

1 1
g(0) := f(cos 8, wsin )wdpy = if(cos 0,sin ) — Ef(cos 0,—sind). (1.1)
5(0)

T

Var,, (f|s))dv(6) = Var, (F) + v(g?).

It is clear that g satisfies g(0) = g(7) = 0. Observe that
Vary, (f) = Var, (F) +
0

Therefore
1 4 w
Var < F2dv + / 2,
)< 557 | P+ s [
1 1 ™ 2
< max , , o)V (0Vd
a {)\1(1/) ADD (1) }/0 {(/S(e)(f 70)(0) M9>
2
+ </ (fo%)’(O)wdpg) }dz/
5(9)
1
~ min{\; (v), \PP (v }/ / fo) dugdy(a)
1
- M
min{\; (), A\PD }/S|st| dM,
which immediately offers A; (M) > min{\;(v), /\DD( )}
Given smooth function f : S — R, define G*( fS(e) (cos B,wsin §)du(). Notice
then that

Enty(f?) = Ent, ( de/Je) +/ Enty,, (f3[s(0))dv(0)
S(0) 0

< Ent, (G?) + %/ﬂ(f(cos 0,sin6) — f(cos @, —sinh))dv(6) (1.2)
0

< 2C150) [ (G OFd6) + s [ 0O,

where ¢ is given in (1.1) and the first inequality is true since the optimal logarithmic

Sobolev constant for the Bernoulli distribution with parameter 1/2 is 1.
By definition,

2G(0)G'(0) = 2/ f(cosB,wsin@)(f ovo) (0)dpug,
5(0)
which implies
2
( fS(g) f(cosB,wsinb)(f o ’Yo)/(())d/m)

G(0)

fS(e) f?(cos B, wsinf)dug / 2
: G2%(0) /5(9) <(f°70) (0)> dpg

— [ (¢ o0 d
5(6)

(G'(0))* =

And similarly we have

g'(0)* < /5(0) ((£ 070)'(0))*dp.
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Thus from (1.2),
1
Entar (%) < 2(Cus(v) + 5pps) [ VP,
APD ()" Jg
where implies immediately that

Crs(pz) < Crs(v) +

)\DD(V) :

The proof is complete now.

2 Proof of Theorem 0.1

(1.3)

By rotation invariance of the unit circle, without loss of generality, take © = ae;. Let

v, be the image probability of 1, by the map y — d(y, e1). Precisely,

1 1—a?

dv,(0) = ——-———
va(0) w1+ a?—2acosf

df =: he(6)do, 6 € [0,n].

(2.1)

When a = 0,1 is the uniform probability on [0, 7], whose spectral gap and optimal

logarithmic Sobolev constant are known to be 1.
Consider the associated Dirichlet form of v,

Euf.f) = / " 2dv, = / " F(=Laf)dve,

where the generator £, is given as for any f € C?([0, n1]),

2asin 0

LafO)=1"O0) ~ T2 200058

f(0).

Proof of the item (a) of Theorem 0.1. Take f(0) = cos6, we have

1— 2 ™ 1— 2 ™ 1 2
va(f) = a/o cos 6 d0 — a/o(_1+ +a do

T 1+ a2 —2acosb 2am 1+ a2 —2acosb (2.2)
1—a? + 1+ a? '
= _ =a
2a 2a ’
1—a? [T cos? 6
2
= do
va(f7) T /0 1+ a2?—2acosb
1-a? /”/2 cos? 0 cos?(m — 0) o
I 1+a?—2acosf 1+ a?—2acos(m—0)
1-a? /77/2 2(1 + a®) cos? (2.3)
1 Jo (1+a2)?—4a%cos?6
1—a? /2 1 2\2
S / (—1+ (+a) )do
2a%7 J, (14 a?)? — 4a?cos? 0
B 1—a4+(1+a2)2_1+a2
4?2 402 2
which implies
. 2 1-a? 2 2
Ef )= sin®fdv, =1 —v,(f*) = 5 =v,(f?) — (wa(f))*.
0
ECP 19 (2014), paper 10. ecp.ejpecp.org
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Thereby by classical variational formula (0.1),

Ealf, ) _
)\1(1/(1) S Vara(f) =

For the upper bound of 1/\;(v,), we turn to Chen’s original variational formula of
A1(v) (see [5]). Precisely, it is

(2.4)

14+a% -2 4 — Va
A ()"t = inf sup ta acosat/ P) — va(p) dy, (2.5)

PEF 5e[0,7] o (x) 14 a2 —2acosy

where F is the set of strictly increasing functions on [0, 7].

Choose then p(f) = —cosd + a a strictly increasing function on [0, 7] with v,(p) =0
by (2.2). By the expression (2.5), we have
1 < sup 14—(12.—2a0050/’r (—cosé +a) it
A (Va) ™ oco,m) sin 6 o 1+a?>—2acos¢
1 22 0 1- 0
= sup M—.GCOS (W@Qarctan( acot()))
0€(0,7) 2asin 0 1+a 2
1+ a? — 2acosd 0 1—a 0
= sup ————— | arctan | cot(=) | — arctan cot(=)
0c(0,7) asinf 2 1+a 2
- 14 a2 —2acos (1—52)cot(§)
< sup - —
o esind 1t (5 cot(9)?
=1+4a,

where the first equality is due to

g 1 2 1—a 0
= t t(= 2.6
/9 1+a2—2acosf 1—a2 are an<1+aco(2)) (2.6)

and the last but second inequality holds since

arctanz — arctany < (z — y)(arctany)’, V0 <y <z <7/2.
To estimate A\PP(v,), we take p() = sin @ on [0, 7], which satisfies

p(0) = p(m) = 0,0"(8)|9e(0,x/2) > 0 and p'(8)|pe (x/2,x) < 0.

Therefore it follows from Theorem 1.1 in [6] that

1 1 ‘ /2 sinu
—— < s 1 2_9 d " 4
APD(1,) _Ie?$£/2) sina:/O (I+a a.cosy) y/x 1+ a2 —2acosu

z sinu

Vv 1+a®>—2 d S
we(sf/gm) sinx/x (I1+a acosy) y/,r/z 1+ a2 —2acosu

< sup 1+a?—2acosz /”/2 2sinu du 2.7)
ze(0,7/2)U(m/2,m) COS T z 14+ a*—2acosu

1+a?—2acosz 1+ a2
= sup log(
z€(0,m/2)U(r/2,m) 2acosx

1+ a2 —2acosz

1 1 2 1 2
= sup (1—=)log(l—1¢t)= (1+a) lo (1+ al ,
|t\<2a/(1+a2) t 2& 1 + a

where the second inequality follows from the proportional property and the last equality
holds since (1 — 1)log(1 — t) is decreasing on ¢ € [—1,1].
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Finally, we have for any z with 0 < |z| = a < 1,

2a 1
= min , < Ai(pg) <1,
o g T Tara) S0

The proof of the item (a) of Theorem 0.1 is complete.

Proof of the item (b) of Theorem 0.1. Recall that for the function f := cos, in the
third section, it was proved that v, (f) = a, v, (f?) = (1 +a?)/2 and &,(f, f) = (1 — a?)/2.
Define g = (1— f)/(1 — a), then

) 3_a &, , l1+a
ya(g) =1, I/a(g ) = m7 a(gag) = (1 (_fal};g = 2(1+_ a).

Therefore with the help of an elementary inequality Ent,, (g%) > v,(g9°)log(v.(g?)) (see
[3]), we have

Ent,(g?) S 3—a l+a

> -
2C1Ls(Va) log(1 + 20 —a)

= &ulg,9) T 1+4a

Next we work on the upper bound. It is clear that 6, := 2 arctan };Z is the median of
v, since by (2.6),

1—a? /’f 1 2 " (1—a t(ea)) 1
= —arctan cot(—)) = =.
T Jo, 1+a?—2acosf 7 1+a 2 2

1
) 2 log(1+ 7). (2.8)

@ do e’r
B_(a):= sup / ——log |1+ =
(a) ae(0,0,) Jo 1+ a?—2acosf (1—a?) [, 71_‘_&2_1% —=pd0

0o
: / (1+ a® — 2acos 6)de,

" do o2
B.(a) := — T _log 1+ _
+(@) QES(L;RTF)\/Q 1+ a? —2acosf 8 ( (1-a?) [ 1d¢9>

a 14+a?—2acos@

/ (14 a® — 2acos6)db.
Oa

By the equality (2.6) and % < arctanz < x, we have
T

sin v T 1 2
< df < 2.9
1+ a?—2acosa _/ 1+a?—2acosf  ~ (1+a)?sin§ (2.9)
and N ) )
T sin o 7r
do < - < . 2.10
/0 1+a?—2acos  ~1—a®> 1+4+a?—2acosa ~ 1—a? ( )

On the one hand, by the monotonicity of x log(1 + ;b_) inx > 0 for any b > 0 and (2.9),
we obtain

e?m(1+a)
Bi(a) < su —_— Jog 1+ ——~ 1+a®)a —2asina
HO)s o  Trarsm(®) (1 gy ) (v )
4 2r(1 1+ a?
<t g (H”Ha)) N U i
(1+4a) 2(1 —a) ) ac0./2,7/2) sina
27(1 + a?) e2r(1+a)
=———“log(1
Graz et 5a—5)
e2r
<2rlog(l + ———
s2rlog(l+ 59—y
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On the other hand, combining the inequality (2.10), the monotonicity of x log(1 + %) for
b > 0 fixed and the fact that

2tan(0,/2)  1—a?
1 +tan?(0,/2) 1+4a2’

2
—0, <sinf, =
T

we have

B_(a) §1 —

5 log(1 + e®) (1 +a®)0, — asind,)
a

2y ba m 2
<mlog(l+e )Si < ?log(1+e ).

né,
By Theorem 3 in [2],

627T

Cus(va) < 4max{ B (@) B (o)} < Smlog(1 + 37

). (2.11)
The proof is complete due to (2.8),(2.11) and the classical result

CLS (/—I/m) Z

A1 (fe)
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