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Abstract

Let (S, d) be a metric space, G a σ-field on S and (µn : n ≥ 0) a sequence of probabil-
ities on G. Suppose G countably generated, the map (x, y) 7→ d(x, y) measurable with
respect to G ⊗ G, and µn perfect for n > 0. Say that (µn) has a Skorohod representa-
tion if, on some probability space, there are random variables Xn such that

Xn ∼ µn for all n ≥ 0 and d(Xn, X0)
P−→ 0.

It is shown that (µn) has a Skorohod representation if and only if

lim
n

sup
f
|µn(f)− µ0(f)| = 0,

where sup is over those f : S → [−1, 1] which are G-universally measurable and
satisfy |f(x) − f(y)| ≤ 1 ∧ d(x, y). An useful consequence is that Skorohod repre-
sentations are preserved under mixtures. The result applies even if µ0 fails to be
d-separable. Some possible applications are given as well.
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1 Motivations and results

Throughout, (S, d) is a metric space, G a σ-field of subsets of S and (µn : n ≥ 0) a
sequence of probability measures on G. For each probability µ on G, we write µ(f) =∫
f dµ provided f ∈ L1(µ) and we say that µ is d-separable if µ(B) = 1 for some d-

separable B ∈ G. Also, we let B denote the Borel σ-field on S under d.
If

G = B, µn → µ0 weakly, µ0 is d-separable,

there are S-valued random variables Xn, defined on some probability space, such that
Xn ∼ µn for all n ≥ 0 and Xn → X0 almost uniformly. This is Skorohod representation
theorem (SRT) as it appears after Skorohod [12], Dudley [5] and Wichura [14]. See
page 130 of [6] and page 77 of [13] for some historical notes.

Versions of SRT which allow for G ⊂ B are also available; see Theorem 1.10.3 of
[13]. However, separability of µ0 is still fundamental. Furthermore, unlike µn for n > 0,
the limit law µ0 must be defined on all of B.
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A Skorohod representation theorem

Thus SRT does not apply, neither indirectly, when µ0 is defined on some G 6= B and
is not d-separable. This precludes some potentially interesting applications.

For instance, G could be the Borel σ-field under some distance d∗ on S weaker than
d, but one aims to realize the µn by random variables Xn which converge under the
stronger distance d. To fix ideas, S could be some collection of real bounded functions,
G the σ-field generated by the canonical projections and d the uniform distance. Then,
in some meaningful situations, G agrees with the Borel σ-field under a distance d∗ on
S weaker than d. Yet, one can try to realize the µn by random variables Xn which
converge uniformly (and not only under d∗). In such situations, SRT and its versions do
not apply unless µ0 is d-separable.

The following two remarks are also in order.
Suppose first G = B. Existence of non d-separable laws on B can not be excluded a

priori, unless some assumption beyond ZFC (the usual axioms of set theory) is made; see
Section 1 of [2]. And, if non d-separable laws on B exist, d-separability of µ0 cannot be
dropped from SRT, even if almost uniform convergence is weakened into convergence
in probability. Indeed, it may be that µn → µ0 weakly but no random variables Xn

satisfy Xn ∼ µn for all n ≥ 0 and Xn → X0 in probability. We refer to Example 4.1 of [2]
for details.

More importantly, if G 6= B, non d-separable laws on G are quite usual. There are
even laws µ on G such that µ(B) = 0 for all d-separable B ∈ B. A popular example is

S = D[0, 1], d = uniform distance, G = Borel σ-field under Skorohod topology,

where D[0, 1] is the set of real cadlag functions on [0, 1]. To be concise, this particular
case is called the motivating example in the sequel. In this framework, G includes all
d-separable members of B. Further, the probability distribution µ of a cadlag process
with jumps at random time points is typically non d-separable. Suppose in fact that
one of the jump times of such process, say τ , has a diffuse distribution. If B ∈ B is
d-separable, then

JB = {t ∈ (0, 1] : ∆x(t) 6= 0 for some x ∈ B}

is countable. Since τ has a diffuse distribution, it follows that

µ(B) ≤ Prob(τ ∈ JB) = 0.

This paper provides a version of SRT which applies to G 6= B and does not request
d-separability of µ0. We begin with a definition.

The sequence (µn) is said to admit a Skorohod representation if

On some probability space (Ω,A, P ), there are measurable maps
Xn : (Ω,A)→ (S,G) such that Xn ∼ µn for all n ≥ 0 and

P ∗
(
d(Xn, X0) > ε

)
−→ 0, for all ε > 0,

where P ∗ denotes the P -outer measure.

Note that almost uniform convergence has been weakened into convergence in
(outer) probability. In fact, it may be that (µn) admits a Skorohod representation and yet
no random variables Yn satisfy Yn ∼ µn for all n ≥ 0 and Yn → Y0 on a set of probability
1. See Example 7 of [3].

Note also that, if the map d : S × S → R is measurable with respect to G ⊗ G,

convergence in outer probability reduces to d(Xn, X0)
P−→ 0. In turn, d(Xn, X0)

P−→ 0 if
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A Skorohod representation theorem

and only if

each subsequence (nj) contains a further subsequence (njk) (1.1)

such that Xnjk
−→ X0 almost uniformly.

Thus, in a sense, Skorohod representations are in the spirit of [8]. Furthermore, as
noted in [8], condition (1.1) is exactly what is needed in most applications.

Let L denote the set of functions f : S → R satisfying

−1 ≤ f ≤ 1, σ(f) ⊂ Ĝ, |f(x)− f(y)| ≤ 1 ∧ d(x, y) for all x, y ∈ S,

where Ĝ is the universal completion of G. If Xn ∼ µn for each n ≥ 0, with the Xn all
defined on the probability space (Ω,A, P ), then

|µn(f)− µ0(f)| = |EP f(Xn)− EP f(X0)| ≤ EP |f(Xn)− f(X0)|
≤ ε+ 2P ∗

(
d(Xn, X0) > ε

)
for all f ∈ L and ε > 0.

Thus, a necessary condition for (µn) to admit a Skorohod representation is

lim
n

sup
f∈L
|µn(f)− µ0(f)| = 0. (1.2)

Furthermore, condition (1.2) is equivalent to µn → µ0 weakly if G = B and µ0 is d-
separable. So, when G = B, it is tempting to conjecture that: (µn) admits a Skorohod
representation if and only if condition (1.2) holds. If true, this conjecture would be an
improvement of SRT, not requesting separability of µ0. In particular, the conjecture is
actually true if d is 0-1 distance; see Proposition 3.1 of [2] and Theorem 2.1 of [11].

We do not know whether such conjecture holds in general, since we were able to
prove the equivalence between Skorohod representation and condition (1.2) only under
some conditions on G, d and µn. Our main results are in fact the following.

Theorem 1.1. Suppose µn is perfect for all n > 0, G is countably generated, and
d : S×S → R is measurable with respect to G⊗G. Then, (µn : n ≥ 0) admits a Skorohod
representation if and only if condition (1.2) holds.

Under the assumptions of Theorem 1.1, G is the Borel σ-field for some separable
distance d∗ on S. Condition (1.2) can be weakened into

lim
n

sup
f∈M

|µn(f)− µ0(f)| = 0, where M = {f ∈ L : σ(f) ⊂ G}, (1.3)

provided d : S × S → R is lower semicontinuous in the d∗-topology.

Theorem 1.2. Suppose

(i) µn is perfect for all n > 0;

(ii) G is the Borel σ-field under a distance d∗ on S such that (S, d∗) is separable;

(iii) d : S × S → R is lower semicontinuous when S is given the d∗-topology.

Then, (µn : n ≥ 0) admits a Skorohod representation if and only if condition (1.3) holds.

One consequence of Theorem 1.2 is that Skorohod representations are preserved
under mixtures. Since this fact is useful in real problems, we discuss it in some detail.
Let (X , E , Q) be a probability space, and for every n ≥ 0, let

{αn(x) : x ∈ X}

be a measurable collection of probability measures on G. Measurability means that
x 7→ αn(x)(A) is E-measurable for fixed A ∈ G.
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Corollary 1.3. Assume conditions (i)-(ii)-(iii) and

µn(A) =

∫
αn(x)(A)Q(dx) for all n ≥ 0 and A ∈ G.

Then, (µn : n ≥ 0) has a Skorohod representation provided (αn(x) : n ≥ 0) has a
Skorohod representation for Q-almost all x ∈ X . In particular, (µn : n ≥ 0) admits a
Skorohod representation whenever G ⊂ B and, for Q-almost all x ∈ X ,

α0(x) is d-separable and αn(x)(f) −→ α0(x)(f) for each f ∈M.

Various examples concerning Theorems 1.1-1.2 and Corollary 1.3 are given in Sec-
tion 3. Here, we close this section by some remarks.

(j) Theorems 1.1-1.2 unify some known results; see Examples 3.1 and 3.2.
(jj) Theorems 1.1-1.2 are proved by joining some ideas on disintegrations and a duality

result from optimal transportation theory; see [2] and [10].
(jjj) Each probability on G is perfect if G is the Borel σ-field under some distance d∗

such that (S, d∗) is a universally measurable subset of a Polish space. This happens
in the motivating example.

(jv) Even if perfect for n > 0, the µn may be far from being d-separable. In the mo-
tivating example, each probability µ on G is perfect and yet various interesting µ

satisfy µ(B) = 0 for each d-separable B ∈ B.
(v) Theorems 1.1-1.2 are essentially motivated from the application mentioned at the

beginning, where G is the Borel σ-field under a distance d∗ weaker than d. This
actually happens in the motivating example and in most examples of Section 3.

(vj) By Theorem 1.1, to prove existence of Skorohod representations, one can “argue
by subsequences”. Precisely, under the conditions of Theorem 1.1, (µn : n ≥ 0)

has a Skorohod representation if and only if each subsequence (µ0, µnj
: j ≥

1) contains a further subsequence (µ0, µnjk
: k ≥ 1) which admits a Skorohod

representation.
(vjj) In real problems, unless µ0 is d-separable, checking conditions (1.2)-(1.3) is usu-

ally hard. However, conditions (1.2)-(1.3) are necessary for a Skorohod represen-
tation (so that they can not be eluded). Furthermore, in some cases, conditions
(1.2)-(1.3) may be verified with small effort. One such case is Corollary 1.3. Other
cases are exchangeable empirical processes and pure jump processes, as defined
in Examples 9-10 of [3]. One more situation, where SRT does not work but condi-
tions (1.2)-(1.3) are easily checked, is displayed in forthcoming Example 3.6.

2 Proofs

2.1 Preliminaries

Let (X , E) and (Y,F) be measurable spaces.
In the sequel, P(E) denotes the set of probability measures on E . The universal

completion of E is
Ê =

⋂
µ∈P(E)

Eµ

where Eµ is the completion of E with respect to µ.
Let H ⊂ X × Y and let Π : X × Y → X be the canonical projection onto X . By

the projection theorem, if Y is a Borel subset of a Polish space, F the Borel σ-field and
H ∈ E ⊗ F , then

Π(H) = {x ∈ X : (x, y) ∈ H for some y ∈ Y} ∈ Ê ;

see e.g. Theorem A1.4, page 562, of [9]. Another useful fact is the following.
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Lemma 2.1. Let X and Y be metric spaces. If Y is compact and H ⊂ X × Y closed,
then Π(H) is a countable intersection of open sets (i.e., Π(H) is a Gδ-set).

Proof. Let Hn = {(x, y) : ρ
[
(x, y), H

]
< 1/n}, where ρ is any distance on X ×Y inducing

the product topology. Since H is closed, H = ∩nHn. Since Hn is open, Π(Hn) is still
open. Thus, it suffices to prove Π(H) = ∩nΠ(Hn). Trivially, Π(H) ⊂ ∩nΠ(Hn). Fix
x ∈ ∩nΠ(Hn). For each n, take yn ∈ Y such that (x, yn) ∈ Hn. Since Y is compact,
ynj
→ y for some y ∈ Y and subsequence (nj). Hence,

ρ
[
(x, y), H

]
= lim

j
ρ
[
(x, ynj

), H
]
≤ lim inf

j

1

nj
= 0.

Since H is closed, (x, y) ∈ H. Hence, x ∈ Π(H) and Π(H) = ∩nΠ(Hn).

A probability µ ∈ P(E) is perfect if, for each E-measurable function f : X → R, there
is a Borel subset B of R such that B ⊂ f(X ) and µ(f ∈ B) = 1. If X is separable metric
and E the Borel σ-field, then µ is perfect if and only if it is tight. In particular, every
µ ∈ P(E) is perfect if X is a universally measurable subset of a Polish space and E the
Borel σ-field.

Finally, in this paper, a disintegration is meant as follows. Let γ ∈ P(E ⊗ F) and
let µ(·) = γ(· × Y) and ν(·) = γ(X × ·) be the marginals of γ. Then, γ is said to be
disintegrable if there is a collection {α(x) : x ∈ X} such that:

− α(x) ∈ P(F) for each x ∈ X ;
− x 7→ α(x)(B) is E-measurable for each B ∈ F ;
− γ(A×B) =

∫
A
α(x)(B)µ(dx) for all A ∈ E and B ∈ F .

The collection {α(x) : x ∈ X} is called a disintegration for γ.
A disintegration can fail to exist. However, for γ to admit a disintegration, it suffices

that F is countably generated and ν perfect.

2.2 Proof of Theorem 1.1

The “only if” part has been proved in Section 1. Suppose condition (1.2) holds. For
µ, ν ∈ P(G), define

W0(µ, ν) = inf
γ∈D(µ,ν)

Eγ(1 ∧ d) where

D(µ, ν) = {γ ∈ P(G ⊗ G) : γ disintegrable, γ(· × S) = µ(·), γ(S × ·) = ν(·)}.

Disintegrations have been defined in Subsection 2.1. Note that D(µ, ν) 6= ∅ as D(µ, ν)

includes at least the product law µ× ν.
The proof of the “if” part can be split into two steps.

Step 1. Arguing as in Theorem 4.2 of [2], it suffices to show W0(µ0, µn)→ 0. Define
in fact (Ω,A) = (S∞,G∞) and Xn : S∞ → S the n-th canonical projection, n ≥ 0. For
each n > 0, take γn ∈ D(µ0, µn) such that Eγn(1 ∧ d) < 1

n + W0(µ0, µn). Fix also a
disintegration {αn(x) : x ∈ S} for γn and define

βn(x0, x1, . . . , xn−1)(B) = αn(x0)(B)

for all (x0, x1, . . . , xn−1) ∈ Sn and B ∈ G. By Ionescu-Tulcea theorem, there is a unique
probability P on A = G∞ such that X0 ∼ µ0 and βn is a version of the conditional
distribution of Xn given (X0, X1, . . . , Xn−1) for all n > 0. Then,

P
(
X0 ∈ A, Xn ∈ B

)
=

∫
A

αn(x)(B)µ0(dx) = γn(A×B)
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for all n > 0 and A, B ∈ G. In particular, P (Xn ∈ ·) = µn(·) for all n ≥ 0 and

EP
{

1 ∧ d(X0, Xn)
}

= Eγn(1 ∧ d) <
1

n
+W0(µ0, µn).

Step 2. If µ, ν ∈ P(G) and ν is perfect, then

W0(µ, ν) = sup
f∈L
|µ(f)− ν(f)|. (2.1)

Under (2.1), W0(µ0, µn) → 0 because of condition (1.2) and µn perfect for n > 0. Thus,
the proof is concluded by Step 1.

To get condition (2.1), it is enough to prove W0(µ, ν) ≤ supf∈L |µ(f) − ν(f)|. (The
opposite inequality is in fact trivial). Define Γ(µ, ν) to be the collection of those γ ∈
P(G ⊗ G) satisfying γ(· × S) = µ(·) and γ(S × ·) = ν(·). By a duality result in [10], since
ν is perfect and 1 ∧ d bounded and G ⊗ G-measurable, one obtains

inf
γ∈Γ(µ,ν)

Eγ(1 ∧ d) = sup
(g,h)

{
µ(g) + ν(h)

}
where sup is over those pairs (g, h) of real G-measurable functions on S such that

g ∈ L1(µ), h ∈ L1(ν), g(x) + h(y) ≤ 1 ∧ d(x, y) for all x, y ∈ S. (2.2)

Since G is countably generated and ν perfect, each γ ∈ Γ(µ, ν) is disintegrable. Thus,
Γ(µ, ν) = D(µ, ν) and W0(µ, ν) = infγ∈Γ(µ,ν)Eγ(1 ∧ d). Given ε > 0, take a pair (g, h)

satisfying condition (2.2) as well as W0(µ, ν) < ε+ µ(g) + ν(h).
Since {(x, x) : x ∈ S} = {d = 0} ∈ G ⊗ G, then G includes the singletons. As G is also

countably generated, G is the Borel σ-field on S under some distance d∗ such that (S, d∗)

is separable; see [4]. Then ν is tight, with respect to d∗, for it is perfect. By tightness,
ν(A) = 1 for some σ-compact set A ∈ G. For (x, a) ∈ S ×A, define

u(x, a) = 1 ∧ d(x, a)− h(a) and φ(x) = inf
a∈A

u(x, a).

Since A is σ-compact, A is homeomorphic to a Borel subset of a Polish space. (In
fact, A is easily seen to be homeomorphic to a σ-compact subset of [0, 1]∞). Let b ∈ R
and GA = {A ∩B : B ∈ G}. Since {u < b} ∈ G ⊗ GA, one obtains

{φ < b} = {x ∈ S : u(x, a) < b for some a ∈ A} ∈ Ĝ

by the projection theorem applied with (X , E) = (S,G), (Y,F) = (A,GA) and H = {u <
b}. Thus, φ is Ĝ-measurable. Furthermore,

φ(x)− φ(y) = inf
a∈A

u(x, a) + sup
a∈A

{
−u(y, a)

}
≤ sup
a∈A

{
1 ∧ d(x, a)− 1 ∧ d(y, a)

}
≤ 1 ∧ d(x, y) for all x, y ∈ S.

Fix x0 ∈ S and define f = φ − φ(x0). Since |f(x)| = |φ(x) − φ(x0)| ≤ 1 ∧ d(x, x0) ≤ 1 for
all x ∈ S, then f ∈ L. On noting that

g(x) ≤ u(x, a) for (x, a) ∈ S ×A and φ(x) + h(x) ≤ 1 ∧ d(x, x) = 0 for x ∈ A,

one also obtains g − φ(x0) ≤ f on all of S and h+ φ(x0) ≤ −f on A. Since ν(A) = 1,

W0(µ, ν)− ε < µ(g) + ν(h) = µ
{
g − φ(x0)

}
+ ν
{
h+ φ(x0)

}
≤ µ(f)− ν(f) ≤ sup

ϕ∈L
|µ(ϕ)− ν(ϕ)|.

This concludes the proof.
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2.3 Proof of Theorem 1.2

Assume conditions (i)-(ii)-(iii). Arguing as in Subsection 2.2 (and using the same
notation) it suffices to prove that φ is G-measurable.

Since A is σ-compact (under d∗),

φ(x) = inf
n

inf
a∈An

u(x, a)

where the An are compacts such that A = ∪nAn. Hence, for proving G-measurability of
φ, it can be assumed A compact. On noting that

ν(h) = sup{ ν(k) : k ≤ h, k upper semicontinuous},

the function h can be assumed upper semicontinuous. (Otherwise, just replace h with
an upper semicontinuous k such that k ≤ h and ν(h−k) is small). In this case, u is lower
semicontinuous, since both 1 ∧ d and −h are lower semicontinuous.

Since A is compact and u lower semicontinuous, φ can be written as
φ(x) = mina∈A u(x, a) and this implies

{φ ≤ b} = {x ∈ S : u(x, a) ≤ b for some a ∈ A} for all b ∈ R.

Therefore, {φ ≤ b} ∈ G because of Lemma 2.1 applied with X = S, Y = A and H = {u ≤
b} which is closed for u is lower semicontinuous. This concludes the proof.

2.4 Proof of Corollary 1.3

Fix a countable subset M∗ ⊂M satisfying

sup
f∈M∗

|µn(f)− µ0(f)| = sup
f∈M

|µn(f)− µ0(f)| for all n > 0.

The first part of Corollary 1.3 follows from Theorem 1.2 and

sup
f∈M

|µn(f)− µ0(f)| ≤
∫

sup
f∈M∗

|αn(x)(f)− α0(x)(f)|Q(dx) −→ 0.

As to the second part, suppose G ⊂ B and fix a sequence (νn : n ≥ 0) of probabilities on
G. It suffices to show that (νn) has a Skorohod representation whenever

ν0 is d-separable and νn(f)→ ν0(f) for each f ∈M. (2.3)

Let U be the σ-field on S generated by the d-balls. For all r > 0 and x ∈ S, since
{d < r} ∈ G ⊗ G then {y : d(x, y) < r} ∈ G. Thus, U ⊂ G. Next, assume condition (2.3)
and take a d-separable set A ∈ G with ν0(A) = 1. Since A is d-separable,

A ∩B ∈ U ⊂ G for all B ∈ B.

Define λ0(B) = ν0(A ∩B) for all B ∈ B and

(Ω0,A0, P0) = (S,B, λ0), (Ωn,An, Pn) = (S,G, νn) for each n > 0,

In = identity map on S for each n ≥ 0.

In view of (2.3), since U ⊂ G and I0 has a d-separable law, In → I0 in distribution (under
d) according to Hoffmann-Jørgensen’s definition; see Theorem 1.7.2, page 45, of [13].
Thus, since G ⊂ B, a Skorohod representation for (νn) follows from Theorem 1.10.3,
page 58, of [13]. This concludes the proof.
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Remark 2.2. Let N be the collection of functions f : S → R of the form

f(x) = min
1≤i≤n

{
1 ∧ d(x,Ai)− bi

}
for all n ≥ 1, b1, . . . , bn ∈ R and A1, . . . , An ∈ G. Theorems 1.1 and 1.2 are still true if
conditions (1.2) and (1.3) are replaced by

lim
n

sup
f∈L∩N

|µn(f)− µ0(f)| = 0 and lim
n

sup
f∈M∩N

|µn(f)− µ0(f)| = 0,

respectively. In fact, in the notation of the above proofs, it is not hard to see that h can
be taken to be a simple function. In this case, writing down φ explicitly, one verifies
that f = φ− φ(x0) ∈ N .

3 Examples

As remarked in Section 1, Theorems 1.1-1.2 unify some known results and yield new
information as well. We illustrate these facts by a few examples.

Example 3.1. Consider the motivating example, that is, S = D[0, 1], d the uniform
distance and G the Borel σ-field under Skorohod distance d∗. Given x, y ∈ D[0, 1], we
recall that d∗(x, y) is the infimum of those ε > 0 such that

sup
t
|x(t)− y ◦ λ(t)| ≤ ε and sup

s6=t

∣∣∣ log
λ(s)− λ(t)

s− t

∣∣∣ ≤ ε
for some strictly increasing homeomorphism λ : [0, 1] → [0, 1]. Since D[0, 1] is Polish
under d∗, conditions (i)-(ii) are trivially true. We now prove that (iii) holds as well.
Suppose d∗(xn, x) + d∗(yn, y) → 0 where xn, x, yn, y ∈ D[0, 1]. Define I = {t ∈ [0, 1] : x

and y are both continuous at t}. Given ε > 0, one obtains

d(x, y) = sup
t
|x(t)− y(t)| < ε+ |x(t0)− y(t0)| for some t0 ∈ I ∪ {1}.

Since x(t0) = limn xn(t0) and y(t0) = limn yn(t0), it follows that d(x, y) ≤ supn d(xn, yn).
Hence, if D[0, 1] is equipped with the d∗-topology, {d ≤ b} is a closed subset of D[0, 1]×
D[0, 1] for all b ∈ R, that is, d is lower semicontinuous. Thus, conditions (i)-(ii)-(iii) are
satisfied, and Theorem 1.2 implies the main result of [3].

Example 3.2. Suppose G countably generated, {(x, x) : x ∈ S} ∈ G ⊗ G and µn perfect
for n > 0. By Theorem 1.1, applied with d the 0-1 distance, µn → µ0 in total variation
norm if and only if, on some probability space (Ω,A, P ), there are measurable maps
Xn : (Ω,A)→ (S,G) satisfying

P (Xn 6= X0) −→ 0 and Xn ∼ µn for all n ≥ 0.

As remarked in Section 1, however, such statement holds without any assumptions on
G or µn (possibly, replacing P (Xn 6= X0) with P ∗(Xn 6= X0)). See Proposition 3.1 of [2]
and Theorem 2.1 of [11].

Example 3.3. Suppose G is the Borel σ-field under a distance d∗ such that (S, d∗) is a
universally measurable subset of a Polish space. Take a collection F of real functions
on S such that

− supf∈F |f(x)| <∞ for all x ∈ S;
− If x, y ∈ S and x 6= y, then f(x) 6= f(y) for some f ∈ F .
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Then,

d(x, y) = sup
f∈F
|f(x)− f(y)|

is a distance on S. If F is countable and each f ∈ F is G-measurable, then d is G ⊗ G-
measurable. In this case, by Theorem 1.1, condition (1.2) is equivalent to

sup
f∈F
|f(Xn)− f(X0)| P−→ 0

for some random variables Xn such that Xn ∼ µn for all n ≥ 0. In view of Theorem 1.2,
condition (1.2) can be replaced by condition (1.3) whenever each f ∈ F is continuous
in the d∗-topology (even if F is uncountable). In this case, in fact, d : S×S → R is lower
semicontinuous in the d∗-topology.

Example 3.4. In Example 3.3, one starts with a nice σ-field G and then builds a suitable
distance d. Now, instead, we start with a given distance d (similar to that of Example
3.3) and we define G basing on d.

Suppose d(x, y) = supf∈F |f(x) − f(y)| for some countable class F of real functions
on S. Fix an enumeration F = {f1, f2, . . .} and define

ψ(x) =
(
f1(x), f2(x), . . .

)
for x ∈ S and G = σ(ψ).

Then, ψ : S → R∞ is injective and d is measurable with respect to G ⊗ G. Also, (S,G) is
isomorphic to (ψ(S),Ψ) where Ψ is the Borel σ-field on ψ(S). Thus, Theorem 1.1 applies
whenever ψ(S) is a universally measurable subset of R∞.

A remarkable particular case is the following. Let S be a class of real bounded
functions on a set T and let d be uniform distance. Suppose that, for some countable
subset T0 ⊂ T , one obtains

for each t ∈ T, there is a sequence (tn) ⊂ T0

such that x(t) = lim
n
x(tn) for all x ∈ S.

Then, d can be written as d(x, y) = supt∈T0
|x(t) − y(t)|. Given an enumeration T0 =

{t1, t2, . . .}, define ψ(x) =
(
x(t1), x(t2), . . .

)
and G = σ(ψ). It is not hard to check that G

coincides with the σ-field on S generated by the canonical projections x 7→ x(t), t ∈ T .
Thus, Theorem 1.1 applies to such G and d whenever ψ(S) is a universally measurable
subset of R∞.

Example 3.5. The following conjecture has been stated in Section 1. If G = B (and
without any assumptions on d and µn) condition (1.2) implies a Skorohod representa-
tion. As already noted, we do not know whether this is true. However, suppose that
condition (1.2) holds and d is measurable with respect to B ⊗ B. Then, a Skorohod
representation is available on a suitable sub-σ-field B0 ⊂ B provided the µn are per-
fect on such B0. In fact, let I denote the class of intervals with rational endpoints.
Since d is B ⊗ B-measurable, for each I ∈ I there are AIn, B

I
n ∈ B, n ≥ 1, such that

{d ∈ I} ∈ σ
(
AIn ×BIn : n ≥ 1

)
. Define

B0 = σ
(
AIn, B

I
n : n ≥ 1, I ∈ I

)
.

Then, d is B0 ⊗ B0-measurable, B0 is countably generated and B0 ⊂ B. By Theorem 1.1,
the sequence (µn|B0) admits a Skorohod representation whenever µn|B0 is perfect for
each n > 0.

ECP 18 (2013), paper 80.
Page 9/12

ecp.ejpecp.org

http://dx.doi.org/10.1214/ECP.v18-2793
http://ecp.ejpecp.org/


A Skorohod representation theorem

Unless µ0 is d-separable, checking conditions (1.2)-(1.3) looks very hard. This is
not always true, however. Our last example exhibits a situation where SRT does not
work, and yet conditions (1.2)-(1.3) are easily verified. Other examples of this type are
exchangeable empirical processes and pure jump processes, as defined in Examples
9-10 of [3].

Example 3.6. Given p > 1, let S be the space of real continuous functions x on [0, 1]

such that

‖x‖ :=
{
|x(0)|p + sup

∑
i

|x(ti)− x(ti−1)|p
}1/p

<∞

where sup is over all finite partitions 0 = t0 < t1 < . . . < tm = 1. Define

d(x, y) = ‖x− y‖, d∗(x, y) = sup
t
|x(t)− y(t)|,

and take G to be the Borel σ-field on S under d∗. Since S is a Borel subset of the
Polish space (C[0, 1], d∗), each law on G is perfect. Further, d : S × S → R is lower
semicontinuous when S is given the d∗-topology.

In [1] and [7], some attention is paid to those processes Xn of the type

Xn(t) =
∑
k

Tn,kNk xk(t), n ≥ 0, t ∈ [0, 1].

Here, xk ∈ S while (Nk, Tn,k : n ≥ 0, k ≥ 1) are real random variables, defined on some
probability space (X , E , Q), satisfying

(Nk) independent of (Tn,k) and (Nk) i.i.d. with N1 ∼ N (0, 1).

Usually, Xn has paths in S a.s. but the probability measure

µn(A) = Q(Xn ∈ A), A ∈ G,

is not d-separable. For instance, this happens when

0 < lim inf
k
|Tn,k| ≤ lim sup

k
|Tn,k| <∞ a.s. and

xk(t) = q−k/p
{

log (k + 1)
}−1/2

sin (qkπ t)

where q = 41+[p/(p−1)]. See Theorem 4.1 and Lemma 4.4 of [7].
We aim to a Skorohod representation for (µn : n ≥ 0). Since µ0 fails to be d-

separable, SRT and its versions do not apply. Instead, under some conditions, Corollary
1.3 works. To fix ideas, suppose

Tn,k = Un φk(Vn, C)

where φk : R2 → R and Un, Vn, C are real random variables such that

(a) (Un) and (Vn) are conditionally independent given C;

(b) E
{
f(Un) | C

} Q−→ E
{
f(U0) | C

}
for each bounded continuous f : R→ R;

(c) Q
(
(Vn, C) ∈ ·

)
converges to Q

(
(V0, C) ∈ ·

)
in total variation norm.

We next prove the existence of a Skorohod representation for (µn : n ≥ 0). To this
end, as noted in remark (vj) of Section 1, one can argue by subsequences. Moreover,
condition (c) can be shown to be equivalent to

sup
A

∣∣∣Q(Vn ∈ A | C)−Q(V0 ∈ A | C
)∣∣∣ Q−→ 0

where sup is over all Borel sets A ⊂ R. Thus (up to selecting a suitable subsequence)
conditions (b) and (c) can be strengthened into
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(b*) E
{
f(Un) | C

} a.s.−→ E
{
f(U0) | C

}
for each bounded continuous f : R→ R;

(c*) supA

∣∣∣Q(Vn ∈ A | C)−Q(V0 ∈ A | C
)∣∣∣ a.s.−→ 0.

Let Pc denote a version of the conditional distribution of the array

(Nk, Un, Vn, C : n ≥ 0, k ≥ 1)

given C = c. Because of Corollary 1.3, it suffices to prove that
(
Pc(Xn ∈ ·) : n ≥ 0

)
has

a Skorohod representation for almost all c ∈ R. Fix c ∈ R. By (a), the sequences (Nk),
(Un) and (Vn) can be assumed to be independent under Pc. By (b*) and (c*), up to a
change of the underlying probability space, (Un) and (Vn) can be realized in the most
convenient way. Indeed, by applying SRT to (Un) and Theorem 2.1 of [11] to (Vn), it can
be assumed that

Un
Pc−a.s.−→ U0 and Pc(Vn 6= V0) −→ 0.

But in this case, one trivially obtains Xn
Pc−→ X0, for

1 ∧ ‖Xn −X0‖ ≤ I{Vn 6=V0} + |Un − U0| ‖
∑
k

φk(V0, C)Nk xk‖.

Thus,
(
Pc(Xn ∈ ·) : n ≥ 0

)
admits a Skorohod representation.

The conditions of Example 3.6 are not so strong as they appear. Actually, they do not
imply even d∗(Xn, X0)

a.s.−→ 0 for the original processes Xn (those defined on (X , E , Q)).
In addition, by slightly modifying Example 3.6, S could be taken to be the space of
α-Holder continuous functions, α ∈ (0, 1), and

d(x, y) = |x(0)− y(0)|+ sup
t 6=s

|x(t)− y(t)− x(s) + y(s)|
|t− s|α

.
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