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Abstract

Let d > 1 and (An)n∈N be a sequence of independent identically distributed random
d×d matrices with nonnegative entries. This induces a Markov chain Mn = AnMn−1

on the cone Rd
≥ \ {0} = S≥ ×R>. We study harmonic functions of this Markov chain.

In particular, it is shown that all bounded harmonic functions in Cb (S≥) ⊗ Cb (R>)
are constant. The idea of the proof is originally due to Kesten [Renewal theory for
functionals of a Markov chain with general state space. Ann. Prob. 2 (1974), 355 –
386], but is considerably shortened here. A similar result for invertible matrices is
given as well.
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1 Introduction

Let d > 1. Write Rd≥ = [0,∞)d for the cone of d-vectors with nonnegative entries and
S≥ := {x ∈ Rd≥ : |x| = 1} for its intersection with the unit sphere S, where |·| is the
euclidean norm on Rd. A matrix a ∈M+ := M(d×d,R≥) is called allowable, if it has no
zero line or column. Any allowable matrix leaves V := Rd≥ \ {0} invariant and one can
define its action on S≥ by

a · x :=
ax

|ax|
, x ∈ S≥.

If µ is a probability distribution on allowable matrices in M+ then V is µ-a.s. in-
variant. Let (An)n∈N be a sequence of independent identically distributed (iid) random
matrices with law µ, then Mn = AnMn−1 defines a Markov chain on V .

The aim of this note is to study the bounded harmonic functions of (Mn)n∈N0 under
some additional equicontinuity condition on the functions. Besides being of interest
in its own right, the absence of nontrivial bounded harmonic functions appears promi-
nently in the proof of Kesten’s renewal theorem [8] and has been recently used in [10] to
determine the set of fixed points of the multivariate distributional equation associated
with the random matrices (T1, . . . ,TN ) ∈MN

+ ,

Y
d
= T1Y1 + . . .TNYN , (1.1)

where N ≥ 2 is fixed, Y, Y1, . . . , YN are iid Rd≥-valued random variables and independent
of (T1, . . . ,TN ).
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The idea of proof is based on the Choquet-Deny lemma used by Kesten in the proof
of his renewal theorem [8, Lemma 1]. By restricting to the more specialized setting of
Markov chains generated by the action of nonnegative matrices and using recent results
on products of random matrices from Buraczewski, Damek and Guivarch [3], this proof
can be considerably shortened and, as we hope, thereby made more illuminating.

2 Statement of Results

The Markov chain (Mn)n∈N0 will be studied in the decomposition Mn = eSnXn for
Xn ∈ S≥ and Sn ∈ R. Note that up to an exponential transform, this corresponds to the
decomposition V = S≥ ×R>, where R> = (0,∞). One easily deduces that

Xn = An ·Xn−1, Sn − Sn−1 = log |AnXn−1| ,

hence (Xn, Sn)n∈N0
is a Markov chain on S≥×R that carries the additional structure of

a Markov random walk.
Writing int(A) for the topological interior of a set A, recall that by the Perron-

Frobenius Theorem, any a ∈ int(M+) possesses a unique largest eigenvalue λa ∈ R>
with corresponding normalized eigenvector wa ∈ int(S≥).

Definition 2.1. A subsemigroup Γ ⊂M+ is said to satisfy condition (C), if

1. every a ∈ Γ is allowable

2. no subspace W ( Rd with W ∩Rd≥ 6= {0} satisfies ΓW ⊂W and

3. Γ ∩ int(M+) 6= ∅.

Denote by [suppµ] the smallest closed semigroup of M+ generated by suppµ and
write Cb (E) for the set of bounded continuous functions on the space E. Abbreviating
Πn = An . . .A1, define for each x ∈ S≥ a probability measure Px on the path space of
(Xn, Sn)n∈N0 by

Px

(
(X0, S0, . . . , Xn, Sn) ∈ B

)
= P

(
(x, 0, . . . ,Πn · x, log |Πnx|) ∈ B

)
for all n ∈ N and measurable B. The corresponding expectation symbol is denoted by
Ex.

Theorem 2.2. Let [suppµ] satisfy (C). Assume that L ∈ Cb (S≥ ×R) satisfies

(a) L(x, s) = Ex L(X1, s− S1) for all (x, s) ∈ S≥ ×R, and

(b) for all z ∈ int(S≥),
lim
y→z

sup
t∈R
|L(y, t)− L(z, t)| = 0.

Then L is constant.

It is interesting to observe that (b) is an equicontinuity property for the family
(L(·, t))t∈R of functions in Cb(S≥). In fact, the Arzelà-Ascoli theorem is applicable and
yields that for all t ∈ R

lim
s→t

sup
y∈R
|L(y, s)− L(y, t)| = 0.

Each pair of functions f ∈ Cb (S≥), h ∈ Cb (R) defines a composite function f ⊗ h ∈
Cb (S≥ ×R) by (f ⊗ h) (u, s) := f(u)h(s). Write Cb (S≥) ⊗ Cb (R) for the set of all finite
linear combinations of such functions (tensor product). Then the following corollary is
obvious:
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Corollary 2.3. Let [suppµ] satisfy condition (C). If L ∈ Cb (S≥)⊗ Cb (R) is harmonic for
the Markov chain (Xn, Sn)n∈N0

, then L is constant.

The further organisation of the paper is as follows. At first, we repeat for the readers
convenience important implications of (C), based on [3]. Then we turn to the proof of
the main theorem. It will be assumed throughout that d > 1 and that [suppµ] satisfies
(C). In Section 5 we provide some examples for which condition (C) is satisfied and
discuss its role in the proof of Kesten’s renewal theorem. Finally, we describe briefly
how to extend the result to Markov chains on Rd generated by the action of invertible
matrices.

3 Implications of Condition (C)

Under each Px, x ∈ S≥, (Xn)n∈N0
constitutes a Markov chain with transition opera-

tor P : Cb (S≥)→ Cb (S≥) defined by

Pf(y) =

∫
f(a · y) µ(da) = Ef(A1 · y), y ∈ S≥.

Abbreviating Γ = [suppµ], write

W (Γ) = {wa : a ∈ Γ ∩ int(M+)}

for the closure of the set of normalized Perron-Frobenius eigenvectors, and

Λ(Γ) = {log λa : a ∈ Γ ∩ int(M+)}

for the logarithms of the corresponding Perron-Frobenius eigenvalues.

Proposition 3.1 ([3, Propositions 3.1 & 3.2]). The set Λ(Γ) generates a dense subgroup
of R. There is a unique P - stationary probability measure ν on S≥, and supp ν = W (Γ).

Since S≥ is compact, the uniqueness of ν implies the following ergodic theorem (see
[1])

lim
n→∞

1

n

n∑
k=1

f(Xk) =

∫
f(y) ν(dy) Px-a.s. (3.1)

for all x ∈ S≥, f ∈ Cb (S≥).
Proposition 3.1 also implies the following “weak” aperiodicity property of (Sn)n∈N0

,
which is an adaption of condition I.3 in [8]. As usual, Bε(z) := {y ∈ E : |y − z| < ε} for
ε > 0, z ∈ E.

Lemma 3.2. There exists a sequence (ζi)i∈N ⊂ R such that the group generated by
(ζi)i∈N is dense in R and such that for each ζi there exists z ∈ int(S≥) with the following
properties:

1. ν
(
Bε(z)

)
> 0 for all ε > 0.

2. For all δ > 0 there is εδ > 0 such that for all ε ∈ (0, εδ) there are m ∈ N and η > 0,
such that for B := Bε(z):

Px (Xm ∈ B, |Sm − ζi| < δ) ≥ η for all x ∈ B. (3.2)

The first property together with (3.1) entails that B is a recurrent set for (Xn)n∈N.
By a geometric trials argument (see e.g. [2, Problem 5.10]), it follows that for all δ > 0

and sufficiently small ε > 0 there is m ∈ N such that

Px (|Xn − z| < ε, |Xn+m − z| < ε, |Sn − (Sn+m − ζi)| < δ i.o. ) = 1 (3.3)

We repeat the short proof of Lemma 3.2 from [3, Prop. 5.5], for it clarifies the
importance of Proposition 3.1 and moreover, we want to strengthen the result a bit.
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Proof. By Prop. 3.1, the set Λ(Γ) generates a dense subgroup of R, hence it contains a
countable sequence (ζi) which still generates a dense subgroup. Fix ζi. Then ζi = log λa
for some a ∈ Γ ∩ int(M+), set

z := wa ∈W (Γ) ∩ int(S≥).

Referring again to Prop. 3.1, z ∈ supp ν, thus (1) follows.
Now fix δ > 0. Then for all ε > 0 sufficiently small, since wa is a Perron-Frobenius

eigenvector,

a ·Bε(wa) ⊂ Bε/2(wa),

|log λa − log |ax|| < δ/2 for all x ∈ Bε(wa).

Since a ∈ [suppµ], there is m ∈ N such that a = am . . .a1, aj ∈ suppµ, 1 ≤ j ≤ m,
hence for all γ > 0,

P (An · · ·A1 ∈ Bγ(a)) = ηγ > 0.

If γ > 0 is chosen sufficiently small, then for all a′ ∈ Bγ(a),

a′ ·Bε(wa) ⊂ Bε(wa),

|log λa − log |a′x|| < δ for all x ∈ Bε(wa).

Consequently, for all x ∈ Bε(wa),

P (|Πn · x− wa| < ε, |log |Πnx| − log λa| < δ) ≥ ηγ > 0.

Recalling the definition of Px, this gives (3.2).

4 Proof of the Main Theorem

Let L ∈ Cb (S≥ ×R). For a compactly supported function h ∈ Cb (R) define

Lh(x, s) =

∫
L(x, s+ r)h(r) dr.

If for each such h, Lh is constant, then the same holds true for L itself – this can be seen
by choosing a sequence hn of probability densities, such that hn(r) dr converges weakly
towards the dirac measure in 0.

Lemma 4.1. Let L ∈ Cb (S≥ ×R) satisfy properties (a),(b) of Theorem 2.2. Then for any
compactly supported h ∈ Cb (R), Lh still satisfies (a),(b) and moreover:

(c) For all z ∈ int(S≥),
lim
y→z

lim
δ↓0

sup
|t−t′|<δ

|Lh(z, t)− Lh(y, t′)| = 0.

Proof. That (a) and (b) persist to hold for Lh is a simple consequence of Fubini’s theo-
rem resp. Fatou’s lemma.

In order to prove (c), let |L| ≤ C. Consider

lim
δ→0

sup
y∈S≥

sup
|t−t′|<δ

|Lh(y, t)− Lh(y, t′)|

= lim
δ→0

sup
y∈S≥

sup
|t−t′|<δ

∣∣∣∣∫ L(y, t′ + r)h(r − (t− t′))dr −
∫
L(y, t′ + r)h(r)dr

∣∣∣∣
≤ lim
δ→0

sup
|t−t′|<δ

C

∫
|h(r − (t− t′))− h(r)| dr = 0,
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where the uniform continuity of h was taken into account for the last line. Combine this
with (b) to obtain for all z ∈ int(S≥),

lim
y→z

lim
δ↓0

sup
|t−t′|<δ

|Lh(z, t)− Lh(y, t′)|

≤ lim
y→z

lim
δ↓0

sup
|t−t′|<δ

[
|Lh(z, t)− Lh(y, t)|+ |Lh(y, t)− Lh(y, t′)|

]
≤ lim
y→z

sup
t∈R
|Lh(z, t)− Lh(y, t)|+ lim

δ→0
sup
y∈S≥

sup
|t−t′|<δ

|Lh(y, t)− Lh(y, t′)| = 0.

Consequently, in order to proof Theorem 2.2, we may w.l.o.g. assume that L satisfies
properties (a)− (c).

Proof of Theorem 2.2. The burden of the proof is to show that for all the ζi of Lemma
3.2,

L(x, s) = L(x, s+ ζi) for all (x, s) ∈ S≥ ×R. (4.1)

If this holds true, then for any σ =
∑N
i=1 ciζi with ci ∈ N0, N ∈ N

L(x, s) = L(x, s+ σ) for all (x, s) ∈ S≥ ×R.

But the set of σ’s is dense in R, thus by the continuity of L,

L(x, s) = L(x, 0) for all (x, s) ∈ S≥ ×R.

Hence L(x, s) reduces to a function L̃ on S≥, which is then bounded harmonic for the
ergodic Markov chain (Xn)n∈N0

(see (3.1)), thus L̃ is constant.

Now we are going to prove (4.1). Considering (a), L(Xn, s − Sn)n∈N0
constitutes a

bounded, hence a.s. convergent martingale under each Px with

L(x, s) = Ex lim
n→∞

L(Xn, s− Sn) for all (x, s) ∈ S≥ ×R. (4.2)

Fix any ζi and the corresponding z ∈ int(S≥), defined in Lemma 3.2. Referring to (c),
for all ξ > 0, there are δ, ε > 0 such that

sup
u,y∈Bε(z)

sup
|t−t′|<δ

|L(u, t)− L(y, t′)| < ξ.

Combining this with (3.3), we infer that for all s ∈ R,

Px (|L(Xn, s− Sn)− L(Xn+m, s+ ζi − Sn+m)| < ξ i.o.) = 1.

Hence for all (x, s) ∈ S≥ ×R,

lim
n→∞

L(Xn, s− Sn) = lim
n→∞

L(Xn, s+ ζi − Sn) Px-a.s.

and consequently, using (4.2), it follows for all (x, s) ∈ S≥ ×R

L(x, s) = Ex lim
n→∞

L(Xn, s− Sn) = Ex lim
n→∞

L(Xn, s+ ζi − Sn) = L(x, s+ ζi).
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5 On Conditon (C)

5.1 Comparison with Kesten’s Assumptions

Since Kesten’s renewal theorem is formulated for Markov chains on a general state
space, his Choquet-Deny lemma [8, Lemma 1] holds for a broader class of Markov
chains than just those generated by random matrices. Nevertheless, the latter ones
provide by far the most important applications, hence condition (C) should be compared
to the assumptions of Kesten’s renewal theorem for products of random matrices [7,
Theorem A].

Firstly, in [7, Theorem A] it is assumed that the matrices in suppµ do not have a
zero row, instead of no zero row and now zero column. But the latter assumption has
the advantage of being invariant under taking the transpose. In fact, if (C) holds for Γ,
than it holds for Γ> as well, condition (2) being translated by considering the orthogonal
spaces

W⊥ = {y ∈ Rd : 〈x, y〉 = 0 ∀x ∈W}.
Secondly, Kesten’s assumption [7, (1.11)] requests (3) as well, while the “nonlattice”
part of [7, (1.11)] is replaced by the more natural assumption (2) that the problem may
not be reduced to a lower dimensional one.

5.2 Examples

A convenient way to check the irreducibility assumption (2) is to consider the eigenspaces
of matrices generated by µ. In dimension d = 2, for example, it is sufficient that there
are two matrices the eigenvectors of which are pairwise independent: Any proper sub-
space W is onedimensional, and if it is invariant for [suppµ], then it is in particular
invariant for any matrix a ∈ suppµ, i.e. an eigenspace of a.

Hence a simple example of a distribution satisfying (C) is given by the probability
law that puts masses p, 1− q > 0 on the two matrices

a :=

(
1 1

1 1

)
, b :=

(
1 1

2 2

)
,

the eigenvectors being (1, 1)>, (−1, 1)> resp. (1, 2)>, (−1, 1)>. Though the second eigen-
vectors are the same, the corresponding linear spaces do not intersect the positive cone
except in {0}, thus (2) is satisfied, as well as (1) and (3) obviously are.

A second example where (C) holds is when µ has a density with respect to the
Lebesgue measure on M+, seen as a subset of Rd×d≥ . Again conditions (1) and (3) are
obviously satisfied. If now W is an invariant subspace, consider a set of independent
vectors v1, . . . , vk generating the orthogonal space W⊥. W being invariant then implies
that for any fixed x ∈W ,

〈ax, v1〉 = · · · = 〈ax, vk〉 = 0 for µ-a.e. a.

But the set of matrices satisfying this set of equations has entries from a k×d-dimensional
subspace of Rd×d, hence has mass zero under the Lebesgue measure.

Finally, a negative example satisfying the assumptions of [7, Theorem A], but not
conditon (C), is given by the law that puts masses q, 1− q > 0 on

a′ := 1/2

(
e e

e e

)
, b′ := 1/2

(
eπ eπ

eπ eπ

)
.

6 Invertible Matrices

Let us finally mention that a result similar to Theorem 2.2 holds for invertible matri-
ces: In the following, let µ be a distribution on GL(d,R).
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Definition 6.1. A subsemigroup Γ ∈ GL(d,R) is said to be irreducible-proximal (i-p), if

1. no finite unionW =
⋃n
i=1Wi of proper subspaces {0} (Wi ( Rd satisfies ΓW ⊂W

(irreducibility) and

2. there is g ∈ Γ having a algebraically simple dominant eigenvalue λg ∈ R such that
|λg| = limn→∞ ‖gn‖1/n (proximality).

This condition has been studied intensively by Guivarc’h and Le Page [4, 5, 6]. Con-
sidering condition i-p, Proposition 3.1, on which our proof rests, can be replaced by [4,
Proposition 2.5] which is the corresponding result for i-p matrices. Then following the
lines of the proof of Theorem 2.2, one obtains the following:

Theorem 6.2. Let [suppµ] satisfy i-p. Assume that L ∈ Cb (S×R) satisfies

(a) L(x, s) = Ex L(X1, s− S1) for all (x, s) ∈ S×R, and

(b) for all z ∈ S,
lim
y→z

sup
t∈R
|L(y, t)− L(z, t)| = 0.

Then L is constant.
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