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Abstract

We show that the empirical eigenvalue measure for sum of d independent Haar dis-
tributed n-dimensional unitary matrices, converge for n → ∞ to the Brown measure
of the free sum of d Haar unitary operators. The same applies for independent Haar
distributed n-dimensional orthogonal matrices. As a byproduct of our approach, we
relax the requirement of uniformly bounded imaginary part of Stieltjes transform of
Tn that is made in [7, Thm. 1].
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1 Introduction

The method of moments and the Stieltjes transform approach provide rather pre-
cise information on asymptotics of the Empirical Spectral Distribution (in short ESD),
for many Hermitian random matrix models. In contrast, both methods fail for non-
Hermitian matrix models, and the only available general scheme for finding the limiting
spectral distribution in such cases is the one proposed by Girko (in [6]). It is extremely
challenging to rigorously justify this scheme, even for the matrix model consisting of
i.i.d. entries (of zero mean and finite variance). Indeed, after rather long series of par-
tial results (see historical references in [3]), the circular law conjecture, for the i.i.d.
case, was only recently established by Tao and Vu [17] in full generality. Barring this
simple model, very few results are known in the non-Hermitian regime. For example,
nothing is known about the spectral measure of random oriented d-regular graphs. In
this context, it was recently conjectured in [3] that, for d ≥ 3, the ESD for the adjacency
matrix of a uniformly chosen random oriented d-regular graph converges to a measure
µd on the complex plane, whose density with respect to Lebesgue measure m(·) on C is

hd(v) :=
1

π

d2(d− 1)

(d2 − |v|2)2
I{|v|≤

√
d} . (1.1)

This conjecture, due to the observation that µd is the Brown measure of the free sum of
d ≥ 2 Haar unitary operators (see [9, Example 5.5]), motivated us to consider the related
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Limiting spectral measure for sums of unitary and orthogonal matrices

problem of sum of d independent Haar distributed, unitary or orthogonal matrices,
for which we prove such convergence of the ESD in Theorem 1.2. To this end, using
hereafter the notation 〈Log, µ〉ba :=

∫ b
a

log |x|dµ(x) for any a < b and probability measure
µ on R (for which such integral is well defined), with 〈Log, µ〉 :=

∫
R

log |x|dµ(x), we first
recall the definition of Brown measure for a bounded operator (see [9, Page 333], or
[2, 4]).

Definition 1.1. Let (A, τ) be a non-commutative W ∗-probability space, i.e. a von Neu-
mann algebra A with a normal faithful tracial state τ (see [1, Defn. 5.2.26]). For h a
positive element in A, let µh denote the unique probability measure on R+ such that
τ(hn) =

∫
tndµh(t) for all n ∈ Z+. The Brown measure µa associated with each bounded

a ∈ A, is the Riesz measure corresponding to the [−∞,∞)-valued sub-harmonic func-
tion v 7→ 〈Log, µ|a−v|〉 on C. That is, µa is the unique Borel probability measure on C
such that

dµa(v) =
1

2π
∆v〈Log, µ|a−v|〉 dm(v), (1.2)

where ∆v denotes the two-dimensional Laplacian operator (with respect to v ∈ C),
and the identity (1.2) holds in distribution sense (i.e. when integrated against any test
function ψ ∈ C∞c (C)).

Theorem 1.2. For any d ≥ 1, and 0 ≤ d′ ≤ d, as n→∞ the ESD for sum of d′ indepen-
dent, Haar distributed, n-dimensional unitary matrices {U in}, and (d− d′) independent,
Haar distributed, n-dimensional orthogonal matrices {Oin}, converges weakly, in prob-
ability, to the Brown measure µd of the free sum of d Haar unitary operators (whose
density is given in (1.1)).

Recall that as n→∞, independent Haar distributed n-dimensional unitary (or orthogo-
nal) matrices converge in ?-moments (see [16] for a definition), to the collection {ui}di=1

of ?-free Haar unitary operators (see [1, Thm. 5.4.10]). However, convergence of ?-
moments, or even the stronger convergence in distribution of traffics (of [11]), do not
necessarily imply convergence of the corresponding Brown measures1 (see [16, §2.6]).
While [16, Thm. 6] shows that if the original matrices are perturbed by adding small
Gaussian (of unknown variance), then the Brown measures do converge, removing the
Gaussian, or merely identifying the variance needed, are often hard tasks. For exam-
ple, [8, Prop. 7 and Cor. 8] provide an example of ensemble where no Gaussian matrix
of polynomially vanishing variance can regularize the Brown measures (in this sense).
Theorem 1.2 shows that sums of independent Haar distributed unitary/orthogonal ma-
trices are smooth enough to have the convergence of ESD-s to the corresponding Brown
measures without adding any Gaussian.
Guionnet, Krishnapur and Zeitouni show in [7] that the limiting ESD of UnTn for non-
negative definite, diagonal Tn of limiting spectral measure Θ, that is independent of
the Haar distributed unitary (or orthogonal) matrix Un, exists, is supported on a single
ring and given by the Brown measure of the corresponding bounded (see [7, Eqn. (1)]),
limiting operator. Their results, as well as our work, follow Girko’s method, which we
now describe, in brief.
From Green’s formula, for any polynomial P (v) =

∏n
i=1(v − λi) and test function ψ ∈

C2
c (C), we have that

n∑
j=1

ψ(λj) =
1

2π

∫
C

∆ψ(v) log |P (v)|dm(v) .

1The Brown measure of a matrix is its ESD (see [16, Propn. 1])
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Limiting spectral measure for sums of unitary and orthogonal matrices

Considering this identity for the characteristic polynomial P (·) of a matrix Sn (whose
ESD we denote hereafter by LSn), results with∫

C

ψ(v)dLSn(v) =
1

2πn

∫
C

∆ψ(v) log |det(vIn − Sn)|dm(v)

=
1

4πn

∫
C

∆ψ(v) log det[(vIn − Sn)(vIn − Sn)∗]dm(v).

Next, associate with any n-dimensional non-Hermitian matrix Sn and every v ∈ C the
2n-dimensional Hermitian matrix

Hv
n :=

[
0 (Sn − vIn)

(Sn − vIn)∗ 0

]
. (1.3)

It can be easily checked that the eigenvalues of Hv
n are merely ±1 times the singular

values of vIn − Sn. Therefore, with νvn denoting the ESD of Hv
n, we have that

1

n
log det[(vIn − Sn)(vIn − Sn)∗] =

1

n
log |detHv

n| = 2〈Log, νvn〉 ,

out of which we deduce the key identity∫
C

ψ(v)dLSn(v) =
1

2π

∫
C

∆ψ(v)〈Log, νvn〉dm(v) (1.4)

(commonly known as Girko’s formula). The utility of Eqn. (1.4) lies in the following gen-
eral recipe for proving convergence of LSn per given family of non-Hermitian random
matrices {Sn} (to which we referred already as Girko’s method).

Step 1: Show that for (Lebesgue almost) every v ∈ C, as n → ∞ the measures νvn
converge weakly, in probability, to some measure νv.

Step 2: Justify that 〈Log, νvn〉 → 〈Log, νv〉 in probability (which is the main technical
challenge of this approach).

Step 3: A uniform integrability argument allows one to convert the v-a.e. convergence
of 〈Log, νvn〉 to the corresponding convergence for a suitable collection S ⊆ C2

c (C) of
(smooth) test functions. Consequently, it then follows from (1.4) that for each fixed,
non-random ψ ∈ S, ∫

C

ψ(v)dLSn(v)→ 1

2π

∫
C

∆ψ(v)〈Log, νv〉dm(v) , (1.5)

in probability.

Step 4: Upon checking that f(v) := 〈Log, νv〉 is smooth enough to justify the integration
by parts, one has that for each fixed, non-random ψ ∈ S,∫

C

ψ(v)dLSn(v)→ 1

2π

∫
C

ψ(v)∆f(v)dm(v) , (1.6)

in probability. For S large enough, this implies the convergence in probability of the
ESD-s LSn to a limit which has the density 1

2π∆f with respect to Lebesgue measure on
C.

Employing this method in [7] requires, for Step 2, to establish suitable asymptotics for
singular values of Tn + ρUn. Indeed, the key to the proofs there is to show that uniform
boundedness of the imaginary part of Stieltjes transform of Tn (of the form assumed in
[7, Eqn. (3)]), is inherited by the corresponding transform of Tn + ρUn (see (1.12) for a
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Limiting spectral measure for sums of unitary and orthogonal matrices

definition of Un and Tn). In the context of Theorem 1.2 (for d′ ≥ 1), at the start d = 1,
the expected ESD for |vIn−Un| has unbounded density (see Lem. 4.1), so the imaginary
parts of relevant Stieltjes transforms are unbounded. We circumvent this problem by
localizing the techniques of [7], whereby we can follow the development of unbounded
regions of the resolvent via the map Tn 7→ Tn + ρ(Un + U∗n) (see Lem. 1.5), so as to
achieve the desired convergence of integral of the logarithm near zero, for Lebesgue
almost every z. We note in passing that Rudelson and Vershynin showed in [15] that
the condition of [7, Eqn. (2)] about minimal singular value can be dispensed off (see
[15, Cor. 1.4]), but the remaining uniform boundedness condition [7, Eqn. (3)] is quite
rigid. For example, it excludes atoms in the limiting measure Θ (so does not allow even
Tn = In, see [7, Rmk 2]). As a by product of our work, we relax below this condition
about Stieltjes transform of Tn (compare (1.8) with [7, Eqn. (3)]), thereby generalizing
[7, Thm. 1].

Proposition 1.3. Suppose the ESD of R+-valued, diagonal matrices {Tn} converge
weakly, in probability, to some probability measure Θ such that Θ({0}) = 0. Assume
further that:

1. There exists finite constant M so that

lim
n→∞

P(‖Tn‖ > M) = 0. (1.7)

2. There exists a closed set K ⊆ R of zero Lebesgue measure such that for every
ε > 0, some κε > 0, Mε finite and all n large enough,

{z : =(z) > n−κε , |=(GTn(z))| > Mε} ⊂ {z : z ∈
⋃
x∈K

B(x, ε)} , (1.8)

where GTn(z) is the Stieltjes transform of the symmetrized version of the ESD of
Tn, as defined in (1.13).

If Θ is not a (single) Dirac measure, then the following hold:

(a) The ESD of An := UnTn converges, in probability, to limiting probability measure
µA.

(b) The measure µA possesses a radially-symmetric density hA(v) := 1
2π∆v〈Log, νv〉with

respect to Lebesgue measure on C, where νv := Θ̃� λ|v| is the free convolution (c.f.

[1, §5.3.3]), of λr = 1
2 (δr + δ−r) and the symmetrized version Θ̃ of Θ.

(c) The support of µA is single ring: There exists constants 0 ≤ a < b <∞ so that

supp µA = {reiθ : a ≤ r ≤ b}.

Further, a = 0 if and only if
∫
x−2dΘ(x) =∞.

(d) The same applies if Un is replaced by a Haar distributed orthogonal matrix On.

This extension accommodates Θ with atoms, unbounded density, or singular part, as
long as (1.8) holds (at the finite n-level). For example, Proposition 1.3 applies for Tn
diagonal having [npi] entries equal xi 6= 0, for pi > 0, i = 1, 2, . . . , k ≥ 2, whereas the
case of Tn = αIn for some α > 0 is an immediate consequence of Theorem 1.2.
Our presentation of the proof of Theorem 1.2 starts with detailed argument for d′ = d,
namely, the sum of independent Haar distributed unitary matrices. That is, we first
prove the following proposition, deferring to Section 5 its extension to all 0 ≤ d′ < d.
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Proposition 1.4. For any d ≥ 1, as n → ∞ the ESD of sum of d independent, Haar
distributed, n-dimensional unitary matrices {U in}di=1, converges weakly, in probability,
to the Brown measure µd of free sum of d Haar unitary operators.

To this end, for any v ∈ C and i.i.d. Haar distributed unitary matrices {U in}1≤i≤d, and
orthogonal matrices {Oin}1≤i≤d, let

U1,v
n :=

[
0 (U1

n − vIn)

(U1
n − vIn)∗ 0

]
, (1.9)

and define O1,v
n analogously, with O1

n replacing U1
n. Set V 1,v

n := U1,v
n if d′ ≥ 1 and

V 1,v
n := O1,v

n if d′ = 0, then let

V k,v
n := V k−1,v

n +Uk
n+(Uk

n)∗ := V k−1,v
n +

[
0 Ukn
0 0

]
+

[
0 0

(Ukn)∗ 0

]
, for k = 2, . . . , d′ , (1.10)

and replacing Uk
n by Ok

n, continue similarly for k = d′ + 1, . . . , d. Next, let Gd,vn denote
the expected Stieltjes transform of V d,v

n . That is,

Gd,vn (z) := E
[ 1

2n
Tr(zI2n − V d,v

n )−1
]
, (1.11)

where the expectation is over all relevant unitary/orthogonal matrices {U in, Oin, i =

1, . . . , d}. Part (ii) of the next lemma, about the relation between unbounded regions
of Gd,vn (·), and Gd−1,v

n (·) summarizes the key observation leading to Theorem 1.2 (with
part (i) of this lemma similarly leading to our improvement over [7]). To this end, for any
ρ > 0 and arbitrary n-dimensional matrix Tn (possibly random), which is independent of
the unitary Haar distributed Un, let

Yn := Tn + ρ(Un + U∗n) :=

[
0 Tn
T ∗n 0

]
+ ρ

[
0 Un
0 0

]
+ ρ

[
0 0

U∗n 0

]
(1.12)

and consider the following two functions of z ∈ C+,

GTn(z) :=
1

2n
Tr(zI2n − Tn)−1, (1.13)

Gn(z) := E
[ 1

2n
Tr(zI2n − Yn)−1 |Tn

]
. (1.14)

Lemma 1.5. (i) Fixing R finite, suppose that ‖Tn‖ ≤ R and the ESD of Tn converges
to some Θ̃. Then, there exist 0 < κ1 < κ small enough, and finite Mε ↑ ∞ as ε ↓ 0,
depending only on R and Θ̃, such that for all n large enough and ρ ∈ [R−1, R],

=(z) > n−κ1 & |=(Gn(z))| > 2Mε =⇒ ∃ψn(z) ∈ C+, =(ψn(z)) > n−κ & |=(GTn(ψn(z))| > Mε

& z − ψn(z) ∈ B(−ρ, ε) ∪B(ρ, ε) .

(1.15)

The same applies when Un is replaced by Haar orthogonal matrix On (possibly with
different values of 0 < κ1 < κ and Mε ↑ ∞).
(ii) For any R finite, d ≥ 2 and d′ ≥ 0, there exist 0 < κ1 < κ small enough and finite
Mε ↑ ∞, such that (1.15) continues to hold for ρ = 1, all n large enough, any |v| ≤ R and
some ψn(·) := ψd,vn (·) ∈ C+, even when Gn and GTn , are replaced by Gd,vn and Gd−1,v

n ,
respectively.

Section 2 is devoted to the proof of Lemma 1.5, building on which we prove Proposition
1.4 in Section 3. The other key ingredients of this proof, namely Lemmas 3.1 and 3.2,
are established in Section 4. Finally, short outlines of the proofs of Theorem 1.2 and of
Proposition 1.3, are provided in Sections 5 and 6, respectively.
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2 Proof of Lemma 1.5

This proof uses quite a few elements from the proofs in [7]. Specifically, focusing on
the case of unitary matrices, once a particular choice of ρ ∈ [R−1, R] and Tn is made in
part (i), all the steps appearing in [7, pp. 1202-1203] carry through, so all the equations
obtained there continue to hold here (with a slight modification of bounds on error
terms in the setting of part (ii), as explained in the sequel). Since this part follows [7],
we omit the details. It is further easy to check that the same applies for the estimates
obtained in [7, Lem. 11, Lem. 12], which are thus also used in our proof (without
detailed re-derivation).
Proof of (i): We fix throughout this proof a fixed realization of the matrix Tn, so expec-
tations are taken only over the randomness in the unitary matrix Un. Having done so,
first note that from [7, Eqn. (37)-(38)] we get

Gn(z) = GTn(ψn(z))− Õ(n, z, ψn(z)) , (2.1)

for

ψn(z) := z − ρ2Gn(z)

1 + 2ρGnU (z)
, (2.2)

and

GnU (z) := E
[ 1

2n
Tr
{
Un(zI2n − Yn)−1

}
|Tn

]
,

where for all z1, z2 ∈ C+

Õ(n, z1, z2) =
2O(n, z1, z2)

1 + 2ρGnU (z1)
, (2.3)

with O(n, z1, z2) as defined in [7, pp. 1202]. Thus, (2.1) and (2.2) provide a relation
between Gn and GTn which is very useful for our proof. Indeed, from [7, Lem. 12]
we have that there exists a constant C1 := C1(R) finite such that, for all large n, if
=(z) > C1n

−1/4 then
=(ψn(z)) ≥ =(z)/2. (2.4)

Additionally, from [7, Eqn. (34)] we have that

ρ(Gn(z))2 = 2GnU (z)(1 + 2ρGnU (z))−O1(n, z) , (2.5)

where O1(·, ·) is as defined in [7, pp. 1203]. To this end, denoting

F (Gn(z)) :=
ρ2Gn(z)

1 + 2ρGnU (z)
, (2.6)

and using (2.5), we obtain after some algebra the identity

Gn(z)
[
ρ2 − F 2(Gn(z))

]
= F (Gn(z))

[
1 +

ρO1(n, z)

1 + 2ρGnU (z)

]
. (2.7)

Since

1 + 2ρGnU (z) =
1

2

(
1 +

√
1 + 4ρ2Gn(z)2 + 4ρO1(n, z)

)
, (2.8)

where the branch of the square root is uniquely determined by analyticity and the
known behavior of GnU (z) and Gn(z) as |z| → ∞ (see [7, Eqn. (35)]), we further have
that

F (Gn(z)) =
2ρ2Gn(z)

1 +
√

1 + 4(ρGn(z))2 + 4ρO1(n, z)

=
1

2

[ρ2Gn(z)
√

1 + 4(ρGn(z))2 + 4ρO1(n, z)

(ρGn(z))2 + ρO1(n, z)
− ρ2Gn(z)

(ρGn(z))2 + ρO1(n, z)

]
. (2.9)
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The key to our proof is the observation that if |=(Gn(z))| → ∞ and O1(n, z) remains
small, then from (2.9), and (2.2) necessarily F (Gn(z)) = z − ψn(z) → ±ρ. So, if
Õ(n, z, ψn(z)) remains bounded then by (2.1) also |=(GTn(ψn(z)))| → ∞, yielding the
required result.
To implement this, fix M = Mε ≥ 10 such that 6M−1

ε ≤ ε2 and recall that by [7, Lem.
11] there exists finite constant C2 := C2(R) such that, for all large n, if =(z) > C1n

−1/4

then
|1 + 2ρGnU (z)| > C2ρ[=(z)3 ∧ 1]. (2.10)

Furthermore, we have (see [7, pp. 1203]),

|O(n, z1, z2)| ≤ Cρ2

n2|=(z2)|=(z1)2(=(z1) ∧ 1)
. (2.11)

Therefore, enlarging C1 as needed, by (2.3), (2.4), and (2.10) we obtain that, for all
large n,

|Õ(n, z, ψn(z))| ≤ Cρ

n2|=(ψn(z))|=(z)2(=(z)4 ∧ 1)
≤Mε

whenever =(z) > C1n
−1/4. This, together with (2.1), shows that if |=(Gn(z))| > 2Mε,

then we have that |=(GTn(ψn(z)))| > Mε. Now, fixing 0 < κ1 < κ < 1/4 we get from (2.4)
that =(ψn(z)) > n−κ. It thus remains to show only that F (Gn(z)) ∈ B(−ρ, ε) ∪ B(ρ, ε).
To this end, note that

|O1(n, z)| ≤ Cρ2

n2=(z)2(=(z) ∧ 1)
(2.12)

(c.f. [7, pp. 1203]). Therefore, O1(n, z) = o(n−1) whenever =(z) > C1n
−1/4, and so the

rightmost term in (2.9) is bounded by M−1
ε whenever |=(Gn(z))| > 2Mε. Further, when

=(z) > C1n
−1/4, |=(Gn(z))| > 2Mε and n is large enough so |O1(n, z)| ≤ 1, we have that

for any choice of the branch of the square root,∣∣∣∣∣ρGn(z)
√

1 + 4(ρGn(z))2 + 4ρO1(n, z)

(ρGn(z))2 + ρO1(n, z)

∣∣∣∣∣ ≤
√

1 + 4|ρGn(z)|2 + 4|ρO1(n, z)|
|ρGn(z)| − 1

≤ 4 ,

resulting with |F (Gn(z))| ≤ 3ρ. Therefore, using (2.10) and (2.12), we get from (2.7)
that if =(z) > C1n

−1/4 and |=(Gn(z))| > 2Mε, then∣∣∣F 2(Gn(z))− ρ2
∣∣∣ ≤ 6|Gn(z)|−1 ≤ 6M−1

ε ≤ ε2 .

In conclusion, z − ψn(z) = F (Gn(z)) ∈ B(ρ, ε) ∪ B(−ρ, ε), as stated. Further, upon
modifying the values of κ1 < κ and Mε, this holds also when replacing Un by a Haar
distributed orthogonal matrix On. Indeed, the same analysis applies except for adding
toO(n, z1, z2) of [7, pp. 1202] a term which is uniformly bounded by n−1|=(z2)|−1(=(z1)∧
1)−2 (see [7, proof of Thm. 18]), and using in this case [1, Cor. 4.4.28] to control the
variance of Lipschitz functions of On (instead of Un).
Proof of (ii): Consider first the case of d′ = d. Then, setting ρ = 1, Tn = V d−1,v

n , and
Yn = V d,v

n , one may check that following the derivation of [7, Eqn. (37)-(38)], now with
all expectations taken also over Tn, we get that

Gd,vn (z) = Gd−1,v
n (ψd,vn (z))− Õ(n, z, ψd,vn (z)) , (2.13)

for some K <∞ and all {z ∈ C+ : =(z) ≥ K}, where

ψd,vn (z) := z − Gd,vn (z)

1 + 2Gd,vUn (z)
, (2.14)
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Gd,vUn (z) := E
[ 1

2n
Tr
{
Ud
n(zI2n − V d,v

n )−1
}]
,

and for any z1, z2 ∈ C+,

Õ(n, z1, z2) :=
2O(n, z1, z2)

1 + 2Gd,vUn (z1)
.

Next, note that for some C <∞ and any C-valued function fd(U1
n, . . . , U

d
n) of i.i.d. Haar

distributed {U in}
E[(fd − E[fd])

2] ≤ dC‖fd‖2L , (2.15)

where ‖fd‖L denotes the relevant coordinate-wise Lipschitz norm, i.e.

‖fd‖L :=
d

max
j=1

sup
U1
n,...,U

d
n,Ũn 6=U

j
n

|fd(U1
n, . . . , U

d
n)− fd(U1

n, . . . , U
j−1
n , Ũn, U

j+1
n , . . .)|

‖U jn − Ũn‖2
.

Indeed, we bound the variance of fd by the (sum of d) second moments of martingale
differences Djfd := E[fd|U1

n, . . . , U
j
n]−E[fd|U1

n, . . . , U
j−1
n ]. By the independence of {U in}

and definition of ‖fd‖L, conditional upon (U1
n, . . . , U

j−1
n ), the C-valued function U jn 7→

Djfd is Lipschitz of norm at most ‖fd‖L in the sense of [1, Ineq. (4.4.31)]. It then easily
follows from the concentration inequalities of [1, Cor. 4.4.28], that the second moment
of this function is at most C‖fd‖2L (uniformly with respect to (U1

n, . . . , U
j−1
n )).

In the derivation of [7, Lem. 10], the corresponding error termO(n, z1, z2) is bounded by
a sum of finitely many variances of Lipschitz functions of the form 1

2n Tr{H(Udn)}, each of
which has Lipschitz norm of order n−1/2, hence controlled by applying the concentration
inequality (2.15). We have here the same type of bound on O(n, z1, z2), except that each
variance in question is now with respect to some function 1

2n Tr{H(U1
n, . . . , U

d
n)} having

coordinate-wise Lipschitz norm of order n−1/2 (and with respect to the joint law of the
i.i.d. Haar distributed unitary matrices). Collecting all such terms, we get here instead
of (2.11), the slightly worse bound

|O(n, z1, z2)| = O

(
1

n|=(z2)|=(z1)2(=(z1) ∧ 1)2(=(z2) ∧ 1)

)
(2.16)

(with an extra factor (=(z2) ∧ 1)−1 due to the additional randomness in (z2I2n − Tn)−1).
Using the modified bound (2.16), we proceed as in the proof of part (i) of the lemma,
to first bound Õ(n, z, ψd,vn (z)), O1(n, z), and derive the inequalities replacing (2.4) and
(2.10). Out of these bounds, we establish the stated relation (1.15) between Gd,vn and
Gd−1,v
n upon following the same route as in our proof of part (i). Indeed, when doing so,

the only effect of starting with (2.16) instead of (2.11) is in somewhat decreasing the
positive constants κ1, κ, while increasing each of the finite constants {Mε, ε > 0}.
Finally, with [1, Cor. 4.4.28] applicable also over the orthogonal group, our proof of
(2.15) extends to any C-valued function fd(U

1
n, . . . , U

d′

n , O
d′+1
n , . . . , Odn) of independent

Haar distributed unitary/orthogonal matrices {U in, Oin}. Hence, as in the context of part
(i), the same argument applies for 0 ≤ d′ < d (up to adding n−1|=(z2)|−1(=(z1) ∧ 1)−2 to
(2.16), c.f. [7, proof of Thm. 18]).

3 Proof of Proposition 1.4

It suffices to prove Proposition 1.4 only for d ≥ 2, since the easier case of d = 1 has
already been established in [12, Cor. 2.8]. We proceed to do so via the four steps of
Girko’s method, as described in Section 1. The following two lemmas (whose proof is
deferred to Section 4), take care of Step 1 and Step 2 of Girko’s method, respectively.
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Lemma 3.1. Let λ1 = 1
2 (δ−1 + δ1) and Θd,v := Θd−1,v � λ1 for all d ≥ 2, starting at Θ1,v

which for v 6= 0 is the symmetrized version of the measure on R+ having the density
f|v|(·) of (4.1), while Θ1,0 = λ1. Then, for each v ∈ C and d ∈ N, the ESD-s LV d,v

n
of the

matrices V d,v
n (see (1.10)), converge weakly as n→∞, in probability, to Θd,v.

Lemma 3.2. For any d ≥ 2 and Lebesgue almost every v ∈ C,

〈Log, LV d,v
n
〉 → 〈Log,Θd,v〉, (3.1)

in probability. Furthermore, there exist closed Λd ⊂ C of zero Lebesgue measure, such
that ∫

C

φ(v)〈Log, LV d,v
n
〉dm(v)→

∫
C

φ(v)〈Log,Θd,v〉dm(v), (3.2)

in probability, for each fixed, non-random φ ∈ C∞c (C) whose support is disjoint of Λd.
That is, the support of φ is contained for some γ > 0, in the bounded, open set

Γdγ :=
{
v ∈ C : γ < |v| < γ−1, inf

u∈Λd
{ |v − u|} > γ

}
. (3.3)

We claim that the convergence result of (3.2) provides us already with the conclusion
(1.5) of Step 3 in Girko’s method, for test functions in

S := {ψ ∈ C∞c (C), supported within Γdγ for some γ > 0} .

Indeed, fixing d ≥ 2, the Hermitian matrices V d,v
n of (1.10) are precisely those Hv

n of
the form (1.3) that are associated with Sn :=

∑d
i=1 U

i
n in Girko’s formula (1.4). Thus.

combining the latter identity for ψ ∈ S with the convergence result of (3.2) for φ = ∆ψ,
we get the following convergence in probability as n→∞,∫

C

ψ(v)dLSn(v) =
1

2π

∫
C

∆ψ(v)〈Log, LV d,v
n
〉dm(v)→ 1

2π

∫
C

∆ψ(v)〈Log,Θd,v〉dm(v) .

(3.4)
Proceeding to identify the limiting measure as the Brown measure µd := µsd of the

sum sd := u1 + u2 + · · · + ud of ?-free Haar unitary operators ui, recall [14] that each
(ui, u

∗
i ) is R-diagonal. Hence, by [9, Propn. 3.5] we have that Θd,v is the symmetrized

version of the law of |sd − v|, and so by definition (1.2) we have that for any ψ ∈ C∞c (C),

1

2π

∫
C

∆ψ(v)〈Log,Θd,v〉dm(v) =

∫
C

ψ(v)µsd(dv) . (3.5)

In parallel with Step 4 of Girko’s method, it thus suffices for completing the proof, to
verify that the convergence in probability∫

C

ψ(v)dLSn(v)→
∫
C

ψ(v)dµsd(v) , (3.6)

for each fixed ψ ∈ S, yields the weak convergence, in probability, of LSn to µsd .
To this end, suppose first that (3.6) holds almost surely for each fixed ψ ∈ S, and

recall that for any γ > 0 and each open G ⊂ Γdγ there exist ψk ∈ S such that ψk ↑ 1G.
Consequently, a.s.

lim inf
n→∞

LSn(G) ≥ sup
k

lim inf
n→∞

∫
C

ψk(v)dLSn(v) = sup
k

∫
C

ψk(v)dµsd(v) = µsd(G) .

Further, from [9, Example 5.5] we know that µsd has, for d ≥ 2, a bounded density
with respect to Lebesgue measure on C (given by hd(·) of (1.1)). In particular, since
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m(Λd) = 0, it follows that µsd(Λd) = 0 and hence µsd(Γdγ) → 1 when γ → 0. Given this,
fixing some γ` ↓ 0 and open G ⊂ C, we deduce that a.s.

lim inf
n→∞

LSn(G) ≥ lim
`→∞

lim inf
n→∞

LSn(G ∩ Γdγ`) ≥ lim
`→∞

µsd(G ∩ Γdγ`) = µsd(G) . (3.7)

This applies for any countable collection {Gi} of open subsets of C, with the reversed
inequality holding for any countable collection of closed subsets of C. In particular,
fixing any countable convergence determining class {fj} ⊂ Cb(C) and countable dense

Q̂ ⊂ R such that µsd(f−1
j ({q})) = 0 for all j and q ∈ Q̂, yield the countable collection G

of µsd -continuity sets (consisting of interiors and complement of closures of f−1
j ([q, q′)),

q, q′ ∈ Q̂), for which LSn(·) converges to µsd(·). The stated a.s. weak convergence
of LSn to µsd then follows as in the usual proof of Portmanteau’s theorem, under our
assumption that (3.6) holds a.s.
This proof extends to the case at hand, where (3.6) holds in probability, since conver-
gence in probability implies that for every subsequence, there exists a further subse-
quence along which a.s. convergence holds, and the whole argument uses only count-
ably many functions ψk,`,i ∈ S. Specifically, by a Cantor diagonal argument, for any
given subsequence nj , we can extract a further subsequence j(l), such that (3.7) holds
a.s. for LSnj(l) and all G in the countable collection G of µsd -continuity sets. Therefore,

a.s. LSnj(l) converges weakly to µsd and by the arbitrariness of {nj} we have that, in

probability, LSn converges to µsd weakly.

4 Proofs of Lemma 3.1 and Lemma 3.2

We start with a preliminary result, needed for proving Lemma 3.1.

Lemma 4.1. For Haar distributed Un and any r > 0, the expected ESD of |Un− rIn| has
the density

fr(x) =
2

π

x√
(x2 − (r − 1)2)((r + 1)2 − x2)

, |r − 1| ≤ x ≤ r + 1 (4.1)

with respect to Lebesgue’s measure on R+ (while for r = 0, this ESD consists of a single
atom at x = 1).

Proof: It clearly suffices to show that the expected ESD of (Un − rIn)(Un − rIn)∗ has for
r > 0 the density

gr(x) =
1

π

1√
(x− (r − 1)2)((r + 1)2 − x)

, (r − 1)2 ≤ x ≤ (r + 1)2 . (4.2)

To this end note that by the invariance of the Haar unitary measure under multiplication
by eiθ, we have that

E[
1

n
Tr{Ukn}] = E[

1

n
Tr{(U∗n)k}] = 0 , (4.3)

for all positive integers k and n. Thus,

E
[ 1

n
Tr
{

(Un + U∗n)k
}]

=

(
k

k/2

)
for k even and 0 otherwise.

Therefore, by the moment method, the expected ESD of Un + U∗n (denoted L̄Un+U∗n
),

satisfies
L̄Un+U∗n

d
= 2 cos θ = eiθ + e−iθ, where θ ∼ Unif(0, 2π).
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Consequently, we get the formula (4.2) for the density gr(x) of the expected ESD of

(Un − rIn)(Un − rIn)∗ = (1 + r2)In − r(Un + U∗n),

by applying the change of variable formula for x = (1+r2)−2r cos θ (and θ ∼ Unif(0, 2π)).

Proof of Lemma 3.1: Recall [1, Thm. 2.4.4(c)] that for the claimed weak convergence of
LV d,v

n
to Θd,v, in probability, it suffices to show that per fixed z ∈ C+, the corresponding

Stieltjes transforms

fd,vn (z) :=
1

2n
Tr{(zI2n − V d,v

n )−1}

converge in probability to the Stieltjes transform Gd,v∞ (z) of Θd,v. To this end, note that
each fd,vn (z) is a point-wise Lipschitz function of {U in}, whose expected value is Gd,vn (z)

of (1.11), and that ‖fn‖L → 0 as n→∞ (per fixed values of d, v, z). It thus follows from
(2.15) that as n→∞,

E[(fd,vn (z)−Gd,vn (z))2]→ 0

and therefore, it suffices to prove that per fixed d, v ∈ C and z ∈ C+, as n→∞,

Gd,vn (z)→ Gd,v∞ (z) . (4.4)

Next observe that by invariance of the law of U1
n to multiplication by scalar eiθ, the

expected ESD of V 1,v
n depends only on r = |v|, with Θ1,v = E[LV 1,v

n
] (see Lem. 4.1).

Hence, (4.4) trivially holds for d = 1 and we proceed to prove the latter pointwise (in
z, v), convergence by an induction on d ≥ 2. The key ingredient in the induction step
is the (finite n) Schwinger-Dyson equation in our set-up, namely Eqn. (2.13)-(2.14).
Specifically, from (2.13)-(2.14) and the induction hypothesis it follows that for some
non-random K < ∞, any limit point, denoted (Gd,v, Gd,vU ), of the uniformly bounded,

equi-continuous functions (Gd,vn , Gd,vUn ) on {z ∈ C+ : =(z) ≥ K}, satisfies

Gd,v(z) = Gd−1,v
∞ (ψ(z)), with ψ(z) := z − Gd,v(z)

1 + 2Gd,vU (z)
. (4.5)

Moreover, from the equivalent version of (2.5) in our setting, we obtain that

4Gd,vU (z) = −1 +
√

1 + 4Gd,v(z)2 ,

for a suitable branch of the square root (uniquely determined by analyticity and decay
to zero as |z| → ∞ of z 7→ (Gd,v(z), Gd,vU (z))). Thus, G(z) = Gd,v(z) satisfies the relation

G(z)−Gd−1,v
∞

(
z − 2G(z)

1 +
√

1 + 4G(z)2

)
= 0 . (4.6)

Since Θd,v = Θd−1,v � λ1, it follows that (4.6) holds also for G(·) = Gd,v∞ (·) (c.f. [7,
Rmk. 7]). Further, z 7→ Gd−1,v

∞ (z) is analytic on C+ with derivative of O(z−2) at infinity,
hence by the implicit function theorem the identity (4.6) uniquely determines the value
of G(z) for all =(z) large enough. In particular, enlarging K as needed, Gd,v = Gd,v∞ on
{z ∈ C+ : =(z) ≥ K}, which by analyticity of both functions extends to all of C+. With
(4.4) verified, this completes the proof of the lemma.

The proof of Lemma 3.2 requires the control of =(Gd,vn (z)) as established in Lemma 4.3.
This is done inductively in d, with Lemma 4.2 providing the basis d = 1 of the induction.
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Lemma 4.2. For some C finite, all ε ∈ (0, 1) and v ∈ C,{
z ∈ C+ : |=G1,v

n (z)| ≥ Cε−2
}
⊆
{
E+iη : η ∈ (0, ε2), E ∈

(
±(1±|v|)−2ε,±(1±|v|)+2ε

)}
.

Proof: It is trivial to confirm our claim in case v = 0 (as G1,0
n (z) = z/(z2 − 1)). Now,

fixing r = |v| > 0, let f̃r(·) denote the symmetrized version of the density fr(·), and note
that for any η > 0,

|=G1,v
n (E + iη)| =

∫
|x−E|>√η

η

(x− E)2 + η2
f̃r(x)dx+

∫
|x−E|≤√η

η

(x− E)2 + η2
f̃r(x)dx

≤ 1 +
[

sup
{x:|x−E|≤√η}

f̃r(x)
] ∫
|x−E|≤√η

η

(x− E)2 + η2
dx

≤ 1 + π
[

sup
{x:|x−E|≤√η}

f̃r(x)
]
. (4.7)

With Γε denoting the union of open intervals of radius ε around the four points ±1 ± r,
it follows from (4.1) that for some C1 finite and any r, ε > 0,

sup
x/∈Γε

{f̃r(x)} ≤ C1ε
−2 .

Thus, from (4.7) it follows that

sup
{E,η:(E−√η,E+

√
η)⊂Γcε}

|=G1,v
n (E + iη)| ≤ Cε−2 ,

for some C finite, all ε ∈ (0, 1) and r > 0. To complete the proof simply note that

{(E, η) : E ∈ Γc2ε, η ∈ (0, ε2)} ⊆ {(E, η) : (E −√η,E +
√
η) ⊆ Γcε},

and
sup

E∈R,η≥ε2
|=G1,v

n (E + iη)| ≤ ε−2.

Since the density f̃|v|(·) is unbounded at ±1±|v|, we can not improve Lemma 4.2 to show
that =G1,v

n (z) is uniformly bounded. The same applies for d ≥ 2 so a result such as [7,
Lem. 13] is not possible in our set-up. Instead, as we show next, inductively applying
Lemma 1.5(ii) allows us to control the region where |=(Gd,vn (z))| might blow up, in a
manner which suffices for establishing Lemma 3.2 (and consequently Proposition 1.4).

Lemma 4.3. For r ≥ 0, γ > 0 and integer d ≥ 1, let Γd,rγ ⊂ C denote the union of open
balls of radius γ centered at ±m± r for m = 0, 1, 2, . . . , d. Fixing integer d ≥ 1, γ ∈ (0, 1)

and R finite, there exist M finite and κ > 0 such that for all n large enough and any
v ∈ B(0, R),

sup{|=(Gd,vn (z))| : =(z) > n−κ, z /∈ Γd,|v|γ } ≤M . (4.8)

Proof: For any d ≥ 1, v ∈ C, positive κ and finite M , set

Γd,vn (M,κ) := {z : =(z) > n−κ, |=(Gd,vn (z))| > M} ,

so our thesis amounts to the existence of finite M and κ > 0, depending only on R, d ≥ 2

and γ ∈ (0, 1), such that for all n large enough,

Γd,vn (M,κ) ⊂ Γd,|v|γ , ∀v ∈ B(0, R) . (4.9)

Indeed, for d = 1 this is a direct consequence of Lemma 4.2 (with γ = 2ε, M = Cε−2),
and we proceed to confirm (4.9) by induction on d ≥ 2. To carry out the inductive step
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from d − 1 to d, fix R finite and γ ∈ (0, 1), assuming that (4.9) applies at d − 1 and
γ/2, for some finite M? and positive κ? (both depending only on d, R and γ). Then, let
ε ∈ (0, γ/2) be small enough such that Lemma 1.5(ii) applies for some Mε ≥ M? and
0 < κ1 < κ ≤ κ?. From Lemma 1.5(ii) we know that for any n large enough, v ∈ B(0, R)

and z ∈ Γd,vn (2Mε, κ1), there exists w := ψd,vn (z) for which

z − w ∈ B(−1, ε) ∪B(1, ε) & w ∈ Γd−1,v
n (Mε, κ) ⊆ Γd−1,v

n (M?, κ?) ⊂ Γ
d−1,|v|
γ/2 ,

where the last inclusion is due to our choice of M? and κ?. With ε ≤ γ/2, it is easy to
check that z − w ∈ B(−1, ε) ∪ B(1, ε) and w ∈ Γd−1,r

γ/2 result with z ∈ Γd,rγ . That is, we
have established the validity of (4.9) at d and arbitrarily small γ, for M = 2Mε finite and
κ1 positive, both depending only on R, d and γ.

Proof of Lemma 3.2: Recall [15, Thm 1.1] the existence of universal constants 0 < c1
and c2 < ∞, such that for any non-random matrix Dn and Haar distributed unitary
matrix Un, the smallest singular value smin of Un +Dn satisfies,

P(smin(Un +Dn) ≤ t) ≤ tc1nc2 . (4.10)

The singular values of V d,v
n are clearly the same as those of Sn − vIn = U1

n + Dn for
Dn =

∑d
i=2 U

i
n − vIn, which is independent of the Haar unitary U1

n. Thus, applying
(4.10) conditionally on Dn, we get that

P(smin(V d,v
n ) ≤ t) ≤ tc1nc2 , (4.11)

for every v ∈ C, t > 0 and n. It then follows that for any δ > 0 and α < c1,

E
[
(smin(V d,v

n ))−αI{
smin(V d,v

n )≤n−δ
}] ≤ c1

c1 − α
nc2−δ(c1−α) . (4.12)

Setting hereafter α = c1/2 positive and δ = 4c2/c1 finite, the right side of (4.12) decays
to zero as n→∞. Further, for any n, d and v,

E
[
〈|Log|, LV d,v

n
〉n
−δ

0

]
≤ E

[
| log smin(V d,v

n )|I{
smin(V d,v

n )≤n−δ
}] . (4.13)

Hence, with |x|α log |x| → 0 as x→ 0, upon combining (4.12) and (4.13) we deduce that

lim sup
n→∞

sup
v∈C

E
[
〈|Log|, LV d,v

n
〉n
−δ

0

]
= 0 . (4.14)

Next, consider the collection of sets Γdγ as in (3.3), that corresponds to the compact

Λd :=
{
v ∈ C : |v| ∈ {0, 1, . . . , d}

}
(such that m(Λd) = 0). In this case, v ∈ Γdγ implies that {iy : y > 0} is disjoint of the set

Γ
d,|v|
γ of Lemma 4.3. For such values of v we thus combine the bound (4.8) of Lemma

4.3 with [7, Lem. 15], to deduce that for any integer d ≥ 1 and γ ∈ (0, 1) there exist
finite n0,M and positive κ (depending only on d and γ), for which

E
[
LV d,v

n
(−y, y)

]
≤ 2M(y ∨ n−κ) ∀n ≥ n0, y > 0, v ∈ Γdγ . (4.15)

Imitating the derivation of [7, Eqn. (49)], we get from (4.15) that for some finite C =

C(d, γ, δ), any ε ≤ e−1, n ≥ n0 and v ∈ Γdγ ,

E
[
〈|Log|, LV d,v

n
〉εn−δ

]
≤ Cε| log ε| . (4.16)
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Thus, combining (4.14) and (4.16) we have that for any γ > 0,

lim
ε↓0

lim sup
n→∞

sup
v∈Γdγ

E
[
〈|Log|, LV d,v

n
〉ε0
]

= 0 . (4.17)

Similarly, in view of (4.4), the bound (4.8) implies that

|=(Gd,v∞ (z))| ≤M , ∀z ∈ C+\Γd,|v|γ , v ∈ B(0, R) ,

which in combination with [7, Lem. 15], results with

Θd,v(−y, y) ≤ 2My ∀y > 0, v ∈ Γdγ

and consequently also
lim
ε↓0

sup
v∈Γdγ

{〈|Log|,Θd,v〉ε0} = 0 . (4.18)

Next, by Lemma 3.1, the real valued random variables X(ε)
n (ω, v) := 〈Log, LV d,v

n
〉∞ε con-

verge in probability, as n → ∞, to the non-random X
(ε)
∞ (v) := 〈Log,Θd,v〉∞ε , for each

v ∈ C and ε > 0. This, together with (4.17) and (4.18), results with the stated conver-
gence of (3.1), for each v ∈ Γdγ , so considering γ → 0 we conclude that (3.1) applies for
all v ∈ Λcd, hence for m-a.e. v.
Turning to prove (3.2), fix γ > 0 and non-random, uniformly bounded φ, supported
within Γdγ . Since {LV d,v

n
, v ∈ Γdγ} are all supported on B(0, γ−1 + d), for each fixed ε > 0,

the random variables Y (ε)
n (ω, v) := φ(v)X

(ε)
n (ω, v)m(Γdγ) with respect to the product law

P := P × m(·)/m(Γdγ) on (ω, v) are bounded, uniformly in n. Consequently, their con-

vergence in P-probability, for m-a.e. v, to Y (ε)
∞ (v) (which we have already established),

implies the corresponding L1-convergence. Furthermore, by (4.17) and Fubini’s theo-
rem,

E[|Y (0)
n − Y (ε)

n |] ≤ m(Γdγ)‖φ‖∞ sup
v∈Γdγ

E[|X(0)
n (ω, v)−X(ε)

n (ω, v)|]→ 0 ,

when n → ∞ followed by ε ↓ 0. Finally, by (4.18), the non-random Y
(ε)
∞ (v) → Y

(0)
∞ (v) as

ε ↓ 0, uniformly over Γdγ . Consequently, as n→∞ followed by ε ↓ 0,

E[|Y (0)
n − Y (0)

∞ |] ≤ E[|Y (0)
n − Y (ε)

n |] + E[|Y (ε)
n − Y (ε)

∞ |] + sup
v∈Γdγ

{|Y (0)
∞ − Y (ε)

∞ |}

converges to zero and in particular∫
C

φ(v)X(0)
n (ω, v)dm(v)→

∫
C

φ(v)X(0)
∞ (v)dm(v) ,

in L1, hence in P-probability, as claimed.

5 Proof of Theorem 1.2

Following the proof of Proposition 1.4, it suffices for establishing Theorem 1.2, to extend

the validity of Lemmas 3.1 and 3.2 in case of Sn =
∑d′

i=1 U
i
n +

∑d
i>d′ O

i
n. To this end,

recall that Lemma 1.5(ii) applies regardless of the value of d′. Hence, Lemmas 3.1 and
3.2 hold as soon as we establish Lemma 4.2, the bound (4.11) on smin(V d,v

n ), and the
convergence (4.4) for d = 1. Examining Section 4, one finds that our proof of the latter
three results applies as soon as d′ ≥ 1 (i.e. no need for new proofs if we start with U1

n).
In view of the preceding, we set hereafter d′ = 0, namely consider the sum of (only)
i.i.d Haar orthogonal matrices and recall that suffices to prove our theorem when d ≥ 2
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(for the case of d = 1 has already been established in [12, Cor. 2.8]). Further, while the
Haar orthogonal measure is not invariant under multiplication by eiθ, it is not hard to
verify that nevertheless

lim
n→∞

E[
1

n
Tr{Okn}] = E[

1

n
Tr{(O∗n)k}] = 0 ,

for any positive integer k. Replacing the identity (4.3) by the preceding and thereafter
following the proof of Lemma 4.1, we conclude that E[LO1,v

n
]⇒ Θ1,v as n→∞, for each

fixed v ∈ C. This yields of course the convergence (4.4) of the corresponding Stieltjes
transforms (and thereby extends the validity of Lemma 3.1 even for d′ = 0). Lacking
the identity (4.3), for the orthogonal case we replace Lemma 4.2 by the following.

Lemma 5.1. The Stieltjes transform G1,v
n of the ESD E[LO1,v

n
] is such that

{
z ∈ C+ : |=G1,v

n (z)| ≥ Cε−2
}
⊂
{
E + iη : η ∈ (0, ε2),

E ∈
(
± (1± |v|)− 2ε,± (1± |v|) + 2ε

)
∪
(
± (|1± v| − 2ε,±(|1± v|) + 2ε

)}
,

for some C finite, all ε ∈ (0, 1) and any v ∈ C.

Proof: We express G1,v
n (z) as the expectation of certain additive function of the eigen-

values of O1
n, whereby information about the marginal distribution of these eigenvalues

shall yield our control on |=(G1,v
n (z))|. To this end, set g(z, r) := z/(z2 − r) for z ∈ C+,

r ≥ 0, and let φ(O1
n) := 1

2n Tr{(zI2n −O1,v
n )−1}. Clearly,

φ(O1
n) =

1

n

n∑
k=1

g(z, s2
k) , (5.1)

where {sk} are the singular values of O1
n − vIn. For any matrix An and orthogonal

matrix Õn, the singular values of An are the same as those of ÕnAnÕ∗n. Considering
An = O1

n − vIn, we thus deduce from (5.1) that φ(ÕnO
1
nÕ
∗
n) = φ(O1

n), namely that φ(·) is
a central function on the orthogonal group (see [1, pp. 192]).
The group of n-dimensional orthogonal matrices partitions into the classes O+(n) and
O−(n) of orthogonal matrices having determinant +1 and −1, respectively. In case
n = 2` + 1 is odd, any On ∈ O±(n) has eigenvalues {±1, e±iθj , j = 1, . . . , `}, for some
θ = (θ1, . . . , θ`) ∈ [−π, π]`. Similarly, for n = 2` even, On ∈ O+(n) has eigenvalues
{e±iθj , j = 1, . . . , `}, whereas On ∈ O−(n) has eigenvalues {−1, 1, e±iθj , j = 1, . . . , `− 1}.
Weyl’s formula expresses the expected value of a central function of Haar distributed
orthogonal matrix in terms of the joint distribution of θ under the probability measures
P±n corresponding to the classes O+(n) and O−(n). Specifically, it yields the expression

G1,v
n (z) = E[φ(O1

n)] =
1

2
E+
n [φ(diag(+1, R`(θ))] +

1

2
E−n [φ(diag(−1, R`(θ))] , for n = 2`+ 1,

=
1

2
E+
n [φ(diag(R`(θ))] +

1

2
E−n [φ(diag(−1, 1, R`−1(θ))] , for n = 2`,

(5.2)

where R`(θ) := diag(R(θ1), R(θ2), · · · , R(θ`)) for the two dimensional rotation matrix

R(θ) =

[
cos θ sin θ

− sin θ cos θ

]
(see [1, Propn. 4.1.6], which also provides the joint densities of θ under P±n ).
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In view of (5.1) and (5.2), to evaluate G1,v
n (z) we need the singular values of R`(θ)−

vI`. Since this is a block-diagonal matrix, its singular values are those of the 2 × 2

block diagonal parts R(θj) − vI2 for 1 ≤ j ≤ `. Setting v := |v|eiψ it is easy to check
that the singular values of R(θ) − vI2 are precisely square-root of the eigenvalues of
(1 + |v|2)I2 − |v|(e−iψR(θ) + eiψR∗(θ)), which turn out to be 1 + |v|2 − 2|v| cos(θ ± ψ).
Combining this with (5.1) and (5.2) we obtain in case n = 2`+ 1, that

G1,v
n (z) =

1

2n

{
g(z, |1− v|2) +

1∑
k=0

∑̀
j=1

E+
n [g(z, 1 + |v|2 − 2|v| cos(θj + (−1)kψ))]

+g(z, |1 + v|2) +

1∑
k=0

∑̀
j=1

E−n [g(z, 1 + |v|2 − 2|v| cos(θj + (−1)kψ))]
}
. (5.3)

The same expression applies for n = 2`, except for having the latter sum only up to
j = `− 1. Next, recall that under P±n the random variables {θj} are exchangeable, each
having the same density q±n (·) which is bounded, uniformly in n (see the diagonal terms
in [5, Propn. 5.5.3]; for example, q±2`+1(θ) = 1

2π (1 ∓ sin(2`θ)/(2` sin θ)), is bounded by
1/π, uniformly over θ and `). Further, g(z, r) ∈ C− for all r ≥ 0 and z ∈ C+. Hence, for
some C finite, all n ≥ 3, v ∈ C and z ∈ C+,

|=(G1,v
n (z))| ≤ 1

2n
|=(g(z, |1− v|2))|+ 1

2n
|=(g(z, |1 + v|2))|

+ C
∣∣∣={ 1

2π

∫ π

−π
g(z, 1 + |v|2 − 2|v| cos(θ ± ψ))dθ

}∣∣∣ . (5.4)

The last expression in (5.4) does not depend on ±ψ and is precisely the imaginary part
of the Stieltjes transform of the symmetrization of the probability measure |eiθ − |v||,
where θ ∼ Unif(0, 2π). While proving Lemma 4.1 we saw that the expected ESD of U1,v

n

has the latter law, hence the conclusion of Lemma 4.2 applies for the last expression in
(5.4). To complete the proof, simply note that =(g(E+iη, s2)) ≤ 1 as soon as |E±s| ≥ √η
(and consider s = |v ± 1|).

Now, using Lemma 5.1 for the basis d = 1 of an induction argument (instead of
Lemma 4.2), and with Lemma 1.5(ii) serving again for its inductive step, we obtain
here the same conclusion as in Lemma 4.3, except for replacing Γ

d,|v|
γ by the union

Γ̃d,vγ of open balls of radius γ centered at the points ±m ± 1 ± |v| and ±m ± |1 ± v| for
m = 0, . . . , d− 1. Turning to prove Lemma 3.2, this translates to taking in this case the
sets Γdγ which correspond via (3.3) to the compact

Λd :=
{
v ∈ C : |v| ∈ {0, 1, . . . , d}, or |v ± 1| ∈ {0, 1, . . . , d− 1}

}
(of zero Lebesgue measure), thereby assuring that {iy : y > 0} is disjoint of Γ̃d,vγ when-
ever v ∈ Γdγ . One may then easily check that the proof of Lemma 3.2 (and hence of the
theorem), is completed upon establishing the following weaker form of (4.11).

Lemma 5.2. For some c1 > 0, c2 <∞, the sum Sn of d ≥ 2 independent Haar orthogonal
matrices and any γ ∈ (0, 1), there exist C ′ = C ′(d, γ) finite and events {Gn} determined
by the minimal and maximal singular values of Sn, such that P(Gcn)→ 0 as n→∞, and
for any n, t ≥ 0,

sup
v∈Γdγ

P
(
Gn ∩ {smin(V d,v

n ) ≤ t}
)
≤ C ′tc1nc2 . (5.5)

Proof: We use here [15, Thm. 1.3] (instead of [15, Thm. 1.1] which applies only for Haar
unitary matrices), and introduce events Gn under which the condition [15, Eqn. (1.2)]
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holds. Specifically, let Dn = diag(r1, r2, . . . , rn) denote the diagonal matrix of singular
values of Sn, ordered so that r1 ≥ r2 ≥ . . . ≥ rn and

Gn := {rn ≤
1

2
and r1 ≥ 1} .

Let On be Haar distributed n-dimensional orthogonal matrix, independent of {Oin, i =

1, . . . , d}, noting that On is independent of −OnSn, with the latter having the same
law and singular values as Sn. Further, the singular values of V d,v

n equal to those of
vIn − Sn = O∗n(vOn −OnSn), hence for any n and t ≥ 0,

qn,v(t) := P
(
Gn ∩ {smin(V d,v

n ) ≤ t}
)

= P
(
Gn ∩ {smin(vOn + Sn) ≤ t}

)
.

Next, by the singular value decomposition Sn = (O
′

n)∗Dn(O
′′

n)∗ for some pair of orthog-
onal matrices O′n and O

′′

n. Conditional on Dn, O
′

n and O
′′

n, the matrix O
′

nOnO
′′

n is again
Haar distributed, hence independent of Dn (and of Gn). Consequently, for any v 6= 0,

qn,v(t) = P
(
Gn ∩ {smin(vO

′

nOnO
′′

n +Dn) ≤ t}
)

= P
(
Gn ∩ {|v|smin(On + v−1Dn) ≤ t}

)
.

Now from [15, Thm. 1.3] we know that for some absolute constants c1 > 0 and c2 <∞,

P(|v|smin(On + v−1Dn) ≤ t |Dn) ≤
( t

|v|

)c1(Kn
δ

)c2
, (5.6)

provided [15, Eqn. (1.2)] holds for v−1Dn, some K ≥ 1 and δ ∈ (0, 1). That is, when

r1 ≤ K|v| and r2
1 ≥ r2

n + δ|v|2 . (5.7)

In our setting the singular values of Sn are uniformly bounded by d and |v| ∈ (γ, γ−1)

throughout Γdγ . Hence, the event Gn implies that (5.7) holds for K = d/γ and δ = γ2/2.
Thus, multiplying both sides of (5.6) by IGn and taking the expectation over Dn yields
the inequality (5.5) for some finite C ′ = C ′(d, γ).
Proceeding to verify that P(Gcn) → 0 as n → ∞, recall [9, Propn. 3.5] that Θd,0 is the
symmetrization of the law µ|sd|, for the sum sd = u1 + · · · + ud of ?-free Haar unitary
operators u1, . . . , ud, and [9, Eqn. (5.7)] that for d ≥ 2 the measure µ|sd| on R+ has the
density

dµ|sd|

dx
=
d
√

4(d− 1)− x2

π(d2 − x2)
I[0,2

√
d−1](x) , (5.8)

so in particular both µ|sd|((0, 1/2)) and µ|sd|((1, 3/2)) are strictly positive. Further, from
Lemma 3.1 we already know that the symmetrization of the ESD ν|Sn| of Dn, converges
weakly, in probability, to Θd,0 and consequently, ν|Sn| converges weakly to µ|sd|, in prob-
ability. From the preceding we deduce the existence of g ∈ Cb(R+) supported on [0, 1/2],
such that 〈g, µ|sd|〉 ≥ 1 and that for such g,

P(rn > 1/2) ≤ P(〈g, ν|Sn|〉 = 0) ≤ P
(
|〈g, ν|Sn|〉 − 〈g, µ|sd|〉| > 1/2

)
→ 0 , (5.9)

as n→∞. Similarly, considering g ∈ Cb(R+) supported on [1, 3/2] for which 〈g, µ|sd|〉 ≥
1, we get that P(r1 < 1)→ 0, from which we conclude that P(Gcn)→ 0.

6 Proof of Proposition 1.3

The main task here is to show that for m-a.e.v ∈ C, the logarithm is uniformly inte-
grable with respect to the ESD of |UnTn − vIn|. As shown in [7], setting ρ = |v|, this is
equivalent to such uniform integrability for the ESD νvn of the matrix Y v

n (per (1.12)).
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The key for the latter is to show that =(Gn(·)) is uniformly bounded on {iη : η > n−κ1}
for some κ1 > 0 and Lebesgue almost every ρ (see proof of [7, Propn. 14 (i)]). In [7],
this was done under the assumption of [7, Eqn. (3)], whereas here we show that the
same holds under the weaker condition (1.8).
To this end, [7, Lem. 10] yields (analogously to Lemma 3.1), the weak convergence, in
probability, of νvn to νv, as well as the identities and bounds [7, Eqn. (34)–(38)], without
ever using [7, Eqn. (2) or Eqn. (3)]. The same applies for [7, Lem. 11 and Lem. 12]
which validate the Schwinger-Dyson equation [7, Eqn. (38)] for all n large enough, any
=(z) > C1n

−1/4 and ρ ∈ (0, R]. We then use Lemma 1.5(i) to bypass [7, Lem. 13].
Specifically, from (1.8), using Lemma 1.5(i) we have that for every ε ∈ (0, 1/2) and finite
R, there exist finite M1 and κ1 > 0 depending only on R and ε such that for every
ρ ∈ [R−1, R],

{z : =(z) > n−κ1 , |=(Gn(z))| > M1} ⊂ Γρ2ε (6.1)

where Γργ denotes the union of open balls of radius γ > 0 centered at points from the
symmetric subset K ± ρ of R. Having (6.1) instead of the bound (4.8) of Lemma 4.3, we
consider here the closed set ΛK := {v ∈ C : |v| ∈ K} such that m(ΛK) = 0, the bounded,
open sets Γγ , γ > 0, associated with ΛK via (3.3), and the corresponding collection
S ⊂ C∞c (C) of test functions. Using this framework and following the proof of Lemma
3.2, we deduce that

〈Log, νvn〉 → 〈Log, νv〉,

in probability for each v ∈ Γγ , and consequently for m-a.e. v ∈ C. Then, utilizing our
assumption (1.7) on the uniformly bounded support of the relevant ESD-s, we have that
further, for any fixed φ ∈ S,∫

C

φ(v)〈Log, νvn〉dm(v)→
∫
C

φ(v)〈Log, νv〉dm(v) ,

in probability. Since Θ({0}) = 0 and Θ is not a Dirac measure, we know from [9, Thm.
4.4 and Cor. 4.5] and [7, Rmk. 8] that µA has a density with respect to the Lebesgue
measure on C. Consequently µA(ΛK) = 0, and following the same argument as in the
proof of Proposition 1.4, we get part (a) of Proposition 1.3.
For parts (b) and (c) of the proposition see [7, Rmk 8] (which does not involve [7, Eqn.
(2) or Eqn. (3)]). For part (d) recall that Lemma 1.5(i) applies even in case Un is replaced
by a Haar distributed orthogonal matrix On, as does the relevant analysis from [7] (c.f.
proof of [7, Thm. 18]). Hence, following the same argument as in the unitary case, the
proof is complete once we establish the analog of Lemma 5.2. That is, specify events
Gn determined by Tn, such that P(Gcn)→ 0 as n→∞ and

sup
v∈Γγ

P
(
Gn ∩

{
|v|smin(On + v−1Tn) ≤ t

})
≤ C ′tc1nc2 , (6.2)

for any γ > 0, some C ′ = C ′(γ) finite and all t, n. To this end, with Θ non-degenerate,
there exist ξ > 0 and b2+ ≥ b2− + ξ, such that both Θ([0, b−)) and Θ((b+,M ]) are positive.
Consequently, setting Tn = diag(r1, . . . , rn) with r1 ≥ r2 ≥ . . . ≥ rn, it follows from the
weak convergence of LTn to Θ (in probability), that P(Gcn) → 0 for Gn := {rn ≤ b− and
r1 ∈ [b+,M ]} (by the same reasoning as in the derivation of (5.9)). Further, (6.2) follows
by an application of [15, Thm. 1.3] conditional upon Tn (where [15, Eqn. (1.2)] holds
under Gn for v−1Tn, v ∈ Γγ , K = M/γ and δ = ξγ2, see (5.6)-(5.7)).
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