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Fractional Poisson field and fractional Brownian field:
why are they resembling but different?*
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Abstract

The fractional Poisson field (fPf) is constructed by considering the number of balls
falling down on each point of R”, when the centers and the radii of the balls are
thrown at random following a Poisson point process in R” x Rt with an appropriate
intensity measure. It provides a simple description for a non Gaussian random field
that is centered, has stationary increments and has the same covariance function
as the fractional Brownian field (fBf). The present paper is concerned with specific

properties of the fPf, comparing them to their analogues for the fBf.

On the one hand, we concentrate on the finite-dimensional distributions which re-
veal strong differences between the Gaussian world of the fBf and the Poissonnian
world of the fPf. We provide two different representations for the marginal distribu-
tions of the fPf: as a Chentsov field, and on a regular grid in R” with a numerical
procedure for simulations. On the other hand, we prove that the Hurst index estima-
tor based on quadratic variations which is commonly used for the fBf is still strongly
consistent for the fPf. However the computations for the proof are very different from
the usual ones.
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Introduction

In the last decades a lot of papers have been dedicated to the sum of an infinite
number of Poisson sources. The seminal ideas of Mandelbrot of adding Poisson sources
in order to get a fractional limit are described for instance in [6]. More recently this
subject became popular for the modeling of Internet traffic and telecommunication (see
[7, 12]) providing processes with heavy tails or long range dependence. In higher di-
mension, throwing Euclidean balls at random following a specific Poisson repartition
for the centers and the radii, and counting how many balls fall down on each point, pro-
vides a random field defined on R”. In [11], with an appropriate scaling, a generalized
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fPf and fBf fields

random field is obtained as an asymptotics. It has a Poisson structure and exhibits a
kind of self-similarity index H greater than 1/2. The case H less than 1/2 is studied in
[2] and a pointwise representation (Fg(y)),crr of the generalized field is given. It is
proved that Fy may be written as an integral with respect to a Poisson random measure
and Fy is called fractional Poisson field (fPf). At this point, the reader should be aware
that the fPf we are dealing with has no relation -except the name- with the fractional
Poisson process introduced in [4] for instance as a 1D Poisson process in a random time.

Actually the fPfis of own interest since it is centered, has stationary increments and
the same covariance function as the fractional Brownian field (fBf), but is not Gaussian.
Moreover let us mention the opportunity of obtaining many other models following the
same scheme. For instance one can build anisotropic fields by replacing the Euclidean
balls by more general convex sets [3] and natural images can be simulated [5].

The present paper focuses on the comparison between both fractional fields, fPf and fBf.
It is organized as follows. In the first section, we concentrate on the finite-dimensional
distributions of the fPf and on its moments. From this point of view, there are obvi-
ous differences between fPf and fBf. We exhibit a representation of Fy similar to the
Chentsov one (see [16], Chapter 8). In particular, we establish that all the finite dimen-
sional distributions are determined by the (D + 1)-dimensional marginal distributions.
We also give a representation of the fPf on a finite regular grid I' ¢ R”. We use it to
get simulations of the fPf in dimension D = 1. In the second section, we investigate
the estimation of the Hurst index H. We prove that a ratio of two different quadratic
variations of Fy yields an a.s. estimator of H. Note that a similar result holds for the
fractional Brownian field, but that our proof needs new arguments since we are not
dealing with a Gaussian framework any more.

To end this section let us give the notations used in the sequel. We consider R” en-
dowed with the Euclidean norm ||-||. We write B(z, r) for the closed ball of center x and
radius r > 0 with respect to the Euclidean norm. Without any risk of confusion, the no-
tation |- | will either denote the absolute value of any real number, or the D-dimensional
Lebesgue measure of any measurable subset of R”. In what follows, we will write Vp
for |B(0,1)|, the volume of the unit Euclidean ball in R”, and SP~! for the unit sphere
in RP.

1 Finite-dimensional distributions

1.1 Stochastic integral representation

Let us recall the precise definition of the fractional Poisson field as introduced in [2].
Let H € (0,1/2) and X € (0, +00). We consider ®, y a Poisson point process in RP? x R
with intensity measure

v m(dz,dr) = A~ P=I2H g gy (1.1)

and associate with ®, y a Poisson random measure N, y on RP x R+ with the same
intensity measure.
For any y in R”, we consider the stochastic integral

Pon)= [ (o (5) = o (0) No(da,dr) (1.2)

and finally we introduce the fractional Poisson field with Hurst index H and intensity
A as the random field F\ g = (F\ g (y))ycrr , which is clearly centered with stationary
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increments. Heuristically, F) x(y) may be seen as the difference between the number
of balls B(z, r) with (z,r) € ®, g covering the point y, and the number of balls covering
the origin. However the number of balls covering one particular point is infinite. Never-
theless, the stochastic integral (1.2) is well defined since (z,7) — T (¥) — T, (0)
belongs to L*(RP x R*, vy g(dz,dr)). Actually, for any y € R”, one can find a constant
C(y) € (0,+400) such that for any r € R™,

/ L5 (y) = Lpeen (0) d = |B(y,r)AB(0,r)| < C(y) min (r7,r771) (1.3)
RD

where AAB stands for the symmetric difference between A and B, two subsets of R”.
Furthermore, for any y € R”, (z,7) — Ip(;(y) — I, (0) also belongs to L?2(RP x
R*, vy g(dz,dr)) and by using the rotation invariance of the Lebesgue measure, we
obtain

2
/ (Tnen) () — Lnn () vasm(de,dr) = Aeg [y > (1.4)
RDP xR+

with ey = [, [B(e1,7)AB(0,r)|r~P~1*2#dr and e; being any point in SP~!. The con-
stant cy can be explicitly computed in dimension D = 1 as cy = % In higher

dimension, explicit formulas for |B(e;,r)AB(0, )| can be found for instance in [17].

Equation (1.4) shows that the covariance of F g is as follows

1

Cov(Fan(y) Pru(y) = 5 Aem (™ + 1w/ I* — lly =o' I7"). (1.5)

which, up to a constant, is the covariance of the fractional Brownian field. Consequently,
one can get the fBf with a central limit theorem procedure starting from copies of the
fPf. For such an approach see [9].

On the other hand, using a Gaussian measure with control measure vy g instead of
the Poisson measure N g in (1.2), would provide directly a Gaussian field that, up to
a constant, is the fractional Brownian field of index H. Let us denote it for a while
by By, . Contrarily to this last field, the fPf is neither Gaussian nor self-similar. How-
ever it is second-order self-similar and presents what is sometimes called an aggregate
similarity property (see [11]):

fdd

for all integer m > 1, Fy (m'/?H).) = F)(\k}){()7 (1.6)

NE

=~
Il

1

where (F/skl){) are iid copies of F) y. The fPf also clearly satisfies the following

E>1
fdd
VC>O, F)\7H(C-) = F)\C2H,H(')' (1.7)

Identities (1.6) and (1.7) are also shared by B) g, whereas the next proposition con-
cerning higher moments orders does not. Actually, for any positive even integer ¢,

E (B u(y)?) = (Acu Hy||2H)Q/2 and for any real number r > 2, E (| By z(y)|") | f o ||y||TH
Yl|l—

(where the notation f(¢) =, g(¢) means that there exist two constants 0 < ¢ < C < 400
e—

such that cg(e) < f(e) < Cyg(e) for all ¢ > 0 small enough, f and g being two positive
functions).
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Proposition 1.1 (Moments of the fPf).

(i) For all integer q > 2, one has

0 if ¢ is odd,
qy —
E(Fxu(y)?) = { P,(Acy ||y\|2H) if q is even,

where P, is a polynomial of degree ¢/2 and valuation 1.

(#4) For all real numberr > 2, one has E (|F u(y)|") Hyfﬁo Ayl*H.
Proof.
(i) Note that the random variable F) y(y) has a symmetric distribution whatever y € R”
is, so that one has E(F) g(y)?) = 0 if ¢ is odd. Suppose that ¢ = 2p is even. Let us write,
for all (y,z,7) € RP? x RP x RT, ¥(y,%,7) = Tp(zr) (y) — Lp(s,(0). Observe that, for all
k > 1, one has ¥(y, ) € L**(RP x R*, vy g(dz,dr)) and

k fo0 if k is odd,
/}RDX]RJr Yy, x, )" v m(de,dr) = { Ae |lyll* if k is even.

Then, according to [1] (with the convention that 0° = 1), we have

2p -
E(Fxu(y)?) = Z Kop(r,...,72p) H (/ W(y, T)k v (da, dr))
(r1,e.05r2p) €1(2p) k=1 RP xR+

P T2k
- Z K2p(07T27 5. r2p H (/]RD - yal’ﬂ“)% V)\,H(d{l?7d’f‘))
X

(0,72,0,...,r2p)EI(2p) k=1

_ £
= Y Kplrieimy) (hen IyP) S

(r1,.-,rp)€1(p)

where I(n) = {(7«1, ) € N ék’”’“ _ n} K1, 1) = nl ( TT rl (k)" )_1 and

—1
n

Kp(r1,...,m) = (2n)! < II rk!((Zk)!)rk) > 0 for all n > 1. Thus, there is a polyno-
k=1

mial P, such that E (F) ux(y)?) = P,(Acu ly|I*"). Note that 1 < b_ire < p for all
(ri,...,7p) € I(p). Thus, P,(0) = 0 and, by choosing (r1,...,7r,) = (0,...,0,1) € I(p) we
see that the valuation of P, is 1. Finally, by choosing (r1,...,7p) = (p,0,...,0) € I(p) we
see that the degree of F; is p.

(ii) Let r € [2,4+00). We have to prove that there exists C,, C/, §, > 0 such that

H r H
Vy e R, |yl <6, CoAllyl™ <E(Fu()") <O lyl*™ . (1.8)
If r is an even integer, the result follows from point (i). To continue, notice that for
1 1-—
1<p<s<p andae€[0,1] such that — = — ey , Holder’s inequality gives
S p o

(1—a)s
p/

E(|Pau()1*) < (B(Fyu@)) 5 (B(Fau)l”)) (1.9)

Let us prove the rhs of (1.8). Let ¢ be the even integer such that ¢ < r < ¢+ 2. By
applying (1.9) with s =r, p = ¢ and p’ = ¢ + 2, then (), we obtain

(1—a)r (1— a)'r

E(IFu(®)]") < (Cp) 7 (Cora) 72 )Myl 7327 = Gy |yl

for all y € R such that ||y|| < min(d,, §g+2)-
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Now, let us prove the lhs of (1.8). Let ¢ be an even integer such that 2 <r < ¢ < ¢+ 2.
By applying (1.9) with s = ¢, p = r and p’ = ¢ + 2, then (), we obtain

EBUF, a1 )5 = B(Fm(0)|7) (B P a () +2) ="
_(Q-a)q

> (CoA ll*™) (CoaX yl*T) ™ o2
_ (A—-a)q aq
> Oy = G (Mlyl*) ™

¥z
for all y € R such that ||y|| < min(d,, §,+2). Hence
r s H H
E(|Fxu(y)l") = (G35 Ayl = Coxlly| ™.
Finally, we have (1.8) by taking d, = min(dy, §g+2). O
Since the values of H and X are fixed in this section, we will not mention the dependence

on H and )\ anymore and we will drop all the H and ) indices writing ®, V, v, F' instead
of ®\ g, Nxm,vam, Fno.

1.2 Chentsov representation
We notice that for z,y € R” and » € R we have
532, (Y) = T, (0) = Tey)neo) (2,7) = Te)ney) (©,7)
when defining C(y), the cone over y, by
Cly) ={(z,r) e RP xR ; y € B(x,r)}. (1.10)

A similar computation as the one in (1.4) gives

/(C(y) N L)) = v(C(0) N C(w)%) = 2 [y
Then, we can write
F(y) = N(C(y) NC(0)°) — N(C(0) NC(y)°) (1.11)

and observe that F(y) follows a Skellam distribution: it is equal to the difference of two
.. . . . e 2H
iid Poisson random variables with parameter 252 ||y||”".

This formulation invites us to link the fPf to more general fields G which can be written
as
G(y) = M(C(y) NC(0)%) = M(C(0) NC(y)°) (1.12)

where M is any random measure on R” such that (1.12) makes sense and C(y) is the
cone over y as in (1.10). When M is a symmetric a-stable random measure, the result-
ing field is a so-called ‘H — sssis (H self-similar with stationary increments in the strong
sense) Sa.S Chentsov field’ as introduced in [16], with the resulting consequence that
H < 1/a. Going further, M still being a symmetric a-stable random measure, and re-
placing the difference in (1.12) by the sum, then the resulting field would be a Takenaka
random field [18].

We borrow some tricky notations from [15] and use them with M a Poisson random
measure. Meanwhile, we get a representation for the fdd’s of F'. For any positive
integer m, we define

Em ={0,1}" ={e: [1,m] — {0,1}}.
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Let y1,¥2,...,Ym be fixed in RP \ {0}. Then, writing T = (y1,¥2,...,¥ym) we denote for
any e € &,
C(T,e)= () Cly)*™
1<k<m
where C(y) still stands for the cone over y and the following convention is used C(y)! =
C(y) and C(y)? = C(y)¢ . The next statements are obvious. For e, e’ € &, if e # ¢’ then
C(T,e)NnC(T,e’) =0, and forany k =1,...,m,

Cu)= |J CcTe) and cm) = | CTe). (1.13)
e€€m;e(k)=1 e€Em; e(k)=0

We also denote 7' = (0,91,Y2,---,Ym) and En = {e : [0,m] — {0,1}}, so that using
(1.13), forany k=1,...,m,

C(0)*NC(y) = U ¢(T,e) and c(0)NC(y)® = U c@.e).
e€&m; e(0)=0,e(k)=1 e€&m; e(0)=1,e(k)=0
Hence, using (1.11), we obtain a representation of the random vector (F(y1), ..., F(ym))

as stated in the next proposition.

Proposition 1.2. Let y1,v2,...,ym € R?\ {0} and &,, = {e : [0,m] — {0,1}}. There

o

exists a family of independent Poisson random variables {X (e); e € &,,} such that

(FO0) cpcn= (3 (et = c0)x10))

et 1<ksm

Moreover; for any e € £, X(¢) = M(C(T,e)).

Actually, for the random fields defined by (1.12) with a Poisson random measure M, the
following proposition holds. It should be compared with the fact that all the fdd’s of a
Gaussian field are determined by the family of the 2-dimensional marginal distributions.

Proposition 1.3. Let us consider G defined by (1.12) with M an unknown Poisson
random measure. Let yi,vs,...,ym be m points in RP \ {0} with m > D. Then the
distribution of (G(y1),...,G(ym)) is determined by the (D + 1)-dimensional marginal
distributions of G.

A similar result was originally established by Sato in [15] for Takenaka fields. We will
not detail the proof of Proposition 1.3 since similar ideas to the original ones can be used
in our case. As a consequence of Proposition 1.3, if a field G defined by (1.12) with an
unknown Poisson measure M has the same (D + 1)-dimensional marginal distributions
as the fractional Poisson field F, then realizations of G may be obtained by choosing M
as the particular Poisson measure with intensity given by (1.1).

1.3 Representation on a grid
Let us fix 0 < § < R and consider the finite set of RP with .J Rr,s € IN points
Trs = B(0,R)N6Z" = {y;; 1 < j < Jrs} (1.14)

We discuss here the possibility to represent the discrete field (F'(y))yery ; by a simpler
field which could be more relevant for the structure of F'. The idea is to come back to
the number of balls B(z,r) falling down on the points of I'r ;5. For any fixed y € R,
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the function (z,7) — Ip()(y) is not integrable with respect to v given by (1.1) due
to the high number of very large balls. It is possible to classify the balls according to
their influence on the finite set I'g s. Notice that 0 € I'r 5. One can check that, for all
y€l'rys,

- if 7+ R < ||z|| then B(z,r) does not intersect B(0, R) so ;) (y) = Ap(y,(0) =0,

- if |z|| + R < r then B(z,r) covers B(0, R) so Tz, (y) = Ip(e,r)(0) =1,

- if (lz|| = R)+ < r < ||z|| + R then B(z,r) does not cover B(0, R) but is with a non
empty intersection with B(0, R) so g, (y) — Tp(s,)(0) € {—1,0,1}.

Each type of balls corresponds to a Poisson point process (PPP) with a suitable intensity
and by superposition, the original PPP & corresponds to their independent union. Only
the balls that have a non-trivial intersection with B(0, R) are interesting. They are
related to a PPP in R” x Rt of intensity measure

vo(dx,dr) = /\]I[(HszR)Jr,HzHJrR) (T)T_D_1+2H dx dr.

In order to deal with the balls with large radii (greater than §/2) we use independence
and superposition property by splitting the intensity vy as vV + (2 with v() the re-
striction of vy to RP x [§/2, +o0) and v(?) the reminder.

Balls with large radii. Let us consider a PPP ®() of intensity »(!). The number of
associated balls is a.s. finite and Poisson distributed with parameter

+oo
A = / V(l)(dx,dr) = Cy (r)yr— P28 gy
RD xR+ 5/2
with
01(7‘) = )\‘/]RD ]I[(r—R)+,r+R](||$||)d1' = )\VD ((7‘ + R)D - (7” - R)f) .

Note that, since R is fixed, as r tends to infinity, C; (r)r~P~1*2H behaves like r—2+2H,
Since H < 1/2, the parameter ), is finite. Therefore, we can decompose the intensity
measure vY) (dz, dr) as

Cy(r) 1
A it | rYdr ) (| 5T z|)dz ). (1.15)
(4 2010 ) (oMo (L)
number of balls
to consider distribution of the large radii distribution of the centers
conditionally to the radii
Ay
Thus we define a random field 7" by 7(1) = Z I. .0) ,u), where
B(Xn',Ry")
n=1

- Aq is a Poisson random variable with parameter )\,
- RYY is a positive random variable with pdf p; (1) = ANC(r) rm PRy (1),

- Xfll) is distributed in R” according to the probability distribution with conditional
density with respect to [R\" = r] given by z ﬁ(r) T— Ry, r+r)(2]])-

Balls with small radii. Now we focus on the intensity measure v(?) (dz,dr). Let (x,r) €

.]ng

RP x RT. Either (z,7) € ﬂ C(y;)¢ and the ball B(z,r) has no contribution on the set
j=1
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JR,s
Irys, or (z,r) € U C(y;). Since |ly; —y;|| > ¢ for all pairs (y;,y;) of different points
j=1
in Tr s, the Jrs sets (RP x [0,0/2)) N C(y;) are disjoint sets. Therefore the PPP of
intensity #(?) is the superposition of Jz ; independent PPP’s ®{2 .. cI)SQR) , where <I>§.2)
is of intensity

2 _D—
vy (da, dr) = Lo () R o)+ B0 6/2)0C ) (1)~ P~ 25 dadr,

and the balls B(x,r) associated with <I>§.2) satisfy Ip(,,)(y:;) = 1 if and only if i = j.

Thus each @;2) provides a random field Tj(g) such that

(2) AP =

i W) { 0’ otherwise,
where Agg) is a Poisson random variable with parameter )\5.2) = 1/](-2) (RP x R*). Since
[ =y5ll = Nzl = lly;ll = llz]| = R and ||z]| + R > R > /2 we get

(2) _ —D-1+2H _L\p 2H
/\j = AADXRJr ]I[Hm_yj‘|7(5/2)(7")7" dx dr = )\ﬁ(é/?) .

JR,s
To conclude we define a random field 7 over I'g s by T = Z Tj(Q) (note that the
j=1
Tj(Q) are independent). Finally, by superposing all the previous independent PPP’s and
by adding their related fields, we obtain the following proposition.

Proposition 1.4. Let I'r 5 be the finite set defined by (1.14). Then (F(y))ycry , has the
same distribution as (G(y) — G(0))yery ; with G = T + 73,

This description shows that the restriction to I'r s of the field I’ is essentially made up
with

- a field 7™ which is a simple “balls counting field’: random balls are built picking-
up the radii first in [0/2, 0o), the centers next, then 7} (y;) counts the number of
these balls above each y;,

- a field T(® whose values at each point y; form a collection of iid Poisson random
variables with parameter A5 (5/2)%4.

In Figure 1 we show simulations of fPf and fBf on [0, 1] N §Z with § = 271! for different
values of H. The fPf is simulated by using Proposition 1.4 and the fBf is obtained with
the Circulant Embedding Method (see [14]).

Note that in both cases the simulations are exact. The simulation of the fBf requires the
simulation of around 620(5*1) iid standard Gaussian random variables and also a nu-

merical procedure (based on Fast Fourier Transform) to obtain a Gaussian vector with

the desired covariance matrix. The simulation of the fPf only needs the simulation of a

finite number (of the same order 600(6*1)) of random variables whose distributions are
—

explicit. Let us remark that these two methods of simulation share the same drawback:
they are not iterative procedures. Then, when we change the grid it is necessary to
perform a new complete simulation of the process. Finally, we can compare visually the
fPf and the fBf in terms of H. The more H is high the less balls are taken into account
in the fractional Poisson field F. In these cases, the steps (corresponding to the large
balls) and the peaks (corresponding to the small balls) are particulary visible on the
graphs. We can also clearly observe that F' takes integer values in Z. For the fBf, which
is continuous with values in R, we can see that the graph is more and more regular
when H increases from 0 to %
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Hn,.

I

"H=03 "H=04

Figure 1: Different realizations of the fPf (on top) and fBf (on bottom) performed on [0, 1] N 6Z with § = 9—11
and different values of H.

2 Estimation of the H index

Quadratic variations are successfully used in the fractional Brownian motion frame-
work to build estimators of the Hurst index [10, 8]. When considering By a fractional
Brownian field on R?, D > 2, the results in the one dimensional setting may be used us-
ing the fact that the line processes { By (to+t0)—Br(to); t € R} are also one-dimensional
fractional Brownian motions. We consider the same estimators in our non-Gaussian
context. Similarly, by computing its characteristic function, one can prove that the line
process {F» u(to +t0) — Fx u(to);t € R} is equal in law to a one-dimensional fractional
Poisson process of Hurst parameter H and intensity A [, (1 — [|ly[|*)Y 2~ 71, <1dy.
Therefore in the rest of this section we assume that D = 1.

2.1 Quadratic variations

For a positive integer u, we consider the quadratic variations of F g with step u:

- 1 %=
Vin(u) = o Z (Fau(k+u) — Fy (k). (2.1)
k=0

We also note an(u) the quadratic variations of B) gy with step u with B, g a fractional
Brownian motion on R with same covariance as F) y. Note that, by stationarity, one
has E(Vy ,(u)) = Var(Fy i (u)) = Acgu? and the same holds for E(Vy , (u)).
Theorem 2.1. Let u > 1. Then, there exist vy ,(H) > 0 and v2 ,(H) > 0 such that as
n — 400,

9" Var (vj n(u)) — Mo (H) + 2020 (H),

and consequently

V;n(u) — Aegu? as.

Proof. In order to compute the variance of V;n(u), we follow the framework of [13]. We
can write Fi gy (k+u) — F\ g(k) = I1(¢,,1) as the Wiener-Itd integral with respect to the
compensated Poisson random measure Ny g — vy g on R X RT of the kernel function

Yuk(2,7) = Teugryne k) (2,7) = Tegyneurk)e (2,7), (2.2)

where C(-) is the cone defined by (1.10). Since H is fixed we simply write Av for vy g in
the sequel. According to the product formula (see Equation (14) of [13]) we have

(Fam(k+u) — Fa (k) = /R - P2 (2, )W) (da, dr) + I (V2) + I (Yup © Yuk) s
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where

- Jrxme+ wi,k(x, (W) (dx,dr) = Var(Fy g (k +u) — Fxu(k)) = Aegu? by (1.5),
- I1(4} ) is the Wiener-It6 integral of the kernel function ¢} , € L*(\v) := L*(R x
R*, \v), with v, 5, given by (2.2),

- I (Y ® ¥y k) is the multiple Wiener-It0 integral of order 2 of the symmetric func-
tion 1k @ Yk € L2((Ar)®2) := L2((R x R*)?, (Av)®2).

Therefore, by linearity,

V,\b:n(“) = degu* =1 (gn) + 12 (fa) (2.3)
1 2"-1 1 2" —1
with f, = on Z Yuk @ Yy and g, = 7 Z ¥2 . Then, by isometry,
k=0 k=0

F
Var(V, ,,(u)) = H9n||%2(,\u) + 2||f"||2L2(()\u)®2)'
Let us compute the first term:

2" —1

A A &)\ —
2 2 2
Hgn”L2(}\u) = 5o 1;1:0 /]RX]R+ Yy (@, )y (2, r)v(de, dr) = on lklgdn (1 — 2n> pu(k),

with
Ful) = [ kol (o) i),
RxR+
We set T = (0,u, k,u+ k) so that, according to (1.13), we can write the integrand as the
sum of indicator functions of the sets C(7T,(0,1,0,1)), C(7,(0,1,1,0)), C(T,(1,0,0,1))

and C(T,(1,0,1,0)). When |k| > u, each of them is empty except C(T, (0,1,1,0)) (see
the figure below) and hence

Vo oV ik = [Pu,0%ukl = Te()enc(wne()neu-rk)e-

\
AN C(T,(0,1,1,0))
AN
//
N /
\\ ; //
\ ’
\ \ 7/
\ y
\ \ /
C(0) N C(u) C(k) ~ Clu+ k;)/
\ // \ /
/ \ /
\ / \ /
\ /7 /
\\,/ \‘,/
0 U k u+k
u—1 u—1
Note that Z Tekyne(utk)e = Z Z Te(utrm)nc((i+1)utm)e < Z 1=u.
kEZ m=0 [€Z m=0
Thus, » 47 12, < ugy,and then, by using the fact that ¢2 , < 1, we get » 2 yibr ; <
[k|>u kEZ
ECP 18 (2013), paper 11. ecp.ejpecp.org
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(3u + 1)¢ . This implies that vy, (H) := »  pu(k) < +oo, since ¢, € L*(v), and
kEZ
VAP ||gn||2L2(/\U) is increasing to vy ,(H). Now, let us compute the second term:

2" —1
1 A2 k
e = 33w 2 [ (uk ®) (s © 600 d00)* = 52 3 (1= 50 pu (2
2 k=0 RXR*Y 2 Pyt 2

with
pulk) = / o (@, TV bu (T (de, dr).
RxR+

Note that |p, (k)| < pu(k) so that ve,(H) := Z pu(k)? < 400 and 2°A72 [ fall 22 (anye2) =
keZ
v2.o(H). This finishes to prove the first assertion of Theorem 2.1. Now, let us be con-

cerned with the almost sure convergence. By Markov inequality we have, for all ¢ > 0,
F
Var(v)\,n (U))

5 , with Var(Vy (1)) = O(27").

P (‘V;n(u) — )\cHqu) > 6) <

Therefore, by Borel-Cantelli Lemma, (V/\Fn(u)> converges a.s. to Acgu?H | This con-
’ 1

nz
cludes for the proof. O
Let us recall that, for all H € (0, 1), one has
Ac
Cov (Bt (u), Ba,ar(k +u) = By (1)) =~ (k- ulPH — 2k + [k — uf?H)

Therefore, p, (k) may also be written as p, (k) = < (|k + u|*" — 2[k|*" + |k — u|*"") and

defined for all H € (0,1), and it follows that vy, (H) = Z pu(k)? < +oc as soon as
keZ
H € (0,3/4). In the Gaussian setting, according to Breuer Major Theorem, for all

H < (0,3/4), one obtains that, on the one hand,
B
2" Var(Vy, (u) = 20203, (H),

and, on the other hand, (2"/ 2V/\L?n(u)) converges in law to a centered Gaussian variable
n

with variance 2)\2v27u(H ). A similar asymptotic normality may also be stated in the case
of fPf, for H € (0,1/2), using specific results for Poisson integrals [13] and should be
given in a forthcoming paper.

2.2 Estimation of the [ index on a fixed interval

We assume here to observe I, y on a fixed interval. Instead of considering V;’n(u) we

work with
2" -1 2
Win(u) = o Z <F>\,H ( on ) —F\m <2”>> . (2.4)

k=0

Observe that ]E(W;n(u)) = Aeg2~Hy2H 5 (0 as n tends to infinity. However we can
build an estimator of H and state the following theorem.

Theorem 2.2. Let u,v > 1 with u # v. Then, almost surely as n — +oo,
F
-~ 1 W)\ n(u) U
) = 2iog (2220 igg (1) s
n(u,v) = 5 log <W;n(v) /log

)

where W;n(u) is defined by (2.4).
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Proof. Let n > 1 be fixed. Remember that by (1.7) one has F) (27" ) fdd Fyo-2nm g (-)
d « F

and therefore W; o) =V, 5 2.u ,(u). Then, according to the previous proof we have

Var(W;n(u)) ~ )\2_(1+2H)”v1’u(H).

n—-+oo

Equality IE(V[/'/\Fn(u))2 = N2 27 4nH 4 implies that

Var (EWM(“) ) ulH) o2, (2.5)

(WY, (w)) ) nrboo AchulH
Since H < 1/2, Markov inequality and Borel-Cantelli Lemma show that, almost surely
W, (u
as n — +oo, ’\+() — 1. The proof follows, by using the fact that
E(W, . (w))
E(W,  (u
log M = 2H log (E)
E(W, () v
O
d

Let us quote that in the Gaussian setting, by self-similarity of B, gy one has Wi o) =
2_2”HV;;1 (u), where W;in (u) is obtained by replacing F) y by By g in (2.4). It follows
that the same estimator of H is still consistent (and this is true for all H € (0,1)).
Moreover one can prove its asymptotic normality for all H € (0,3/4) using asymptotic
normality of 2"/ 2(V/\Ejn(u)7 V/\%n(v)). The asymptotic normality in the fPf setting is still
under progress.

0.06 T T T T T T T 0.04

0.05¢ 0.035f

0.04 1

0.025

-0.01 L L L L L L L L L L L L L L
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

(a) Bias H — ﬁn(u, v) (b) Standard deviation

Figure 2: Estimation of H with ﬁn(u,v) versus H for the fPf (solid lines) and the fBf (dashed lines) with
n = 11 realizations and (u,v) = (1,2) (o lines) or (u,v) = (1,4) (* lines). Parameter X is 1.

We illustrate numerically Theorem 2.2 by performing on [0,1] N §Z, § = 2711, 100 real-
izations of the fields F\ g and By g with A = 1, with 9 values of H from 0.05 to 0.45 and
with two different choices of (u,v): (u,v) = (1,2) and (u,v) = (1,4) (see Figure 2). We
remark that (u,v) = (1,4) seems to be a better choice. Moreover, contrarily to the fBf,
the standard deviation obtained for the fPf depends on H, which is in adequacy with
the fact that the variance given by (2.5) also depends on H. In particular, the standard
deviation increases when H goes to 1/2.
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