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Abstract

We consider the Cheeger constant φ(n) of the giant component of supercritical bond
percolation on Zd/nZd. We show that the variance of φ(n) is bounded by ξ

nd , where
ξ is a positive constant that depends only on the dimension d and the percolation
parameter.
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1 Introduction

Let Td(n) be the d dimensional torus with side length n, i.e. Zd/nZd, and denote
by Ed(n) the set of edges of the graph Td(n). Let pc(Zd) denote the critical value
for bond percolation on Zd, and fix some pc(Zd) < p ≤ 1. We apply a p-bond Bernoulli
percolation process on the torus Td(n) and denote by Cd(n) the largest open component
of the percolated graph (In case of two or more identically sized largest components,
choose one by some arbitrary but fixed method). Let Ω = Ωn = {0, 1}Ed(n) be the space
of configurations for the percolation process and denote by P = Pp the probability
measure associated with the percolation process. For a subset A ⊂ Cd(n)(ω) we denote
by ∂Cd(n)A the boundary of the set A in Cd(n), i.e. the set of edges (x, y) ∈ Ed(n) such
that ω((x, y)) = 1 and with either x ∈ A and y /∈ A or x /∈ A and y ∈ A. Throughout
this paper c, C and ci for i ∈ N denote positive constants which may depend on the
dimension d and the percolation parameter p but not on n. The value of the constants
may change from one line to the next.

Next we define the Cheeger constant

Definition 1.1. For a set ∅ 6= A ⊂ Cd(n), we denote

ψA =
|∂Cd(n)A|
|A|

.

where | · | denotes the cardinality of a set. The Cheeger constant of Cd(n) is defined by:

φ = φ(n) := min
∅6=A⊂Cd(n)

|A|≤|Cd(n)|/2

ψA.
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Isoperimetric constant of the supercritical percolation cluster

In [5] Benjamini and Mossel studied the robustness of the mixing time and Cheeger
constant of Zd under a percolation perturbation. They showed that for pc(Zd) < p < 1

large enough nφ(n) is bounded between two constants with high probability. In [7],
Mathieu and Remy improved the result and proved the following on the Cheeger con-
stant

Theorem 1.2. For every p > pc(Z
d), there exist constants c2(p), c3(p), c(p) > 0 such that

for every n ∈ N
P
(c2
n
≤ φ(n) ≤ c3

n

)
≥ 1− e−c log

3
2 n.

Recently, Marek Biskup and Gábor Pete brought to our attention that better bounds
on the Cheeger constant exist in both [8] and [3]. The following theorem is stated in
[8] Corollary 1.4 without asymptotic rate, however going over the proof one obtains the
following statement:

Theorem 1.3. [8] For d ≥ 2 and p > pc(Z
d) and for every C > 0, there are constants

α(d, p) > 0 and β(d, p) > 0 such that

P

(
∀S ⊂ Cd(n) connected,

if Cn ≤ |S| < |Cd(n)|
2 then |∂CS|

|S|(d−1)/d ≥ α

)
≥ 1− exp

(
−βn(d−1)/d

)
.

Our result can be obtained with the use of [7] however we use Theorem 1.3 as it
simplifies the proofs.

In 2011 Itai Benjamini gave the following conjecture as an extension to the known
results about the Cheeger constant:

Conjecture 1.4. The limit limn→∞ nφ(n) exists.

Even though the last conjecture is still open, and the expectation of the Cheeger con-
stant is quite evasive, we managed to give a good bound on the variance of the Cheeger
constant. This is given in the main Theorem of this paper (The proof is presented in
page 9):

Theorem 1.5. There exists a constant ξ = ξ(p, d) > 0 such that

Var(φ) ≤ ξ

nd
.

A major ingredient of the proof is Talagrand’s inequality for concentration of mea-
sure on product spaces. Talagrand’s inequality requires control over the influence of a
single edge on the Cheeger constant. Such a bound can be achieved using results on
the isoperimetric profile of the giant component and the fact that with high probability
edges outside the giant component have little effect over the Cheeger constant. This
inequality is used by Benjamini, Kalai and Schramm in [4] to prove concentration of first
passage percolation distance. A related study that uses another inequality by Talagrand
is [1], where Alon, Krivelevich and Vu prove a concentration result for eigenvalues of
random symmetric matrices.

2 The Cheeger constant

Before turning to the proof of Theorem 1.5, we give the following definitions:

Definition 2.1. For a function f : Ω→ R and an edge e ∈ Ed(n) we define ∇ef : Ω→ R

by
∇ef(ω) = f(ω)− f(ωe)
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Isoperimetric constant of the supercritical percolation cluster

where

ωe(e′) =

{
ω(e′) e′ 6= e

1− ω(e′) e′ = e
.

In addition, for a configuration ω ∈ Ω and an edge e ∈ Ed(n), let ω̂e = min{ω, ωe} and
ω̌e = max{ω, ωe}.

Definition 2.2. For n ∈ N we define the following events:

H1
n(c1) =

{
ω ∈ Ω : |Cd(n)(ω)| > c1n

d
}

H2
n(c2, c3) =

{
ω ∈ Ω :

c2
n
< φ(n)(ω) <

c3
n

}
H3
n =

{
ω ∈ Ω : ∀e ∈ Ed(n) |Cd(n)(ω)4Cd(n)(ωe)| ≤

√
n
}

H4
n(c4) = {ω ∈ Ω : ∃A : |A| > c4n

d, ψA(ω) = φ(n)(ω)}
H5
n(c5) = {ω ∈ Ω : ∀e ∈ Ed(n) ∃A : |A| > c5n

d, ψA(ωe) = φ(n)(ωe)}

, (2.1)

and

Hn = Hn(c1, c2, c3, c4, c5) = H1
n(c1) ∩H2

n(c2, c3) ∩H3
n ∩H4

n(c4) ∩H5
n(c5). (2.2)

We start with the following deterministic claim:

Claim 2.3. Given c1, c2, c3, c4, c5 > 0, there exists a constant C = C(c1, c2, c3, c4, c5, d, p) >

0 such that if ω ∈ Hn(c1, c2, c3, c4, c5) then for every e ∈ Ed(n)

|∇eφ(ω)| ≤ C

nd
.

In order to prove Claim 2.3 we will need the following two lemmas:

Lemma 2.4. Fix a configuration ω ∈ Ω and an edge e ∈ Ed(n). Let A ⊂ Cd(n)(ω̂e) be a
subset such that |A| = αnd. Then

|∇eψA| ≤
1

αnd
.

Proof. Since A is a subset of Cd(n)(ω̂e) it follows that A is also contained in Cd(n)(ω̌e)

and the size of ∂Cd(n)A is changed by at most 1 by adding an edge e. It therefore follows
that

|∇eψ(A)| = |ψA(ω)− ψA(ωe)| = |ψA(ω̂e)− ψA(ω̌e)|

≤
∣∣∣∣ |∂A||A| − |∂A|+ 1

|A|

∣∣∣∣ =
1

|A|
.

(2.3)

Lemma 2.5. Let G be a finite graph, and let A,B ⊂ G be disjoint such that there exists
a unique edge e = (x, y), such that x ∈ A and y ∈ B, then

ψA∪B ≥ min{ψA, ψB} −
2

|A|+ |B|
.

Proof. From the assumptions on A and B it follows that

ψA∪B =
|∂(A ∪B)|
|A ∪B|

=
|∂A|+ |∂B| − 2

|A|+ |B|
≥ min

{
|∂A|
|A|

,
|∂B|
|B|

}
− 2

|A|+ |B|
, (2.4)

and so the lemma follows.
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Isoperimetric constant of the supercritical percolation cluster

Proof of Claim 2.3. We separate the proof into six different cases according to the fol-
lowing table:

e = (x, y)
ω(e) = 0

(ω = ω̂e)

ω(e) = 1

(ω = ω̌e)

x, y /∈ Cd(n) 1 2
x, y ∈ Cd(n) 3 4

x ∈ Cd(n) , y /∈ Cd(n)

or
y ∈ Cd(n) , x /∈ Cd(n)

5 6

• Cases 1 and 2: In those cases the set Cd(n) and the edges available from it are
the same for both configurations ω and ωe. It therefore follows that ∇eφ(ω) = 0.
See Figure 1a, and 1b.

• Case 3: In this case the set Cd(n) is the same for both configurations ω and ωe,
however the set of edges available in Cd(n) is increased by one when moving to
the configuration ωe, see figure 1c. Fix a set A ⊂ Cd(n)(ω) of size bigger than c4nd

which realizes the Cheeger constant. It follows that

ψA(ω) = φ(ω) ≤ φ(ωe) ≤ ψA(ωe),

and therefore by Lemma 2.4 we have

|φ(ωe)− φ(ω)| ≤ ψA(ωe)− ψA(ω) ≤ 1

c4nd
,

as required.

• Case 4: We separate this case into two subcases according to wether the set
Cd(n)(ω)\Cd(n)(ωe) is an empty set or not. If Cd(n)(ω)\Cd(n)(ωe) = ∅ then we are
in the same situation as in Case 3, see Figure 1d, and so the same argument gives
the desired result. So, let us assume that Cd(n)(ω)\Cd(n)(ωe) 6= ∅, see Figure 1e.
Since ω ∈ H3

n, we know that

|Cd(n)(ω)\Cd(n)(ωe)| ≤
√
n, (2.5)

and since ω ∈ H1
n, Cd(n)(ω) and Cd(n)(ωe) are not disjoint. Since ω ∈ H4

n, there
exists a set A ⊂ Cd(n)(ω) of size bigger than c4n

d realizing the Cheeger con-
stant in the configuration ω. We denote A1 = A ∩ Cd(n)(ωe) and A2 = A ∩
(Cd(n)(ω)\Cd(n)(ωe)). Applying Lemma 2.5 to A1 and A2 we see that

ψA(ω) = ψA1∪A2(ω) ≥ min{ψA1(ω), ψA2(ω)} − 2

|A|
. (2.6)

From (2.5) it follows that |A2| ≤
√
n and therefore ψA2(ω) ≥ 1√

n
which gives us

that min{ψA1(ω), ψA2(ω)} = ψA1(ω). Indeed, if the last equality doesn’t hold then

c2
n
≥ ψA(ω) ≥ ψA2

(ω)− 2

|A|
≥ 1√

n
− 2

c4nd
,

which for large enough n yields a contradiction. Consequently from (2.6) we get
that

ψA1(ω)− 2

c4nd
≤ φ(ω) ≤ ψA1(ω),

and so

φ(ωe)− 2

c4nd
≤ ψA1

(ωe)− 2

c4nd
≤ ψA1

(ω)− 2

c4nd
≤ φ(ω),
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(a) Case 1 (b) Case 2

e

(c) Case 3

e

(d) Case 4a

(e) Case 4b

e

(f) Case 5

Figure 1: Illustrations of the different cases
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Isoperimetric constant of the supercritical percolation cluster

i.e. φ(ωe)− φ(ω) ≤ 2
c4nd .

For the other direction, since ω ∈ H5
n, there exists a set B ⊂ Cd(n)(ωe) of size

bigger than c5nd realizing the Cheeger constant in ωe, then

φ(ω) ≤ ψB(ω) ≤ ψB(ωe) +
1

|B|
= φ(ωe) +

1

|B|
≤ φ(ωe) +

1

c5nd
.

Consequently,

|φ(ω)− φ(ωe)| ≤ max

{
2

c4nd
,

1

c5nd

}
,

as required.

• Case 5: The proof of this case follows the proof of case 4 above, see Figure 1f.

• Case 6: This case is impossible by the definition of the set Cd(n)(ω).

Next we turn to estimate the probability of the event Hn.

Claim 2.6. There exist constants c1, c2, c3, c4, c5 > 0 and a constant c > 0 such that for
large enough n ∈ N we have

P(Hc
n) ≤ e−c log

3
2 n. (2.7)

Proof. Since P(Hc
n) ≤

∑5
i=1 P((Hi

n)c), it’s enough to bound each of the last probabili-
ties separately. The proof of the exponential decay of P((H1

n)c) for appropriate constant
is presented in the Appendix.

By [7] Theorem 3.1 and section 3.4, there exists a constant c > 0 such that for n
large enough, P((H2

n)c) ≤ e−c log3/2 n for some constants c2, c3 > 0.
Turning to bound P((H3

n)c), we notice that the set Cd(n)(ω)4Cd(n)(ωe) is indepen-
dent of the status of the edge e and therefore

P((H3
n)c) =

1

1− p
P
({
ω ∈ Ω : ∃e ∈ Ed(n) |Cd(n)(ω)4Cd(n)(ωe)| ≥

√
n , e is closed

})
≤ 1

1− p
P
({
ω ∈ Ω : ∃e ∈ Ed(n) |Cd(n)(ω)4Cd(n)(ωe)| ≥

√
n , e is closed

}
∩H1

n

)
+

1

1− p
P((H1

n)c).

(2.8)
We already gave appropriate bound for the last term and therefore we are left to bound
the probability of {ω ∈ Ω : ∃e ∈ Ed(n) |Cd(n)(ω)4Cd(n)(ωe)| ≥

√
n , e is closed}∩H1

n.
Notice that the occurrence of this event implies the existence of an open cluster of size
bigger than

√
n which is not connected to Cd(n). An appropriate bound for this event

can be found in Lemma 3.2.
In order to deal with the event (H4

n)c we denote Gn the event in Theorem 1.3,

Gn =

{
∀S ⊂ Cd(n) connected : Cn ≤ |S| < |Cd(n)|

2
,
|∂CS|
|S|(d−1)/d

≥ α
}
.

By [8] there exists a constant β > 0 such that P(Gcn) < e−βn
( d−1

d )
for large enough

n ∈ N. As before we write

P((H4
n)c) ≤ P((H4

n)c ∩H1
n ∩H2

n ∩Gn) + P((H1
n)c ∪ (H2

n)c ∪Gcn),

and by the probability bound mentioned so far it’s enough to bound the probability of
the first event (H4

n)c ∩H1
n ∩H2

n ∩Gn. What we will actually show is that for appropriate
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choice of 0 < c4 <
1
2 we have (H4

n)c ∩H1
n ∩H2

n ∩Gn = ∅. Indeed, since we assumed the
event Gn occurs we have that for large enough n ∈ N and every set A ⊂ Cd(n)(ω) of
size smaller than c4nd,

|∂Cd(n)A| ≥ α|A|
d−1
d .

It follows that

ψA ≥ α
1

|A|1/d
≥ α

c
1/d
4 n

. (2.9)

Choosing c4 > 0 such that for large enough n ∈ N we have α

c
1/d
4

> c3, we get a contra-

diction to the event H2
n, which proves that the event (H4

n)c ∩ H1
n ∩ H2

n ∩ Gn is indeed
empty.

Finally we turn to deal with the event (H5
n)c. As before it’s enough to bound the

probability of the event (H5
n)c ∩H1

n ∩H2
n ∩H3

n ∩H4
n ∩Gn. We divide the last event into

two disjoint events according to the status of the edge e, namely

V 0
n : = (H5

n)c ∩H1
n ∩H2

n ∩H3
n ∩H4

n ∩Gn ∩ {ω(e) = 0}
V 1
n : = (H5

n)c ∩H1
n ∩H2

n ∩H3
n ∩H4

n ∩Gn ∩ {ω(e) = 1},
(2.10)

and will show that for right choice of c5 > 0 both V 0
n and V 1

n are empty events.
Let us start with V 0

n . Going back to the proof of Claim 2.3 one can see that under
the event H1

n ∩H2
n ∩H3

n ∩H4
n there exists a constant c > 0 such that

φ(ωe) ≤ φ(ω) +
c

nd
≤ c3

n
+

c

nd
, (2.11)

and therefore φ(ωe) ≤ c̃3
n for any c̃3 > c3 and n ∈ N large enough. If ∅ 6= A ⊂ Cd(n)(ωe)

is a set of size smaller than n
c̃3

then

ψA(ωe) ≥ 1

|A|
>
c̃3
n
, (2.12)

and therefore A cannot realize the Cheeger constant. On the other hand, if A ⊂
Cd(n)(ωe) satisfy n

c̃3
≤ |A| ≤ c5nd then

|∂Cd(n)(ωe)A| ≥ |∂Cd(n)(ωe)(A ∩ Cd(n)(ω))| − 1 ≥ |∂Cd(n)(ω)(A ∩ Cd(n)(ω)| − 2,

and therefore (Since we assumed the event Gn occurs)

ψA(ωe) ≥
|∂Cd(n)(ω)(A ∩ Cd(n)(ω))|

|A|
− 2

|A|

=
|∂Cd(n)(ω)(A ∩ Cd(n)(ω))|

|A ∩ Cd(n)(ω)|
|A ∩ Cd(n)(ω)|

|A|
− 2

|A|

≥ α

|A ∩ Cd(n)(ω)| 1d
· |A| −

√
n

|A|
− 2c̃3

n

≥ α

2c
1
d
5 n
− 2c̃3

n
,

(2.13)

where the last inequality holds for large enough n, since limn→∞
|A|−

√
n

|A| = 1. Taking
c5 > 0 small enough such that α

2c
1
d
5

− 2c̃3 > c3 we get a contradiction to (2.11). It follows

that no set A ⊂ Cd(n)(ωe) of size smaller than c5n
d can realize the Cheeger constant

which contradicts (H5
n)c, i.e, V 0

n = ∅.
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Finally, for V 1
n . The case A ⊂ Cd(n)(ωe) such that |A| < n

c̃3
is the same as for the

event V 0
n . If A ⊂ Cd(n)(ωe) satisfy n

c̃3
≤ |A| ≤ c5nd then

|∂Cd(n)(ωe)A| ≥ |∂Cd(n)(ω)A| − 1.

and therefore as in the case of V 0
n

ψA(ωe) ≥
|∂Cd(n)(ω)A| − 1

|A|

≥ α |A|
d−1
d

|A|
− 1

|A|
≥ c6

2c
1/d
5 n

− c̃3
n
,

(2.14)

where again the last inequality holds only for large enough n. Choosing c5 small enough,
we again get a contradiction to (2.11), and as before this yields that V 1

n = ∅.

Proof of theorem 1.5. By [10] (Theorem 1.5) the following inequality holds for some
K = K(p),

Var(φ) ≤ K ·
∑

e∈Ed(n)

‖∇eφ‖22
1 + log (‖∇eφ‖2/‖∇eφ‖1)

, (2.15)

where ‖∇eφ‖22 = E[(∇eφ)2] and ‖∇eφ‖1 = E[|∇eφ|]. Observe that

‖∇eφ‖1 = ‖∇eφ1{∇eφ6=0}‖1 ≤ ‖∇eφ‖2‖1{∇eφ6=0}‖2,

and therefore
‖∇eφ‖2
‖∇eφ‖1

≥ 1√
P(∇eφ 6= 0)

≥ 1.

Consequently, if we fix some edge e0 ∈ Ed(n),

Var(φ) ≤ K
∑

e∈Ed(n)

‖∇eφ‖22 = K|Ed(n)| · ‖∇e0φ‖22 = Kdnd · ‖∇e0φ‖22, (2.16)

where the first equality follows from the symmetry of Td(n).

‖∇e0φ‖22 = E[|∇e0φ|21Hn
] + E[|∇e0φ|21Hc

n
]. (2.17)

Notice that since |∇e0φ| ≤ 2dwe have E[|∇e0φ|21Hc
n
] ≤ 4d2P(Hc

n). Thus applying Lemma
2.6,

E[|∇e0φ|21Hc
n
] ≤ 4d2e−c log

3
2 (n), (2.18)

and by Lemma 2.3

E[|∇e0φ|21Hn
] ≤ C2

n2d
. (2.19)

Thus combing equations (2.18) and (2.19) with equation (2.16) the result follows.

3 Appendix

In this Appendix for completeness and future reference, we sketch a proof of the
exponential decay of P((H1

n)c) and the decay of probability for the size of the second
largest component of percolation in a box.

The proof of the first estimate follows directly from two papers [6] by Deuschel and
Pisztora and [2] by Antal Pisztora, which together gives a proof by a renormalization
argument. We borrow the terminology of [2] without giving here the definitions.
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Lemma 3.1. Let p > pc(Z
d). There exist c1, c > 0 such that for n large enough

Pp(|Cd(n)(ω)| < c1n
d) < e−cn.

Proof. By [6] Theorem 1.2, for every ε > 0 there exists a pc(Zd) < p∗ < 1 such that for
every p > p∗ there exists a constant c > 0 for whom, Pp(|Cd(n)(ω)| < (1− ε)nd) < e−cn.
Since {|Cd(n)(ω)| < c̃1n

d}c is an increasing event, by Proposition 2.1 of [2] for N ∈ N
large enough, i.e., such that p̄(N) > p∗,

PN (|Cd(n)(ω)| < c̃1n
d) ≤ P∗p̄(N)(|Cd(n)(ω)| < c̃1n

d) < e−cn, (3.1)

wherePN is the probability measure of the renormalized dependent percolation process
and P∗p̄(N) is the probability measure of standard bond percolation with parameter p̄(N).

From the definition of the event R(N)
i , the crossing clusters of all the boxes B′i that admit

R
(N)
i are connected to each other, thus

Pp
(
|Cd(nN)(ω)| < c̃1(nN)d

)
< e−cn.

Next, for completeness, we turn to prove that all components outside the giant one
are small.

Lemma 3.2. Let p > pc(Z
d) and denote by K ⊂ Td(n)\Cd(n) the largest connected

component of the graph Td(n)\Cd(n). Then there exist constants c, C > 0 such that

Pp
(
|K| > C

√
n
)
≤ e−cn

1
4 .

Proof. We separate the proof into two parts: First, following ideas from Section 4 of
[9], we prove the theorem for pc(Z) < p < 1 close enough to one. Secondly, we use a
renormalization argument to show that the argument for large enough p can be used to
prove the lemma for any pc(Zd) < p < 1 in the cost of changing the value of the constant
c.

Since there exists c > 0 such that

]
{
∗-connected edge sets of size k in Td(n)

}
≤ nd · ck,

we get by a union bound that1

Pp
(
∃A ⊂ Ed(n) : A is ∗ - connected , |A| > n

1
4 , ∀e ∈ A , ω(e) = 0

)
≤

∞∑
k=bn

1
4 c

nd · ck(1− p)k.

If p∗ < p < 1, where p∗ solve the equation c(1 − p) = 1, we get that there exists some
constant c = c(p) > 0 such that

Pp
(
∃A ⊂ Ed(n) : A is ∗ - connected , |A| > n

1
4 , ∀e ∈ A , ω(e) = 0

)
≤ e−cn

1
4 .

Using the proof of Lemma 3.1 for large values of p we see in the cost of increasing the
value of p∗ we can ensure that for every p∗ < p < 1 there exists c̃ > 0 such that for large
enough n ∈ N we have Pp

(
|K| ≥ |Td(n)|/2

)
≤ e−c̃n. Thus we only need to deal with the

1The choice of n
1
4 is arbitrary and the only requirement it is� log(n) and smaller than

√
n.
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case
√
n < |K| < |Td(n)|/2. If

√
n < |K| < |Td(n)|/2, by the isoperimetric inequality for

Td(n) there exists some δ > 0 such that |∂K| ≥ δ|K| d−1
d ≥ δ|K| 12 ≥ δn

1
4 . Since K is a

maximal connected set in Td(n)\Cd(n) we get that ω(e) = 0 for every e ∈ ∂K. Recalling
that ∂K is ∗-connected (see [6] Lemma 2.1 or [11]) we can conclude that

Pp
(√
n < |K| < |Td(n)|/2

)
≤ Pp

(
|∂K| ≥ δn 1

4 , ∂K is ∗ - connected ,
∀e ∈ ∂K , ω(e) = 0

)
≤ e−cn

1
4

Next we turn to the renormalization argument. Notice that the by the definition of
K which ignores the percolation structure outside of Td(n)\Cd(n) we have that {|K| >√
N} is a decreasing event. By Proposition 2.1 of [2] for N ∈ N large enough, i.e., such

that p̄(N) > p∗, we have

PN (|K| >
√
n) ≤ P∗p̄(N)(|K| >

√
n) < e−cn

1
4 , (3.2)

wherePN is the probability measure of the renormalized dependent percolation process
and P∗p̄(N) is the probability measure of standard bond percolation with parameter p̄(N).

Assume that K ⊂ Td(n)\Cd(n) is a connected component under the law of Pp. By the
definition of good boxes KN contain a cluster that is contained in Cd(n) under Pp and
this cluster intersect every connected set of size N/10 (see [2]) thus there exists a
connected component KN ⊂ Td(n)\Cd(n) under the law of PN such that

K ⊂
⋃

x∈KN∪∂KN

B(x,N),

where B(x,N) is the box of size N centered around x. Consequently we have the
following estimate for the size of K

|K| ≤ Nd (|KN |+ |∂KN |) ≤ (2d+ 1)Nd|KN |. (3.3)

Thus, using (3.3) and (3.2) we get that

Pp
(
|K| ≥

√
n
)
≤ PN

(
|KN | ≥

√
n/N

(2d+ 1)Nd

)

≤ P∗p(N)

(
|KN | ≥

√
n

(2d+ 1)N (d+ 1
2 )

)
≤ e
− c

((2d+1)N
(d+1

2
)
)
1
4

n
1
4

,

(3.4)

as required.
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