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Abstract

Let M be an arbitrary Hermitian matrix of order n, and k be a positive integer ≤ n. We show that if
k is large, the distribution of eigenvalues on the real line is almost the same for almost all principal
submatrices of M of order k. The proof uses results about random walks on symmetric groups and
concentration of measure. In a similar way, we also show that almost all k× n submatrices of M

have almost the same distribution of singular values.

1 Introduction

Let M be a square matrix of order n. For any two sets of integers i1, . . . , ik and j1, . . . , jl between
1 and n, M(i1, . . . , ik; j1, . . . , jl) denotes the submatrix of M formed by deleting all rows except
rows i1, . . . , ik, and all columns except columns j1, . . . , jl . A submatrix like M(i1, . . . , ik; i1, . . . , ik)

is called a principal submatrix.
For a Hermitian matrix M of order n with eigenvalues λ1, . . . ,λn (repeated by multiplicities), let
FM denote the empirical spectral distribution function of M , that is,

FM (x) :=
#{i : λi ≤ x}

n
.

The following result shows that given 1 ≪ k ≤ n and any Hermitian matrix M of order n, the
empirical spectral distribution is almost the same for almost every principal submatrix of M of
order k.

1RESEARCH PARTIALLY SUPPORTED BY NSF GRANT DMS-0707054 AND A SLOAN RESEARCH FELLOWSHIP
2RESEARCH PARTIALLY SUPPORTED BY THE ANR GRANDES MATRICES ALÉATOIRES

495

DOI: 10.1214/ECP.v14-1504

1

http://dx.doi.org/10.1214/ECP.v14-1504


496 Electronic Communications in Probability

Theorem 1. Take any 1≤ k ≤ n and a Hermitian matrix M of order n. Let A be a principal submatrix

of M chosen uniformly at random from the set of all k× k principal submatrices of M. Let F be the

expected spectral distribution function of A, that is, F(x) = EFA(x). Then for each r ≥ 0,

P(‖FA− F‖∞ ≥ k−1/2 + r)≤ 12
p

ke−r
p

k/8.

Consequently, we have

E‖FA− F‖∞ ≤
13+
p

8 log k
p

k
.

Exactly the same results hold if A is a k× n submatrix of M chosen uniformly at random, and FA is

the empirical distribution function of the singular values of A. Moreover, in this case M need not be

Hermitian.

Remarks. (i) Note that the bounds do not depend at all on the entries of M , nor on the dimension
n.
(ii) We think it is possible to improve the log k to

p

log k using Theorem 2.1 of Bobkov [2] instead
of the spectral gap techniques that we use. (See also Bobkov and Tetali [3].) However, we do not
attempt to make this small improvement because

p

log k, too, is unlikely to be optimal. Taking M

to be the matrix which has n/2 1’s on the diagonal and the rest of the elements are zero, it is easy
to see that there is a lower bound of const.k−1/2. We conjecture that the matching upper bound is
also true, that is, there is a universal constant C such that E‖FA− F‖∞ ≤ Ck−1/2.
(iii) The function F is determined by M and k. If M is a diagonal matrix, then F is exactly equal
to the spectral measure of M , irrespective of k. However it is not difficult to see that the spectral
measure of M cannot, in general, be reconstructed from F .
(iv) The result about random k × n submatrices is related to the recent work of Rudelson and
Vershynin [6]. Let us also refer to [6] for an extensive list of references to the substantial volume
of literature on random submatrices in the computing community. However, most of this literature
(and also [6]) is concerned with the largest eigenvalue and not the bulk spectrum. On the other
hand, the existing techniques are usually applicable only when M has low rank or low ‘effective
rank’ (meaning that most eigenvalues are negligible compared to the largest one).

A numerical illustration. The following simple example demonstrates that the effects of Theorem
1 can kick in even when k is quite small. We took M to be a n × n matrix for n = 100, with
(i, j)th entry = min{i, j}. This is the covariance matrix of a simple random walk up to time n.
We chose k = 20, and picked two k × k principal submatrices A and B of M , uniformly and
independently at random. Figure 1 plots to superimposed empirical distribution functions of A

and B, after excluding the top 4 eigenvalues since they are too large. The classical Kolmogorov-
Smirnov test from statistics gives a p-value of 0.9999 (and ‖FA− FB‖∞ = 0.1), indicating that the
two distributions are statistically indistinguishable.

2 Proof

Markov chains. Let us now quote two results about Markov chains that we need to prove Theorem
1. Let X be a finite or countable set. Let Π(x , y)≥ 0 satisfy

∑

y∈X
Π(x , y) = 1
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Figure 1: Superimposed empirical distribution functions of two submatrices of order 20 chosen at
random from a deterministic matrix of order 100.

for every x ∈ X . Assume furthermore that there is a symmetric invariant probability measure µ
on X , that is, Π(x , y)µ({x}) is symmetric in x and y , and

∑

x Π(x , y)µ({x}) = µ({y}) for every
y ∈ X . In other words, (Π,µ) is a reversible Markov chain. For every f :X → R, define

E ( f , f ) =
1

2

∑

x ,y∈X
( f (x)− f (y))2Π(x , y)µ({x}).

The spectral gap or the Poincaré constant of the chain (Π,µ) is the largest λ1 > 0 such that for all
f ’s,

λ1Varµ( f )≤ E ( f , f ).

Set also

||| f |||2∞ =
1

2
sup
x∈X

∑

y∈X
( f (x)− f (y))2Π(x , y). (1)

The following concentration result is a copy of Theorem 3.3 in [5].

Theorem 2 ([5], Theorem 3.3). Let (Π,µ) be a reversible Markov chain on a finite or countable

space X with a spectral gap λ1 > 0. Then, whenever f :X → R is a function such that ||| f |||∞ ≤ 1,

we have that f is integrable with respect to µ and for every r ≥ 0,

µ({ f ≥
∫

f dµ+ r})≤ 3e−r
p
λ1/2.

Let us now specialize to X = Sn, the group of all permutations of n elements. The following
transition kernel Π generates the ‘random transpositions walk’.

Π(π,π′) =







1/n if π′ = π,

2/n2 if π′ = πτ for some transposition τ,

0 otherwise.

(2)
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It is not difficult to verify that the uniform distribution µ on Sn is the unique invariant measure for
this kernel, and the pair (Π,µ) defines a reversible Markov chain.

Theorem 3 (Diaconis & Shahshahani [4], Corollary 4). The spectral gap of the random transposi-

tions walk on Sn is 2/n.

We are now ready to prove Theorem 1.

Proof of Theorem 1. Let π be a uniform random permutation of {1, . . . , n}. Let A = A(π) =

M(π1, . . . ,πk;π1, . . . ,πk). Fix a point x ∈ R. Let

f (π) := FA(x).

Let Π be the transition kernel for the random transpositions walk defined in (2), and let ||| · |||∞
be defined as in (1).
Now, by Lemma 2.2 in Bai [1], we know that for any two Hermitian matrices A and B of order k,

‖FA− FB‖∞ ≤
rank(A− B)

k
. (3)

Let τ= (I , J) be a random transposition, where I , J are chosen independently and uniformly from
{1, . . . , n}. Multiplication by τ results in taking a step in the chain defined by Π. Now, for any
σ ∈ Sn, the k× k Hermitian matrices A(σ) and A(στ) differ at most in one column and one row,
and hence rank(A(σ)− A(στ))≤ 2. Thus,

| f (σ)− f (στ)| ≤
2

k
. (4)

Again, if I and J both fall outside {1, . . . , k}, then A(σ) = A(στ). Combining this with (3) and (4),
we get

||| f |||2∞ =
1

2
max
σ∈Sn

E( f (σ)− f (στ))2 ≤
1

2

�

2

k

�2 2k

n
≤

4

kn
.

Therefore, from Theorems 2 and 3, it follows that for any r ≥ 0,

P(|FA(x)− F(x)| ≥ r)≤ 6 exp

�

−
r
p

2/n

2
p

4/kn

�

= 6 exp

�

−
r
p

k
p

8

�

. (5)

The above result is true for any x . Now, if FA(x−) := limy↑x FA(y), then by the bounded conver-
gence theorem we have EFA(x−) = limy↑x F(y) = F(x−). It follows that for every r,

P(|FA(x−)−EFA(x−)|> r)≤ lim inf
y↑x
P(|FA(y)− F(y)|> r)

≤ 6 exp

�

−
r
p

k
p

8

�

.

Since this holds for all r, the > can be replaced by ≥. Similarly it is easy to show that F is a
legitimate cumulative distribution function. Now fix an integer l ≥ 2, and for 1≤ i < l let

t i := inf{x : F(x)≥ i/l}.
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Let t0 = −∞ and t l =∞. Note that for each i, F(t i+1−)− F(t i)≤ 1/l. Let

∆= (max
1≤i<l
|FA(t i)− F(t i)|)∨ (max

1≤i<l
|FA(t i−)− F(t i−)|).

Now take any x ∈ R. Let i be an index such that t i ≤ x < t i+1. Then

FA(x)≤ FA(t i+1−)≤ F(t i+1−) +∆ ≤ F(x) + 1/l +∆.

Similarly,

FA(x)≥ FA(t i)≥ F(t i)−∆ ≥ F(x)− 1/l −∆.

Combining, we see that

‖FA− F‖∞ ≤ 1/l +∆.

Thus, for any r ≥ 0,

P(‖FA− F‖∞ ≥ 1/l + r)≤ 12(l − 1)e−r
p

k/8.

Taking l = [k1/2] + 1, we get for any r ≥ 0,

P(‖FA− F‖∞ ≥ 1/
p

k+ r)≤ 12
p

ke−r
p

k/8.

This proves the first claim of Theorem 1. To prove the second, using the above inequality, we get

E‖FA− F‖∞ ≤
1+
p

8 log k
p

k
+ P

�

‖FA− F‖∞ ≥
1+
p

8 log k
p

k

�

≤
13+
p

8 log k
p

k
.

For the case of singular values, we proceed as follows. As before, we let π be a random permu-
tation of {1, . . . , n}; but here we define A(π) = M(π1, . . . ,πk; 1, . . . , n). Since singular values of A

are just square roots of eigenvalues of AA∗, therefore

‖FA−E(FA)‖∞ = ‖FAA∗ −E(FAA∗)‖∞,

and so it suffices to prove a concentration inequality for FAA∗ . As before, we fix x and define

f (π) = FAA∗(x).

The crucial observation is that by Lemma 2.6 of Bai [1], we have that for any two k× n matrices
A and B,

‖FAA∗ − FBB∗‖∞ ≤
rank(A− B)

k
.

The rest of the proof proceeds exactly as before. �
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