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Abstract

Let M be an arbitrary Hermitian matrix of order n, and k be a positive integer < n. We show that if
k is large, the distribution of eigenvalues on the real line is almost the same for almost all principal
submatrices of M of order k. The proof uses results about random walks on symmetric groups and
concentration of measure. In a similar way, we also show that almost all k x n submatrices of M
have almost the same distribution of singular values.

1 Introduction

Let M be a square matrix of order n. For any two sets of integers iy,...,i; and ji,...,j; between
1 and n, M(iy,...,i; ji,---,J;) denotes the submatrix of M formed by deleting all rows except
rows iy, ...,1I, and all columns except columns ji,...,j;. A submatrix like M(iy,...,;,--., )
is called a principal submatrix.

For a Hermitian matrix M of order n with eigenvalues A,,..., A, (repeated by multiplicities), let
F); denote the empirical spectral distribution function of M, that is,

#{i: A, <x}
" .

Fy(x):=

The following result shows that given 1 < k < n and any Hermitian matrix M of order n, the
empirical spectral distribution is almost the same for almost every principal submatrix of M of
order k.
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Theorem 1. Take any 1 < k < n and a Hermitian matrix M of order n. Let A be a principal submatrix
of M chosen uniformly at random from the set of all k X k principal submatrices of M. Let F be the
expected spectral distribution function of A, that is, F(x) = EF,(x). Then for each r > 0,

P(||Fy— Fll > k™2 + 1) < 12/ ke V7B,
Consequently, we have

13+ V8logk
7r .
Exactly the same results hold if A is a k X n submatrix of M chosen uniformly at random, and F, is

the empirical distribution function of the singular values of A. Moreover, in this case M need not be
Hermitian.

EllFs = Flloo <

Remarks. (i) Note that the bounds do not depend at all on the entries of M, nor on the dimension
n.

(ii) We think it is possible to improve the logk to 4/logk using Theorem 2.1 of Bobkov [2] instead
of the spectral gap techniques that we use. (See also Bobkov and Tetali [3].) However, we do not
attempt to make this small improvement because 4/logk, too, is unlikely to be optimal. Taking M
to be the matrix which has n/2 1’s on the diagonal and the rest of the elements are zero, it is easy
to see that there is a lower bound of const.k™'/2. We conjecture that the matching upper bound is
also true, that is, there is a universal constant C such that E||F, — F||, < Ck~'/2,

(iii) The function F is determined by M and k. If M is a diagonal matrix, then F is exactly equal
to the spectral measure of M, irrespective of k. However it is not difficult to see that the spectral
measure of M cannot, in general, be reconstructed from F.

(iv) The result about random k X n submatrices is related to the recent work of Rudelson and
Vershynin [6]. Let us also refer to [6] for an extensive list of references to the substantial volume
of literature on random submatrices in the computing community. However, most of this literature
(and also [6]) is concerned with the largest eigenvalue and not the bulk spectrum. On the other
hand, the existing techniques are usually applicable only when M has low rank or low ‘effective
rank’ (meaning that most eigenvalues are negligible compared to the largest one).

A numerical illustration. The following simple example demonstrates that the effects of Theorem
[1 can kick in even when k is quite small. We took M to be a n x n matrix for n = 100, with
(i, j)th entry = min{i, j}. This is the covariance matrix of a simple random walk up to time n.
We chose k = 20, and picked two k X k principal submatrices A and B of M, uniformly and
independently at random. Figure [1]plots to superimposed empirical distribution functions of A
and B, after excluding the top 4 eigenvalues since they are too large. The classical Kolmogorov-
Smirnov test from statistics gives a p-value of 0.9999 (and ||F, — Fg||,, = 0.1), indicating that the
two distributions are statistically indistinguishable.

2 Proof

Markov chains. Let us now quote two results about Markov chains that we need to prove Theorem
[1. Let & be a finite or countable set. Let IT(x, y) > O satisfy

D N0, y)=1

YEX
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Figure 1: Superimposed empirical distribution functions of two submatrices of order 20 chosen at
random from a deterministic matrix of order 100.

for every x € . Assume furthermore that there is a symmetric invariant probability measure u

on &, that is, IT(x, y)u({x}) is symmetric in x and y, and ZX (x, y)u({x}) = u({y}) for every
y € Z. In other words, (I1, u) is a reversible Markov chain. For every f : & — R, define

1
e(f.f)=3 Z (f (o) = F ()P TI(x, Y Iu(xd).
X, YEX

The spectral gap or the Poincaré constant of the chain (IT, u) is the largest A; > 0 such that for all

f’s,

A Var,(f) < &(f, f).
Set also 1
WAIZ = 5 Sup Z (f () = F(¥))°T(x, y). @
XEX yex

The following concentration result is a copy of Theorem 3.3 in [5].

Theorem 2 ([5], Theorem 3.3). Let (I, u) be a reversible Markov chain on a finite or countable
space X with a spectral gap A, > 0. Then, whenever f : & — R is a function such that |||f |||, < 1,
we have that f is integrable with respect to u and for every r > 0,

u(lf = [fdu+r}) <3e VA2,

Let us now specialize to & = S,, the group of all permutations of n elements. The following
transition kernel IT generates the ‘random transpositions walk’.

1/n  ifn'=mn,
M(r,7')=1{ 2/n? if n’ = nt for some transposition 7, 2)
0 otherwise.
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It is not difficult to verify that the uniform distribution u on S,, is the unique invariant measure for
this kernel, and the pair (I, u) defines a reversible Markov chain.

Theorem 3 (Diaconis & Shahshahani [4], Corollary 4). The spectral gap of the random transposi-
tions walk on S, is 2/n.

We are now ready to prove Theorem|1|

Proof of Theorem Let m be a uniform random permutation of {1,...,n}. Let A = A(n) =
M(my,...,T; T, .-, T ). Fix a point x € R. Let

f(m) = Fp(x).

Let IT be the transition kernel for the random transpositions walk defined in (2), and let ||| - |||
be defined as in (1).
Now, by Lemma 2.2 in Bai [1], we know that for any two Hermitian matrices A and B of order k,

rank(A — B)

IEx = Fyllos < ——

3)

Let T = (I,J) be a random transposition, where I,J are chosen independently and uniformly from
{1,...,n}. Multiplication by 7 results in taking a step in the chain defined by I1. Now, for any
o €8, the k x k Hermitian matrices A(c) and A(o 7) differ at most in one column and one row,
and hence rank(A(o) —A(o 7)) < 2. Thus,

2
f(e) = flon)l < ¢ @

Again, if I and J both fall outside {1,...,k}, then A(c’) = A(o7). Combining this with (3) and (4),
we get
FIE = 2 maxE(r(o) - o< 1 (2) 2 <
0T 3 hess flo TV=5\k) 7 Tk
Therefore, from Theorems[2]and (3] it follows that for any r > 0,

rv/2/n
P(|Fu(x)—F(x)|>r) < 6exp(——) = 6exp(——). 5)
24/4/kn

The above result is true for any x. Now, if Fy(x—) := lim ;, Fs(y), then by the bounded conver-
gence theorem we have EF,(x—) =lim;, F(y) = F(x—). It follows that for every r,

P(|Fa(x—) =EFa(x—)[ > 1) < lir%anP’(IFA(y) —F(y)l>r)

S6exp(—%).

Since this holds for all r, the > can be replaced by >. Similarly it is easy to show that F is a
legitimate cumulative distribution function. Now fix an integer [ > 2, and for 1 <i <1 let

t; :=inf{x : F(x) > i/l}.
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Let ty = —oo and t; = co. Note that for each i, F(t;;;—) — F(t;) < 1/1. Let
A= ({2?31 [Fa(t) = F(t)DV ({2?31 [Fa(t;=) — F(t; =)D
Now take any x € R. Let i be an index such that t; < x < t; ;. Then
Fi(x) S F\(tip1—) <F(tiq—)+A<F(x)+1/l+A.

Similarly,
FA(x) 2 Fp(t)) 2 F(t;)) - A= F(x) =1/l - A.

Combining, we see that
|Es = Flloe < 1/1+ A.

Thus, for any r > 0,

P(IF, — Flly = 1/1+ 1) < 12(1 — 1)e VK8,

Taking [ = [k'/2] + 1, we get for any r > 0,

P(||F, — Flloy = 1/Vk + 1) < 12/ ke "VH,

This proves the first claim of Theorem[1] To prove the second, using the above inequality, we get

E|F, - Fll < 1+ v8logk +IF’(||FA—F|| > 1+«/810gk)
® vk ® vk
< 13+ v8logk
< —JF .

For the case of singular values, we proceed as follows. As before, we let © be a random permu-
tation of {1,...,n}; but here we define A(w) = M(7,,...,m;1,...,n). Since singular values of A
are just square roots of eigenvalues of AA*, therefore

”FA _E(FA)“oo = ”FAA* _E(FAA*)”oo;

and so it suffices to prove a concentration inequality for F,,:. As before, we fix x and define

f(m) = Fppe ().

The crucial observation is that by Lemma 2.6 of Bai [1], we have that for any two k x n matrices
A and B,

rank(A — B)

1Eap = Faelloo < ——

The rest of the proof proceeds exactly as before. O
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