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Abstract

Let a be a fixed number from the interval [0,1]. We obtain the sharp probability bounds for the
maximal function of the process which is a-differentially subordinate to a bounded submartingale.
This generalizes the previous results of Burkholder and Hammack.

1 Introduction

Let (Q,Z,P) be a probability space, equipped with a discrete filtration (£,). Let f = (f,)°°,,
g = (gn)he, be adapted integrable processes taking values in a certain separable Hilbert space ¢.
The difference sequences df = (df,), dg = (dg,) of these processes are given by

dfOZfO: dfn:fn_fn—l) ngZgO’ dgn:gn_gn—l’ Tl:l, 2:

Let g* stand for the maximal function of g, that is, g* = max, |g,|.
The following notion of differential subordination is due to Burkholder. The process g is differen-
tially subordinate to f (or, in short, subordinate to f) if for any nonnegative integer n we have,
almost surely,

ldgn| < ldfyl.

We will slightly change this definition and say that g is differentially subordinate to f, if the above
inequality for the differences holds for any positive integer n.

Let a be a fixed nonnegative number. Then g is a-differentially subordinate to f (or, in short,
a-subordinate to f), if it is subordinate to f and for any positive integer n we have

IE(dg,|Z-1)l < alE(d f| F1)l-
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This concept was introduced by Burkholder in [2] in the special case @ = 1. In general form, it
first appeared in the paper by Choi [3].

In the sequel it will sometimes be convenient to work with simple processes. A process f is called
simple, if for any n the variable f,, is simple and there exists N such that fy = fy;1 = fys2=----
Given such a process, we will identify it with the finite sequence (f, )]r\l’zo.

Assume that the processes f and g are real-valued and fix a € [0, 1]. The objective of this paper is
to establish a sharp exponential inequality for the distribution function of g* under the assumption
that f is a submartingale satisfying ||f ||, < 1 and g is a-subordinate to f. To be more precise, for
any A > 0 define the function V, ; : [-1,1] x R — R by the formula

Va,A(XO;J/O) =supP(g* > A). (D

Here the supremum is taken over all pairs (f,g) of integrable adapted processes, such that
(fo, &0) = (x0,¥o) almost surely, f is a submartingale satisfying ||f||,, < 1 and g is a-subordinate
to f. The filtration must also vary, as well as the probability space, unless it is nonatomic. Our
main result is an explicit formula for the functions V,, ;, A > 0. Usually we will omit the index a
and write V, instead of V, ;.

Let us discuss some related results which appeared in the literature. In [1] Burkholder studied
the analogous question in the case of f, g being Hilbert space-valued martingales. The paper
[1] contains also a related one-sided sharp exponential inequality for real martingales. This work
was later extended by Hammack [4], who established a similar (two-sided) inequality under the
assumption that f is a submartingale bounded by 1 and g is R"-valued, v > 1, and strongly
1-subordinate to f. Both papers present applications to stochastic integrals.

The paper is organized as follows. In the next section we introduce a family of special functions
U,, A > 0 and study their properties. This enables us to establish the inequality V, < U, in Section
3. Then we prove the reverse inequality in the last section.

Throughout the paper, a is a fixed number from the interval [0,1]. All the considered processes
are assumed to be real valued.

2 The explicit formulas

Let S be the strip [—1,1] x R. Consider the following subsets of S: for 0 < A < 2,

Ay = g y)es:lylzx+a-1}
B, = {(x,y)eS:1-x=<|yl<x+A-1},
G, = {(xy)es:lyl<l-xandly|<x+2-1}

A, = {(x,y)eS:|lylzax+A—a},
{(x,y)eS:ax+A—a>|y|=x—-1+2},
{(x,y)eS:x—14+A>|y|=1—x},
{(x,y)eS:1—x>|y|>—x—-3+Aand |y| <x—1+A},
E, = {(x,y)eS:—x—-3+A1>|yl}.

O 0w
>t >
M
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Finally, for A > 4, let

Ay = {(x,y)eS:lylzax+A—a},

B, = {(x,y)€S:ax+A—-a>|y|=zx—-1+A},
C, = {x,y)eS:x—-1+A>]|y|=2—x—-3+A},
D, = {(x,y)€S:—x—-3+A>|y|>1-x},

E, = {(x,y)eS:1—-x>|yl}.

Let H:S x (—1,00) — R be a function given by

(x+ 14|y D((a+1)(x +1) - |y])
H(x,y,2)= [ } 2)
a+2 (1 + z)(@t2)/(a+D)
Now we will define the special functions U, : S — R. For 0 < A < 2, let
1 if (x,y) €A,
U6, 3) = § Tyl if (x,y) € By, 3)
1— (A—l+x—\y2(zl—l+x+|y|) if (x,y) € C,.
For 2 < A < 4, set
1 lf (X, .)’) EA?L;
1—(a(x—1)—|y|+2)- 2+ if (x,y) €By,
- 2(1—x)(1—a)(A—2 .
Uy06,) =4 Ty — R if (x, ) € G, @
— —a)(A— —x)?—|y|? .
2“1” fl_ a )A(A z)] _a ;Z Vi (x,y) € Dy,
a,H(x,y,A—=3)+Db, if (x,y) € Ey,
where
2(1+ a)(A —2)? 4A2-2)(1-a)
a, = — 2 > A=1— P . (5)
A A
For A > 4, set
1 if (x,y) €Ay,
1 - S if (x,¥) € B,
2-2 (1=x)(1-a) :
U;L(x,y) = 1+k—xi|y| - X4 . if (X’ .y) €Cy, 6)
(1-x)(1+a) 3+x+lyl=2 ;
y ex| ( i) ) if (x,y) € Dy,
aAH(x’y,1)+b)L if(x,y)EEA,
where a ) A
+a 4-
= b, =— ( . 7
=70 2 P2t 2) )

For a = 1, the formulas (3), (4), (6) give the special functions constructed by Hammack [4]. The
key properties of U, are described in the two lemmas below.

Lemma 1. For A > 2, let ¢;, v, denote the partial derivatives of U, with respect to x, y on the
interiors of A,, B,, C;, D;, E,, extended continuously to the whole of these sets. The following
statements hold.
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(i) The functions U,, A > 2, are continuous on S \ {(1,+A)}.
(ii) Let

S,={0,y)e[-L1]xR:|yl#ax+A—aand |y| #x+ A -1}

Then

b5, Yu, A > 2, are continuous on S;.

(iii) For any (x,y) € S, the function A — U,(x,y), A > 0, is left-continuous.

(iv) For any A > 2 we have the inequality

s < —aly,|.

(v) For A > 2 and any (x,y) € S we have yyyz5; < Up(x,y) < 1.

Proof. We start with computing the derivatives. Let y’ = y/|y| stand for the sign of y, with y’ =0

if y =0. For A €(2,4) we have

0
_ (2A—4)a
’lfx 2ly| 2A—4)(1-a)
__2A-2ly - —a
P(x,y)= (1+A—x—|y])? + 22
_2 _ (Q-a)(2-2) 2(1—x)
A [1 A ] + A2

= (x + Iy [+ 1)V D e+ 1+ oy )

0
r—4
=y
2—-2x /
Palx,y)= (21+7L—x—|y\)2y
Y

2z

¢ (x + |y [+ 1)7e/ler) 2
where
¢, =21+ a)(A — 2)#/(@t1) =2,
Finally, for A > 4, set
0
_a
4 22—-2]y| 1
- —a
6206, ¥) =1 T Trx-py 2 =
_ x+142a X+|y[+3-2

8 €xp ( 2(a+1) )
—c(x + [y [+ 1)V D+ 1+ 2y )

0
1.7
Zy 2—2
—2X /
Y,06,¥) =1 Trr—x-—py2Y
(1—x) x+|y[+3—-2 /
8 eXP( 2(at+D) )y

—af/(a+1) Y _
el + |yl + 1)t ==

if (x,y) €Ay,
if (x,y) € By,
if (x,y) € Cy,
if (x,y) € Dy,
if (x,y) € Ey,

if (x,y) €Ay,
if (x,y) €By,
if (x,y) € Cy,
if (x,y) € Dy,
if (x,y) € Ey,

if (x,y) €Ay,
if (x,y) € By,
if (x,y) € Cy,
if (x,y) €D,
if (x,y) €Ey,

if (x,y) €Ay,
if (x,y) € B,
if (x,y) € Cy,
if (x,y) € D,
if (x,y) € Ey,

(€)]

9



664

Electronic Communications in Probability

where
4—A )
2(a+1)/°

Now the properties (i), (ii), (iii) follow by straightforward computation. To prove (iv), note first
that for any A > 2 the condition (9) is clearly satisfied on the sets A, and B;. Suppose (x,y) € C;.
Then A — |y| €[0,4], 1 —x <min{A —|y|,4— A+ |y|} and (9) takes form

¢, = (1 4 )2~/ oy (

22— 4 ,
—2(A— |y|)+7(1 —a)1—-x+A—-|yD*+2a(l—-x) <0,
or

1-—
20 yD+ —— - (L=x+ 2=y +2a(l-x) <0, (10)

depending on whether A < 4 or A > 4. As (24 —4)/A% < }}, it suffices to show (10). If A —|y| < 2,
then, as 1 — x < A — |y|, the left-hand side does not exceed

2= lyD+A =)A= lyD*+2a(A =y =~ lyD(=2+(1 - )X~ lyD +2a)

<A-lyD(=2+2(1—-a)+2a)=0.

Similarly, if A — |y| € (2,4], then we use the bound 1 — x < 4 — A + |y| and conclude that the
left-hand side of (10) is not greater than

=2A—|yD+41—-a)+2a4—-2A+|yD)=—2A—-|y|l-2)1+a)<0

and we are done with the case (x, y) € C;.
Assume that (x, y) € D,. For A € (2,4), the inequality (9) is equivalent to

A2 T oA

2 (1-a)A—=2)7 2-2x _ 2aly|
e

or, after some simplifications, a|y|+ 1 —x < 2+ aA — 2a. It is easy to check that a|y|+1 —x
attains its maximum for x = —1 and |y| = A — 2 and then we have the equality. If (x, y) € D, and
A >4, then (9) takes form —(2a+ 1+ x) < —a(1 — x), or (x + 1)(a + 1) > 0. Finally, on the set
E,, the inequality (9) is obvious.

(V) By (9), we have ¢, <0, so U,(x,y) = Us(1,y) = xyy=2;- Furthermore, as U,(x,y) = 1 for
ly| > A and ¥, (x,y)y’ >0 on S,, the second estimate follows. O

Lemma 2. Let x, h, y, k be fixed real numbers, satisfying x, x +h € [—1,1] and |k| < |h|. Then for
any A >2and a € [0,1),

Up(x +hy +k) SU(x,y) + ¢(x, yIh+ 4, (x, y k. 1n
We will need the following fact, proved by Burkholder; see page 17 of [1].
Lemma 3. Let x, h, y, k, 2 be real numbers satisfying |k| < |h| and 2 > —1. Then the function
F(t)=H(x +th,y + tk,2),

defined on {t : |x + th| < 1}, is convex.
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Proof of the Lemma 2. Consider the function
G(t) = Gy ypi(t) = Uy (x + th, y + tk),

defined on the set {t : |x 4+ th| < 1}. It is easy to check that G is continuous. As explained in [1],
the inequality (11) follows once the concavity of G is established. This will be done by proving
the inequality G” < 0 at the points, where G is twice differentiable and checking the inequality
G;(t) < G’ (t) for those t, for which G is not differentiable (even once). Note that we may assume
t = 0, by a translation argument G)’(”y,h)k(t) =G/ +thy+tkni(0), with analogous equalities for one-
sided derivatives. Clearly, we may assume that h > 0, changing the signs of both h, k, if necessary.
Due to the symmetry of U,, we are allowed to consider y > 0 only.

We start from the observation that G”(0) = 0 on the interior of A; and G’ (0) < G (0) for (x,y) €
A, NB,. The latter inequality holds since U, = 1 on A, and U, < 1 on B,. For the remaining
inequalities, we consider the cases A € (2,4), A > 4 separately.

The case A € (2,4). The inequality G”(0) < 0 is clear for (x, y) lying in the interior of B,. On C,,
we have

4(h+k)(h(A —y) —k(1—x)) <

Q1-x—-y+a) -7

G"(0)=— (12)

which follows from |k| < h and the fact that A — y > 1 — x. For (x, y) in the interior of D,,

—h? 4+ k2
< 0’

G//(O) = T <

as |k| < h. Finally, on E,, the concavity follows by Lemma|3.

It remains to check the inequalities for one-sided derivatives. By Lemmall (ii), the points (x, y),
for which G is not differentiable at 0, do not belong to S,. Since we excluded the set A, NB,, they
lie on the line y = x — 1+ A. For such points (x, y), the left derivative equals

) 21— 4
G_(O) = —T(ah - k),

while the right one is given by

) ~h+k  (2A—4)(1-a)h

or

, 2h 1-a)(A—2) 2(1 —x)h+2yk
G+(O)——7[1— > |+ = ,

depending on whether y > 1 —x or y < 1— x. In the first case, the inequality G/, (0) < G’ (0)
reduces to

1 _2(1—2)) “o,

(G

while in the remaining one,
2
ﬁ(h -y —-(A-2)=0.

Both inequalities follow from the estimate A — y < 2 and the condition |k| < h.
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The case A > 4. On the set B, the concavity is clear. For C,, we have that the formula (12) holds.
If (x, y) lies in the interior of D,, then

3+x+y—7t)[ 1—x

2
Aat1) Jl2AarD) )@ +hi)] <o,

G"(0) = % exp ( (—h2+K2) - (

—Xx
2=

a+1
since |k| <hand (1—x)/(a+1) < 2. The concavity on E, is a consequence of Lemma/3] It remains
to check the inequality for one-sided derivatives. By LemmalT (ii), we may assume y =x +A—1,
and the inequality G, (0) < G’ (0) reads

1 1

%(h—k)(m—a) >0,

an obvious one, as A —y < 2. O

3 The main theorem

Now we may state and prove the main result of the paper.

Theorem 1. Suppose f is a submartingale satisfying ||f ||, < 1 and g is an adapted process which
is a-subordinate to f. Then for all A > 0 we have

P(g* > 1) <EU, (f,, £o)- (13)

Proof. If A < 2, then this follows immediately from the result of Hammack [4]; indeed, note that
U, coincides with Hammack’s special function and, furthermore, since g is a-subordinate to f, it
is also 1-subordinate to f.

Fix A > 2. We may assume a < 1. It suffices to show that for any nonnegative integer n,

P(|g,| = A) < EU,(fo, 80)- a4

To see that this implies (13), fix ¢ > 0 and consider a stopping time 7 = inf{k : |g;| > A — €}. The
process f* = (f:xn), by Doob’s optional sampling theorem, is a submartingale. Furthermore, we
obviously have that ||f*||,, < 1 and the process g* = (g.x,) is a-subordinate to f *. Therefore, by
(14),

P(g;| 2 A — ) <BU,_.(fg, 85) = BUz—.(fo, 8o)-
Now if we let n — oo, we obtain P(g* > A) < EU,_.(fy, go) and by left-continuity of U, as a
function of A, follows.
Thus it remains to establish (14). By Lemma (1] (v), P(|g,| = 1) < EU,(f,,, g&,) and it suffices to
show that for all 1 < j < n we have

EU;(f, &) < BU;(fi-1, gj-1)- (15)
To do this, note that, since |dg;| < |df;| almost surely, the inequality (11) yields
U,(fj, &) S Up(fj—1,8j—1) + ¢a(fj-1,gj-1)df; + ¥ (fi-1, &j-1)dg; 16)

with probability 1. Assume for now that ¢, (f;_1,8;-1)dfj, ¥a(fj-1,8;-1)dg; are integrable. By
a-subordination, the condition (9) and the submartingale property E(d;|#;_;) > 0, we have

E[¢;(fi-1,85-1)df; +¥,(fi-1,&j-1)dg;|Fj_1]
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< ¢,(fj-1, 8- EAS1F- ) + [ (fi-1, 85-1)| - [E(dg;1Z5-0)]
< [¢a(fi-1,gj-1) + @l (fi—1, g;-DI]E(d f;|Z;-1) < 0.

Therefore, it suffices to take the expectation of both sides of (16) to obtain (15).
Thus we will be done if we show the integrability of ¢, (f;_1,g;-1)df; and ¢, (fj_1,8j-1)dg;- In
both the cases A € (2,4), A > 4, all we need is that the variables

24 —2|gi_4| 2-2f;_
8j-1 _df, and fi1 _
(I—=fis—lgial+2) (I—fi1—lg-al+2)
are integrable on the set K = {|g;_;| < fj_1 +A—1, |g;_1| = A—1}, since outside it the derivatives

¢, Y, are bounded by a constant depending only on @, A and |df;l, |[dg;| do not exceed 2. The
integrability is proved exactly in the same manner as in [4]. We omit the details. O

dg; 17)

We will now establish the following sharp exponential inequality.

Theorem 2. Suppose f is a submartingale satisfying ||f ||, < 1 and g is an adapted process which is
a-subordinate to f. In addition, assume that |g,| < |f,| with probability 1. Then for A > 4 we have

]P,(g* > A) < Yefl/(2a+2)’ (18)

where
14+a

2a+4

(a+1+2_%)exp( 2 )

r= a+1

The inequality is sharp.

This should be compared to Burkholder’s estimate (Theorem 8.1 in [1])

2
e
P(g*>2) < Z-e—*, A>2,
in the case when f, g are Hilbert space-valued martingales and g is subordinate to f. For a =1,
we obtain the inequality of Hammack [4],

P(g* > A) < ————— , A>4

(8+ V2)e oM
12

Proof of the inequality (18). We will prove that the maximum of U, on the set K = {(x,y) €S :
ly| < |x|} is given by the right hand side of (18). This, together with the inequality (13) and the
assumption P((fy, go) € K) = 1, will imply the desired estimate. Clearly, by symmetry, we may
restrict ourselves to the set K" = KN {y > 0}. If (x,y) € K* and x > 0, then it is easy to check
that

U6, y) S U ((x+y)/2,(x +¥)/2).

Furthermore, a straightforward computation shows that the function F : [0,1] — R given by
F(s) = U,(s,s) is nonincreasing. Thus we have U, (x, y) < U,(0,0). On the other hand, if (x,y) €
K* and x < 0, then it is easy to prove that U,(x,y) < U,(—1,x + y + 1) and the function
G :[0,1] — R given by G(s) = U,(—1,s) is nondecreasing. Combining all these facts we have that
for any (x,y) €K™,

U, (x,y) S U, (=1,1) = ye M (2at2), 19)

Thus (18) holds. The sharpness will be shown in the next section. O
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4 Sharpness

Recall the function V, =V, ; defined by (1) in the introduction. The main result in this section is
Theorem[3/below, which, combined with Theorem[1, implies that the functions U, and V; coincide.
If we apply this at the point (—1,1) and use the equality appearing in (19), we obtain that the
inequality (18) is sharp.

Theorem 3. For any A > 0 we have
Uy =V,. (20)

The main tool in the proof is the following "splicing" argument. Assume that the underlying
probability space is the interval [0, 1] with the Lebesgue measure.

Lemma 4. Fix (xy,Y) € [—1,1] X R. Suppose there exists a filtration and a pair (f, g) of simple
adapted processes, starting from (xy, ¥o), such that f is a submartingale satisfying ||f||oc <1 and g
is a-subordinate to f. Then V;(xy, ¥o) = EV3(fso> &s0) for A > 0.

Proof. Let N be such that (fy,gy) = (fw, &) and fix ¢ > 0. With no loss of generality, we
may assume that o-field generated by f, g is generated by the family of intervals {[a;,a;,,) :
i=1,2, ..., M—1},0=a, <a, <...<ay =1. Foranyi € {1, 2, ..., M — 1}, denote
xb = fy(a;), yb = gn(a;). There exists a filtration and a pair (f',g") of adapted processes, with
f being a submartingale bounded in absolute value by 1 and g being a-subordinate to f, which
satisfy fj = x}x0.1), 86 = Yo X0 and P((g')* = 1) > EV;(f{, g}) — €. Define the processes F, G
by Fr = fi, G = g if Kk <N and

M-1

Fe(@)= D (@ = a)/(@41 = 8)) X001 (@),
i=1

M-1

Gil@) =Y gk (@ —a)/ (i1 — 3 X [ga,)(@)
i=1

for k > N. It is easy to check that there exists a filtration, relative to which the process F is
a submartingale satisfying ||F||,, < 1 and G is an adapted process which is a-subordinate to F.
Furthermore, we have

M-1

P(G' 2 2) 2 D (a1 — a)P((g')" = )
i=1

M-1
> > (@1 — a) (EV, (£ 85) — €) = EV; (for 800) — £
i=1

Since ¢ was arbitrary, the result follows. O

Proof of Theorem[3. First note the following obvious properties of the functions V;, A > 0: we have
V, € [0,1] and V,(x,y) = V,(x,—y). The second equality is an immediate consequence of the
fact that if g is a-subordinate to f, then so is —g.

In the proof of Theorem 3]we repeat several times the following procedure. Having fixed a point
(x9,¥o) from the strip S, we construct certain simple finite processes f, g starting from (xy, ¥o),
take their natural filtration (%,), apply Lemma[4 and thus obtain a bound for V, (x,, y,). All the
constructed processes appearing in the proof below are easily checked to satisfy the conditions
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of this lemma: the condition ||f]||,, < 1 is straightforward, while the a-subordination and the
fact that f is a submartingale are implied by the following. For any n > 1, either df, satisfies
E(df,|Z,-1)=0and dg, = £df,, or df, > 0 and dg, = £adf,.

We will consider the cases A < 2,2 < A <4, A > 4 separately. Note that by symmetry, it suffices
to establish (20) on SN {y > 0}.

The case A < 2. Assume (xg,Yo) € A;. If yo = A, then g* > A almost surely, so V,(xg,y9) =1 =
Uj(x0,¥0)- f A > yg = axy — a+ A, then let (fy, g9) = (X0, Yo)>

df1 = (1 - Xo)X[O’l] and dgl == adfl. (21)

Then we have g; = y, + @ — ax, = A, which implies g* > A almost surely and (20) follows. Now
suppose (xg, Yo) €A, and y, < axy— a+ A. Let (f, g) = (xg, Yo)»

Yo—Xo+1—A
dfy = %X[O,l]’ dg; = adf; (22)
and
df, =dgs=Pioa-pn+ (B ~Dxn-ppn, =
where A
axg—Yyo—a+
p=—2 1yia €[0,2]. (24)

Then (f,, g,) takes values (—1, A — 2), (1, A) with probabilities $/2, 1 — /2, respectively, so, by
Lemma (4]

Va(xo, ¥o) = gvx(—ut -2)+(1- g)VA(l,A) = gvx(—Lz —AM+1- g (25)

Note that (—1,2—A)€A,. If2—A > a-(—1) — a+ A, then, as already proved, V;(—1,2—A) =1
and V;(xg,¥o) = 1 = U, (xg, yo). If the converse inequality holds, i.e., 2 — A < —2a + A, then we
may apply to xo =—1, yg =2 — A to get

Vi(-1,2-2)> gvl(—Lz —A)+1- g
or V;(—1,2 — A) > 1. Thus we established V,(x,, yo) = 1 for any (x,, y,) €A;.
Suppose then, that (x,, y,) € B,. Let

6= 2(1 —xy)

=————€]0,1 26
e U (26)

and consider a pair (f, g) starting from (x,, ¥,) and satisfying

Xo—Yo—1+2

dfy=—-dg,=— 5

20+ (1 —Xx0)x 18,17 27)

On [0, B), the pair (f;, g;) lies in A, ; Lemmal[4 implies V; (xq, Yo) = B = U,(x0, Yo)-
Finally, for (x4, yo) € C,, let (f, g) start from (x,, y,) and

_XO_)’+1+.)/0 yO_X0+1
5 Xon* 5 X

dfy=—dg, =
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where

Yo—Xo+1
A

On [0, y), the pair (f;, g1) lies in A,, while on [y, 1] we have (f, g1) = ((xg+ Yo +1)/2,(xo+ Yo —

1)/2) € B,. Hence

Y= €[0,1].

1—x9—Y
vx(xo,yo)2y-1+(1—y)-%

= U?L (x05 yO)

The case 2 < A < 4. For (x4, y,) €A, we prove (20) using the same processes as in the previous
case, i.e. the constant ones if y, > A and the ones given by (21) otherwise. The next step is to
establish the inequality

1+a 1—a.(4—k)2‘ 28)

—1,A=2)>U,(-1,A-2)=
Vi(-LA=2)2U(-1,A-2)= ——+— n

To do this, fix § € (0,1] and set

6(l—a)  4-2A-6(1+aq) B 3 '6(1+a)

We have 0 < v <k < 8 <y < 1. Consider processes f, g given by (fy,80) = (—1, A — 2),
(dfl)dgl) = (6: a5):

f— A
= , V=K 7

A—58(1-a) 6(1-a)
df,=—dg, = TX[O,M - 2 X1p.1)>
6(1+a) A+6(1+a)
df3:dg3Z—(X—Z+T)X[o,x)+(2——2 DX ep)
§(1+a) 0(1+a)
+@- =t~ ——5 tww

A A
dfy=—-dg,=(-2+ g)x[o,v) DY AEOL

As (f4,184]) takes values (1, 1), (1,0) and (—1, A — 2) with probabilities (y — ) + (xk —v), B —«
and 1 — v + v, respectively, we have

V(ELA=-2)2y—-B+xk—v+A -7y +v)V;(—-1,A—-2),

or

Y—[D’+K—v_1+a+1—a (4—1)2 5(1—a?)
y—wv 2 2 A A2
As & is arbitrary, we obtain (28). Now suppose (x,,Y,) € B, and recall the pair (f, g) starting

from (x, yo) given by (22) and (23) (with § defined in (24)). As previously, it leads to (25),
which takes form

V(=1,A-2)>

V;\(XO,_yO)Zgl:l;a+1;a-(4;k)2]+1 B

Z[D’(l—a)[(4;k)2_1} 1= (axg—a—yo+A)(4—22)

4 22 + 1= U,(x0, Yo)-
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For (xy,y,) € C,, consider a pair (f, g), starting from (x,, y,) defined by (with 8 given by
(26)). On [0, B) we have (f1,81) = ((xo+ yo+1—=2)/2,(xo + Yo — 1+ 4)/2) € B;, so Lemma 4]
yields

x0+y0+1—k X0+_y0_1+},)

v s > BV
2,(X0, ¥o) ﬁx( D) D)

21 — x,) —1-2 1-2q 22—4
:1+A——x:0—y()'{1_[a(xo+yoz )_X0+J/02 ] 22 }

= UA(XO’ yO)

For (xq, Yo) € Dy, set B = (yo—xo+1)/A € [0,1] and let a pair (f, g) be given by (fy, &) = (x0, ¥o)
and
—X0+_y0+1—k —x0+y0+1
dfi=-dg, = 5 X0, T 5 X

As (fi, g1) takes values

XO+y0+1 X0+y0_1
2 ’ 2

(X0+_y0+1_24 X0+y0—1+7L

2 s 2 )eBland( )ECA

with probabilites 5 and 1 — (3, respectively, we obtain V,(x,, ¥,) is not smaller than

X0+_y0+1_2, X0+y0_1+2, X0+y0+1 X0+_y0_1
pri (e L )+ (P )
_ Yo—Xo+1 Xo+yo—1-2 Xo+yo—1—-27 2A—-4
STy [ofEAR) sl 2oy
+A_yo+xo_1[1_350_}’0_(1—350_}’0)(1—(1)(1—2)]
A A A2
=I+II+I1I1+1V,
where
—xo+1 (A—yo+x,— 1A —x0— 2(1— 1—x0)*—y¢
I+III=y0 X0 +( Yo T Xo ) Xq }’o)z ( Xo)_( 0) Yo
A 22 A A2
and
(1-a)(A—2)
H+IV=T[(}’o_xo+1)(}’o+xo_1_l)_(l_xo_}’o)(l_.)’o“‘xo—l)]
1-a)(A-2)
=—T-A(2—2x0).

Combining these facts, we obtain V, (xy, ¥o) = Us(x0, Yo)-

For (xg, y,) € E, with (x,, o) # (—1,0), the following contruction will turn to be useful. Denote
w = A —3, s0, as (xq,Yo) € E;, we have x, + y, < w. Fix positive integer N and set 6 = 6y =
(w — xo — ¥o)/[N(a+ 1)]. Consider sequences (xj.v)ﬂ,\’:ﬁl, (pj)é.v:ﬁl, defined by

X5V=X0+YO+(]_1)5(O‘+1): J=17 2) :N+17
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and py' = (1+x,)/(1+xo + ¥o),

o ) (X + ) pY 5
i+1 N
! (1+X§V+l)(1 +X§V+@) 1+xj+1

,Jj=1,2,...,N. (29)

We construct a process (f, g) starting from (x,, y,) such thatfor j=1,2,..., N+1,

the variable (f3;, |g3;|) takes values (xﬁv, 0)and (—1,1+ xjv) 30
with probabilities p} and 1 — p¥, respectively. (30)

We do this by induction. Let

df =—dg, = YoX[o,p¥) +(-1- Xo)l[qu,u’ df,=dg,=df;=dg;=0.

Note that (30) is satisfied for j = 1. Now suppose we have a pair (f, g), which satisfies (30) for
j=1,2, ..., n,n <N. Let us describe f; and g, for k =3n+1, 3n+ 2, 3n+ 3. The difference
dfsn41 is determined by the following three conditions: it is a martingale difference, i.e., satisfies
E(df3,41]F3,) = 0; conditionally on {fs, = x!'}, it takes values in {—1 — x7, §(a +1)/2}; and
vanishes on {f;, # an }. Furthermore, set dgs,,1 = df3,,1. Moreover,

&3n+1
———adf3n4p-

dfsnqo = 5X{f3n+1:—1}’ dgsni2 = Il |
3n+1

Finally, the variable d f5,, 5 satisfies E(d f5,13|%3n42) = 0, and, in addition, the variable f;,, ; takes
values in {—1,xY 4+ 6(a+ 1)} = {—1,xV*'}. The description is completed by

&3n+2
dgsn43 = ;dfsmz-

|g3n+2l

N

One easily checks that (f3,13, |g3n+3]) takes values in {(x,., ;,

0),(-1,1+ an+1)}5 moreover, since
Efsnss = Bfan +Bdfanso = x0 Y — (1 =) + 6P(fap41 = —1)
6(a+1)
=xNpN—(1-pM)+5(1-pY +p¥
xnpn ( pn)+ ( p" +pn 2(1+XHN)+5((X+1))
v G+ DA+ xy +6(a—1)/2)

= +6—1,
Pn 1+xN+6(a+1)/2

we see that P(f3,,3 = an+1) = pﬁﬁrl and the pair (f, g) satisfies (29) for j = n+ 1. Thus there

exists (f, g) satisfying (29) for j =1, 2, ...,N + 1. In particular, (fin41), 18€3av+1)]) takes values
(w,0), (=1,w + 1) € D, with probabilities py . ,, 1 — py,,- By Lemma 4,

Vi (x0,¥0) = PN Vaw,0) + (1 — py, IVa(—1,w+1). (31)

Recall the function H defined by (2). The function h : [x, + yo,w] — R given by h(t) =
H(xy, Yo, t), satisfies the differential equation

a+2 h(t) _ 1

h/(t)+a+1 1+t (a+DA+t)
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As we assumed x, + y, > —1, the expression (h(x + &) —h(x))/& converges uniformly to h’(x) on
[xo+ Yo, A—3]. Therefore there exist constants &y, which depend only on N and x,+ y, satisfying
limy_,,,ey =0and for 1 <j <N,

2 oy(a+1)
‘h(xfg_l)—h(x;v) [Zil(l X)) = =55 }h(xj.v) 1 <
- — N>
(a+1)5y (1+X§V+1)(1+X§V+W) (a+ 1A +x},,)

or, equivalently,

_(1+x§’)(1+xf+@)h(x§v)_ Sy
13 N
Q40 )1+l Gy T,

<(a+1)oyey-

Together with (29), this leads to

Sy(a—1)
(1 +x)(1+x) +255=)

3
1+, ) (1 +x + 2nlatl)y

Ih(xY ) = P2l < Ih(x}") = p}'I + (a+ Ddyey.

Since p) = h(x}'), we have
|h(w) = py 1| S (@+1DN8yey = (A —3 — X0 — yo)ey
and hence limy_, pﬁ,’ +1 = h(w). Combining this with (31), we obtain
Vi(x0, ¥o) = h(w)(V,(w,0) = Vo (=1, w + 1)) + V5 (=1, w + 1).
As w = A — 3, it suffices to check that we have
a, = V(A —3,0) =V, (=1,A —2)) and b, = V;(—=1,A — 2),

where a,, b, were defined in (5). Finally, if (xq,y,) = (—1,0), then considering a pair (f, g)
starting from (x,, ¥,) and satisfying df; = &, dg; = a6, we get

V(=1,0)>V(-=1+35,ad). (32)

Now let § — 0 to obtain V(—1,0) > U(—1,0).
The case A > 4. We proceed as in previous case. We deal with (x,, y,) € A, exactly in the same
manner. Then we establish the analogue of (28), which is

1+a

V(-1L,LA-2)>U,(-1,A—2)= 5 (33)
To do this, fix 6 € (0,1) and set
4—26 6(a+1)
= y=p-(1-—2).
F=iTsara 7 B 4 )

Now let a pair (f: g) be defined by (fO’ gO) = (_1:A' - 2)9 (dfl,dgl) = (5’ a5)’

6(1—a)
dfy,=—dg, = B a—CY.) +(2-930)xp 1
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6(1+a) 6(1+a)
dfs=dgs=———"—"Xoy (2 - T)X[y,[o’)'
Then (f5, g3) takes values (—1,A — 2), (1,A) and (1, A — 4+ 6(a + 1)) with probabilities y,  — y
and 1 — 3, respectively, and Lemmal4 yields

V(=1,A=-2)2yV(-LA-2)+ (B -71IV(L,2),
or
p-y _(a+1D(2-8)
11—y  4-6(a+1) "’
It suffices to let &§ — 0 to obtain (33). The cases (xy,Yo) € B, C; are dealt with using the same

processes as in the case A € (2,4). If (x,, y,) € D,, then Lemmal4]} applied to the pair (f, g) given
by (fo, 80) = (X0, ¥0), df; = —dg; =—(1+ Xo)X[o,(l—xo)/z) +(1- Xo)X[u—xO)/z,u, yields

V(-1,A—2)>

1_XO

V(xp,¥0) = V(=1,xo+ Yo+ 1). (B34

Furthermore, for any number y and any 6 € (0, 1), we have

which is proved in the same manner as (32). Hence, for large N, if we set 6§ = (A —3 — xq —
¥0)/(N(a + 1)), the inequalities (34) and (35) give

1_X0 l_XO

V(x0,¥0) 2 V(-Lxo+yo+1)= V(=1+8,x0+yo+1+ad)
1—x, o
> — (1—E)V(—l,x0+yo+1+(a+1)5)

1—x O\N
>—2(1-5) V(-Lxo+yo+1+N(a+1)5)

2 2
_1_XO A’_B_XO_.YO N
D) (1_ 2N(a+1) ) V(=LA=2)
_(1—x0)(1+a)( _7L—3—x0—y0)N
B 4 2N(a+1)

Now take N — 00 to obtain V; (X, ¥o) = U, (X0, Yo)-

Finally, if (x4, y,) € E; we use the pair (f, g) used in the proof of the case (xq, yo) € E;, A €(2,4),
with w = 1. Then the process (f,|g|) ends at the points (1,0) and (—1,2) with probabilities,
which can be made arbitrarily close to H(x,, Yo, 1) and 1 — H(x,, ¥y, 1), respectively. It suffices to
apply Lemma 4 and check that it gives V; (xg, ¥o) = U; (%9, ¥o)- O
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