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Abstract

We consider a two-type oriented competition model on the first quadrant of the two-dimensional

integer lattice. Each vertex of the space may contain only one particle, either Red or Blue. A vertex

flips to the color of a randomly chosen southwest nearest neighbor at exponential rate equal to the

number of occupied south-west neighbors. At time zero there is one Red particle located at (1,0)

and one Blue particle located at (0,1). The main result is a partial shape theorem for the red and

blue regions R(t) and B(t) as time t →∞. In particular, we prove that (i) the upper-left half of

the unit square is asymptotically blue, and the lower-right half is asymptotically red; and (ii) with

positive probability there are angular sectors rooted at (1,1) that are eventually either red or blue.

The second result is contingent on the uniform curvature of the boundary of the corresponding

Richardson shape.

1 Introduction.

In this paper we study a model where two species Red and Blue compete for space on the first

quadrant of Z2. At time t > 0 every vertex of Z2 is in one of the three possible states: vacant,

occupied by a Red particle, or occupied by a Blue particle. An unoccupied vertex z = (x , y) may

be colonized from either (x , y−1) or (x−1, y) at rate equal to the number of occupied south-west

neighbors; at the instant of first colonization, the vertex flips to the color of a randomly chosen

occupied south-west neighbor. Once occupied, a vertex remains occupied forever, but its color

may flip: the flip rate is equal to the number of south-west neighbors occupied by particles of

the opposite color. The state of the system at any time t is given by the pair (R(t), B(t)), where

R(t) and B(t) denote the set of sites occupied by Red and Blue particles respectively. The set

R(t) ∪ B(t) evolves precisely as the occupied set in the oriented Richardson model, and thus, for

any initial configuration with only finitely many occupied sites, the growth of this set is governed

1RESEARCH SUPPORTED BY NSF GRANT DMS-0405102

548

DOI: 10.1214/ECP.v13-1422

1

http://dx.doi.org/10.1214/ECP.v13-1422


An oriented competition model on Z2
+

549

50 100 150 200 250 300 350 400

50

100

150

200

250

300

350

400

50 100 150 200 250 300 350 400

50

100

150

200

250

300

350

400

Figure 1: Two Realizations of Oriented Competition.

by the Shape Theorem, which states that the set of occupied vertices scaled by time converges to a

deterministic set S (see for example [2]). A rigorous construction and more detailed description

of the oriented competition model is given in Section 2.2.

The simplest interesting initial configuration has a single Red particle at the vertex (1,0), a single

Blue particle at (0,1), and all other sites unoccupied. We shall refer to this as the default initial

configuration. When the oriented competition process is started in the default initial configuration,

the red and blue particles at (1,0) and (0,1) are protected: their colors can never be flipped.

Thus, both colors survive forever w.p.1. Computer simulations for the oriented competition model

started in the default and other finite initial configurations suggest that the shapes of the regions

occupied by the Red and Blue types stabilize as times goes to infinity – see Figure 1 for snapshots

of two different realizations of the model, each started from the default initial configuration. A

peculiar feature of the stabilization is that the limit shapes of the red and blue regions are partly

deterministic and partly random: The southeast corner of the occupied region is always equally

divided between the red and blue populations, with boundary lying along the line y = x . However,

the outer section seems to stabilize in a random union of angular wedges rooted at a point near

the center of the Richardson shape. Although the location of the root appears to be deterministic,

both the number and angles of the outer red and blue regions vary quite dramatically from one

simulation to the next.

The purpose of this paper is to prove that stabilization of Red and Blue zones occurs with positive

probability. (We conjecture that in fact it occurs with probability 1, but we have been unable to

prove this.) To state our result precisely, we shall need several facts about the limit shape S of

the oriented Richardson model Z(t) := R(t)∪B(t). (Note: Henceforth, the term Richardson model

will refer the oriented version of the process, that is, the version in which infection can only travel

north and east. The Shape Theorem for this model can be proved by the same arguments as used

in the unoriented case – see [2] for details.) First, S is a compact, convex subset of the first

quadrant of R2. It is generally believed – but has not been proved – that the outer boundary ∂ oS

of S (the portion of ∂S that lies in the interior of the first quadrant) is uniformly curved in the
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following sense: If Kǫ is the cone

Kǫ = {z ∈ R
2 : arg{z − (1,1)} ∈ (−π/2+ ǫ,π− ǫ)},

then for every ǫ > 0 there exists ̺(ǫ) <∞ such that for every x ∈ ∂ oS ∩ Kǫ there is a circle of

radius ̺(ǫ) passing through x that contains S in its interior.

Note: Throughout the paper we will use the term cone to mean a set U ⊂ R2 with a distinguished

point u∗, the root, such that U \ {u∗}= {z : arg(z−u∗) ∈ J} for some interval J . An angular sector

A of S is the intersection of S with a cone A⊂ K0 rooted at a = (1,1).

In section 3 we shall prove the following.

Lemma 1. The Richardson shape S intersects the coordinate axes in the line segments connecting

the origin to the points (1,0) and (0,1), respectively. Furthermore the point (1,1) lies in the interior

of S .

It will follow by the convexity of S that the unit square Q = [0,1]2 lies entirely in S . Define Q1

and Q2 to be the open subsets of Q that lie below and above the main diagonal x = y . For any

set U ⊂ R2 and ǫ > 0, define

Uǫ = {u ∈ U : dist(u,∂ U)≥ ǫ} and

Û = {x ∈ R2 : dist(x , U)≤ 1/2}.

where dist denotes the L∞−metric on R2. For any set U ⊂ R2 and any scalar s > 0, let U/s =

{y/s : y ∈ U}. The main result of the paper is the following.

Theorem 1. For every ǫ > 0, with probability one, for all large t

Qǫ
1
⊂ R̂(t)/t and Qǫ

2
⊂ B̂(t)/t. (1)

Furthermore, if the outer boundary ∂ oS of the Richardson limit shape S is uniformly curved, then

for every ǫ > 0 the following holds with positive probability: There exist random open angular sectors

A1, ..,An ⊂ S rooted at (1,1) that do not intersect the unit square Q such that for every ǫ > 0 and

each i = 1,2, . . . , n,

(a) either Aǫ
i
⊂ R̂(t)/t or Aǫ

i
⊂ B̂(t)/t eventually, and

(b) the complement of
⋃

Ai in S \Q has angular measure less than ǫ.

A number of similar results concerning interfaces in competition models have appeared in the

literature. Ferrari and Pimentel [4] considered competition between two-growing clusters in the

last-passage percolation model in Z2. They showed that the competition interface converges al-

most surely to an asymptotic random direction. Another competition model on Zd (non-oriented

version) was studied in [6]. It was shown that if the process starts with finitely many particles of

both types (Red and Blue), then the two types coexist with positive probability under the condition

that the shape set of the corresponding non-oriented Richardson model is uniformly curved. The

behavior of the oriented model differs from that of the model considered in [6] in that the limit

shape contains the deterministic component (1).
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2 Preliminaries

2.1 Graphical Constructions

The competition model, the Richardson model, and the competition model in a hostile environ-

ment (see sec. 3 below) may be built using the same percolation structure Π. For details on per-

colation structures and their use in constructing interacting particle systems see [3]. Here we

briefly describe the construction of the percolation structure Π appropriate for the oriented models

described in sec. 1. To each directed edge x y such that x ∈ Z2
+
\ {(0,0)}, and y = x + (0,1) or

y = x + (1,0) is assigned a rate-1 Poisson process. The Poisson processes are mutually indepen-

dent. Above each vertex x is drawn a timeline, on which are placed marks at the occurrence times

T
x y

i
of the Poisson processes attached to directed edges emanating from x; at each such mark,

an arrow is drawn from x to y . A directed path through the percolation structure Π may travel

upward, at speed 1, along any timeline, and may (but does not have to) jump across any outward-

pointing arrow that it encounters. A reverse path is a directed path run backward in time: thus, it

moves downward along timelines and jumps across inward-pointing arrows. A voter-admissible 2

path is a reverse path that crosses every inward-pointing arrow that it encounters. Note that for

every site x and time t > 0 there is a unique voter-admissible path starting at (x , t). Observe that

the voter-admissible path starting at (x , t) evolves as a (reverse-time) random walk with jumps

downward or leftward occurring independently at rate 1 as long as the random walk is still in the

interior of the positive quadrant; upon reaching the boundary, jumps that would take the random

walk outside the quadrant are suppressed.

Path Precedence: For each (z, t) denote by Γ(z, t) the collection of reverse paths in Π originating

at (z, t) and terminating in (Z2
+

, 0). (We may also use Γ(z, t) to denote the set of endpoints of

all paths in the collection – the proper meaning should be clear from the context.) Assume that

reverse paths are parametrized by reverse time: thus, for a reverse path γ ∈ Γ(z, t) and s ∈ [0, t]

denote by γ(s) the location of the path in Z2
+

at time t − s in the natural time scale of Π, i.e.

γ(s) = z′ if (z′, t− s) ∈ γ. There is a natural order relation ≺ on Γ(z, t) defined as follows: For two

reverse paths γ1,γ2 ∈ Γ(z, t), let τ = inf{s > 0 : γ1(s) 6= γ2(s)}, i = 1,2, and set γ1 ≺ γ2 if and

only if γ2 jumps across an inward-pointing edge at time t − τ. (Note that exactly one of the two

paths γ1,γ2 must make such a jump.) The unique voter-admissible path γ̃ in Γ(z, t) is maximal

with respect to the order ≺.

Richardson Model: In the Richardson model, sites are at any time either vacant or occupied. If

Z(0) is the set of sites occupied at time zero, then the set Z(t) of sites occupied at time t, then

z ∈ Z(t) if and only if there is a reverse path γ ∈ Γ(z, t) that terminates in Z(0)× {0}.

Competition Model: Let B(0) and R(0) be the (nonoverlapping) sets of sites occupied by Blue and

Red particles, respectively, at time 0, and let W (0) = (B(0) ∪ R(0)) be the set of initially vacant

sites. As in the Richardson model, site z is occupied at time t if and only if there is a reverse

path γ ∈ Γ(z, t) that terminates in (B(0) ∪ R(0))× {0}. Call such paths attached, and call their

endpoints the potential ancestors of (z, t). Since there may be several attached paths, some ending

in B(0) × {0} and others in R(0) × {0}, priority must be established to determine the ancestor

of (z, t). This is done using the order relation ≺: Among all attached paths γ ∈ Γ(z, t) there is a

unique maximal path γ∗. If γ∗ terminates in B(0)×{0}, then z ∈ R(t); if γ∗ terminates in R(0)×{0}

then z ∈ R(t). Note that if Z(0) = B(0)∪ R(0) then Z(t) = R(t)∪ B(t).

2The term voter-admissible is used for such paths because if the voter-admissible path starting at (x , t) ends at (y, 0)

then the color of (y, 0) is the state of site x at time t in the standard voter model.
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2.2 Large deviation estimates for the shape theorem

Let Z(t) the set of vertices occupied at time t in the Richardson model, and fix a finite initial

configuration Z(0) . For z ∈ R2
+

let T(z) = inf{t : z ∈ Ẑ(t)}, and let µ(z) = limn→∞ n−1T(nz).

The limit exists almost surely by subadditivity. The growth of Ẑ(t) is governed by a Shape The-

orem [7].3 The following large deviations result for the Richardson model follows by the same

arguments as used by Kesten [5] and Alexander [1] in the non-oriented case:

Theorem 2. There exists a non-random compact convex subset S of R2
+

such that for α ∈ (1/2,1),

constants c1, c2 > 0 (depending on α) and all t > 0

P{(t − tα)S ⊂ Ẑ(t)⊂ (t + tα)S }> 1− c1 t2 exp{−c2 t(α−1/2)}.

Note: For the remainder of the paper, the letters c, c1, c2, . . . will denote constants whose values

may change from one line to the next.

The dual of the oriented Richardson process is the South-West oriented Richardson model, which

behaves in exactly the same manner as the oriented Richardson model except that infection travels

only south and west. Let S̃ be the limit set of the South-West oriented Richardson model. Started

from the default initial configuration with particles at the vertices (−1,0) and (0,−1), the process

lives in the third quadrant of Z2 and has limit shape S̃ = −S . The next lemma follows by

an elementary geometric argument, as in the proof of Lemma 4 in [8]. Denote by D(z, r) the

Euclidean disk in R2 with center at z and radius r > 0.

Lemma 2. Suppose that ∂ oS is uniformly curved. If z ∈ ∂ oS , then for all t1, t2 > 0, the regions

t1S and (t1+ t2)z+ t2S̃ are contained in disks that intersect in the single point t1z (see Figure 2).

Furthermore, for every ǫ > 0 and α ∈ (1/2,1) there exists c > 0 so that if z ∈ ∂S ∩ Kǫ, then for all

t1, t2 > 0 we have

(t1 + tα
1
)S ∩ ((t1 + t2)z + (t2 + tα

2
)S̃ )⊂ D(t1z, c(t1 + t2)

(α+1)/2).

3 Growth and competition in a hostile environment.

We will deduce the assertion (1) by comparison with a related process, the competition model

in a hostile environment. This evolves in exactly the same manner as the competition model of

Theorem 1 started from the default initial configuration except that vacant sites (“White”) may

now kill Red or Blue particles at northeast neighboring sites. The origin (0,0) does not count as a

site: it can’t kill the Red or Blue particles next to it. This process is more easily analyzed than the

competition model of Theorem 1, because the state of any site x at time t > 0 is determined by

the voter-admissible path γ starting at (x , t). In particular, if γ ends at (1,0), then site x will be

occupied by a Red particle at time t; if γ ends at (0,1) then x will be occupied by a Blue particle

at time t; and if γ ends at any other point then x will be vacant at time t. Define

RH(t) = {red sites at time t};

BH(t) = {blue sites at time t}; and

Q(t) = RH(t)∪ BH(t).

3Subadditivity arguments show the existence of the limit µ(z) for each direction z, but do not imply continuity of µ on

the boundaries of R2
+. Martin [7] showed that µ(z) is continuous on all of R2

+.
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Figure 2: Uniform Curvature

Note that the set Q(t) (“Black”) consisting of all occupied sites at time t is just the (oriented) voter

model with initial configuration (1,0) and (0,1) Black, all other sites White.

Observe that every vertex (z1, 0) on the horizontal coordinate axes and every vertex (0, z2) on the

vertical coordinate axes eventually flips to Black and then remains Black forever. Thus, almost

surely for all large t, vertex (z1, z2) is Black. By subadditivity, the Black region Q(t) obeys a shape

theorem. Below it is shown that the limit shape is exactly Q. (See Figure 3 for a simulation.)

Proposition 1. For every α ∈ (1/2,1) there exist c1, c2 such that for all t > 0

P[(t − tα)Q ⊂ Q̂(t)⊂ (t + tα)Q]> 1− c1 t2 exp{−c2 t(α−1/2)}.

Proof. Recall that for every t > 0 and z ∈ Z2
+

, there exists a unique reverse voter-admissible path

γ̃(z,t) starting at (z, t). The path travel downward, at rate 1, and jumps across all inward-pointing

arrows. Until the path hits the horizontal (vertical) axis the number of horizontal (vertical) jumps

is distributed as Poisson process with parameter 1. Thus, there exist constants c1 and c2 such that

for every z ∈ (t − tα)Q

P(γ̃(z,t) terminates in {(1,0), (0,1)}) ≥ 1− c1 exp{−c2 t(α−1/2)}.

For the same reason, there exist constants c1 and c2 such that for every z ∈ (t + tα)Q c ,

P(γ̃(z,t) terminates in {(1,0), (0,1)}) ≤ c1 exp{−c2 t(α−1/2)}.

The proposition follows from the fact that the number of vertices in (t − tα)Q is of order at most

O(t2) and the number of vertices on the boundary of (t + tα)Q is of order at most O(t).

If the growth models Q(t) and S(t) are coupled on the same percolation structure Π, then clearly

Q(t)⊆ S(t), and thus Q ⊆S . Lemma 1 asserts that S is strictly larger than Q.

Proof of Lemma 1. The first asserton of the lemma, that S intersects the coordinate axes in line

segments of length 1, is fairly obvious: If Tn is the time that (say) (n, 0) is invaded, then the
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random variables Tn+1 − Tn are independent and exponentially distributed with mean 1. Thus,

it remains to prove that (1,1) is in the interior of the shape set. The following argument was

communicated to the authors by Yuval Peres. Consider a representation of the Richardson model

as a first passage percolation model. To each edge of the lattice associate a mean one exponential

random variable, also called a passage time of the edge. The variables are mutually independent.

For every pair of vertices z1 = (x1, y1), z2 = (x2, y2) such that x1 ≤ x2 and y1 ≤ y2 define the

passage time T(z1, z2) from z1 to z2 as the infimum over traversal times of all North-East oriented

paths from z1 to z2. The traversal time of an oriented path is the sum of the passage times of its

edges. In the first passage percolation description of the Richardson model, let

Z(t) = {z ∈ Z2
+

: T((1,0), z)≤ t or T((0,1), z) ≤ t}.

It is enough to show that for some ǫ > 0, the vertex (1,1) is in (1− ǫ)S . Consider a sequence

of vertices zn = (n, n) on the main diagonal of the first quadrant of Z2. By the shape theorem,

it suffices to prove that almost surely for infinitely many n’s the occupation times of zn satisfy

T(zn)≤ n(1− ǫ).

Consider vertices (0,2), (2,0), and (1,1). There are exactly four oriented distinct paths from the

origin to these vertices. Each such path has two edges and expected passage time 2. Let γ(1) be

the path with the smallest passage time among these four paths. Denote by X1 the terminal point

of γ(1), and denote its passage time by T1. By symmetry, P(X1 = (0,2)) = P(X1 = (2,0)) = 1/4

and P(X1 = (1,2)) = 1/2. It easy to see that ET1 < 1. Indeed, let γ0 be the path obtained by

the following procedure. Start at the origin and make two oriented steps each time moving in the

direction of the edge with minimal passage time (either north or east). Clearly,

ET1 < Eτ(γ0) = 1

where τ(γ0) is the total passage time of γ0. Restart at X1 and repeat the procedure. Denote by

X2 the displacement on the second step and by T2 the passage time of the time minimizing path

from X1 to X1 + X2. Note that Wk =
∑∞

k=1
Xk is a random walk on Z2

+
. The random walk visits

the main diagonal infinitely often in such a way that Wk = (k, k). Furthermore, if Sk =
∑∞

k=1
Tk,

then by SLLN for some ǫ > 0 almost surely for all large k we have Sk ≤ (1− ǫ)k. This finishes the

proof.

Next, we consider the evolution of the Red and Blue regions RH(t) and BH(t). Recall that these

are defined to be the sets of all vertices z such that the unique voter-admissible path beginning at

(z, t) terminates respectively at (1,0) and (0,1). For t > 0 define

K1(t
α) = {z = (z1, z2) ∈ Z

2
+

: z1 − z2 > tα},

K2(t
α) = {z = (z1, z2) ∈ Z

2
+

: z2 − z1 > tα}.

Proposition 2. For every α ∈ (1/2,1) there exist c1, c2 > 0 such that for all t > 0,

P[(t − tα)Q ∩ K1(t
α)⊂ R̂H(t)]> 1− c1 t2 exp{−c2 t(α−1/2)} and (2)

P[(t − tα)Q ∩ K2(t
α)⊂ B̂H(t)]> 1− c1 t2 exp{−c2 t(α−1/2)}. (3)

Proof. We only prove (2), as the proof of (3) is virtually identical. First, observe that by Proposition

1 there exist c1, c2 > 0

P[(t − tα)Q ⊂ R̂H(t)∪ B̂H(t)]> 1− c1 t2 exp{−c2 t(α−1/2)}.
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Figure 3: Growth and Competition Models in Hostile Environment.

Second, note that with probability exponentially close to one voter admissible paths of all vertices

z ∈ (t− tα)Q∩K1(t
α)∩Z2

+
terminate below the main diagonal. That is, there exist c1, c2 > 0 such

that

P
�

γ̃(z,t)(t) ∈ K1(0)
�

≥ 1− c1 exp{−c2 t(α−1/2)}.

The result (2) follows immediately from these two observations.

If the competition model and the competition model in hostile environment are constructed on

the same percolation structure Π, then almost surely, for all t ≥ 0,

RH(t)⊆ R(t) and BH(t)⊆ B(t).

Hence it follows from Proposition 2 that almost surely, for all large t,

(t − tα)Q ∩ K1(t
α)⊂ R̂(t) and

(t − tα)Q ∩ K2(t
α)⊂ B̂(t).

Thus, asymptotically (as t goes to infinity) the square Q ⊂ S is colored deterministically. In

particular, the region below the main diagonal is red, and the region above the diagonal is blue.

This proves the first part of Theorem 1.

4 Stabilization in angular sectors.

Next we consider how the oriented competition model evolves in the region S \Q. By the Shape

Theorem for the Richardson model, the occupied set R̂(t)∪ B̂(t), after rescaling by 1/t, converges

to the deterministic Richardson shape S . By the arguments of the preceding section, the Richard-

son shape contains the unit square Q, and the upper corner a = (1,1) of this square lies in the

interior of S . In this section, we will show that once an angular sector A ⊂ S rooted at a has

been occupied by one of the species (Red or Blue), it is very unlikely (exponentially in powers of
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the distances involved) that the opposite species will make a large incursion into this sector for

some time afterward. Since there is positive (albeit possibly small) probability that in finite time

the Blue and Red species will each colonize large angular sectors rooted at a = (1,1), the second

part of Theorem 1 will follow.

The stabilization argument has two parts. First, the Small Incursion Lemma following will show

that once a species (say Blue) has been eliminated from a region tU of diameter proportional to

t, it is exponentially unlikely that it will penetrate farther than Cδt into the interior of tU at any

time in the next tδ time units. Second, the Stabilization Lemma below will imply that if A= U is

an angular sector of S , then the probability that at the end of the next tδ time units there are Blue

particles in t(1+ δ)A farther than C(δt)α from the boundary, for 1/2 < α < 1, is exponentially

small. It will then follow routinely from the Borel-Cantelli lemma that with positive (conditional)

probability, once an angular sector has been taken over by the Red species, the Blue species will

never re-enter a slightly smaller angular sector.

Small Incursion Lemma. Let ∆ be the diameter (in L∞) of the Richardson shape S . There is a

constant c > 0 such that the following is true, for every bounded region U ⊂ R2
+

and all t ≥ 1 and

0 < δ < 1: If at time 0 the integer points in tU are all occupied by Red particles, then for every

ǫ > 2∆δ

P{there is a Blue particle in tUǫat some time s ≤ δt} ≤ exp{c
p

δt}. (4)

Proof. This is an easy consequence of the large deviations estimates in Theorem 2. In brief, any

Blue incursion into tUǫ would have to originate at an integer point z outside of tU , and thus

would have to travel distance at least 2∆δt + dist(z, tU) in time δt. But regardless of the initial

configuration of Red and Blue particles away from z, the region colonized by Blue particles with

ancestry tracing back to z is dominated by the Richardson process initiated by a single particle at

z. Since the Richardson process grows monotonically with time, Theorem 2 implies that for any

integer point z 6∈ tU , the probability of a Blue incursion from z into tUǫ by time δt is exponentially

small, in particular, bounded by exp{−c
p

δt + dist(z, tU))}. Since the number of integer points

at given distance from tU grows only quadratically, the estimate (4) follows.

Recall that

K = K0 = {y ∈ R
2 : arg{y − (1,1)} ∈ (−π/2,π)}.

Denote by π : K → ∂ oS the natural projection onto the outer boundary of the Richardson shape:

in particular, for any y ∈ K , π(y) is the the unique point where the line through a = (1,1) and y

intersects ∂ oS . For a cone A rooted at (1,1), define the center and aperture to be the point z and

the positive number ̺ such that

A= A(z;̺) := {y ∈ K : |πy − z|< ̺}.

Fix ǫ > 0 and α,α∗,β ∈ (1/2,1) such that α < α∗ and (α∗+1)/2< β . For ̺, c > 0 and t = t0 ≥ 1,

let A1 ⊂ A0 be cones rooted at a with common center z and apertures ̺ < ̺ + tβ−1, respectively.
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Assume that A0 ⊂ Kǫ/3. Fix δ ∈ (0,1), and set

t1 = (1+δ)t0 = (1+δ)t,

Wi = (Ai ∩S )− a, for i = 0,1,

R0 = (t0 − tα
0
)W0 + t0a,

R∗
0
= (t0 − t

α∗
0 )W1 + t0a

R±
1
= (t1 ± t

α∗
1 )W1 + t1a,

B0 = (t0 + tα
0
)S \ t0A0,

B1 = (t1 + t
α∗
1 )S \ t1A1, and

D = D(at1, (δt)α).

Stabilization Lemma. There exists a constant c > 0 such that the following is true, for all sufficiently

large t > 0: If the initial configuration is such that R̂(0)⊃R0 and B̂(0)⊂B
0
, then

P[B̂(δt) 6⊂ B1 ∪D or R̂(δt) 6⊃ R−
1
\ D]≤ t2 exp{−c(δt)α−1/2}. (5)

Under the hypothesis of uniform curvature of the outer boundary of S , the constants do not

depend on the angular measure and position of A0 as long as the angular sector A0 ⊂ Kǫ/3.

Proof of the Stabilization Lemma. By monotonicity, we may assume that R̂(0) = R−0 and B̂(0) =

B0; this is the worst scenario for the Red. The proof of the lemma will proceed by tracing the

ancestries of paths in Γ(z,δt), where z is an integer point. Recall that if there is an attached path in

Γ(z,δt) then there is a unique maximal such path γ∗ relative to the precedence order ≺; this path

determines the color of z at time δt. Since the voter-admissible path is maximal in the precedence

order, if it is attached then it will determine the color of z; however, it is possible that there are

attached paths, but that the voter-admissible path is not attached, as in Claims 2–3 below. If there

is no attached path in Γ(z,δt) then site z is vacant at time δt. By the large deviations estimates

for the Richardson model (Theorem 2), the region colonized by Blue at time t will be contained in

R+1 ∪B1, except with exponentially small probability, so it suffices to consider sites z ∈ R+1 ∪B1.

The following three claims will therefore imply the lemma, since there are at most O(t2) integer

points in this region.

Claim 1. If z ∈ R∗
0
+ δta and z 6∈ D then except with exponentially small probability the voter-

admissible path in Γ(z,δt) is attached, and its endpoint lies in R0 × {0}.

Claim 2. If z ∈ R−1 \(R
∗
0
+δta) then except with exponentially small probability there is an attached

path, and the maximal attached path γ∗ has endpoint in R0 × {0}.

Claim 3. If z ∈ R+1 \ R
−
1 then except with exponentially small probability, if there is an attached

path in Γ(z,δt) then the maximal attached path γ∗ has endpoint in R0 × {0}.

In all cases the term exponentially small means that the probability is bounded by

exp{−c(δt)α−1/2}

for a constant c > 0 independent of the site z chosen.

Proof of Claim 1. The voter-admissible path γ̃ is a continuous time random walk with exponential

waiting times between jumps and drift −a. For any initial point z in the region R∗
0
+ δt, the
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Figure 4: Maximal Path

mean displacement −(δt)a of the voter-admissible path moves the point into the region R∗
0
.

Furthermore, if z 6∈ D, then z − (δt)a will be at distance at least O(tβ ) from the bounding rays of

the cone R0, and at distance at least O(tα∗ − tα) from the outer boundary of R∗
0
. Since β > 1/2,

standard moderate deviations results for the simple continuous-time random walk imply that,

except with exponentially small probability, the endpoint of the path γ̃ lies in R0 × {0}.

Proof of Claim 2. For sites z ∈ R−1 \ (R
∗
0
+ δta) the voter-admissible path will not necessarily be

attached with high probability, because the mean displacement −(δt)a moves z to a point outside

R0 ∪ B0. Nevertheless, for such z it is highly likely that there is an attached path in Γ(z,δt),

because the reverse Richardson shape started at z and run for time δt will intersect the interior of

R0. (See Figure 4 above; z is the point at the upper right corner of the figure.) This follows from

the definition of the region R−1 , and the fact that α∗ > α.

Now consider the maximal attached path: This will follow the voter-admissible path as far as

possible, to a neighborhood of a point w∗ along the ray L+ of slope −1 originating at z, and

thereafter will follow a line of slope 6=−1 to a point near the outer boundary of R∗
0
. (In Figure 4,

the point w∗ is the endpoint of the line segment of slope −1 emanating from z.) To see this,

consider points w along the ray L+ between z and w∗. For each such point w, the voter-admissible

path starting at z travels approximately at speed 1, and hence reaches a neighborhood of w in time

Tw = dist(z, w). (Note: The metric is the L∞ metric.) Now consider the reverse Richardson shape

that starts at w at time Tw: if this is run for time δt − Tw , it will terminate in the interior of R∗
0

(see Figure 4). Thus, by Theorem 2, with probability exponentially close to 1, there will be a path

in Γ(z,δt) that follows the voter-admissible path from z to a point near w, then follows another
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straight line in the reverse Richardson shape into the interior of R0. This path will necessarily

be attached. Since this is true for each w 6= w∗ along the line segment from z to w∗, it follows

that with high probability there is an attached path that reaches a neighborhood of w∗. A similar

argument shows that, except with exponentially small probability, there is no attached path that

follows the voter-admissible path much farther than w∗. Consequently, the maximal attached

path will deviate from the voter-admissible path near w∗, and then will follow approximately the

straight line path to the marked point on the boundary of R∗
0

shown in Figure 4.

Following is a more detailed explanation. For r1, r2 ∈ R
2, denote by I(r1, r2) the interval with

endpoints r1 and r2 and by L(r1, r2) the half-line starting at r1 and passing through r2. For conve-

nience, define r = z/(1+δ)t ∈ S . Draw a half-line L(a, r) and let b ∈ L(a, r) be the point on the

outer boundary of S . Let b′(δ) be a point in the interval I(a, b) such that

|b′ − a|= |b− a|/(1+δ)

where | · | is an Euclidean norm. First consider the case where r ∈ I(b′, b). Define

κ=
|r − b|

|b′ − b|
.

Let the voter admissible path run from (z,δt) for κδt time units going backward in time. With

probability exponentially close to one, at time δt−κδt the reverse voter admissible path will be in

the (κδt)α neighborhood of w∗ = z − (κδt) a. From elementary geometry it immediately follows

that w∗ ∈ I(bt, b(1+δ)t) and

κ= |w∗ − b(1+δ)t|/|bt − b(1+δt)|.

Secondly, observe that bt is on the boundary of w∗ + (1− κ)(δt)S̃ . Actually,

tS ∩ {w∗ + (1− κ)(δt)S̃ }= bt.

Thus, if the reverse Richardson process starts from a vertex near w∗ it should hit bt in approxi-

mately (1−κ)(δt) units of time. Furthermore, by Lemma 2 the intersection of the setR0∪B0 with

the set occupied by the Richardson process should lie in D(bt, c(δt)β) (unless the the intersection

is empty). Since z ∈ R−1 \ (R
∗
0
+ δta), it is easy to see that D(bt, c(δt)β)∩B0 = ;. To guarantee

that with probability exponentially close to one the selected set of reverse paths contains at least

one attached path, we follow the reverse voter admissible path for slightly less than κδt, specif-

ically, for t1 = (κδt − (δt)α⋆)+ units of time. Let Γ1(z,δt) be a subset of Γ(z,δt) containing all

reversed paths that coincide with the voter admissible path γ̃ for t1 units of time. That is, for every

γ ∈ Γ1(z,δt), for all 0< s < t1, γ(s) = γ̃(s) The set of ends of Γ1(z,δt) is obtained by constructing

the reverse oriented Richardson process that starts with one occupied vertex at γ̃(t1), and runs

backward in time for t2 = δt − t1 units of time. By Lemma 2, for some c > 0

P[Γ(z,δt)∩ (R0 ∪B0) 6⊂ D(bt, c(δt)β)]< exp{−c(δt)(α−
1

2
)}.

Thus, with probability exponentially close to one the end of maximal attached path γ∗ belongs to

a disk with center at bt and radius c(δt)β . Since D(bt, c(δt)β)∩B0 = ; the result follows.

If the location of z is such that z/(1+δ)t ∈ I(a, b′), take κ= 1 and use a similar argument.

Proof of Claim 3. The proof is similar to that of Claim 2. If the ancestor of (z,δt) exists, it is

located in the set of ends of Γ(z,δt). The set of ends of Γ(z,δt) is obtained by constructing reverse
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oriented Richardson process starting at (z,δt), and running the process on the subset Z2
+
× (0,δt)

of the percolation structure backward in time for δt units of time. Then by Theorem 2 and Lemma

2,

P[Γ(z,δt)∩ (R0 ∪B0) 6⊂ D(bt, c(δt)β)]≤ exp{−c(δt)(α−
1

2
)}.

Proof of Theorem 1. It remains to be shown that with positive probability, Red and Blue eventually

occupy disjoint angular sectors of S rooted at a = (1,1) that fill all but a small part of S \ Q.

Let L+ǫ and L−ǫ be the rays emanating from a with slopes 1± ǫ, respectively; it suffices to show

that, with positive probability, the region above L+2ǫ will eventually be Red and the region below

L−2ǫ will eventually be Blue.

Fix T large. There is positive (although small) probability that at time T Red and Blue will occupy

the regions above and below the line of slope 1 through the origin, and that their union will

be precisely the scaled Richardson shape TS ∩ Z2. Consider the state of the system at times

Tn := (1+ δ)nT for n = 1,2, . . . . By the Stabilization Lemma and the Borel-Cantelli lemma, if T

is sufficiently large, the Red and Blue regions will contain the sectors above and below the lines

L+ǫ and L−ǫ at all times Tn with positive probability. (Note: Here we use the fact that β < α [see

discussion preceding the Stabilization Lemma], as this guarantees that
∑

n Tβ−α
n
< ǫ if T is large.)

Finally, the Small Incursion Lemma ensures that, if δ is small and T large, then the Red and Blue

populations will not enter the sectors above and below the lines L+2ǫ and L−2ǫ between successive

time Tn and Tn+1 with any appreciable probability.
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