
Elect. Comm. in Probab. 13 (2008), 507–517 ELECTRONIC

COMMUNICATIONS

in PROBABILITY

LIMIT THEOREMS FOR MULTI-DIMENSIONAL RANDOM QUAN-
TIZERS

J. E. YUKICH

Department of Mathematics, Lehigh University, Bethlehem, PA 18015

email: jey0@lehigh.edu

Submitted May 13, 2008, accepted in final form September 22, 2008

AMS 2000 Subject classification: Primary 60F05, Secondary 60D05

Keywords: Quantization, laws of large numbers, central limit theorems, stabilization

Abstract

We consider the r th power quantization error arising in the optimal approximation of a d-dimensional

probability measure P by a discrete measure supported by the realization of n i.i.d. random vari-

ables X1, ..., Xn. For all d ≥ 1 and r ∈ (0,∞) we establish mean and variance asymptotics as well

as central limit theorems for the r th power quantization error. Limiting means and variances are

expressed in terms of the densities of P and X1. Similar convergence results hold for the random

point measures arising by placing at each X i , 1≤ i ≤ n, a mass equal to the local distortion.

1 Introduction and main results

Quantization for probability measures is a classic partitioning problem arising in information the-

ory, cluster analysis, and mathematical models in economics [7]. It concerns the best approxima-

tion of a d-dimensional probability measure P by a discrete measure supported by a set X having

n atoms. An n point set X partitions Rd into Voronoi cells C(x ,X ), x ∈ X , and a d-dimensional

random vector U with distribution P is quantized by mapping its realization, here denoted by u,

to the point x ∈ X whose Voronoi cell C(x ,X ) contains u. Given r ∈ (0,∞), the goal is to select

a set X of ‘codes’ or ‘Voronoi quantizers’ in a way that minimizes the r th power quantization error

(‘distortion error’) given by

Ir(X ) :=

∫

R
d

(min
x∈X
|u− x |)r P(du) =

∑

x∈X

∫

C(x ,X )

|u− x |r P(du). (1.1)

For r = 2, I2(X ) measures mean square distortion whereas when d = 1, Ir(X ) measures the r th

absolute moment of the quantizing error.

When P has a continuous density h, Zador’s theorem [15] shows that the minimum value of Ir(X )

over all n point quantizing sets X , when scaled by nr/d , converges to a constant multiple Q r,d of

the Ld/(d+r) norm of h, where Q r,d is the r th quantization coefficient of P (p. 81 of [7]).
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Letting the quantizing set be Xn := {X1, ..., Xn}, where X i are i.i.d. with density κ on Rd , gives

rise to a distortion error Ir(Xn). The mean asymptotics of Ir(Xn) were first investigated by Zador

[14, 15], Gersho [6], and later by Graf and Luschgy [7] and Cohort [5]. If κ is strictly positive

on Rd , if (nr/d min1≤i≤n |U − X i |
r)n≥1 are uniformly integrable for a fixed r ∈ (0,∞), and if ωd :=

πd/2[Γ(1 + d/2)]−1 denotes the volume of the unit radius d-dimensional ball, then the mean

distortion satisfies (Theorem 9.1 of [7])

lim
n→∞

nr/d
E [Ir(Xn)] = Γ

�

1+
r

d

�

ω
−r/d

d

∫

R
d

h(x)(κ(x))−r/d d x . (1.2)

One might expect that Ir(Xn) ∼ E Ir(Xn) + error, where after suitable normalization the error

tends to a Gaussian as n→∞. Theorem 1.1, the main result of this note, confirms this, providing

variance asympotics and central limit theorems which quantify the deviation of the random dis-

tortion from its mean. The results, obtained via stabilization techniques for point processes, hold

for all d ≥ 1 and capture the second order dependency of the distortion on κ and h.

We also investigate the limit theory of the point measures induced by the distortion, namely the

random measures

νn := νn,r :=

n
∑

i=1

 
∫

C(X i ,Xn)

|u− X i |
rh(u)du

!

δX i
, (1.3)

where δx signifies a unit point mass at x . For any A⊂ Rd , let B(A) denote the bounded functions

on A. We seek the asymptotic behavior of the integrals nr/d〈 f ,νn〉, where for any measure ρ on

R
d and f ∈ B(Rd), 〈 f ,ρ〉 denotes the integral of f with respect to ρ. Clearly, when f ≡ 1 we have

〈 f ,νn,r〉 = Ir(Xn) whereas, for example, if f = 1B and B is a Borel set, then 〈 f ,νn〉 measures the

random local distortion on B.

We require a bit more notation. Let H denote a homogeneous rate one Poisson point process on

R
d and let 0 be the point at the origin of Rd . Given a point set X and x /∈ X we write C(x ,X )

for C(x ,X ∪ {x}). For all r ∈ (0,∞) let M(r) :=
∫

C(0,H )
|w|r dw. Put for all r ∈ (0,∞)

V (r) :=

∫

R
d

 

E





∫

C(0,H∪{y})

|w|r dw

∫

C(y,H∪{0})

|w|r dw



− (EM(r))2

!

d y +E [M(r)2] (1.4)

and

∆(r) := E [M(r)] +

∫

R
d

E





∫

C(0,H∪{y})

|w|r dw−

∫

C(0,H )

|w|r dw



 d y. (1.5)

Assume henceforth that h is a bounded Lebesgue almost everywhere continuous function with compact

convex support A ⊂ Rd and that κ is a Lebesgue almost everywhere continuous probability density

function which is bounded away from zero on its support, which is also assumed to be A. The next

result quantifies the asymptotic L2 deviation of the distortion Ir(Xn) about its mean and it also

gives a distributional result for the centered distortion Ir(Xn)− E Ir(Xn). For any random point

measure ρ, let ρ denote its centered version, that is ρ := ρ−Eρ. For all r ∈ (0,∞) and f ∈ B(A)

we put

σ2(r, f ) := V (r)

∫

A

f 2(x)h2(x)(κ(x))−1−2r/d d x − (∆(r))2

�∫

A

f (x)h(x)(κ(x))−r/d d x

�2

.

Let N(0,σ2) denote a mean zero normal random variable with variance σ2 and let
D
−→ denote

convergence in distribution.
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Theorem 1.1. Under the stated assumptions on h and κ we have for all f ∈ B(A) and all r ∈ (0,∞)

lim
n→∞

n1+2r/dVar[〈 f ,νn〉] = σ
2(r, f ) (1.6)

whereas as n→∞

n1/2+r/d〈 f ,νn〉
D
−→ N(0,σ2(r, f )). (1.7)

Remarks.

(i) Related work. When d = 1 and f ≡ 1 Cohort [5] employs spacing techniques to establish

the asymptotic normality of n1/2+r/d〈 f ,νn〉 for continuously differentiable κ and h. He does not

consider the convergence of n1/2+r/d〈 f ,νn〉 for arbitrary d ∈ N and general f ∈ B(A).

(ii) Convergence of finite-dimensional distributions. As in [2, 8], an application of the Cramér-Wold

device shows that the finite-dimensional distributions

n1/2+r/d(〈 f1,νn〉, ..., 〈 fk,νn〉), f1, ..., fk ∈ B(A),

of n1/2+r/dνn converge as n→∞ to those of a mean zero Gaussian field with covariance kernel

( f , g) 7→ V (r)

∫

A

f (x)g(x)h2(x)(κ(x))−1−2r/d d x − (1.8)

(∆(r))2
∫

A

f (x)h(x)(κ(x))−r/d d x

∫

A

g(x)h(x)(κ(x))−r/d d x , f , g ∈ B(A).

(iii) Poisson central limit theorem. For all λ > 0 let Pλ := Pλκ be a Poisson point process with

intensity λκ on Rd , and consider the random point measure

µλ :=
∑

x∈Pλ

 
∫

C(x ,Pλ)

|u− x |r P(du)

!

δx . (1.9)

Then for all f ∈ B(A) and r ∈ (0,∞) we have

lim
λ→∞

λ1+2r/dVar[〈 f ,µλ〉] = V (r)

∫

A

f 2(x)h2(x)(κ(x))−1−2r/d d x =: σ̂2(r, f ) (1.10)

whereas λ1/2+r/d〈 f ,µλ〉
D
−→ N(0, σ̂2(r, f )) as λ→∞. The analog of (1.8) holds with ∆(r) ≡ 0,

and hence, taking f1, ..., fk to be indicators over disjoint sets, the resulting vector of local distor-

tions converges to a k-variate Gaussian with independent components.

As a by-product of the approach taken to prove Theorem 1.1 we obtain the following weak law of

large numbers for 〈 f ,νn〉, f ∈ B(A).

Theorem 1.2. Under the stated assumptions on h and κ we have for all f ∈ B(A) and all r ∈ (0,∞)

lim
n→∞

nr/d〈 f ,νn〉= Γ

�

1+
r

d

�

ω
−r/d

d

∫

A

h(x) f (x)(κ(x))−r/d d x in L2. (1.11)
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Remarks.

(i) Related work. Assuming regularity of κ and h, Cohort [5] establishes the Lp and a.s. conver-

gence of nr/d Ir(Xn), but does not consider the quantities nr/d〈 f ,νn〉, f ∈ B(A). Clearly (1.11)

yields (1.2).

(ii) Bounds on rth quantization coefficient Q r,d . Putting κ equal to hd/(d+r)/
∫

hd/d+r d x and putting

f ≡ 1 in Theorem 1.2 shows for all r ∈ (0,∞) that

lim
n→∞

nr/d
E [Ir(Xn)] =ω

−r/d

d
Γ

�

1+
r

d

�

||h||d/(d+r),

whence (Proposition 9.3 in [7]) the rth quantization coefficient Q r,d satisfies the well-known upper

bound Q r,d ≤ω
−r/d

d
Γ(1+ r/d).

(iii) Extension to general κ . Put Dn := diam(C(X ,Xn−1) ∩ A), X an independent copy of X1. If κ

is not bounded away from zero on A, then straightforward modifications of the proof of Theorem

1.2 show that (1.11) holds whenever lim supn→∞E [(n
1/d Dn)

p(r+d)]<∞ for some p > 2.

(iv) L∞ distortion error. Theorem 1.2 may be extended to treat the L∞ distortion error given by

I∞(X ) :=
∑

x∈X

∫

C(x ,X )

(diamC(x ,X ))P(du),

with the random measures νn,∞ similarly defined by

νn,∞ :=

n
∑

i=1

 
∫

C(X i ,Xn)

(diamC(X i ,Xn))h(u)du

!

δX i
.

Under the stated assumptions on h and κ we have for all f ∈ B(A)

lim
n→∞

n1/d〈 f ,νn,∞〉= E





∫

C(0,H )

diam(C(0,H ))du





∫

A

h(x) f (x)(κ(x))−1/d d x in L2.

2 Lemmas

The random summands in (1.3) share neither the same representation nor the same scaling prop-

erties as those considered in previous general work on stabilizing functionals [2, 8], but we may

nonetheless express 〈 f ,νn〉 as a sum of terms having an exponentially stabilizing spatial depen-

dency structure. In other words, we may show that the behavior of the summands in (1.3) depends

on the surrounding environment only within a certain finite but random distance, and, when κ

is bounded away from zero, one having an exponentially decaying tail (Lemma 2.2). Sums of

random terms based on nearest neighbor distances, such as those figuring in general spacings

statistics [1] and nearest neighbor graphs [10], enjoy similar properties. Local dependencies of

the random distortion may be exploited to rigorously demonstrate the intuitive observation that

the local behavior of λ1/dµλ at λ1/d x is closely approximated by that of a homogeneous Poisson

point process with intensity κ(x) (Lemma 2.4). Similarly, stabilization techniques [2, 8] may be

used to establish convergence of the pair correlation function (Lemma 2.5), the key to establishing

the variance asymptotics and central limit theory of random distortions. We refer to [13] for an

accessible survey on stabilizing functionals.
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This section collects some lemmas. Throughout we continue to assume that h and κ satisfy the

assumptions set forth in section 1. For ease of notation we suppress dependency on r of 〈 f ,νn〉 and

related quantities. For all locally finite X ⊂ Rd and x ∈ X the distortion Ir(X ) is a sum of terms

of the form

Φ(x ,X ) :=

∫

C(x ,X )

|u− x |rh(u)du. (2.1)

For all λ≥ 1 put

Φλ(x ,X ) :=

∫

C(λ1/d x ,λ1/dX )

|u−λ1/d x |rh(λ−1/du)du. (2.2)

We will make frequent use of the representation

nr/dνn =

n
∑

i=1

 
∫

C(X i ,Xn)

|n1/d(u− X i)|
rh(u)du

!

δX i
= n−1

n
∑

i=1

Φn(X i ,Xn)δX i
. (2.3)

Equality in (1.1) is preserved if we replace C(x ,X ) with C(x ,X )
⋂

A, where we recall that

A is the common support of h and κ. Abusing notation we henceforth assume for all λ ≥ 1 that

C(λ1/d x ,λ1/dX ) denotes the intersection of λ1/dA and the Voronoi cell around λ1/d x with respect

to the scaled point set λ1/dX .

For all τ > 0 let Hτ denote a homogeneous Poisson point process on Rd with intensity τ. For all

x ∈ Rd and all point sets X ⊂ Rd we let

ξ∞(x ,X ) := ξr,∞(x ,X ) := h(x)

∫

C(0,X )

|w|r dw

denote the product of h(x) and the contribution to the distortion at the origin induced byX ∪{0}.

The following expectation result, a consequence of standard integral geometry methods (cf. p.

128 of [7]), shows that E [M(r)] =ω
−r/d

d
Γ(1+ r/d). For the convenience of the reader we sketch

the proof.

Lemma 2.1. For all τ > 0 and x ∈ Rd we have E [ξ∞(x ,Hτ)] = h(x)τ−1−r/dω
−r/d

d
Γ(1+ r/d).

Proof. We have E [ξ∞(x ,Hτ)] = h(x)E
∫

R
d |w|

r1{w∈C(0,Hτ)}
dw. Letting Po(α) denote an indepen-

dent Poisson random variable with parameter α, Fubini’s theorem and a change of variable gives

yields

E

∫

R
d

|w|r1{w∈C(0,Hτ)}
dw =

∫

R
d

|w|r P[Po(τ|w|dωd) = 0]dw = dωd

∫ ∞

0

ur+d−1 exp(−τωdud)du.

Making the substitution v = τωdud gives

dωd

∫ ∞

0

ur+d−1 exp(−τωdud)du= τ−1−r/dω
−r/d

d

∫ ∞

0

v r/d e−vdv = τ−1−r/dω
−r/d

d
Γ(1+

r

d
),

as desired.

Next, we consider the spatial dependencies of the terms Φλ(x ,Pλ) contributing to the distortion

arising from Pλ. For all x ∈ Rd and r > 0 we let Br(x) denote the Euclidean ball with radius r
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centered at x . For all x ∈ Rd and all locally finite X ⊂ Rd , let R1(x ,X ) be the infimum of all

t > 0 with the property that C(x ,X ∩ Bt(x)) coincides with C(x ,X ∩ Bt(x)∪A ) whereA is any

finite point set in Bc
t
(x) ∩ A. For λ ≥ 1, we put Rλ(x ,X ) := λ1/dR1(x ,X ). With this definition,

Rλ(x ,Pλ) is a ‘radius of stabilization’, or a range of spatial dependency, for Φλ at the point x with

respect to Pλ, that is to say Φλ(x ,Pλ) does not depend on points in λ1/dPλ distant more than

Rλ(x ,Pλ) from λ1/d x . See [2, 8, 13] for further discussion of stabilizing functionals.

We refer to section 6.3 of [8] for a proof of the following central result, showing that spatial

dependencies uniformly fall off exponentially fast, that is to say the radius of stabilization of Φλ
has an exponentially decaying tail and thus Φλ is an exponentially stabilizing functional. This

stabilization property is a consequence of the assumption that κ is bounded away from zero on its

support A. Let S3 denote the class of all finite subsets of A having at most three elements.

Lemma 2.2. It is the case that

lim sup
t→∞

sup
x∈A,λ≥1

t−1 log P[Rλ(x ,Pλ)> t]< 0

and

lim sup
t→∞

sup
x∈A,λ≥1,(λ/2)≤n≤(3λ/2),A∈S3

t−1 log P[Rλ(x ,Xn ∪A )> t]< 0. (2.4)

The next lemma establishes moment conditions useful in proving central limit theorems.

Lemma 2.3. It is the case that

sup
λ≥1,x∈A

E [Φλ(x ,Pλ)
4]<∞, (2.5)

sup
λ≥1,x∈A,y∈A

E [Φλ(x ,Pλ ∪ {y})
4]<∞, (2.6)

and

sup
λ≥1,x∈A,A∈S3

sup
(λ/2)≤m≤(3λ/2)

E [Φλ(x ,Xm ∪A )
4]<∞. (2.7)

Proof. We will show (2.5) first. For all x ∈ Pλ and all λ≥ 1, put D(x ,λ) := diam(C(λ1/d x ,λ1/dPλ)).

Then

Φλ(x ,Pλ)≤ ||h||∞

∫

C(λ1/d x ,λ1/dPλ)

D(x ,λ)r du≤ωd ||h||∞D(x ,λ)r+d .

Thus to show (2.5) it suffices to show supλ≥1,x∈AE [D(x ,λ)4(r+d)] <∞. However this is a conse-

quence of the exponential decay of D(x ,λ) uniformly in x and λ, which follows from the assump-

tion that κ is bounded away from zero (see section 6.3 of [8]). The bound (2.6) follows similarly

because the diameter of C(λ1/d x ,λ1/dPλ∪{y}) is bounded by D(x ,λ). Similar arguments involv-

ing exponential decay of Voronoi cell diameters on binomial point sets yields (2.7).

The next convergence lemma is the analog of Lemma 3.5 of [8] and is useful in establishing

convergence of one point correlations functions (cf. section 4.1 of [2]). This lemma shows that the

contribution to the distortion for scaled quantizing cells arising from a non-homogeneous Poisson

point process of increasing intensity converges to the contribution to the distortion arising from
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quantizing cells from a homogeneous Poisson point process on all ofRd . This intuitive idea appears

on p. 376 of [6], where it forms the basis for heuristic derivations. Recall that almost every x ∈ Rd

is a Lebesgue point of κ, that is to say for almost all x ∈ Rd we have that ε−d
∫

Bε(x)
|κ(y)−κ(x)|d y

tends to zero as ε tends to zero.

Lemma 2.4. Suppose x ∈ A is both a Lebesgue point of κ and a continuity point for h. Then for all

z ∈ Rd , as λ→∞ we have

Φλ(x +λ
−1/dz,Pλ)

D
−→ ξ∞(x ,Hκ(x)). (2.8)

Proof. Fix x ∈ A and r ∈ (0,∞). By definition of Φλ at (2.2) we have for all z ∈ Rd and all λ≥ 1

Φλ(x +λ
−1/dz,Pλ) =

∫

C(z+λ1/d x ,λ1/dPλ)

|u−λ1/d x − z|rh(λ−1/du)du

which, after substitution, becomes

Φλ(x +λ
−1/dz,Pλ) =

∫

C(0,λ1/d (Pλ−x)−z)

|w|rh(λ−1/d(w + z) + x)dw.

We shorthand C(0,λ1/d(Pλ − x)− z) by Cλ and C(0,Hκ(x)) by C . By Slutsky’s theorem and the

definition of ξ∞, it is enough to show that as λ→∞

∫

Cλ

|w|r(h(λ−1/d(w + z) + x)− h(x))dw
D
−→ 0 (2.9)

and
∫

Cλ

h(x)|w|r dw
D
−→

∫

C

h(x)|w|r dw. (2.10)

We establish (2.9) by showing convergence in L1 as follows. Let Br := Br(0). For all L > 0 let

E(L,λ) denote the event that the diameter of Cλ, here denoted Dλ, is at most L. Then for all L > 0

the L1 norm of the integral in (2.9) equals

∫

E(L,λ)

+

∫

E(L,λ)c

¯

¯

¯

¯

¯

∫

Cλ

|w|r[h(λ−1/d(w + z) + x)− h(x)]dw

¯

¯

¯

¯

¯

dP

≤

∫

Ω

∫

BL

|w|r
¯

¯h(λ−1/d(w + z) + x)− h(x)
¯

¯ dwdP + 2||h||∞ωd

∫

E(L,λ)c

Dr+d
λ

dP

≤

∫

Ω

∫

BL

L r |h(λ−1/d(w + z) + x)− h(x)|dwdP + 2||h||∞ωd

∫

Ω

Dr+d
λ

1{Dλ > L}dP. (2.11)

For all ε > 0 the Cauchy-Schwarz inequality and the exponential decay of Dλ uniformly in λ shows

that the second integral in (2.11) can be made less than ε provided that L is large enough. On the

other hand, L r |h(λ−1/d(w + z) + x)− h(x)| is bounded by 2L r ||h||∞ on Ω× BL and moreover, by

the continuity of h at x we have that L r |h(λ−1/d(w+ z)+ x)− h(x)| goes to zero as λ→∞. Thus

by the bounded convergence theorem the first integral in (2.11) goes to zero as λ→∞. Letting ε

tend to zero completes the proof of (2.9).
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To show (2.10) we argue as follows [8, 9]. Let L be the space of locally finite point sets in Rd

equipped with the metric D(A ,A ′) :=
�

max{K ∈ N : A ∩ BK =A
′ ∩ BK}

�−1
. As in the proof

of Lemma 2.2, ξ∞ is stabilizing with respect to Hκ(x) and moreover the radius of stabilization,

say R, of ξ∞ with respect to Hκ(x) at a point at the origin, is finite almost surely. By radius

of stabilization R, we mean the infimum of all t > 0 with the property that C(0,Hκ(x) ∩ Bt(0))

coincides with C(0,Hκ(x) ∪A ), where A is any finite point set in Bc
t
(x). Also, when ε < R−1,

then the inequality D(Hκ(x),X ) < ε implies
∫

C(0,Hκ(x))
|w|r dw =

∫

C(0,X )
|w|r dw, that is to say

ξ∞(x ,Hκ(x)) = ξ∞(x ,X ). Thus (x ,Hκ(x)) is a continuity point for ξ∞ where the topology on

R
d ×L is the product of the Euclidean topology on Rd and the topology induced by the metric

D. Since λ1/d(Pλ − x)− z
D
−→ Hκ(x) − z

D
= Hκ(x) as λ → ∞ (cf. Lemma 3.2 of [9]) and since

(x ,Hκ(x)) is a continuity point for ξ∞, (2.10) follows by the Continuous Mapping Theorem ([3],

Chapter 1, Theorem 5.1).

To show convergence of pair correlation functions and variance asymptotics, we need the following

result. The proof is similar to both the proof of Lemma 4.2 of [1] and the proof of Lemma 3.6 of

[8] and so we omit the details.

Lemma 2.5. Suppose x ∈ A is both a Lebesgue point of κ and a continuity point for h. Then for all

z ∈ Rd , as λ→∞ we have

Φλ(x ,Pλ ∪ {x +λ
−1/dz})Φλ(x +λ

−1/dz,Pλ ∪ {x})

D
−→ ξ∞(x ,Hκ(x) ∪ {z})ξ∞(x ,−z + (Hκ(x) ∪ {0})).

3 Proofs of Theorems 1.1 and 1.2

Proof of Theorem 1.1. Given the lemmas of section two, we sketch the proof of Theorem 1.1,

referring the reader to [1, 2, 8] for details. Following standard procedure, we first prove the

variance convergence (1.10) for the Poisson point measures (1.9). For simplicity we first assume

that f is almost everywhere continuous. Recalling (1.9), (2.2), and the representation (2.3) we

may write

λr/dµλ := λ−1
∑

x∈Pλ

Φλ(x ,Pλ)δx .

Apply Campbell’s theorem to find the variance of λr/d〈 f ,µλ〉 and then multiply by λ to obtain

λVar[λr/d〈 f ,µλ〉] = λ

∫

A

∫

A

f (x) f (y){E [Φλ(x ,Pλ ∪ {y})Φλ(y,Pλ ∪ {x})] − (3.1)

E [Φλ(x ,Pλ)]E [Φλ(y,Pλ)]}κ(x)κ(y)d xd y +

∫

A

f 2(x)E [Φ2
λ(x ,Pλ)]κ(x)d x .

We next show

lim
λ→∞

λVar[λr/d〈 f ,µλ〉] =

∫

A

∫

R
d

f 2(x)[Eξ∞(x ,Hκ(x) ∪ {z})ξ∞(x ,−z + (Hκ(x) ∪ {0})) − (3.2)

(Eξ∞(x ,Hκ(x)))
2]κ2(x)dzd x +

∫

A

f 2(x)E [(ξ∞(x ,Hκ(x))
2]κ(x)d x .
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We show (3.2) by appealing to the lemmas from section two and to arguments similar to those in

section four of [1]. This goes as follows. Putting y = x + λ−1/dz in the right-hand side in (3.1)

reduces the double integral to

=

∫

A

∫

λ1/d A−λ1/d x

f (x) f (x +λ−1/dz){...}κ(x)κ(x +λ−1/dz)dzd x (3.3)

where

{...} := {E [Φλ(x ,Pλ∪{x+λ
−1/dz})Φλ(x+λ

−1/dz,Pλ∪{x})]−E [Φλ(x ,Pλ)]E [Φλ(x+λ
−1/dz,Pλ)]}

is the pair correlation function for Φλ. By Lemmas 2.4 and 2.5, it follows for almost all x ∈ A and

all z ∈ Rd that the pair correlation function for Φλ converges to the pair correlation function for

ξ∞, i.e., the bracketed expression in (3.2). Moreover, the integrand in (3.3) is dominated by an

integrable function of z over Rd (see Lemma 4.2 of [8]). The convergence of the double integral

in (3.1) to that in (3.2) now follows by dominated convergence, the Lebesgue almost everywhere

continuity of f and κ, and the moment bounds of Lemma 2.3. To show convergence for general

f ∈ B(A) we refer to [8]. To complete the proof of (3.2) we only need to show convergence of
∫

A
f 2(x)E [Φ2

λ
(x ,Pλ)]κ(x)d x . This is a simple consequence of the convergence (2.8), the moment

bounds (2.5), and dominated convergence.

Having established the variance limit (3.2), we now show that (3.2) reduces to (1.10). For all

x ∈ A we define V (x , 0) := 0 and for all a > 0 we put

V (x , a) := E [ξ∞(x ,Ha)
2]+a

∫

R
d

�

Eξ∞(x ,Ha ∪ {z})ξ∞(x ,−z + (Ha ∪ {0}))− (Eξ∞(x ,Ha))
2
�

dz.

(3.4)

Given (3.4), observe that we may write (3.2) as
∫

A
f 2(x)V (x ,κ(x))κ(x)d x . Note that ξ∞(x ,Ha)

D
=

a−1−r/dξ∞(x ,H ), showing that E [ξ∞(x ,Ha)
2] = a−2−2r/d

E [ξ∞(x ,H )2], and likewise, after the

substitution u= a1/dz, the integral in (3.4) reduces to

a−2−2r/d

∫

R
d

�

Eξ∞(x ,H ∪{u})ξ∞(x ,−u+ (H ∪{0}))− (Eξ∞(x ,H ))2
�

du.

Recalling the definition of V (r) at (1.4), this yields V (x , a) = h2(x)a−2−2r/d V (r). Thus (3.2)

reduces to σ̂2(r, f ), showing (1.10) as desired.

Now to prove (1.6) we use de-Poissonization arguments [2, 8]. For all x ∈ A and a > 0, define

∆(x , a) := E [ξ∞(x ,Ha)] + a

∫

R
d

E [ξ∞(x ,Ha ∪ {y})− ξ∞(x ,Ha)]d y.

Then as in [2, 8] and using the analog of Lemma 3.6 of [8], we have

lim
n→∞

nVar[nr/d〈 f ,νn〉] = V (r)

∫

A

f 2(x)h2(x)(κ(x))−1−2r/d d x −

�∫

A

f (x)∆(x ,κ(x))κ(x)d x

�2

.

(3.5)

However ξ∞(x ,Ha)
D
= a−1−r/dξ∞(x ,H ), showing ∆(x , a)

D
= a−1−r/dh(x)∆(r), by definition of

∆(r) at (1.5). This, combined with (3.5), shows (1.6).

To prove asymptotic normality (1.7) we proceed as follows. First, we establish the analogous

central limit theorem for Poisson input, namely the asymptotic normality of λ1/2+r/d〈 f ,µλ〉, by
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combining Lemmas 2.2-2.4 with the dependency graph arguments of [8, 12]. This approach has

been previously used in [1] and we will not repeat it here. Having established the central limit

theorem for Poisson input, we may de-Poissonize to obtain (1.7). The arguments used to prove

Theorem 2.3 of [8] may be followed verbatim, where in particular we note that condition A4′ of

[8] is satisfied by the moment bounds of Lemma 2.3 and the stabilization condition (2.4).

Proof of Theorem 1.2. As with the proof of asymptotic normality, the proof of (1.11) rests

on stabilization techniques. We only sketch the main ideas, referring to [9, 11] for details. By

Campbell’s theorem we have

E [λr/d〈 f ,µλ〉] =

∫

A

E [Φλ(x ,Pλ)] f (x)κ(x)d x . (3.6)

The random variables Φλ(x ,Pλ), λ ≥ 1, are uniformly integrable by Lemma 2.3 and thus by

Lemma 2.4 with z = 0 we have for all x ∈ Rd the convergence of means E [Φλ(x ,Pλ)] →

E [ξ∞(x ,Hκ(x))] as λ → ∞. By Lemma 2.3 and the dominated convergence theorem the inte-

gral on the right hand side of (3.6) satisfies

lim
λ→∞

∫

A

E [Φλ(x ,Pλ)] f (x)κ(x)d x =

∫

A

E [ξ∞(x ,Hκ(x))] f (x)κ(x)d x ,

which by Lemma 2.1, establishes a mean version of the advertised limit (1.11) for Poisson input.

By coupling the binomial point process Xn with the Poisson process Pλ as in [11] we may further

show

lim
n→∞
E [nr/d〈 f ,νn〉] =

∫

A

E [ξ∞(x ,Hκ(x))] f (x)κ(x)d x .

To show convergence in L2, we may appeal to the methods of Penrose [9], which rest on estab-

lishing the analogs of Lemmas 2.4 and 2.5 when Pλ is replaced by a binomial point process Xn.

The proofs of these lemmas are straightforward but tedious modifications of the existing proofs

and so we omit the details.
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